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Abstract—Navigating large-scale outdoor environments re-
quires complex reasoning in terms of geometric structures,
environmental semantics, and terrain characteristics, which are
typically captured by onboard sensors such as LiDAR and
cameras. While current mobile robots can navigate such envi-
ronments using pre-defined, high-precision maps based on hand-
crafted rules catered for the specific environment, they lack
commonsense reasoning capabilities, especially the traversability
analysis, that most humans possess when navigating unknown
outdoor spaces. To address this gap, we introduce the Global
Navigation Dataset (GND), a large-scale dataset that integrates
multi-modal sensory data, including 3D LiDAR point clouds and
RGB and 360° images, as well as multi-category traversability
maps (pedestrian walkways, vehicle roadways, stairs, off-road
terrain, and obstacles) from ten university campuses. These
environments encompass a variety of parks, urban settings,
elevation changes, and campus layouts of different scales. The
dataset covers approximately 2.7km2 and includes at least 350
buildings in total. We also present a set of novel applications
of GND to showcase its utility to enable global robot naviga-
tion, such as map-based global navigation, mapless navigation,
and global place recognition. GND’s website can be found at
https://cs.gmu.edu/∼xiao/Research/GND/.

I. INTRODUCTION

Global navigation plays a critical role in enabling robots
to traverse large-scale outdoor environments [9, 31, 37, 30,
29, 48]. It is widely used in real-world tasks like last-
mile delivery [21, 8], remote exploration [5, 4], autonomous
driving [37, 68], etc. Unlike navigation in structured indoor
spaces [63, 38, 62, 51], global navigation needs to reason
about a variety of environmental factors in complex outdoor
scenarios [28, 56, 30, 42], including recognizing terrain char-
acteristics for traversability analysis [13, 14, 15, 58, 24] and
inferring navigational cues to determine the shortest path in
large-scale open environments [51, 31].

One challenge of global navigation is the need of nav-
igational reasoning at a very large scale, e.g., trajectories
corresponding to hundreds or thousands of meters [9, 31,
37, 30, 29]. In practice, navigating from the south side of
a university campus to a cafeteria on the north side without a
prior map may require following major pedestrian walkways at
the beginning, while taking shortcuts close to buildings later.
Such a reasoning process requires not only geometric, but
also semantic understanding of the large-scale outdoor scenes,
which needs to be captured by various sensors like 3D LiDARs
and RGB cameras.

Another challenge is making navigation decisions by rea-
soning beyond simple obstacles and free spaces, a common
delineation of indoor workspaces, while considering different
robot morphologies. For example, pedestrian walkways, ve-
hicle roadways, and some off-road terrain may all appear as
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Fig. 1: Traversability maps of the Global Navigation
Dataset (GND): The legend shows five different categories
of terrain traversability with different colors. Inset (a) shows
the 3D satellite image of inset (b), an enlarged traversability
map. GND contains multi-modal sensory data including 3D
LiDAR point clouds (c), RGB images (d), and 360° images
(e).

free spaces, but they may correspond to different categories
of traversability in different scenarios [47], e.g., stairs should
be treated as obstacles for wheeled robots, but they can be
regarded as free spaces for legged robots [31].

Although robotics practitioners have tackled these chal-
lenges with high-precision prior maps and hand-crafted nav-
igation rules for specific environments, recent research has
focused on leveraging machine learning to equip robots with
generalizable, human-like reasoning capabilities during out-
door global navigation. Imitation and reinforcement learning
techniques [28, 56] have been used for semantic understand-
ing [22, 36, 11, 5, 40, 33], traversability analysis [22, 36,
11, 5, 40, 33], topological modeling [42, 45], trajectory
generation [29, 30], heuristic estimation [51, 50], parameter
tuning [61, 57, 53, 55, 65], and policy learning [39, 17]. One
common requirement of all these data-driven approaches is
high-quality ground truth or trial-and-error data for training.
Main Results: Motivated by such difficulties of global navi-
gation and research needs of training data, we present a novel,
large-scale Global Navigation Dataset (GND), which includes
multi-modal perception and multi-category traversability in
outdoor campus environments (Fig. 1). GND comprises almost
11 hours of navigation data captured using two Clearpath
Jackal robots, accompanied by 3D LiDAR point clouds, RGB
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TABLE I: Comparison of State-of-the-Art Navigation Datasets: Our GND dataset features the most comprehensive range
of sensors and provides multi-category traversability maps for global navigation in various campuses.

Dataset Traversability Distance Duration Sensors Platform PurposeLabels (km) (min.)

SCAND[23] ✕ 40 522 3D LiDAR, RGB Camera, RGB-D Camera,
Wheel Odometry, Visual Odometry Robot Social Navigation

MuSoHu[35] ✕ 100 1200 3D LiDAR, RGB-D Camera, 360° Camera,
IMU, Microphone, Visual Odometry Human Social Navigation

SiT[2] ✓ N/A 24.3 3D LiDAR, RGB Camera (covering 360°),
IMU, GPS, Wheel Odometry Robot

Social Navigation,
Human Detection

& Tracking

JRDB[34] ✕ N/A 64
3D LiDAR, 2D LiDAR, RGB Camera, RGB-D
Camera, 360° Camera, IMU, GPS, Microphone,

Wheel Odometry
Robot Human Detection

& Tracking

NCLT[7] ✕ 147.4 2094 3D LiDAR, RGB Camera, Fisheye Camera,
IMU, GPS, Wheel Odometry Robot Global Navigation

GND (Ours) ✓ 53 668 3D LiDAR, RGB Camera, 360° Camera,
IMU, GPS, Wheel Odometry Robot Global Navigation

and 360° camera images, inertia Measurement Unit (IMU)
information, GPS data, as well as robot odometry and actions,
collected across 10 university campuses in city and village
areas, including a variety of park areas, vegetation types,
elevation changes, diverse campus layouts and objects in the
campuses. In total, We covered around 2.7km2 with at least
350 buildings in the datasets over 11 hours of recorded data (in
rosbags). All raw perception data are post-processed into ten
large-scale global campus maps labeled with five categories of
traversability (pedestrian walkways, vehicle roadways, stairs,
off-road terrain, and obstacles) and associated with multi-
modal perception (e.g., first-person and 360° view) on the
robot trajectories. Some of our main contributions include:

• The first large-scale, long-range, across-campus global
navigation dataset with multi-modal perception data and
multi-category traversability maps;

• A standardized and streamlined data collection and post-
processing pipeline designed to encourage broader con-
tributions from all users to the dataset; and

• Novel dataset applications showing GND’s utility in
enabling outdoor global navigation tasks with different
types of robots (wheeled and legged robots), as shown
in Section IV, including global map-based navigation
(path planing), mapless navigation (trajectory and motion
generation), and global place recognition.

II. RELATED WORK

In this section, we review related literature on global robot
navigation and state-of-the-art robot navigation datasets.

A. Global Robot Navigation

Navigating robots in large, outdoor environments presents
multiple challenges, including the need to assess terrain
traversability and perform large-scale navigational reasoning.
Global robot navigation can be divided into two main ap-
proaches: map-based and mapless. Map-based approaches rely
on a comprehensive cost map for path planning [18, 25]
and precise robot localization [1, 32] to ensure accurate path
execution. However, these methods can be computationally

expensive and require significant overhead to maintain up-
to-date maps. To address these limitations, ViNT [45] and
NoMaD [49] proposed generating topological maps and using
vision-based images as subgoals for navigation, though they
still require initial runs to collect subgoal images. On the other
hand, mapless navigation techniques eliminate the need for
maps entirely. AdaptiveON [28] focused on generating actions
in a mapless fashion but was limited to local planning without
addressing long-distance navigation. More recent advance-
ments, such as MTG [29], enable long-distance navigation,
while DTG [30] further optimizes traversable trajectories in
large-scale outdoor settings. Both map-based and mapless
approaches require extensive datasets with highly accurate
traversability maps and multi-modal sensory data for effective
reasoning and training.

B. Datasets for Robot Navigation

Over the past decade, large-scale navigational datasets have
proven invaluable across various research domains, including
social robot navigation [20], human trajectory prediction [41],
autonomous driving [37, 68], vision-based navigation [44], and
global navigation [30].

KITTI [19] was one of the first large-scale datasets that
emphasized the importance of well-organized, real-world data
for advancing machine learning and computer vision research.
It not only significantly impacted autonomous driving but also
influenced the broader field of computer vision. Although
many follow-up datasets have been introduced [3, 52, 10],
early efforts were predominantly focused on autonomous
vehicle applications, particularly in perception. Similarly, in
robotics, multi-sensory datasets have been released. However,
current datasets focused on perception or mapping tasks [66,
34, 6], considered specific local navigation tasks [23, 35, 2], or
were limited in scale and sensor modalities [43]. As a result,
there remains a gap in the datasets among adequately covering
large-scale environments and traversability analysis across
different sensor and robot modalities. GND addresses this
gap by offering rich multi-modal robot sensory data collected
in outdoor campus environments, complemented by human-



TABLE II: Five Example Campuses in GND: The table outlines details of five example campuses, including the University
of Maryland (UMD), George Mason University (GMU), Catholic University of America (CUA), Georgetown University, and
George Washington University (GWU). We list the covered areas, number of buildings, trajectory length, number of RGB and
360° images, number of LiDAR point clouds, and ratio of different traversability categories in the campus map. P, O, V, and S
represent pedestrian walkways, off-road terrain, vehicle roadways, and stairs, respectively. For example, 0.84 km2 is covered
on the UMD campus with 60 buildings, and the ratio of pedestrian walkways in the campus is 10.66% of the UMD campus
map. More campus datasets are on GND’s website.

Campuses Covered # of Trajectory # of RGB # of 360° # of LiDAR Ratio of Traversability (%)
Areas (km2) Buildings Length (km) Images Images Clouds P O V S

UMD 0.84 60 23.26 214768 N/A 146703 10.66 16.29 25.84 1.67
GMU 0.46 51 13.67 137948 137027 91500 17.31 25.04 17.11 0.41
CUA 0.40 32 2.87 29921 30266 20025 7.86 42.29 18.78 1.81

Georgetown 0.25 40 3.25 33244 33325 22050 7.16 21.42 13.96 1.51
GWU 0.15 39 3.00 33156 32714 22190 8.95 14.04 28.09 1.99
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Fig. 2: Robot Setup: We use a Clearpath Jackal for dataset
collection, which is equipped with various sensors, including
3D LiDAR, RGB camera, 360° camera, IMU, and GPS. It
is capable of traversing diverse terrains, including pedestrian
roads, roadways, off-road areas, ramps, and woods.

labeled multi-category traversability maps. Table I compares
our work with relevant state-of-the-art datasets.

While previous datasets have proven to be valuable for
studying perception and various navigation challenges, they
fall short in providing demonstrations on global navigation,
particularly regarding traversability information. While SiT [2]
offered 12-layered semantic maps, its primary focus was on
providing benchmarks and analysis for pedestrian detection
and tracking, falling short in demonstrating practical applica-
tions that leverage the semantic maps. We aim to showcase
applications of GND by utilizing various data and methods to
demonstrate their practical applications.

III. DATASET

In this section, we first describe the data collection proce-
dure. We then describe the details of our dataset, particularly
on the traversability map.

A. Data Collection

We manually operate the robot to navigate various campus
environments for data collection. We guide the robot con-
sidering the traversability of the road. The robot primarily
navigates pedestrian walkways; However, when necessary, it
also traverses vehicle roadways, such as when crossing streets

or accessing specific areas. As shown in Fig. 2, the robot is
equipped with the following sensors:

• 3D LiDAR: Velodyne VLP-16 with 16 channels or
Ouster OS1-32 with 32 channels, both covering a 360-
degree field of view and operating at 10 Hz;

• RGB Camera: ZED2 with image resolution of 1080p
facing front and operating at 15 Hz;

• 360° Camera: RICOH Theta V operating at 15 Hz;
• IMU: 6D 3DM-GX5-10 operating at 355 Hz; and
• GPS: u-blox F9P operating at 20 Hz.
Our robot operates on Ubuntu 20.04 and Robot Operating

System (ROS) Noetic. The data captured by the sensors are
recorded in the rosbag file format. We also provide both intrin-
sic and extrinsic calibration parameters for the LiDARs and the
cameras. We gathered datasets from 10 university campuses
with approximately 2.7 km2 of campus area, including at least
350 buildings, with over 11 hours of recorded rosbag data.
These campus datasets encompass a variety of environments,
such as parks, different types of vegetation, elevation changes,
diverse campus layouts, and objects. As shown in Table II,
we list five example campus datasets with their details. The
campus datasets cover a various size of campus areas ranging
from 0.15 km2 to 0.84 km2, with 32 to 60 buildings. The table
also underscores the variety of traversability category ratios in
different campuses. For examples, the pedestrian walkways
range from 7.16% to 17.31% over the covered campus area.
More campus datasets are in the website in the Abstract.

B. Standardized Data Processing

To encourage broader contributions from dataset users, we
standardize our data processing workflow. First, the raw rosbag
data is processed using LIO-SAM [46] or FAST-LIO [64]
to generate both the trajectories and 3D local maps. Next,
we process the point cloud maps by removing the ground,
which enhances the visibility of significant features, such as
buildings, in a top-down view. This ground removal also
improves localization performance. Then, these local maps
are registered using TEASER++ [67] to create a global map,
where all trajectories and maps are transformed into the global
map’s coordinate system. For each campus, we generate a
single global map within the dataset. This global map is
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Fig. 3: Map-based Global Navigation using Multi-Category Traversability Map in GND: The white and yellow stars
indicate the start and goal positions, respectively. The orange line shows the path of the wheeled robot, and the purple line
shows the path of the legged robot. (a) and (b) shows Scenario 1, where there are stairs. (c) shows Scenario 2, where the robot
is going to the right bottom of the figure. When the road is blocked and the legged robot can only go through the roadway
due to narrow passages in off-road terrain. (d) shows Scenario 3, when the road is blocked and the robots have to go around
the path using the off-road terrain.

(a) Point Cloud Map (b) Multi-category Traversability Map

Fig. 4: Partial Map of the University of Maryland: Inset
(a) presents the processed point cloud map, featuring the
robot’s trajectory for data collection marked by a pink line; (b)
illustrates the multi-category traversability map corresponding
to the dataset shown in (a).

a comprehensive 3D representation of the entire campus,
designed for use in map-based navigation approaches and as
ground truth for mapless ones.

To create 2D traversability maps, we first utilize semantic
segmentation approaches to segment different traversability
areas in RGB images and correlate the traversabilities to Lidar
point cloud through Lidar-camera calibration. Then according
to the robot posese, we merge all the single frame colored
point clouds together in 3D global coordinate and project the
3D point cloud global map onto the 2D plane along the Z-
axis. Then we manually annotate the five distinct traversability
types, each represented by different colors. The standardized
data processing pipeline is also published with the dataset.

C. Multi-Category Traversability Map

The multi-category traversability map consists of five
traversability types. White indicates areas traversable by most
robots, such as sidewalks, concrete surfaces, and brick roads.
Red represents areas that are non-traversable for all robots,
including buildings, rivers, construction sites, and poles. Be-
tween these extremes, we define three additional categories:
green marks off-road or vegetated areas, yellow represents
stairs or curbs, and blue highlights roadways and parking
lots. Different types of robots can navigate through different
traversable areas. For example, legged robots can handle stairs
and curbs, while wheeled robots cannot. However, fast-moving
wheeled robots are capable of traveling on roadways, whereas
slow legged robots are not safe in high-traffic environments.

Figure 4 shows an example of the multi-category traversabil-
ity map, alongside the point cloud map. It demonstrates
that GND provides not only geometric but also semantic
information about the environment, closely aligned with real-
world conditions.

IV. APPLICATIONS

In this section, we present three applications for the GND
dataset, emphasizing its unique characteristics: globalness and
traversability, which do not present in existing navigation
datasets. This dataset is collected mostly by Jackal robot, but it
can be used for navigation tasks with different types of robots,
such as legged robots and wheeled robots. We implement map-
based global navigation, mapless navigation, and global place
recognition.

A. Map-based Global Navigation

The primary objective of the GND dataset is to provide
precise map data for global robot navigation. To demonstrate
its utility, we conduct an experiment comparing the navigation
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Fig. 5: T-MTG Generated Trajectories: T-MTG generates trajectories to cover traversable areas across three levels: basic, agile,
and legged traversability levels. Each level imposes different constraints and utilizes different types of robots for navigation.
Basic traversability level contains only pedestrian roads for all types of robots, agile traversability level includes both pedestrian
roads and vehicle roadways for fast-moving wheeled robots, and legged traversability level has pedestrian walkways and off-
road terrains for legged robots. For each cell, the left side displays the generated trajectories (red solid lines) overlaid on the
robot’s RGB view image, while the right side shows the generated trajectories (black dotted lines) overlaid on the cropped
multi-category traversability map.

of two robots with different modalities and traversabilities,
wheeled and legged. Using the map, path planning methods
such as A* or RRT* can generate a path based on the
GPS coordinates of the start and goal positions. As the
robot moves, motion planning methods like the classical
approaches [16, 27], like Dynamic Window Approach [16],
or learning-based approaches [28, 26, 12, 60, 59, 54] can be
employed to observe the real-time environment changes and
guide the robot’s actions. Both robots will initially navigate
along the sidewalk, but if the path becomes non-traversable
for a particular robot type, the motion planner will select
alternative traversable areas, adjusting the robot’s course to
reach the next waypoint along the trajectory.

As shown in Figure 3, the traversability map illustrates
various scenarios during the robots’ navigation from the white
star to the yellow star. The purple trajectory represents the
path of the legged robot, while the orange trajectory shows
the wheeled robot’s path. When the path encounters stairs, the
wheeled robot deviates to a nearby ramp before returning to
the next waypoint, as depicted in the RGB image (a) on the
right side of the figure. Meanwhile, the legged robot continues
on its original path, walking directly up the stairs. For other
obstacles, such as construction cones and groups of people
blocking the sidewalk, as shown on the right side of Figure 3,
the legged robot steps down the curb or navigates through
off-road terrain to avoid the blockage.

B. Mapless Navigation with Traversability Analysis
To assess the efficacy of various traversability types in the

dataset for learning-based mapless navigation algorithms, we
extend the MTG algorithm [29] with multiple traversability
levels, referred to as T-MTG (Fig. 6). The problem formulation
in MTG is given by Equation 1:

p(τ |c) ≈ 1

S

S∑
s=1

p(τ |z(s), c), z(s) ∼ pθ(z|o), (1)

where τ represents the generated trajectories under the con-
dition c = fc(o). fc(·) is a sequence of linear layers, and
o denotes the observation information. Here, z = fz(c)
is the embedding vector of the encoded observation and
fz(·) represents a sequence of linear layers. During training,
z =

{
z(s)

}
is sampled from the distribution pθ(z|o), where

pθ(·) is the distribution of z and θ represents the parameters
of the encoder model. S indicates the number of waypoints.

For different traversability levels, we aim for the observation
embeddings to capture the current traversabilities. To achieve
this, a model is employed to reprocess the traversability: zt =
fk
t (zt|z,o), where o is reused to provide residual information,

enhancing the calculation of zt. k represents the traversability
level. Thus, the MTG model in Equation 1 is extended to the
T-MTG model in Equation 2:

p(τk|c) ≈
1

S

S∑
s=1

p(τk|zk,(s)t , c),

zkt ∼ pθ(z
k
t |fz(z|o),o), (2)



Fig. 6: T-MTG: As shown in Equation 2, for different
traversabilities, we generate corresponding embedding vectors
zkt from z, under the condition of observation o. The MTG
Decoder is used to decode the embedding vectors into trajec-
tories. Finally, the output of the model includes trajectories in
all the traversability levels.

where fz(·) represents the encoder and z
k,(s)
t is the embedding

of the waypoint s in zkt .
As shown in Fig. 5, we implement three traversability

levels: Basic traversability includes only pedestrian walkways,
where robots can move in various speed on in the areas;
agile traversability level is designed primarily for fast-moving
wheeled robots and includes both pedestrian walkways and
vehicle roadways, where the robot is required to move fast to
keep up with traffic; and legged traversability level is suited
for legged robots, allowing traversal on pedestrian walkways
and off-road terrain, though it is not safe for use on vehicle
roadways. Our approach, T-MTG, generates trajectories to
cover the 200° field of view (FOV) in front of the robot.
In Fig. 5, the RGB images display the generated trajectories
from the front camera’s perspective (70° FOV), and the
traversability map highlights each waypoint of the trajectories
in their respective traversability regions. For each traversability
level, our approach successfully generates trajectories that lie
within the appropriate regions, effectively covering the areas
in front of the robot.

C. Vision-based Place Recognition

We collect both RGB and 360° camera images to of-
fer vision-based global navigation in the GND dataset. To
demonstrate the usability of 360° image data, we conduct an
experiment using the NoMaD [49] algorithm for goal detec-
tion, which compares the current observation with topological
image nodes to recognize the best target to follow the recorded
topological nodes. For goal-directed navigation, NoMaD [49]
encodes images of the robot’s current RGB observations as
vectors, and then uses the vectors to predict the temporal
distance to the goal, by calculating the similarities with the
vectors of the sub-goal images of the topological nodes. The
sub-goal image with the highest similarity is then chosen as
the closest node for goal-directed navigation.

We use images in four views (front, left, right, and back)
from the 360° camera to implement the NoMaD [49] algo-
rithm. Initially, we collect images with different time intervals
to generate a sparse topological map. The topological map
is constructed using only the front view of the 360° images.
Then we use the four views from the 360° images as the
robot’s current observations to generate four embedded vec-

tors. Among these vectors, we determine the direction of the
context images that has the closest distance to the sub-goals
and select the subgoal with the highest similarity as the closest
node for further navigation, as shown in Fig. 7(a).

We notice that the average similarity score of all four
views from the real-time image observations and the goal
(blue line) is higher than the comparisons with only one of
the image, as shown in Fig. 7(b). Additionally, the temporal
distance between observed images and sub-goals also increases
with a sparser topological map. These findings highlight the
advantages of utilizing all available directional information
from 360° images for more accurate and efficient goal-directed
navigation.

V. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We introduce GND, a large-scale, long-range, global robot
navigation dataset that includes multi-modal perception data
and multi-category traversability maps. This dataset enables
robots to undertake long-range navigation while accounting
for geometric and semantic traversability. We are making all
data available online, accompanied by a standardized post-
processing pipeline, and we encourage contributions from
the wider research community to enhance the dataset. The
primary features of GND—globalness and traversability—are
illustrated through three distinct experiments, highlighting its
potential applications. Although GND offers valuable sensory
data, we recognize that there is still work to be done in
providing benchmark scenarios and evaluation metrics for
global robot navigation, which remain underexplored in the
existing literature.
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