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Abstract

We study the complexity of online stochastic gradient descent (SGD) for learning
a two-layer neural network with P neurons on isotropic Gaussian data: f.(x) =
25:1 ap-o(x,v},)), x ~ N(0, 1), where the activation o is an even function with
information exponent k. > 2 (defined as the lowest degree in Hermite expansion),
{vptperp) € R4 are orthonormal signal directions, and non-negative second-layer

coefficients satisfy >, a%, = 1. We focus on the challenging “extensive-width”
regime P > 1 and permit diverging condition number in the second-layer, covering
as a special case the power-law scaling a,, =< p~# where 8 € Rso. We provide a
precise analysis of SGD dynamics for the training of a student two-layer network to
minimize the mean squared error (MSE) objective, and identify sharp transition
times to recover each signal direction. In the power-law setting, we characterize
scaling law exponents for the MSE loss with respect to the number of training
samples and SGD steps, as well as the number of trainable parameters. Our
analysis entails that while the learning of individual teacher neurons exhibits
abrupt transitions, the juxtaposition of P > 1 emergent learning curves at different
timescales leads to a smooth scaling law in the cumulative objective.

1 Introduction

Recent works have studied the gradient-based training of shallow neural networks for learning
low-dimensional target functions (i.e., functions in R4 that depend on P < d directions), such as
single-index models [BAGJ21, BES*22, BBSS22, DNGL23, BMZ23, DPVLB24] and multi-index
models [DLS22, AAM22, BBPV23, CWPPS23, BAGP24, TDD*24], to illustrate the adaptivity (and
hence the improved statistical efficiency) of neural networks through feature learning. For such
target functions on unstructured (isotropic) input data, it is known that optimization may exhibit an
emergent risk curve: learning undergoes an extensive “search phase” during which the loss plateaus
(the length of which depends on properties of the nonlinearity), followed by a sharp “descent phase”
where strong recovery is achieved rapidly. For instance, when the target is a single-index model
fi(x) = o(x - 0),0 € RY, the initial search phase of online SGD scales as 1 < d®%) where k, € R,
is the information exponent of the link function o (defined as the index of its first nonzero Hermite
coefficient [DH18, BAGJ21]), whereas the final descent phase occurs in 7t = ®(1) time.

The sharp phase transition observed in the gradient-based learning of low-dimensional target functions
may seem at odds with the phenomenon of neural scaling laws [HNA*17, KMH*20, HBM*22],
where increasing compute and data empirically leads to a predictable power-law decay in the loss. A
plausible explanation lies in considering an additive model, where the objective can be decomposed
into a large number of distinct “skills”, each of which occupies only a small fraction of the trainable
parameters [DDH*21, EHO"22, PSZA23]. While the acquisition of individual skills may exhibit
abrupt transitions — empirically observed in [WTB*22, GHL*22] — the juxtaposition of numerous
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emergent learning curves occurring at different timescales results in a smooth power-law rate for the
cumulative objective [MLGT24, NFLL24].

Motivated by the above, we consider an idealized setting where each learning task is represented by a
Gaussian single-index model, so the additive model reduces to a two-layer neural network

fl@) =30 apo(vy,-x), x~NO,1L),

where {v},} 1[7) _, are orthonormal index features, a; > --- > ap > 0 are second-layer weights ordered

in descending magnitude, and o : R — R is an even activation function with information exponent
k. > 2; this implies that (online) SGD learning of each task has an emergent learning curve with
poly(d) initial plateau. This target function is a subclass of multi-index models (with ridge-separable
nonlinearity), for which the complexity of gradient-based optimization has been recently studied
[OSSW24, SBH24, RL24]. We highlight the following technical challenges to be addressed.

» Extensive width (P > 1). Most existing results on SGD learning have focused on the “narrow-widt
regime such as P = 1 for single-index models [BAGJ21, DNGL23, MHPG*22, DTA*24, LOSW24]
and P = O4(1) for multi-index models [DLS22, BBPV23, DKL*23, BAGP24, ZG24]. However,
to obtain a smooth power-law scaling from a sum of “discrete” learning curves, the number of tasks
should be large; this motivates us to study the extensive-width regime where we allow P — oo as
d — oo, which yields an infinite-dimensional effective dynamics [BAGJ22].

thl

* Large condition number (“max > 1). Existing works in the extensive-width regime usually
assumed identical second layer (a | = ... = ap) [RL24, SBH24] or proved optimization complexity
that scales exponentially with the condltlon number x = "““‘" [LMZ20, OSSW24] (to our knowledge
the only exceptions are [GRWZ21, BAGP24] which c0n51dered unnatural algorithmic modifications
such as Stiefel constraint or tensor deflation with re-initialization). Such exponential dependency
implies that in the poly-time learnable regime x = O4(1), the signal strength for individual tasks
can only differ by constant, and consequently, there is insufficient timescale separation to produce a
power-law risk curve. We thus focus on the challenging large condition number regime « > 1.

* Single-phase training. Prior works on multi-index learning typically employed a layer-wise
training procedure, where correlation loss SGD is first applied to the first-layer parameters to
recover the index features, followed by convex optimization to solve for the optimal second layer
[DLS22, BES*22, AAM23, OSSW24]. Such stage-wise training creates complications in the
scaling law description due to the changing computational procedure. Hence we aim to characterize
a natural, single-phase algorithm where both layers are updated simultaneously.

1.1 Our Contributions

We study the learning of an additive model (1) with orthogonal first-layer weights and even activation
with information exponent k. > 2, using a student two-layer network with m neurons trained via online
SGD to minimize the mean squared error (MSE) loss. We consider the extensive-width regime P > 1,
and allow the scale of second-layer parameters of the target (teacher model) to depend polynomially
on the width P. We establish polynomial runtime and sample complexity for single-phase SGD
training and provide a sharp characterization of the recovery time for each teacher neuron.

Theorem ((Informal) sample complexity). Assume the teacher model has P < d° orthogonal neurons
for some small but fixed ¢ > 0, and the activation o is an even function with information exponent
ki > 2. To recover the top P. < P teacher directions, we can train a student network (2) with
m = O(P.) neurons via online SGD with sample and runtime complexityn < T < a;,*z -d*~Tpoly(P).

As a corollary, we know that a student width m = ©(P) and sample size n = O(a_2 d*~'poly(P))
are sufficient to learn all teacher neurons, where @iy := min,e[p] a,. Prior to our work, [OSSW24]
studied the learning of the same target function class using a layer-wise training procedure that
deviates from common practice. Their analysis requires m 2 P?(!/@in) student neurons, which is
computationally prohibitive since P, al;i'n can both scale with the dimensionality d. Interestingly,
we show that this limitation can be overcome by considering an arguably more natural single-phase
training algorithm. At a technical level, our analysis leverages the following key ingredients.

* Single-stage training. We consider a 2-homogeneous student model and simultaneously train
both layers via online SGD under the MSE loss; this differs from prior layer-wise analyses
where the first-layer weights are optimized under correlation loss. In our large condition number



setting, the correlation loss analysis yields super-polynomial complexity to compensate for the
signal discrepancy across different tasks [OSSW24]; in contrast, our single-phase MSE dynamics
circumvents this issue by automatically deflating the learned tasks from the loss.

* Decoupled dynamics. When P > 1, the effective dynamics of SGD cannot be captured by a finite
set of summary statistics. To understand the convergence of this high-dimensional system, we show
that the evolution of different signal directions can be approximately decoupled via an “automatic”
deflation mechanism and carefully controlling the influence of the irrelevant coordinates.

Applying our general learnability result, we precisely characterize the scaling of the population loss
along the online SGD trajectory in the following power-law setting.

Proposition ((Informal) scaling law). Under the same conditions and hyperparameters as the previous
theorem, and assuming a, < p~B for B > 1/2, then (ignoring logarithmic factors) we have

(a) Emergence. The p-th teacher neuron (where p < m) is recovered at time nt ~ pPd*/>=1,
(b) Scaling law. The population squared error follows a power-law decay up to approximation

1-2
barrier L(t) ~ (tnd'=%/2)7" v m!=2,

This proposition confirms the additive model intuition
from [MLGT24, NFLL24] in a high-dimensional feature
learning setting, where the length of the “search phase” B w— L(1) ~ (tpd'~k12) =
(plateau) for each feature direction v), is modulated %

by the magnitude of the second-layer coefficient a,, \

and the simultaneous learning of all directions yields a \ \
power-law decay in the cumulative loss (see Figure 1). \
However, unlike these prior works, our problem setting Loss at p-th task
does not imply that the learning of different tasks can be (emergence at  ~ pPak-/21)
decoupled a priori, as student neurons may be attracted :

to multiple teacher directions and also interact with each
other through the squared loss.

Cumulative loss

Optimization time ¢

Figure 1: Power-law scaling of MSE loss as a
result of superposition of emergent risk curves.

2 Problem Setting and Main Results

In this section, we present our main results on SGD learning and scaling laws.

2.1 Setting and Algorithm

Architecture: two-layer neural network. Let o : R — R denote the nonlinear link function. We
assume the target function is given by the following additive model

f@®) =%, apo(v,-x), VYaeR?, (1)

where x ~ y := N (0, 1) is the input, {'U;}pe[p] c R4 are orthonormal with P > 1, o € Lz(y)
satisfies Assumption 2.1, and a; > --- > ap > 0 are normalized so that Zp a%, = 1. Since the
input distribution and our learning algorithm are rotationally invariant, we may assume w.l.0.g. that
v;‘, =ep, where e, € R4 is the p-th standard basis vector. While our scaling results will assume a,
follows a power law decay, no such assumptions are required for our optimization results.

Assumption 2.1 (Link function). Let {h}ken,, denote the normalized Hermite polynomials.

(a) o is even and has information exponent IE(o) = 21 for I > 1, that is, the Hermite expansion of
o is given as o = )., O2:ho;, and we require &y > ¢ we also assume loll2¢yy = 1, and
lo"l2(yys 16"l 2(y) < Cor, where constants ¢, Co > 0.

(b) o and o’ have polynomial growth. That is, there exist universal constants C,Q > 0 such that
lo(x)| V o7 (x)| < C(1 +x2)2/2 for all x € R.

Remark. We focus on high information exponent IE(o") > 2 link functions as in [OSSW24, SBH24,
GWB25]. This setting entails that the learning of each single-index task is “hard" in the sense that
online SGD exhibits a long loss plateau, and we utilize this assumption to prove (approximate)
decoupling of individual tasks. The condition on even o simplifies the analysis by removing the 1/2
probability of neurons initialized in the wrong hemisphere (see e.g., [BAGJ21]).



Our learner network (student model) is a width-m two-layer neural network:
f(@) = f (s {od,) = Sy loell® o (B - ), (2)

where {vg}/L, C R4 are trainable parameters and @y := vy /||vk||. Note that this student network is
parameterized to be 2-homogeneous in each vy, i.e., the second-layer coefficients are coupled with the
norm of the first-layer weights. Such 2-homogeneous parameterization has been used in many prior
works [LMZ20, WWL*20, GRWZ21]; this setting originated from the analysis of training both layers
of ReLU networks under balanced initialization (see e.g., [CB20]), and allows us to couple the growth
of the second layer norm ||vg ||I*> with the direction convergence of U;. We believe that a similar proof
strategy can be applied to simultaneous training of networks with decoupled second-layer weights.

Algorithm: online SGD. The performance of the learner is measured using the mean squared error
(MSE) loss. For each « € R?, the per-sample MSE loss is defined as

@) =1 (@ (o HL) = 5 (@) - £ (2 (o) G

Using a Hermite expansion calculation ([GLM18]), one can show that the population MSE loss can
be expressed as a tensor decomposition loss as follows:

3o (llal? i 1% o
£:=N(3§Id)[l(m)]=2<rz( ZZ ap ol (B op)* + 5 3 el lorl? (B 80)Y ). &)

i=1 p=1k=1 KI=1

We use online stochastic gradient descent (SGD) to train the learner model. Let {(x;, fi(x;)) }ren
iid

be our dataset with &, "~ N (0, I;) being the fresh sample at step . We initialize the student
neurons vy ~ Unif(S?~!(0y)), where oy = 1/poly(d) is a parameter we specify in the sequel.
Let n > O be the step size. At each step, we update the neurons using vanilla gradient descent:
Vi (t+ 1) = vi(t) — Vo, (), for all k € [m], where [ is the per-sample loss defined in (3).

2.2 Complexity of SGD Learning

Our main theorem provides a sharp characterization of the sample complexity of online SGD and the
recovery time of individual single-index tasks. To characterize the learning order of the first P, < P
tasks, we introduce an ordering of student neurons vy, . .., v,, and a mapping 7 : [P.] — [P] that
specifies which student neurons converge to a particular task (teacher neuron). This mapping function
is explicitly defined via the greedy maximum selection procedure (5) which we explain in Section 3.1
— intuitively speaking, after the reordering, for p € [P.], v, is the neuron that eventually converges

to direction v* 2(p)’ and the directions are learned sequentially based on the signal strength {a,} 5 -1

Let v, 4(7) := (0p, vy) denote the overlap between the p-th student neuron (ordered) and the g-th
teacher neuron at time ¢. The following theorem describes the convergence of student neuron v, to the

: o i 2 . 2
corresponding teacher U3 (p) Interms of direction: vp’ﬂ(p)(t) — 1, and norm: ||v, (D|* = ax(p)-

Theorem 2.1 (Main theorem for online SGD). Let C,C’ > 0 be large universal constants, depending
only on I and o, and set the initialization scale as oy = d=C. Let P, € [P], amin, = min,e[p,] dp,

and 6, be the target failure probability. Define A ~ ﬁ% = 04(1). Assume the dimension d,

width m, learning rate n and target accuracies €p, eg = 04(1) satisfy
dz llalljA™%a,

_ - -1/2 1/2
ASd™ 2 ep 2 Nlally agl, d™*% PIV2e)? 2 ek 2 e,

R — . —
wh . mzP., NS amn, lalli>m™ P76 min(A’d &),

AR

exists an ordering of the student neurons vy, . .., v, and a mapping n . [P.] — [P] of student
neurons to teacher neurons (see Equation (5)) such that, defining

where £, % hide both constants and logarithmic factors. Then, with probability at least 1 — 6, there

. s -1
= (41(1 - 1)0'22,a,,(p)nvi{ﬂ%p)(0)) Vp e [P.], and Ty = (1+A/4) maxperp,T)p

we have:
(a) (Unused neurons). ||v(1)|> < d=C" =: o2 for all k > P..



(b) (Convergence). Vlz’ﬂ(m(l) > l-ep, ||vp(t)||2 = axpyxerforallp € [P.], (HA)T, <t < Thax.
(c) (Sharp Transition). vfw(m(z) <d V2 o, ()I* <ot forallp € [P.], t < (1= A)T.
(d) (Loss Value). At time t, the population loss of the student network can be bounded by

1= > a1t = (1-A/T,} = 0(ep) < L) < 1= > a%  1{t > (1+A/4)T,} + O(ep).
PE[P:] PE[P.]

We observe the following conclusions about Theorem 2.1.
n(p)
Tp = (Naz(p){v,(0), v;(p)>2(1_1))_1. In particular, for time ¢ < (1 — 0(1))7),, minimal progress

* Points (b) and (c) suggest a sharp transition in the learning of the teacher neuron v around time

is made on the learning of v;(p), as (U, v;(p)>2’ v, ||2/a,r(p) < 1. Then, at some point during

the short time interval (1 + 0(1))T,, both directional and norm convergence occur rapidly as the

quantities (¥, ”;(p)>2 and ||v,||* approach 1 and a(,) respectively.

* The theorem implies that a student width of m > P, log(P.) is sufficient to recover P, teacher
neurons; this minimal (logarithmic) overparameterization allows us to establish near-optimal width
dependence for the scaling laws in the ensuing section.

* Selecting 77 = ©(amind ! poly(m, P)), the runtime required to recover all directions {v; }kerpyup to
1/d error, and thus obtain an MSE loss of O(1/d), is T = ©(d*~! poly(P)a 2 ) = d"(@) =1 pO),
which is polynomial in all problem parameters — this contrasts with the exponential dependence on
the condition number in [LMZ20, OSSW24]. Moreover, our Assumption 2.1 permits high-degree
link functions; hence when deg(o-) > IE(o), the sample complexity in Theorem 2.1 is far superior
to the n > d¢2(?) rate for neural networks in the kernel/lazy regime [JGH18, COB19, GMMM21].

2.3 Neural Scaling Laws

Now we apply Theorem 2.1 to the setting where the second-layer a, follows a power-law decay.

Proposition 2.2 (Scaling laws). Consider the same setting as in Theorem 2.1, and suppose a, = p Pz
where B> 1/2 and Z = 211::1 p 2P is the normalizing constant. Then, with high probability,

(a) For p < P, = ©(m), the p-th teacher neuron vy, is learned at time t = O(pPd-1y71).
(b) There exist constants 0 < cg < Cg and 0 < c”B <C é that can depend only on B such that

s (@)Hﬁ + (’;;Z’)% |-0n) < £y < ¢4 (@)Hﬁ + (’j‘;?ﬁ)% | +otn),

V1 € [Tinins Tmax), where Ko := 10g”' "2 m/Z, Tyin = Cpd"~" | (Kon), Tiax = ¢, PP’ =1/ (Kon).
Remark. We make the following remarks.

* As in the literature on neural scaling laws [KMH*20, HBM*22, PPXP24], our scaling law in
Proposition 2.2 consists of the approximation bottleneck ®(m'~%), governed by the width of the
student network, and the optimization bottleneck © ((ntd'~")(1=28)/F)  governed by the number of
online SGD steps (or equivalently number of samples).

* Note that the times the first and last directions get learned are approximately d’~!/(Kyn) and
PP /(Kon). Hence [Tiin, Tmax] covers the time interval where most directions are learned.

» We state the risk scaling for square-summable second-layer coefficients § > 1/2 similar to prior
theoretical works on scaling laws [BAP24, LWK*24]. In the “heavy-tailed” regime (8 < 1/2),
we can also apply Theorem 2.1 to obtain £(¢) = ©((1 — (P/m)'=2P), v (1 - (tnd!~1)1-2P)/B),).
Note that in this setting, the required student width is roughly proportional to the teacher width
m = O(P) in order to achieve small approximation error.

“Unstable” discretization. Given a fixed training budget ¢, it can be quite pessimistic to choose the
learning rate n oc apiy, < ap, for P, = ©(m), since at any t < (na,r(p*)\"/i,l‘i(P )(0))‘1, far fewer
than P, directions are learned. As such, consider pre-specifying the runtime 7 (or equivalently the

sample size n). If we only are interested in learning the top p neurons, we can apply Theorem 2.1
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(a) Theoretical scaling law. (b) Empirical scaling law.

Figure 2: Theoretical and empirical risk curves with 8 = 0.8. (a) Idealized scaling curves described in
Section 3.1. (b) Empirical scaling curve of GD training on the population loss with d = 2048, P = 1024.

- -1
with P, = p, which gives a larger learning rate of n = ©( ap’;)(lg)(?, ) ). The p-th direction is now learned

atT), = (:)(a,_,%p)dﬂ_l poly(P)) = ©(p*d* ~! poly(P)). This leads to an “unstable" scaling law.
Corollary 2.3 (Unstable scaling law). Let m be the student network width and n be the total number
of training examples. Then, there exists a choice of learning rate n (depending on n, m) such that
with high probability the population loss after t = n steps of online SGD is

(1-28)/(28)
L) =6 )

n
m1_2'3+(

—_— +0 .
d* -1 poly(P) +0(ep)

We remark that the above sample size scaling matches the minimax optimal rate for Gaussian sequence
models (see e.g., [Joh17]), and the exponent is consistent with existing scaling law analyses of SGD
on linear models [BAP24, LWK*24, PPXP24]. Note that despite the matching exponents (in terms of
the decay rate ), the underlying mechanism and our theoretical analysis differ from these prior results
due to the presence of nonlinear feature learning, which is reflected, for example, by the learning rate
selection in our unstable discretization — see Section 3.3 for more discussions.

2.4 Simulations: Compute-optimal Frontier

In Figure 2, we plot (a) the idealized scaling curves assuming decoupled learning and an exact
emergence time for each task (see Section 3.1), and (b) the MSE loss curves for GD training (with
fixed step size) on the population loss, where we set d = 2048, P = 1024, 0 = h4, and vary the
student width. While the idealized scaling law does not exactly hold at finite d, the slope of MSE loss
vs. compute (on logarithmic scale) is independent of the problem dimension; we therefore compare
the slope of the compute-optimal frontier in (a)(b). Omitting the dimensionality ¢ (which does not
vary across models) in Proposition 2.2, we know that given a fixed computational budget 7~ < mt, the
compute-optimal model under constant learning rate exhibits the following scaling,

L~ 7U2B/B) gl (4B)

We set the power-law exponent to be 5 = 0.8 in Figure 2. Observe that:
* The sum of staircase-like emergent learning curves yields a smooth power-law scaling in the

cumulative MSE loss towards the tail, followed by a plateau due to the approximation error.

* The compute-optimal slope (dashed black line) is roughly consistent between the theoretical
and empirical risk curves. Specifically, for § = 0.8 we theoretically predict a loss scaling of
L ~ (mt)'/3 for the compute-optimal model; note that the empirical slope is slightly steeper due to
the finite-width truncation error of the infinite power-law sum.

3 Overview of Proof Ideas

We discuss the proof ideas in this section. In Section 3.1, we describe the idealized dynamics, and
show that they imply a loss scaling law when the signal strength {a p};’ _, follows a power law. In



Section 3.2 we show that gradient flow approximates this idealized dynamics, and in Section 3.3 we
discretize the gradient flow with online SGD. For ease of presentation, we will assume a Hermite-4
link function o = h4 in this section; the same argument follows for more general activations.

3.1 The Idealized Learning Dynamics

Learning a single task. First, consider the single-index setting and suppose the target function
isx > ahy(e; - x). Letw € R4 denote the learner neuron. It is known that, under gradient flow,
the correlation of v with the ground-truth direction e; approximately follows the quadratic ODE:
%17% = 861\7‘1¥ prior to weak recovery, i.e., when \7% = 0(1) [BAGJ21]. This ODE has a closed-form

solution: ﬁ%(t) =(1/ \7%(0) - 8at)~ ' We have two immediate observations from this formula:
(i) 72 = (B, e;)* will grow from ©(1/d) to a nontrivial value around time (8a¥3(0))~".
(ii) \7% stays small for most of the time and then suddenly increases around time (Saﬁ% 0y~

The above claims imply an emergent learning curve for the directional recovery of the single-index
task. Due to the 2-homogeneous parameterization, we can show that the norm of v will not grow
until strong recovery is achieved, and the norm growth occurs at a much shorter timescale than the
dynamics of ©. Consequently, the MSE loss remains nearly constant for an extensive period of time,
followed by a sharp drop by a?/2 at the aforementioned critical time.

Decoupled learning of multiple tasks. Next consider the multi-index setting where we have P
orthonormal ground-truth directions {e} ,e[p] With signal strength {a,},c[p]. Assume these P
single-index models are fully decoupled, i.e., for each p € [P], there is exactly one learner neuron
v, associated with direction e, and the learning of different directions do not interfere — in other
words, we are learning P single-index models independently and simultaneously. Then from our
previous discussion, we know that direction e, will be learned around time (8a pﬁf,, » (0))~! and the

MSE loss will have a sudden drop of size af, /2. Therefore, the idealized loss can be expressed as the
sum of loss decrements at different times (we omit the constant factor 1/2 for concise presentation)

L) =30 ab1{t < (8a,v3 ,(0)7'}.
See Figure 2(a) for illustration. Based on this heuristic, we can derive the iteration/sample scaling in
Proposition 2.2. Suppose that the signal strength follows a power law a,, = p~# for some 8 > 1/2,
and assume identical initial overlap for all neurons \7%’ »(0) = v2 for all p € [P], so that direction e p
is learned at exactly # = pﬁv‘2 /8. Then, when P is large, we have

L(pPv2/8) ~ S, g7 ~ [T s7 ds = p! /(2 - 1).

Applying the change-of-variables t = pfv=2/8, p = (8v?1)!/F we arrive at the idealized loss scaling
L(t) ~ (28— 1)1 (8v2)(1=28)/B . ;= (2B-1)/B

Width scaling. To obtain the student width dependence, we show that a width-m student network
can learn ®(m) directions — note that this is sharp up to logarithmic factors. Hence the approximation
error can be computed as a truncation of the top ®(m) tasks: Z(I::@(m) q B ~ O(m'P).

3.2 The Gradient Flow Dynamics

In the previous section, we assumed complete decoupling of the learning of each single-index task.
We now discuss how this condition holds approximately under gradient flow.

Re-indexing and greedy maximum selection. To simplify notation, we first re-index the neurons
based on the initial correlation with the ground-truth directions. Let V c R be the collection
of initialized neurons. Define ((1),v) := argmax | p| vey dq¥y - By our previous heuristic
argument, we expect e, (1) to be the first direction recovered, and v; — which achieves maximal
overlap (weighted by a (1)) with e () at initialization — to be the student neuron that converges to
this direction first. After e (y) is fitted by v, we remove this task from the cumulative objective;
assuming the remaining student neurons have not moved too much during this process, we can
determine the next task to be learned and the corresponding neuron via

(m(p+1),vp11) = argmanE[PJ(}/{n(l) ..... x(p)} gV 2, Vp € [min{P,m} - 1]. )

Ve Vyenns vp



a(D)a2) ... 2P ... =(P):
1 ! : Figure 3: The greedy maximum selection matrix. The red diagonal

P az(p) rf)’ ;r%}) : entries represent the relevant neurons that eventually achieve overlap
close to 1. The remaining irrelevant entries can be partitioned into

Y

! : three groups: the upper triangular entries v, 7 (q) with p € [Py]
‘@) 21-2 and p < g € [P], the lower triangular entries, Vi r(p) with
L I A - "‘”f“_‘> p € [P«] and p < k € [m], and the lower right block ¥ (4) With
. k > Py«,q > P.. We will control these blocks using the row gap
: (purple arrow), column gap (blue arrow), and the threshold gap

P (green arrows), respectively.

I

Finally, if P < m we index the remaining unused neurons as {vp4j,..., U}, and if m < P we
assign {m(m + 1), ..., 7(P)} to the unlearned teacher neurons arbitrarily so that r is a permutation

of [P]. Following [BAGP24], we call (5) the greedy maximum selection scheme and the matrix
{a,,(p)vk 2(0) (O)}ke[m] pe[p] the greedy maximum selection matrix (cf. Figure 3). Note that by

construction, dy(p) v ( ) is larger than all entries below it or on its right-hand side. We have the

following quanntatwe estimates on the gaps between the on-diagonal and remaining entries of the
maximum selection matrix at initialization. See Appendix B.2 for the formal statement and proof.

Lemma 3.1 (Initialization (informal)). Consider the greedy maximum selection matrix (cf. Figure 3).
At initialization, with high probability, the gap between the first P, diagonal entries and all entries
below them in the same column or to their right in the same row is lower bounded by 1 /poly P (instead
of 1/poly d). The same also holds for the (P., n(P.))-th entry and all entries in the lower right block.

Approximately decoupled dynamics. We claim that when all irrelevant coordinates are small,
the learning of different teacher directions can still be approximately decoupled. By Lemma B.1,
the dynamics of the overlap v v 2(p) €0 be decomposed into a primary signal term and the sum of

contributions from the remalmng coordinates:

d 2 ~ =
A n(p) ~8(anp)(1 -7

> —4 =2
Vp.r(p) ~ Laarp a”(q)vp,ﬂ(q))vp,ﬂ(m'

oa(p) = La@x(p)/d). Also, if
for g # p) are small, say bounded by d~°-%, then

px ()
p.7(p)
When the overlap ¥ v (p) 18 small, the signal term is of order a () 72

we assume all 1rrelevant coordinates (i.e., vi (q)

2q:qtp a,,(q)f/;’”(q) <q'3 2qqip Gn(q) < P24-18 « ar(p)/d, as long as aminP'? > d708,

As a result, when 72 is still small, we have
p.n(p)
452 1 -0.8
"V paip) ~ (L ag, d™) x Saﬂ(P)vp n(p)’

Now suppose dmin > d~%3. Then, the above implies that ¥ v 2(p) has a sharp transition around time

(I xo0(1)) (Sa,,(,,)vp ﬂ(p)) 1 - @(d/a,r(,,)), and the 0(1) error term can be made much smaller
than 1/poly(P) when d is large — this will be useful in bounding the growth of irrelevant coordinates.
Similar to the analysis in [GRWZ21], we know that once ¥, converges to €, (,), the convergence of
norm a - (p) occurs within O (log d) time, and its dynamics become local in the sense that the influence
of other teacher neurons becomes negligible. In addition, after e ;(,) is learned, the remaining learner
neurons will no longer be affected by this target direction.

Bounding the irrelevant coordinates. We show that the irrelevant coordinates, i.e., ones that are
notin {V,, »(p)}perp,] (cf. Figure 3), stay small throughout training using the fact that the dynamics
have sharp transitions. Here, we only consider the lower triangular entries of the greedy maximum
selection matrix, i.e., Vi r(p) With p € [P.] and p < k € [m], which we control using the column
gap. The other entries can be controlled using similar strategies — see Appendix C.2 for details. Recall
that £V ) = 8ax(p)V} x(,) Which has a sharp transition around time (8 ()73 () (0)7".
From the column gap in Lemma 3.1, this implies that 7 k.7 (p) Stays small before vy, fits dx(p)€x(p)-

After that, the signal from a ()€ (p) Will be close to 0, and consequently ﬁi’ﬂ(p) will cease to grow.

3.3 Online Stochastic Gradient Descent

We next outline the proof of Theorem 2.1, which requires converting the analysis of the gradient flow
dynamics to one for the online SGD trajectory. At a high level, our proof relies on the martingale-



plus-drift argument used in prior works [BAGJ21, AAM23, DNGL23, OSSW24, RL.24]. In order to
rigorously handle the interdependence of the different martingale arguments, we rely on the stochastic
induction arguments of [RL24]. The complete proof of Theorem 2.1 is presented in Appendix D.

Controlling the irrelevant coordinates. First, consider a lower triangular entry (k,7(q)) (i.e
q € [P.],q < k). We wish to argue that v (q) StAYS small during the time it takes for 72 2r(q) ©

=2

reach 1. By Lemma B.1 and a similar argument to Section 3.2, the update on v, @

is given by

Vi’”(q)(l‘ +1) < vi’ﬂ(q)(t) + 877an(q)‘71,ﬂ(q)(t) + &1 + Ziaa,

where &1 < 1 is an error term we will ignore for ease of exposition, and Z,, is the fluctuation

20k n
Zia = 200 (1 — 5y (0)5(07) (Vo (1) (20) = Vo) L) + () )-

By Lemma B.1, the conditional variance can be bounded as ]E[thJr1 | ] < 772\7?” @ (1). Hence by
Doob’s inequality, the total martingale term |Z,T:1 Z,| is bounded by (:)(n\/m) with high probability
(we use the heuristic that vi’n(q)(t) is ©(d™") on average). [BAGI21] selects n S d2ar(y),
which bounds the martingale by @(d~'). vi (q )(t) can thus be coupled to the deterministic

process 141 = £ + 87d z(g) 7 with £o = 1.5\7i ,(0), which implies the time at which v ~(q) (1)

ceases to stay small is within a constant factor of its corresponding gradient flow escape time
(8na ,,(q)f/i 2(q) (0))~'. However, this is insufficient for our purposes, as the gradient flow escape

time of 72 Ve @) is (877a,,(q)v )(O))’l, which by Lemma 3.1 is only a 1+ 1/poly(P) factor smaller

q.7(q
than the escape time of v? kox(q) (1). By decreasing n by a 1/poly(P) factor, the total martingale term

can instead be bounded by @(ﬁi 2(q) (0)/poly(P)), thus guaranteeing the online SGD escape times

for 92 are within 1 + 1/poly(P) factors of their gradient flow escape times, and hence

k, ﬂ(q)’ q,ﬂ(q)
that v v (q) will stays small during the time it takes for \73 (q) 0 grow to = 1. Afterwards, the signal

from e, x(q) Will be close to 0. The upper triangular entries (k € [P.], k < g) can be handled similarly.

On the unstable discretization. Next, consider the entries ﬁi (q) where ¢ > P,.. In the

argument above, since the martingale term scales as ©(n+/7/d) and e, (4) is learned at time
T=T,= @(a’n‘la;}q)), we selected a learning rate of i « d‘za,,(q). However, it is pessimistic
to scale n with the signal strength of a neuron which is not learned, as this can be arbitrarily small.
Instead, if we are only interested in recovering the top P, directions, the martingale term only needs to
be small up to time Tp, = ©(dn~'a (). We can therefore scale 1) with dx(p,) 3> @ (q). This can
be interpreted as an unstable discretization: the choice of 7 is too large for any of the directions 7 (q)
with ¢ > P, to be learned, yet nevertheless, we can still control their growth and show that they remain
small until the time that e ;(p,) is learned. Altogether, it suffices to choose 17 oc a(p,)d =2 /poly(P).

Controlling the relevant coordinates. Finally, consider the growth of the relevant coordinates

for p € [P.]. Following the argument in Section 3.2, the update on 7> is approximately

=2
Vp.x(p) p.x(p)

p2 ~ 72 =2 =4
Vp,n(p)(t +1) =V ,n(p)(t) + Sna”(P)(l - Vp,n(p) (t))vp,ﬂ(p)(t) +Z41,

where the Z,,; satisfies E[Zt+1

d- a,,(P)/poly(P), we can bound \72 )(t) between two deterministic processes (x});, (X7 )s

| i1 < 7°V (D). By choosing the learning rate 7 <

which satisfy xé’ =(1=x poly(P) )vp 2(p )(O) and follow the updates 7| = xi" + 8nax(p) (xF)2. This
guarantees that v v () 1 up to a time of (1— poly(P) —) (8r]a,,(p)vp 2(p) (0)) !. Lower bounding the
2

process v, )(t) is slightly more challenging, as x; diverges from x; in the time interval when the

sharp trans1t10n occurs. To handle this, we partition [clz 3] into smaller subintervals, and rerun separate

martingale-plus-drift arguments on each subinterval. We conclude by showing that once vi 2(p) (1)

crosses 1/3, it rapidly converges to 1, after which Hv,,||2 rapidly converges to a,(p). Altogether,
Lemma D.2 shows that ©,, indeed converges to e (,) in time (1 + m)(finaﬂ(p)f;i’ﬂ(p) (0))~".



4 Conclusion

In this work, we study the (online) SGD training dynamics and sample complexity of learning a
two-layer neural network with orthogonal ground truth weights and signal strengths {a,, } ,e[p] C Rx0,
where the width P and the condition number ap,x/amin can potentially be large. We establish a
sample and runtime complexity that is polynomial in the problem dimensionality, teacher width, and
condition number; as an application of our sharp analysis, when the second-layer coefficients of the
teacher model follow a power law a,, =< p P for B > 1/2, we derive scaling laws for the population
MSE as a function of the student network width and the number of SGD steps.

Our current results assume input data with identity covariance; one interesting extension is to consider
anisotropic data x ~ N (0, X) analogous to [MHWSE23, BQI25], and derive a two-parameter scaling
law when the eigenvalues of X also follow a power law. Another future direction is to consider a
decaying learning rate schedule that achieves the unstable scaling law (Corollary 2.3) at any time ¢.
Finally, our analysis relies on high information exponent link functions to decouple the learning of
different directions, which does not cover the case of IE(o) = 2 studied in [MBB23, RL24] — for
this setting, the scaling behavior for SGD training is studied in a companion work [BAEVW?25] for
the special case of quadratic activation function.
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Limitations

One limitation of our work is that we require the input data to be drawn from the standard
Gaussian. We remark that this assumption is common in prior works on learning multi-index
models [BAGJ21, DLS22, AAM23, DNGL23, OSSW24, RL24]. However, it would be interesting
to understand how our results generalize to other input distributions. Another limitation is that we
assume o is an even function with information exponent > 4. One final limitation is that Corollary 2.3
requires is not anytime, and requires specifying the number of SGD steps n. It would be interesting to
consider a decaying learning rate that can achieve Corollary 2.3 at any time ¢.

A Additional Related Works

Theory of scaling laws. Neural scaling laws describe how the performance of deep learning models
improves predictably as a power-law function of increased computational resources, data, and model
size [HNA*17, KMH*20, HBM*22, BDK*24]. When the optimization algorithm is not taken into
account, such scaling relations have been established for the approximation and estimation errors of
deep neural networks [P*97, Suz18, SH20], as well as for the (precise) generalization error of simple
closed-form estimators such as ridge regression [CLKZ21, MRS22, DLM24, AZVP24]. Recent
works have also studied the loss scaling in distillation and synthetic data [IGT*24, JMS24], associative
memory [CDB23, NLB24] and hierarchical models [CW24, CPT*24, ABRC24, PWL25], among
other theoretical settings.

The scaling laws of SGD in sketched linear regression have been characterized in [BAP24, PPXP24,
LWK™*24] — this problem setting corresponds to a two-layer linear network with random, untrained
first-layer weights, and is parallel to earlier works [RR17, NS20] on learning random features model
under source and capacity conditions (see e.g., [CDV07, VY24]). However, this linear setup fails
to capture the feature learning efficiency of neural networks. On the other hand, existing scaling
analyses for the additive setting [Hut21, MLGT?24, NFLL24] explicitly decompose the loss into an
independent sum, simplifying the analysis due to task decoupling. We aim to understand a more
natural — yet arguably more challenging — nonlinear feature learning scenario where the individual
tasks are not decoupled.

Learning shallow neural networks. The learning of two-layer neural networks with near-orthogonal
neurons has been extensively studied in the deep learning theory literature. Existing works have studied
the optimization dynamics for variants of ReLU [LMZ20, ZGJ21, Chi22], quadratic [GMMM 19,
MVEZ20, MBB23], and general Hermite activation functions [OSSW24, RL24, SBH24]. In the
absence of the (near-)orthogonality assumption, this function class can be computationally hard to
learn, as suggested by statistical query lower bounds [DKKZ20, GGJ*20]. Our target function is
a subclass of additive models [Sto85, HT87], where the individual components take the form of
single-index models — see [Bac17, OSSW24] for further discussion.

B Structure of Gradient and Initialization

B.1 Population and Per-sample Gradients

In this subsection, we compute the population gradient and derive variance and tail bounds for the
per-sample gradient. Namely, we prove the following lemma.

Lemma B.1. Consider the setting described in Section 2. Assume w.l.0.g. that v, = e, for p € [P].
The radial and tangent components of the population gradient are given by

) P oo m
2 A2 =2 2 A2 2 /= = \2
(Vo Lve) =20well? Y 63> ap v, = 2llwell? Y. 03 > ol (o o)
i=1 p=1 i=1 =1
[(1- ﬁkﬁZ)VvkL]p P

[e9)
_ ) —2i-2 2|
loxll —221 2i ap"kl,p _Zaq"kl,q Vk.p
i=1

q=1

(o]
= 20 Y ol B 5P (T - 5B ep)
i=1

L:1#k
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Suppose that 3., vkl = O(|lally). Let w € S4! be a fixed direction. Put Q = 4(1 + Q). Then,
there exists a universal constant C > 1 such that, for any s > C,

(Vo l(z), u) (Vo l(z), u)
p ok AR taiats

<Clali, P
vl llvoill

> s

< Cmexp (-C™! (s/llall)¥2)

Proof. The proof of the variance and tail bounds is essentially the same as the proof of Lemma A.5
of [RL24].> Now, we compute the population gradient. First, recall from (4) that the population loss
is given as

in&f ”a” ZZapllvkll Ok, v " %Zr:: lvell? Nlvill? (B, ) :;igi_

i=1 p=1 k=1 i=1

For its gradient, first note that for eachi > 1,

(<v,u>") _Voww)  (w) Vv
[ A T TG [
_iwwTlu @w) (-2l e
ol ol ol

=i (B, w) " v||lu-(i-2)(@B,u)v

o (Il @, w)) =

Then, for each k € [m], we compute
j= =7 ||vk||Zap (i hep - (=207, %)
N 2 N 2(:/n o~ il - . g
4207 ol o+ 67 loell Y, lloul® (i (Br 80)'" 1 = (= 2) (B0, 80)' )

L:1#k

Hence, for the radial component, we have
P m
(Vo Lisvi) = =207 |oil? )" ap¥h |, +207 il D lorl (B, )"
p=1 1=1

Meanwhile, for the tangent component, we have

P
(I = 045 )V Li = =57 vell D apivi ) (T = 5i5) e,
p=1
+ 07 il D Mol i @i &) (T = 557 )y
L:1#k

) il o
= =07 ||lvkll Za,,zvﬁc’p (ep — Pk, pDk)

N 2., —\i—1 /= _ o\ =
G oell D NlorllP i (B, 81" (1 = (B, B1) B

LIk
In particular, for each p € [P], we have
— .07 . P
(= 00V Lil, =it} [ap¥i 2 = ) agv |
||'Uk|| i PYk,p i q%q P
) 2 s mni-l (- S
+io? Y il Bu 50 (31 = (Br B} i p) -
Ltk

2Note that though Lemma A.3 of [RL24] is stated for i.i.d. random variables, the original theorem in [KC22]
requires only independence and therefore applies to our setting.
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Sum over i > I, and we obtain

=) P 0 m
(Vo Lovi) = =2lloill? Y 07 D apPi , + 2ol Y07 D lorll” @ w1
i=I  p=I i=1 =1
a4y, o P
[(1 vkvk)Vvk.[Z]p _ —Zifr.z I —Za e
“Uk” i PVk,p q9”"q k.p
i=I g=1
+ Ziffiz lvll? (B, 00 " (P, — (ks B1) k) -
i=1 L:l#k
O
B.2 The formal version of Lemma 3.1: Initialization
In this subsection, we prove the following formal version of Lemma 3.1.
Lemma B.2 (Initialization). Let dp € (e_ logd , 1) be the target failure probability. Suppose that 6, =
p 400(1-1
2L 6 = 6o = i, d > WU 210 g( 2 ) m > 4P, log(P./8¢) V 10010g(P/67), it >
5121og?(P./6p) Then, the following holds with probability at least 1 — O(é]p).
(a) (Row gap). Forany p € [P.] and p < q € [P], we have a,,(p)v ( ) 2 >(1+6 )a,,(q)vp (q)"

(b) (Column gap). For any p € [P.] and p < k € [m], we have v21 2 >(1+6 )vi’n(zp).

(c) (Threshold gap). For any P, < q < P, P, < k < m, we have a,r(p)vp 7r(P) > (1+
5,)a,r(q)vk’ﬂ(q).

(d) (Regularity conditions). maXje[m ||vk||2 log d/d, min,e|p,) 72 > (logP.)/d and

p.n(p) =
minge|p) Max;s p, i,q >1/d.

Proof of Lemma B.2 (row gap). Consider an arbitrary neuron v and let z ~ N (0, I;). Note that

542 /11z|| and therefore, for any i # j, v;/V; 4 z;/zj, which follows the standard Cauchy distribution.
We know that Pz;/z; < z] = a~larctan(z) + 1/2. Fix i # j, we compute

P ((1—@)%)“ < (<1+ar>§)“l
i i

= 2 (arctan ((1 +6,) —) — arctan ((1 —6r)ﬁ)m)
g ai ai
-z

1+((1+6,)(1 o) 3)21 i

P[ 21 Ze(lia,)ajvﬁ’—z]

<||<|

) ((1+5 ya
= — arctan
n

where the last line comes from arctan a — arctan b = arctan {7 b Note that for any p € (0, 1), by the
concavity of z — z”, we have a? — b? < pb?(a — b). Therefore,

1 1 1 1
ai\2-2 a:\2-2 1 21-2 ai: 1 ai\2-2
1+6,)-2 —-l(1-6,)-2 <—|a-6)-2 5L <— |2 5.
(( )ai) (( )ai) 2] (( ) ) a; 21 -2 a;

Recall that arctan z < z. Thus,

()0 (a0;) 7
- 2 22 \a r S, aja;) T2
P[av212€(1+5)61/ vyl Z]S; #=(1—1)7r(2)#+(1 162)#( 2) 7y
73 a*) = — 3772 (q%) 212
1+((1—62) ) i r j
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1
2 2 21-2
6r (¢} v 4))

- =D ()52 + (1 - 63) 772 (a) 72
< Or —.
(I-Dr(l-¢6%)7=

The last term is upper bounded by 26, /7 as long as §, < 1/2. Apply union bound over all m neurons
and all P? (i, j)-pairs, and we get

2mP?
P|3k € [m).i # j € [Plaivi’;? e (1£6,)a;9 %] < ":r Sy

Choose 6, = 2‘2‘—;, so that the above implies aiﬁill.‘z ¢ (1« 6r)ajﬁilj72 for all k € [m] and
i # j € [P] with probability at least 1 — dp. To complete the proof, recall that by the definition of the

: : =2 =2
greedy maximum selection process, we have a - nVy = dg(q)V m}

,7(p) p.n(q)”

Proof of Lemma B.2 (column gap). Let z1, ..., z,, be independent N (0, I;) variables. Fix k # [ €
[m] and p € [P]. Note that (V¢ _r(p), V1,x(p)) 4 (zk,p/ Izl , z1,p/ |lz1]]). Hence, we can write

21-2 21-2
(Zk_l’) € (1+6,) (”z"”) l

(B
7K 21-2 ”zk” 21-2
(—") €1+36, ( ) ¢1+6.]|.

=21-2 =21-2 —
P2, € (12672 | =P

<P +P

2kl B

By our previous calculation, we know the first term is bounded by 65, /7. Meanwhile, by the standard
concentration results for N (0, I;), we have

d

In other words, with probability at least 1 — 4 exp (—dt/4), we have

(B2

-1
E ||zl

> z} < 2exp (—(E ||zk||)212/2) < 2exp (—dt2/4) . Vr20.

Izl 2= 02 =124 -1, |z|¥2=1+4(- 1),
and therefore (||z¢|| /|lz:])* "2 =1 + 10(1 — 1)¢. Choose ¢ = 6./(10(I — 1)), and we obtain

B d &2
P 1+6.| <dexp|-=—— .
[(Ilzzll wle P\ "4 T00(1 - 1)2

As a result, we have
62

66 d
=21-2 =21-2 c c
P [Vk,ﬂ(p) €(l+ 6C)Vl,7r(P) < T +4exp (_Z 100(1 — 1)2) :

Take union bound over k # [ € [m] and p € [P], and we get

66 d &2
212 —21-2 2 c
P [Hk #le[m],pe [P],vk’ﬂ(p) e(1 i&c)vl’”(p) <m P( ”c +4exp (—2—100(1_ 1)2)) .

For the RHS to be bounded by dp, it suffices to require

126 0
m>P << op & 0. < Lﬂ"
g 12m2P
d 52 65, 400(1 - 1)? 2
4 —— < — & d>—-—1 .
eXP( 4 100(1 - 1)2) n 52 o8 (360)

To complete the proof, recall that by the definition of the greedy maximum selection, we have
\7‘%7 2(p) 2 ﬁi 2(p) when k > p. m}

20



Proof of Lemma B.2 (threshold gap). Con51der arbitrary k # [ € [m] and p # g € [P]. We estimate

the gap between a,,(p)vilﬂ(p) and a,r(q)vl ﬂ(q) Let 2z, z; be independent N (0, I;) variables; we

have (Vi x(p)> Vi,7(q)) 4 (zk,p/WIzkll s 21,4 /11211l). As in the proof of column gap, we can write

20-2 20-2
P 212 las 20-2 | _p Arn(p) [Zk.p 1+ ||Zk||
ax(p)Viaipy) € 1 £06)ar()Vi 70| = - e (1+0) Tzl

An(q) \ 2kl

20-2 21-2

ar Z

Zrp) (—k’p) €l +36;|+P (—||||zk||||) ¢1+6;].
2y

Ar(q) \ Tk,

<P

66,

By the proof of the row gap and the column gap, the last two terms are bounded by and

2
4 exp ( 5 m) respectively. Note that this is the same as the bounds in the column gap proof
(up to changing 6. to ;). Thus, we have

]P[Elkqtle [ml.p € [P).0732, € (1£6.)7" ] < s,

provided that
s 400(1 - 1)? 2n
t S ———, > ————log|—]|.
12m2P 52 36,
To complete the proof, note that by the definition of the greedy maximum selection process, we have
a,r(p*)vzl ﬁ(P) _a,,(q)v yforall P, <k <mand P, < g < P. o
Proof of Lemma B.2 (regularity conditions). First, we consider the upper bound. Let zi,..., 2,

be independent N (0,I;) random vectors. We have (¥y)x 4 (zk/llzelDk- By the stan-
dard Gaussian concentration results, we have P(maxie(m] |2kllce = 2) < 2mde™%'1? and
P(maxgepmi [zl /Ellzill = 1] = €) < 2me~°d/3, Therefore, we have max; okl < logd/d
with probability at least 1 — O (dp).

Now, we consider the lower bound. Let K be a parameter to be determined later. Our goal is to show
that with high probability, a - ( p)‘_’; 2(p) is at least the K-th largest entry of the 7 (p)-th column of
the greedy maximum selection matrix. In other words, at most the first K — 1 largest entries can be
covered by the earlier neurons.

For any k # [ € [m], the events that the k-th and /-th neurons are used by some earlier are independent.
In addition, by symmetry, the probability that the k-th row is used by some other neuron is at most

P./(m — P.), as we always have at least m — P, neurons remained. Meanwhile, since the coordinates
of vy are negatively correlated, conditioned on that v 2(p) is among the K largest entries of that

column, the probability that that row gets used is still upper bounded by P../(m — P,). Thus,
p. \K
m— P, ) ’

P [all first K largest entries of the (p)-th column are used] < (

By union bound, the probability that one of {v 2(p) } pe[p.] is not at least the K-th largest in that

K
column is upper bounded by P. (m_*P* ) . For this to be upper bounded by dp, it suffices to have

p. \¥
P. <dp & K=

- *

log (P./dp) - {K =log (P./dp),
log ((m — P.)/P.) m > 4P, log(P./5p).

Finally, by Lemma B.3, provided that?

> 1287 log?(P,/6p) and

> 51210g(P./6p),
logm log” m

we have with probability at least 1 — dp that

log P..
" ) > 08 Vp € [P.].

1
5 0) > —1 ’
Vh,ﬂ(ﬁ)( ) 2 d Og(log(P*/cSIP) d

3Note that the second condition is stronger, so it suffices to keep the second one.
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We conclude by establishing the last regularity condition. For fixed j, g, the PDF of Z := ¥ , is
_ F( ) 2y 4=3

pz(z) = NN Zercen; (1 -2, and therefore
1) 2 r'($) L2 Vd/

Vig <

0 =@ S NE NG SN «F

where the first inequality upper bounds the PDF by pz(0), and the second is Gautschi’s inequality.
Therefore

P(7> <0.8,

P(maxvjq <1/d) < P( Z 12, > 1/d) < P.).
jelm]

Note that 2 jcp,, ]l(v > 1/d) is subGaussian with variance proxy < m. Therefore for m > 10P,

ja =
P( Z 12, > 1/d) < P.) < exp(=(P. = 0.2m)*/m) = exp(~m/100).
Jjelm]
Union bounding over all g € [P], we get

P( min max vj < 1/d) £ Pexp(-m/100) < 6p
qe[P]j>P. 11

for m > 1001log(P/6p). O
Lemma B.3. Let Z,,. .., Z,, be independent N (0, 1) variables. Suppose that

> 5127K>.

> 1287 log’(1/6p) and —
logm log® m

Then, with probability at least 1 — 6p, the K-th largest among Z,, . . ., Z,, is at least \/log(m/K).
Proof. Let ®@ denote the CDF of N (0, 1). Then, the CDF Fk of the K-th largest element among

Zl,...,Zm is
K-1

m e

Fx(z)= ) ( )(1 - o(2)f 0" (2)
= \k

It is well-known that the mill’s ratio of NV (0, 1) satisfies

L2 2 @< ——Le2n

P — e S =
Vor L +22 V2r z

Meanwhile, we have (',':) < mkek / k*. As aresult,
k m—k
1 _» 1 z 220
oo < S () (L] (1o L2 e
pa 2r 2 Vor 1+22
e oo 2o
———| exp|-——]exp|- ——e .
“ 2n 2 2 o 1+22

Choose z = /(1 — &)21log(m/K) for some & € (0, 1). Then, we have =72 = (K/m)'~% and

R (me 11 Kl_ak m-k z (K\°
FK(Z)<Z(7\/__E( ) )GXP(_\/EI+Z2(Z) )

Choose € = 1/2 and suppose that K < m/2. Then, we have

MN

M

£\ 12 o172\ 1 m2y A k 1 m'/?
Fg(z) < m 'K ) exp(———)g exp( log(mK)———)
;( 42 2 ; 2 \ar 2
1 m1/2
< exp .
4V2r /logm
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To merge the first term into the second term, it suffices to require

ml/?

m
=
8V2r flogm log®m

2K logm < > 5127K>.

Finally, we compute

exp L mP <fp <& ™ >128 log?(1/6p)
X — S op = T P
8V2r \flogm logm

C Gradient Flow Analysis

In this section, we analyze the gradient flow dynamics and show that gradient flow implements the
greedy maximum selection scheme. We will assume the following on the initialization.

Assumption C.1 (Initialization). Suppose P, < min{P,m}. We assume that the following hold at
initialization.
(a) (Row gap) For any p € [P.] and p < q € [P], we have a,,(p)\'/ff;z(p) > (1+
=212
6’)61”(‘1)‘)19, (q)

—20-2 =202
(b) (Column gap) For any p € [P.] and p < k € [m], we have Vo ) 2 (1+ 6C)Vk,ﬂ(p).

(c) (Threshold gap) For any P, < k € [m] and P, < q € [P], we have aﬂ(p*)ﬁ%,_ﬁ(&) >

=21-2
(1+ (St)aﬂ(q)vk’n(q).

(d) (Regularity conditions) maXye[m] lloell% < log? d/d and min,e(p,] \7?) 2(p) 2 1/d.

Remark. By Lemma B.2, this assumption hold with high probability with 6., 8, §; = 1/poly(P).
Now, we formally state the main theorem for gradient flow. The proof is deferred to the end of this
section (cf. Section C.3). In the statement, we hide the constants that depend only on o.

Theorem C.1 (Main theorem for gradient flow). Assume Assumption C.1 holds at initialization. Let
€D, &R be our target accuracies and St be the target error in time. Put 6, ; := 0, A 6;. Suppose that*

2
lall; 1 1 @inin, Oc lall; 1

) So ER S ) —7
Amin, d1-1/4 di-1/4 ~7 o (10g2 d)l-1 Amin, d1/4

So or So 5c Aoy Aét,

~0

_4 2 -4
d _ Amin @ in ¢
—2 68v(—*5 ) V0 i——] .
(log?d)* =7 """ " \llall; ' llall;

Choose the initialization scale to be

amin*éT A A amin*ér,t A arznin*éc 1
ai-172 "R (og d)2i-2q1-172 (o2 d)/—1 dI-172 |

g8/(163
0y ¥ —— |4min,ED N

m

2 2 4 2 52 52

=_ 2 2(I-1) 676; 4 &R S inin, Oc vt
where & =5 epd A Z010g P T " ain " A0g T ™ (o )12 dlog d)* D *
define

Foreachp € [P.],

1 1 - ( 1 )
T, = =0|———|=0(——+]
P AL - 1)o7 2 (0) (an(p)ﬁﬁ,{;%p)(O)) an(pd'™!

Then, we have the following over time interval [0, (1 +2067)Tp,]:

4Note that the lower bounds are 1 /poly(d), and we know from Lemma B.2 that 6., 6,, , are 1/poly(P).
Hence, the range from which €p, g, 67 can be chosen is not restrictive.
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(a) (Unused neurons) ||vi|)> < o 2 for all k > P,.

(b) (Learning) For any p € [P.], ﬁi’n(p) > 1-¢&p and ||’Up||2 = dn(p) R forallt >
(1+2067)T,.

(c) (Sharp transition) For any p € [P.], V>
t < (1-1067)Tp.

A1y
po(p) = (5%)1 l gd and Hv,,” < o} 2 for all

In words, for each p € [P.], D), converges to € () and fit a () at time (1 + 0(1))T},, and all other
neurons stay small throughout training.

Our proof will be a large (continuous) induction argument. Namely, we assume a collection of
induction hypotheses, analyze the dynamics under these conditions, derive the convergence guarantees,
and show that these induction hypotheses hold throughout training. One may refer to, for example,
Section A.1 of [GRWZ21] or Chapter 1.3 of [Tao06] for details on this method.

‘We will maintain the following induction hypothesis.

Induction Hypothesis C.2. Let oy > 09, & < &9,y be o(1) parameters. We say this induction
hypothesis holds at a time point if the following hold at that time point.

(a) Define L := {k € [m] : ||vi|| = o1}. For any p € [m], v, € L implies p < P, and

(b) For any (k,n(g)) thatis notin {(p,n(p)) : p € [P«]}, we have v v go:=d 7).

n(q) =

(c) We have ||’Up” <2q;forany p € [P Am] and v v > 1/d for any p € [P.].

7(p)
Remark. Condition (a) states that the norm of a neuron is large (when compared to 0y) only if it is
close to one ground-truth direction. Condition (b) means that all irrelevant coordinates stay small
throughout training. Condition (c) includes some basic regularity conditions.

Before proceeding to the proofs, we state the following lemma that controls the interaction between
different learner neurons. The proof is deferred to Section C.3.

Lemma C.2. Suppose that Induction Hypothesis C.2 is true at time t. Then, at time t, for any k € [m]
and q € [P], we have

o0 P

d =2 =2 ca2 =2i-2 =20

dz Vk n(q) — ka,ﬂ'(q) 2210-21‘ a”(‘I)Vkl,n(q) - Za”(r)vkl,n(r)
i=I r=1

_]l{k;tq,qeL}ZH'uqHz( -V, ”<q))2210'21vk 2(q)

+ 123C2 |5k 2 (o) [ {an() 8Pl vima? v lall, &b} .
In addition, for any target 6 > 0, we have

s \2
< ( ) 2=,
An(q)
~1/2.1-1

2
arg)€ 'y Vv ma’1 Vlall; 80 <6 < moy <0, (6)

S ~
> .
llall,

The rest of this section is organized as follows. In Section C.1, we assume Induction Hypothesis C.2
and show that v, (p € [P.]) converges to e(,) and fits ar(p at time (1 + 0(1))T,. Then, in
Section C.2, we verify Induction Hypothesis C.2. Finally, in Section C.3, we prove Lemma C.2 and
Theorem C.1.

C.1 Convergence Guarantees

In this subsection, we show under Induction Hypothesis C.2 that v, (p € [P.]) converges to e (p)

and fits a () at time (1 £ 0(1))T),. We will first consider the dynamics of ©,, and then ||vp||2. Our
main result is the following, whose proof can be found at the end of this subsection.
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Corollary C.9 (Convergence). Let p, er be our target accuracy in the tangent and radial directions,
and &7 the target error in time. Suppose that y < 1/(21), §,, = 1/3,
23I+7c2 1 23I+4c2 1
ep > llally er > 120lall, 2d 0 5 s llall; ,
(05 )10'21 Amin, d1-1)1 0'221 Amin, dV/21

0' a
23I+7C2

2

(& 21 2 2 o3
. (1—y)(I-1) 21
&= (231+7C(27 epd Aor BI+4CL

ER
d’ 1/2) A 12’
1 A ER
d1+2yU=1 IZC?,a,r(,,)'

Then, for any p € [P.], we have

?7 x(p) = 1 -ep, ”'UP”2 =dn(p) TER, vVt > (1+2067)T,,
1
4\ log*d
Ponin < (2] L ol <t v < (1= 10671,

where

1 1 - 1
Tp = 5 =6 212 =6 ( 1—1) :
A1 =153 a7 17, (0) ar(p)Vy 7 (0) an(p)d

C.1.1 Tangent Dynamics

Here, we analyze the diagonal entries {\7; ﬂ(p)}pe[p*]. Let p € [P.] be fixed. For 6 € (0, 1), let

Ts denote the time 72 reaches 6. We split the training process into [0,Ts, ], [Ts,,Ts;,] and

[Ts;,Ti-¢], where 6, = o(1) and 6, = O(1) are two parameters to be chosen later. Our goal is
to show that 72 ( will converge to close to 1 around time (1 + O(87))T,,, where T, is the time
indicated by the idealized process and d7 is a parameter measuring the error.

Lemma C.3 (Dynamics of the diagonal entries (Stage 1)). Suppose that at time t € [0,Ts,],
Induction Hypothesis C.2 is true and the following hold:

"o A2 .
5. < Or 2165, ! 2 ¢y
ST Vg Mol S
5 o
2
52 2 | 52 ) T
s 2 S Yoy Admin, -
< 9
23I+4c2 | gie2y(I-1) 231442 lal|,

Then, at time t € [0,Ts, ], for any p € [P.], we have

d-z

dr pﬂ(p) (1+35T)X4IO'210,r(p)v

p.n(p)”

Proof. First, by Lemma C.2, we have

P
d 2 =2 1- 1
d&porp) T 20, n(p) 2153 (“ﬂmvp (p) Z;“W)Vp 7(r)
r=
) P
=2 A2 =2i-2
+ 2V x(p) Z 2165 (“W)Vpl,zr(p) - Z anir)¥y, n(r))
i=l+1 r=1

+ 1270CT [0, x(p) [ {an(p &' Pel™ v mat v all; s}

_o1 (9452 4.2 d.
=T G ) | T2 G p o | F 13 V(o)

For the signal term Ty, by Induction Hypothesis C.2(b), we have

_ A2 2 =21-2 21 =2
T =416, (“W) (1 Vo n(p)) i T D Ay n(r)) Vo2 (p)
rir£p
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A2 21-2
= 4103 (anip (12622 2 ebllall ) 72,

&g llall;
=|1x0, % W ><410’21“7r(p)"p n(p)’
a”(f’)vp n(p)

We want the error terms in the coefficient to be bounded by ¢7. For this to happen, we first
require &, < é7/2. Then, recall from Induction Hypothesis C.2(c) that \7?j a(p) 2 1/d. Also recall

g0 = d~177Y) Hence, we have

1
2n llall, or 471 < Amin, 6_T

=2 ~ llall; 2

-1
Amin, 6T) Iy

= y<1/I, dZ(
lall; 2

@x ()7 2
When the above conditions hold, we have
Ty = (1 £67) ><4Io-21a,,(p)vp 2(p)°
Then, consider T,. We have

ITa) < 2C292 ) (a,,(p)v;{n(p) +llall; a{))

CZ
=21 1
< (a”(f’)vp,ﬂ(p) +llall; ‘90) 2062 202 ><4Ia-21an(,,)vp 7(p)”
4x(P)Vp,x(p)
Again, for the coefficient to be bounded by d7, it suffices to require
21 A2
s a,,(,,)vp ﬂ(p) < 5_T P < vp n(p) 5_T = 5. < §_Tzlo_21
) = = v = 5
210’ a,r(p)vp 7T(P) 2 2]0‘21 2 2 CZ
Cz llall, 5 < 5_T - dl 1< 5T 216—221 Amin,
-2 = = 2
ZIO'ZIa,r(p)vI7 () 2 2 cZ lall

=
6T 2]6-221 Amin =t

e y<ljI, d>|ZLT2lmn
2 ¢ lal

Finally, consider T3. We have

IT5| < 123102 |vp ,,(p)| {a,,<p)31/286 Ly mo-l2 Vv lall S(I)}
B2 gi-1/2

_ s1/2 11 2 1
= {a,,(p)g gy Vmoy Vlal, ‘90} e ><4Io-21a,,(p)vp x(p)”
92197(p)
A2

By (6), for a (g8l vimo? v |lal, &) < %67 to hold, it suffices to have

2 2 2 2 T

. . . -~
mo? < 01 %min, 5 < 75 1 1 2197 (p) s
1= pamacz gi-12°T S\ BT grya-y lall, 231+4C2ql=12" '

Note that the last condition has d on both sides. Rearrange terms and it becomes

1 2
A2 =Y A2 Y
dl_(llily/)zl > Lami“*(g o = < 1 951 dmin, -
=\ 2racz Jall, " YSar 21+¢2 ),

Combining the above bounds, we get

d 52

3 pre) = = (1+367) ><4IO'21a,,(p)v

p,x(p)’
as long as the following conditions are true:

=1
Amin, 5T) =Iy

or
T : 0, < —, y<l1/I, dZ(
) llall; 2
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=L
o7 2152 61 2103 amin, |
Tp: 6 < — 221, y<UI, d=|= T ’
e 22 Tlall;
) 2 2
05, amj (op 1
) ) 27 %min, _ 21
T3: moy < 6T231+4C(2Td1—1/2’ (6T231+4Cgr Jdl+2yI-1°
1 52 i “rE
y < —, > - il - min, 5T
21 231442 |lall,

Clear that the second set of conditions is stronger than the first set. In addition, since ﬁ < 1%2),,,

the last condition on d is stronger than the first one. Hence, we can prune the above as

57 2153, 1 2 &3 min,
VER e Y M S e

2 —
) ) =251
- 921 1 037 dmin,
&= |01 1+2y(1-1)° d2 |3 or .
23I+4C2 | q+2y 231+4¢2 lall,

]

We will see that the time needed for Stage 1 is much larger than all other stages combined, which
allows the estimations to be looser in later stages.

Lemma C.4 (Dynamics of the diagonal entries (Stage 2)). Suppose that at time t € [Ts,,Ts; ],
Induction Hypothesis C.2 is true. In addition, suppose that the conditions of Lemma C.3 holds and
0, < 1/3. Then, at time t € [Ts,,Ts,], for any p € [P.], we have

d 52

dt p 7r(p) = 2 X4IO—2]a7T(P)v

r.7(p)
Proof. Similar to the previous proof, by Lemma C.2, we have

P
d 2 =2 I- 1
arprp) T 20, w2101 (a,,(p)vp 7(p) Zan(r)vp 7(r)

r=1

) P
=2 A2 =2i-2 =2i
F20) Ly D 2003, (“W)Vp[,n(p) -, “”“)Vz;,n(r))

i=I+1 r=1

+ 127CT [0, x(p) [ {an(p &' el v mat v all, s}

=T d =2 +T d 2 +T d 2
=g e | T2 g o) 3 a pr (o)
P2 is larger this time, under the same conditions of Lemma C.3, we have

Since V2

|T3] < 67 x410'21a,,(p)vp 2(p)-

In addition, we have

[ee]
-2 ) 2 =2 I+1
> =20, 1) D 2005 ) @x Ty airy 2 "2C5T, iy llalli
i=I+1 rir#P

C2 llall; &'
=- 410'2,a,r(1,)v

A 521-2
2]0’ 197(p)V ) 2 (p)

p.n(p)’

For the same reason, under the conditions of Lemma C.3, the coefficient is bounded by 67. Hence

d _2 d )
3 prm 2T (avp,ﬂp)) 267 X 41531 8x(p) ) n(p)-
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Finally, we lower bound T;. To this end, we compute

_n=2 A2 =2 =21-2 =21
T1 =2V, 2(p) 2103 (“W) (1 ‘Vp,nm)"p,n(p) - a”(r)vn,ﬂ(r))

rir£p

52 52 —2[-2 I
2 2Vp,7r(p)210-21 (a”(P) (1 - 6:/) Vp,7r(p) - ”a”l 80)

lall &
_ YA 0 A2 =21
= (1 o, —a Py X4Ia'21an(p)vp’ﬂ(p).
m(P)Vp,x(p)
We will see that since the initial 17?7 2(p) in Stage 2 is much larger than 1/d, Stage 2 is much shorter
than Stage 1, whence we only need the error in the coefficient to be smaller than a constant, say, 1/2.
1
To this end, it suffices to require §;, < 1/3 and % < %, and the second condition is again
(P)Vp.x(p)
implied by the conditions of Lemma C.3. O

Lemma C.5 (Dynamics of the diagonal entries (Stage 3)). Suppose that at time t € [Ts;,,Ti_¢],
Induction Hypothesis C.2 is true. In addition, suppose that the conditions of Lemma C.3 holds and

23l+7c2 _ _ ma‘2 .
£ > (6,),(}‘5 81/28(1) Iy a—] Vv @s{) S Then, at time t € [Ts:,,Ti-¢], for any p € [P.], we have
v 20 minsx mins

d—2 I .2 =2
avp,n(p) 2 (6()) IO—ZIaﬂ(P) (1 _vp,n(p)) .

Proof. By the proof of Lemma C.4, we have

d, . (d d_, d_,
' pxp) ST G o) | T2\ G o) | T G Vpne) |
where

) ) ) 212 1
T > 2vp’7r<p)210'21 (a,,(p) (1 - vp’ﬂ(p)) Vo r(p) llall; ‘90) ,

T, > -2C2 |lal|, &b,

T3] < 1237%9C2 {ap ()& el vimal val, b} .

v

A

For the first term, we compute

it Nalligl) o, S
Ty 26, (5\;) - PR X 415507 (p) (1 - vp’ﬂ(p))
2all; £t .
When & > T A we can further rewrite the above as
I
(67) 2 P
T > 2 X 410507 (p) (1 —Vp,n(p)) .
vV
When 77 ) <1 e, the RHS is lower bounded by (65) X 4162, 7 (p)€. Our goal now is to show
N
ensure T, and T3 are both bounded by % X 41 &zzla,r( p)&. For T, we compute
(6,)! 2 4C5 lally 14
—T, < 2C2 ||la||; e < ~2 X 4162 ,a,(p) & >——7 +
o I ”l 0 3 2/%n(p) (5;)1]5'221 Amin. 0

Then, for T3, by (6), we

=1/2 _I-1 2 I (5;)1 6'221
azpyé& gy, Vmoy Vall; g £ Waﬂ(p)g
o

SNote that the order of the RHS is higher than 1. This allows & to be smaller than & and &.
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vy A2 2 Y]
= §<((6)—218) d2(1—7)(1—l)’ mo? < (5) 21 e

223I+6C%. 1= 2231+6C%,- @min.

NGO R
> L i
= \Tlall, 223m6¢2 “7(»°

Then, rearrange terms so that they become conditions on &:

231+7C2 mo2 a
—1 51/25(1)_1 v —L \% —” ”18(1) .
((5' ) 0 Amin, Amin,
Combine the above results, and we obtain
I
d_, (67) 2 2
avl””(l’) > ) X 416507 (p) (1 - vp’ﬂ(p)) ,
provided that
I 2 147 2
2all; &, 4C5 _llalh s, 23472 Sy, Mo mo? ylalli
" dgin, (81 (610 amin, © (8)) 62, 80 Y . min,

Note that (the last condition of) the third condition dominate the first two conditions. Hence, we can
simplify the above condition to be

23147 (2 mo?  la
> — A(; 51/25(1)_1 v—Lv I ”lsé .
(07)" 05,

Amin, Amin,

Now, we combine the previous lemmas and estimate the convergence rate of ©,.

Lemma C.6 (Directional convergence). Inductively assume Induction Hypothesis C.2. Let € be the
target accuracy and Ot the target error in time. Suppose that
v < 1 8y, = !
217 Y
4C2 ) [ d 1+1/1-2 2 . 0, amin, I St
153, 8 (10g2d) S ey (( e 1/2)

1 2
- AD “ 19571
. 23I+7c2 ” ”] a1 y 0.21 i, 6T T—2y1
= b
(5/ )I 21 Amin, 8 23I+4C?,- ||a||1

) ((6 )52 ’

£ 2 exp (—

A2

S220-NU-1) (5T o1 1

dl+2yd-0"

8
+7 2 +4 2

Then, for any p € [P.], the time needed for v

boa(p) 10 reach 1 — & satisfies

1+106 1 = !
Ti-s = ) T—2172 =0 ) =0 ( -1 ) :
41(1 - UO—zz“”(P)Vp,n(p)(O) a,r(p)vp’”(p)(O) ar(p)d

Moreover, the requirements on d can be removed if we choose®

. PHCE lall; 1 _ofllel 1
h (6%, )1 057 Amin, d-»1 Amin, d-nI
P 2T all, 1 _ (||a||1 1 )
2 6’221 amin* dl/Z—yl amin* dl/z—’yl

5Note that this condition on & is stronger than the existing one.
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Proof (Part I): convergence rate. By Lemma C.3, for any r € [0, Ts, ], we have

S nt = (1£360) X415 () (7 1)
7 =22 1—(1+367)4I(I - 1)0 (0t rr
= T () =75 70 (O (1= (12367) 411 = 1)031ar(p) V) o1 )
This implies
1 —4or 1 (_fJIﬂz(p) (0)) < 1+467
_ P <Ts, < .
41(1 - 1) Ia”(P)viInz(p)(O) Oy 41(I - )52 a,,(p)vp ﬂ(p)(())
For the lower bound, note that
—21 2 (0)
p.m(p) §2I-2 log d
<é = 6, > 6’ T 0 = 9,
( S5, ) =°r P”(P)( ) ( dor )
When the above condition holds, we have
1+ 66]"
Ts, = 4 Do Y :
](I_ ) aﬂ(p)vp n(p)(o)
For Stage 2, by Lemma C.4, we have
d 52 ) -2 !
a4 prp) = 20631 (p) (Vp,rr(p))
A2 I-1 =
= P (0 280 (1-20U = )53 ax() 817 (1= T,
21-2
1 4 (0)
= Ts —Ts5, < ) T S D I(pl) 5y -
21(1 - ])0’21a,r(p)6v oy
For the coefficient to be smaller than o7, it suffices to require
1
49212 (0) 4022 (0)\ T T log?
p.7(p) p.7(p) 4 log”d
———F <6 = 6,2 | —— = N .
sit ! ' ( or ) (5T) d

Finally, for Stage 3, by Lemma C.5, we have

d ) AV =2
a (1 — v]?,ﬂ(P)) <- (6v) 10-2Ia7r(17) (1 - VPJT(P))
B VA
= 1- vi’ﬂ(p)(t) < exp (— (67) 10-22161,,(,,)1‘)

log(l/a) - 81‘7%_2 ,(0) log(1/¢)

= Ti_g-Ts, < < Ts,.
(67 )I aﬂ(p) (65 )I
Again, for the coeflicient to be smaller than 67, it suffices to require
81722 | (0)log(1/s) or (57)
p.7(p) r ( )
< > [ S A
(6/)1 _6T = S_CXp( 8IV21 2 (0))
v p,7(p)
1 I1-1
or (0 d
<=sZexp—T(V)( 2) .
81 log*d

Combine the above results, and we obtain
1+ 1067

41(1 - 1o, “ﬂ(p)"ilnz(p) (0)
provided that the conditions of Lemma C.3, C.4, C.5 hold and

1 1 I-1
1 4 \TT Jog? 57 (87

dér 5t d 81  \log’d

Ti_s = T(;v + 26TT6V =
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Proof (Part Il): resolving the conditions. We now resolve the needed conditions. For easier reference,
we list the requirements of Lemma C.3, C.4, C.5, and this lemma below:

A2 A2
or 216 1 057 Amin,
ST Y<gp MmO SOrsn o
2 cZ 21 23+4Co d
&2 2 &2 . _ﬁ
s <oy 21 1 21 Gmin, -
- 2 1+2y(1-1)’ 2 ’
231+4Co‘ dl+2y1-1) 231+4C0_ ||a||1
5, < 1/3, @)
2
231+ (2 mo a
S o sigr-ty M0, ll ”15(’) ,
(5(,)10'21 Amin, Amin,

1 1 I-1
1 4 \TT Jog? 57 (87
8, og” an v|— 08 d, £ > exp —M d .
dér or d 81  \log*d

We proceed under the following principle. First, ¢ is a given parameter, so we should have minimal
restrictions on it. 67 should be interpreted as the final output of the lemma. In other parts of the proof,
we only need to be 1/poly P small, and it is relatively easy to obtain contains of form §7 > 1/d°.
Hence, we will try to change condition on other parameters to conditions on d7. Finally, §,, ¢/, are
only used in this proof, so it suffices to ensure the existence of them.

‘We start with the conditions on &, which are

A\ -1
el {él/zgz_lvmff ||a||lg,}V p( or (5, ( d )’ )
0 0 :

(6' )I Amin,  Amin, 81 1Og2 d

This can be translated into

’ NI A2 NI A2
I 21 Amin, (6005 ~1/2 I-1 (6}
€0 31+7 2 & MOy S _pmsy dmin € £778) S —aros
231472 lall; 23141 C2. 231+7C2.

5 o 8l 1og2d"110 1
"=\ *le)

Then, consider 6,, d7,. We choose ¢, = 1/3. For the existence of J,, it suffices to require (cf. the first
and second last conditions of (7))

log? d = v 4\ log?d or 216,
dor -

IA

s

yI 1-I
Cc2 log®d - 4C2% log’d
A V7= d 162, d
21 21

This condition will also be stronger than the previous one, as long as

4C2( Zd)'”’> 81 (1og2d)”10 (1)
152\ d =i\ Td P

= SZGXp(—

’ I+1/1-2
4c%,(5v)’( d )”
152, 81 \log*d

While this is a restriction on &, it is very mild as the RHS is super-polynomially small. Now, we have
replaced (7) with

AC2 (§) (a2 5 03 amin, . St
> exp [—— , < 2 (e =
’ eXP( Io3, 81 (logzd) " B2 (( »e har 1/2)
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P 4C2 (logzd)l_l/l

)
153, d
4 4
T 21“mlm ~1/2_1-1 (6}
& < 31+7 (2 & 0o = 3I+702 7
2147¢2 lally 21472

0 2 AD TT12y1
1 _ 21 ! 721 dmin.
- < 2 '
Y < 2 €S (6T231+4C(2T d1+2ra-1’ d= (23I+4C%r ||a||16T

Consider the last two lines. For the second last line, we compute

1
I —
NG Oy amin. 4o [2MCS llall 1)
0= B¢ lal, (61)102, amin, & ’
2
'\ A IAY F)
51/286—1 < (67) 021(9 e &< (67)" 05, L2 20-U-1)
231+7C<2r 231+7C%_

For the last line, we convert the conditions into conditions on 87:

2 2 31+4 2
= Tar 1 2 CU«/— 142y (1-1)
83(553“4(;20 gy © 0= T mNEEE,

2
AD T 1241
y 02, amin, : T=2y1 o 6> 23“'46%. ||a||1d—1/2+71

231442 lal|y B 5'22, Amin, .
Thus, the conditions are

I+1/1-2 &2

4C(2,. ((5(})1 d 1/ ma‘2 < ZIClmlm ( )I or
16'221 ] log2d > L= 231+7C2 dI—l/Z >

1 2
=7 NI A2
. 23I+7C2 ||a|| v < (07, 921 g220-v)u-1)
B (5(;)1 Ior amln* € ’ -

2
231+7 Ca-

£ = exp (—

1-1/1
e ors 2 (o)™ 2 i 2
2r’ T 162 d &2 '
21

21 &3y amin.
Note that 1/2 —yI < 1/2 < 1—1/I when I > 2. Hence, the condition on &7 is equivalent to
31+4 2 31+4 2
6T > 2 CO’ ,/—d1+27(1 RV, 2 C ||a||1d—1/2+yl
= 2 2 . :
0y 0'21 Amin,

To complete the proof, it suffices to revert the above conditions to conditions on & and 7. m
C.1.2 Radial Dynamics

Now, we estimate the time needed for a neuron to fit the ground truth after it converges in direction.

Lemma C.7 (Dynamics of the norm (converged)). Suppose that Induction Hypothesis C.2 is true at

time t. Then, at time t, for any p € [P.] with v2 2(p) = 1 — &, we have

d
Slonll” = 4lopl (axco = ool = (2C2 anipé + 2 1all 27 sf + 2mat)).

Proof. By Lemma B.1, we have

(e8]

1d L " x© m .
53 ol =20l 2503 3 ana) ¥ aiy = 2llonll* D03 D ol (B 90)™
i=1 g=1

i=I I=1

oo P
22”"’10”22&221' Za”(Q)‘_}ii,ﬂ(q) - ”"’P”2 _2”"’17HZZO'21 Z ol { 'Up""l>2[
=1

g=1 i=I  Li#p
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1d 2
=T - — .
1 (2d ”vP“ ) (2 dr ”vI’” )
First, for Ty, first recall from Assumption 2.1 that Y72, 6'22 =1,and .77, 2i6'22i <23 120'22[ <C2.

Also note that for any small 6 € (0, 1) and integer N, we have

N-2

N _q_ 2 N\ ok
(1-6)N=1-Né+6 Z(k+2)( 5)

k=0

N-2

=1—N6J_rN2622( )( §)k =1 - N6 + N2>
k=0

Hence, we can write

=20, P 363 (ax ~ loolF)

i=I

+2 “'UPHZ Z &3 (p) (‘_)ii,n(p) - 1) +2 “"’p”2 Z &5, Z a”(‘l)vii,n(q)

i=I i=I q:q#p
=2 ||'UP||2 (aﬂ(P) - “”.0”2) +4C5 ||'UP”2 An(p)€ £2 ||'Up||2 lall; &-

Meanwhile, for T,, by the proof of Lemma C.2, we have

ml<2olP Y6t D) Tl (o) + 2ol Y168 S Tl (5,000

i=I leL\{p} i=I 1¢LU{p}
> 2i

<aloP 303 S an (VEo+ V) + 2| ot
i=1 leL\{p}

< 4w, | llall; 22 &} +2 |[v, | mo2.

As a result, we have

d
ool = 41, (axm = l05l)
+8 [0, |* (Can(pa + lall & +llall, 2 &) + mor?)

=4 Hv,,“z (a,,(p) - Hv,,“2 + (2C(2Ta,,(p)§ +2|lall; 2218(1) + 2m0'12)) .

O
Lemma C.8 (Fitting the signal). Inductively assume Inductmn Hypothesis C.2. Consider p € [P.]
and € > 4 (C(Zfa,r(p)é+ llall, 2*'&! +m0'12) Then, after v 2(p) reaches 1 — &, it takes at most

3 log(ai(p) /(o‘és))
Ar(p)

it will stay there.

amount of time for ||vp“ to reach ax(py + &. In addition, once it enters this range,

Proof. Let Ty be the time vp 2(p) reaches 1 — €. By the proof of Lemma C.6, v 2(p) will stay above
1 — & after time Tp. By Lemma C.7 and our hypothesis on &, we have

2 2 2 €
S opll =4 ool (an = llopll = 5).
In particular, this implies that once ||v pH2 reaches a,(p) * &, it will stay in this range. Let Tg 12 and
TR,1-¢ be the time ||vp||2 reaches a(,)/2 and 1 — &, respectively. For any ¢ < Tg 12, we have

3 oy = 2

da,
[ vaml!zzoéexp(%(r—n)))
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310g (ar(p)/07)

= TR,I/Z —TO <
Ar(p)

After T 1/ and before Tg |-, we have

d an
ar ”"’P“2 2 dx(p) (”ﬂ(p) - Hvl’”2 + g) Z z(p) (“ﬂ(p) - ”vP”Z)

a
= an(p () = |[op] < T exp (~an(p (¢ ~ Tro12)/2)
31og (ar(p)/e€)

= Tri-&—Trip =<
Ar(p)

As a result, we have

3log( @ /(0 e))

An(p)

Tr1-¢—Tp < (log (a,,(p)/(rg) + log (a,,<p)/s))

An(p)

We are now ready to prove the main result of this subsection, which we restate below.

Corollary C.9 (Convergence). Let &p, eg be our target accuracy in the tangent and radial directions,
and d7 the target error in time. Suppose that y < 1/(21), §;, = 1/3,

3147 2 Sad
N ”a”‘ L ez 120all, 220, b x TCo I|a||1 L
(500773, dmn, 417 52, i, T
)
2 0-2lam1n* 1 ER
MOy S er 231+7C2 (6y)"e dl 1/2 /\ﬁ’
52 \2 o \2
£< M 2 2U-NU=-D A |s 0'21 1 A ER
|\ 2372 b T23I+4C%_ d1+2yI-1) IZC%-an(p).
Then, for any p € [P.], we have
52 2
Vo 2 1=eps |[op|” = an(p) £ er, Vi > (14+2067)T,,
1
4\ log*d )
=2 2
por(p) S (g) = looll” < o7, vt < (1 - 1067)T,,
where
1 1 ~ 1
Tp:= 21-2 =06 =®(—1_1).
A= D03 an (7,700 \an(n 700, (0) arx(p)d

Proof. First, by Lemma C.3 (and the proof of Lemma C.6), we have

1

4\ log’d 1-106

w0 0= (]IS s o
or d 4](1 - 1) a,r(p)vp n(p) (0)
Meanwhile, by Lemma C.6, we have 2 <8, 2 > 1 — gp after time
p.n(p) p-m(p)
1+ 106 1
Iy = " . =06 Y ) ’
41(1I - 1) a,,(p)vp n(p) (0) aﬂ(p)vp’n(p) (0)

aslongasy < 1/(21), 6, =1/3, and

oy > 231+7c2 ”a”l 1 5T 231+4c2 Ila”l 1
(6 )I 21 amm* d(l—’y)l ’ - 221 amin* dl/z—'}’l ’
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A2
05, ami P
2 27%min. [, f T
mo; < ——— —_—
= 23I+7c%' ((6V) e d1—1/2)’

2
)
9o1

3 2
2 I+4Ca—

1
dle2ya-1"

y ((6;)’&3,

2
23412 epd* 7D A (5T
(on

By Lemma C.8, fitting a(,) to &g takes Tg amount of time, where

B 3log (afr(p)/(oﬁaR))

An(p)

TRI

. 23I+4C2 ” a” 1
Since > 2 !
OT 2 =52~ g, @1

we have

5Td1_1
Tk < 67Ty < lo (a2 e )S
r < 67Tr 2 (@ (p)/ (002R) 241(1 - 1)63, (log d)*' -2

- N a oxp 491172
ER =2 -7 ~ .
2 O-Zl(log d)ZI 2

9

Again, this condition is mild as the RHS decays exponentially fast. To meet the conditions of
Lemma C.8, it suffices to require

e g (1
E<——"— mopl <=5, eg>12al, 22 a1V
12C5ax(p) 12
Note that last condition on &g is stronger than the previous condition on &g. O

C.2 Maintaining the Induction Hypotheses

In this subsection, we show Induction Hypothesis C.2 is true throughout training. Recall the meaning
and requirements of £p, gr, d7 from Corollary C.9.

C.2.1 Upper Bounds on the Irrelevant Coordinates
Lemma C.10 (Upper triangular entries (case 1)). Consider p € [P.] and p < q € [P] with

Ar(g) 2 Amin,/(2(log d)*%). Assume the conditions of Corollary C.9 and

2
AD A2
o 0
8_<( 21 r

1 mo? < 971 Amin, 5_r
Jlr2yI-1° U= 231402 2(log d)?-2d1-1/2 24°

231 +4c%' 24

o1 A2 -
(I-1) 0. .
LZ((&) Y , d s 21 Amin, 5_r 6 < 5r.
(log2 )/ 4 (log2 d)ﬁ 231442 ||al|, 22172 24 240
Then, ﬁfj’”(q) < &g throughout training.

Remark. Recall from Lemma C.6 that we only need 67 > ©(1/d"/>~¥") and by Lemma B.2,
6, = 1/poly(P). Hence, the last condition can hold as long as d is large.

Proof. First, by Corollary C.9, we know \7; 2(p) > 1 — & after time
. 1 +2061
= e 22 (0)
( )O-Zlaﬂ'(p)vp’n(p)( )

This automatically implies ﬁi a(p) = & < go after time T),. Hence, it suffices to consider the time
before T),. By Lemma C.2 and the choice gy > &, we have

d_,

) 2 31462 | =1/2 _I-1 2 I
avp’n(q) < 22210‘2ian<q)vl;’ﬂ(q) + 12> C0|vp,,r(q)| {a,r(q)s / gy Vmoy Vall 80}

i=1
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_1, (452 o1 [452
- dt'pr(@ 2@ pr@ ]|

Since our goal is to upper bound \7?7 (g)> We may assume w.lL.o.g. that \7?J 2(p) 2 1/d, as we only
need to track those ¢. Then, for T,, we have

T, < 123I+6C2 a2 {a (q )81/2 (I) 1VmO'1 \Y% ||a||180} vp 2(q)"

Meanwhile, for T, we have

A2 21 02 p
Ty = 4G arq)Vp niq) T2 Z 210—2ia”(q)vpl,7r(q)

i=I+1
(o]
A2 =21 -21 )
< 410'21a,,(q)vp’n(q) + 2a,r(q)vp’n(q)80 Z 2i05;
i=I+1

< 410'21a,,(q)v +2C? a,r(q)v

p.7(q) P, ﬂ(q)

Combining the above two bounds, we obtain

d 52
T prta) S HO3x@) T x(g) + 2Cox(q) V) x(g) 20
+123I+6C2 qi-12 {a » )( 1/2 (1) Ly gl- 1/2) Vmo-l Y ||a||180} ilﬂ(q)
(1 + 6Tmp) 410—21a”(q)vp n(q)’
where
s 2C? a,,(q)so 1231+6C2 g1-1/2 {a,r<q) '1/2 I‘l \Y% 51_1/2) \Y% m0'12 Vv lall sé}
e = 410' 1A 7(q) 4]0’ 1A 7(q)
Cley 231+c2gl-112 )
< CrAz ) = aﬂ(q)gl/z é ! \/’1“7'12 v ||a||156}
2[0'21 05187 (q)

= 5Tmp,l + 5Tmp,2~
As aresult, for any ¢ < T),, we have

1

I1-1

) ) A2 —21-2
7 e 7 1) O) (1= (1= 1) (14 61p) 4163 () 722, (O)1)
In particular, this implies

1
—21-2 -7
an<q>vp’n<q>—(0)) “

7 iy (D <V ) (0) (1 — (1 + Smp) (1 +2067) P ©

p.r(p)

IA

5 (1+ 61mp) (1 +2067) T
Vpx(q) () (1 B 1+,

L
I-1

) 5
<V ni(© (7 — 26 — 205T) ,

where the second line comes from Assumption C.1(a). Now, we find conditions under which the last
term is upper bounded by g9 = d~(-7) . We will first find conditions under which 20mmp+2007 < 6, /4

and then upper bound v;”(q) (0) (6,/4)" 11

We compute

5, 162,6,\ ™
2o < dz(l—) |

12 c2 12
5, 5,
2067 < o8 op < 2
TST S TS50



and by (6),

20mmp,2 < 6_, =  anx( )51/231_1 vV mo?v llall; e < 6-—221 4r(q) 6_’
mp,2 < n(q 0 1 0= .
12 231+ 2 gl-1/2 24
= 5« &5 or 1 2 . 53 axg) or
€= VI 24| gy (-1 moy = BIHCL gI-172 24

U
&3 anig or|
231+4C2 |lall, 24

The above conditions ensure 6, /4 > 251y + 2057. By Assumption C.1(d), \7; 2(p) (0) < log*d/d.

Hence, in order for \75J () (0 (6 /4)~1U=1) to be smaller than &, it suffices to have

L L
log*d o) g0 < v (o) )
d 4 - log’d ~\ 4

We now clean up the conditions required by this lemma, which are the conditions of Corollary C.9 and

g<

A 2 A
&3 Or 1 2 o T3 dnig) or
231442 24| g1+2y(U-1)° moy = 231442 glI-1/2 24’

-l A2 - ]/21—)/] A2 _ﬁ

-0 oz T 16

—d > (5_,) 7 ,d> 2 Zria) _5, \% 2 _5, , o < Or .
(log? d)!/7 4 231442 |al|; 24 cz 12 240

For the condition on d, since 1/2 —yI < 1/2 < 1 — v, the first part of it is stronger. Finally, we use
the hypothesis dr(g) = amin./(2(log d)*'=?) to replace (the first part of) the second condition with

)
051 Amin, 5_r
PIRCE lall, 2272 24

) (log? d) 72571 .
O

Lemma C.11 (Upper triangular entries (case II)). Consider p € [P.] and p < q € [P] with
Ar(g) < amin. /(210g* =2 d). Suppose that the hypotheses of Lemma C.10 are true. Then, \7?) 2(q) S €0
throughout training.

Proof. By the proof of Lemma C.10, we have
d_,

) 21 2 —21
3 pr(@) S 4G a7(9)V ) 2(q) ¥ 2Con(@) V), 1(q) €0
31462 1-1/2 =1/2 I- 2 )
+ 12372 q! 1/ {a,,(q)sl/ 8(1) ! vmoi Vlall, 86} vpl,”(q).
Suppose that d (4) < amin, /M for some M > 1 to be determined later. Then, we have
d_, ~2 Gmin, _of 2 Qmin, _of
i pr@) = a0y M @) +2C5 M@)o
_ Amin, _ _ _
+123I+6Céd’ 12 {—Eﬂ 81/28(1) Ly m0'12 vall 86} vi””(q)
A2 Qmin, _of
< (1 + O1mp) 410, V@)
where
CZS 23I+6c2 M Qi
OTmp = —— 0 T gl-12 { nnljln*él/zs(l)_l vV mot v e{)}

) A2 .
2[0‘21 40’21 Amin,

= 6Tmp,1 + 5Tmp,2~
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As aresult, for any ¢ < T}, we have

1L
I-1

Amin, @min. ‘721;2(61) (0)

1= (1 + Smp) (1 +2067)

(1) < ¥ (0)
P n(q) p.n(q) Man(p)Vp n(p)(o)

Recall from Assumption C.1 that v 2(p )(O) > 1/d and v (g )(0) log?>d/d. Hence, with
M = 210g21 2 d, we have

212
amin*Vp’,r(q)(O) < Qmin, ]ogzl*zd
Max(p)77 3,0 ~ axpy M

<

N —

Hence,

1
) ) (1 +6Tmp) (I+1067)\ ™1
p.a(@) (D) = Vp (g (0) (1 B 2 :

As a result, to ensure 72 7(q) < go throughout training, it suffices to have dtyp < 0.1 and 67 < 0.01.

The second condition clear holds under the hypotheses of Lemma C.10. For the same reason, we have
Otmp,1 < 0.05 and the first term in dmp 2> Will also be sufficiently small. Finally, we compute

A2
d1—1/2{ M ma_va”a”l 1}< 1 40y,

Amin, Amin, 20 231+6C2
2
) 1551
= mo?<— 1 40—21 Qmin, 1 d > i 4'0_21 Amin, e
1 =9 231+6c2 210g21—2dd1—1/2’ log% d ~ 140 231+6C%, ”a”l ?

which are also covered by the conditions of Lemma C.10. In fact, M is chosen to balance the
requirements of these two lemmas. O

Lemma C.12 (Lower triangular entries). Consider p € [P.] and p < k € [m]. Assume the conditions
of Corollary C.9 and

2
5e 1 %S 1402, Ry O 1

8 9
- 240 6 8(log® d)!- 1’ 48 23I+6C2 (log? d)21-2 @+2y(I-1)

[N S,
of < L% “fninfc : d > (L 453, arznin*éc 17271
g1 4 231+4C2 (log? d)I-1 d!-1/2° (log? d)ﬁ ~ 6231462 8 |al|;

Then, we have v v 2(p) < €0 throughout training.

Proof. First, by Lemma C.2, we have

d_,

o0 P
=2 a2 =2i-2 i
ar k(o) T =2V (p) 2210'21‘ (a”(l’)vkl,ﬂ(p) - Z aﬂ(r)vkl,n(r))
i=1 r=1

-1{pe L}2||'vp||2( -V ﬂ(p)) 22’0'21"1( 2(p)

+ [231%6 2 |Vk 7r(P)| {a:r(p)‘S /28(1) 'Vma vlal, £o}

<2 (1 vk n(p)) Z 2lo-21 (aﬂ(P) -1 {p € L} “vPH )Vk n(p)

+12319C2 |5, ﬂ(p)| {ax(p& el vmal vall, e}
_o1 (452 1, (L2
= Mg e | T2 g e | -
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Similar to the proof of Lemma C.10, we assume w.l.0.g. that v )2 1/d and write

7(p

Ty < 123%0¢2 52 gl=1/2 {axp )8]/2 - 1\/mo'1 Viall g}

k,m(p)
For the first term, we have

) 2{_21 - Ny =2i
T < 4165 |ax(p) — 1{p € L} ||v | )vkﬂr(p) +2 Z 20634 () Vi ()

i=I+1
2 )
= 4'10-21 Ar(p) — 1 {P € L} ”vP” ‘Vk n(p) +2C0'a”(l’)vk,7r(p)80
1{pelL} vaH C2 ¢
<[|1- z X 4162,a 2
( drp) 216’221 2197 (p) k z(p)"
Therefore,
2
d 2 L{p e L}|lvp]| ) "y
aker(p) < (’1 - Arip) + OTmp X410—21a7r(P)Vk,7r(p)’
where

6Tmp =

2
Cley 231%6C2 o, moyplall
UAZ o Ca -2 51/28(1)1\/ Ly 186
2]0’21 40’ Amin, Amin,

= 6Tmp,1 + 6Tmp,2~

By Corollary C.9, we know p € L and H’va2 = ax(p) * €R for gg satisfying the condition in
Corollary C.9 after time
1 +2067

41(1 ) Iclﬂ(p)vilﬂ_z(p)(()) '

p =

We now analyze the stages [0,7),] and [T}, Tp, ], separately. Let &) < &9 be a parameter to be chosen
later. We want to show that ﬁi’n(p) is upper bounded by &, in the first stage and by & in the second
stage.

First, for 1 < T, we have 577 < (14 6mmp) X 4103, ax(p)73 ) and therefore

L
a0 51y O (1= (= (14 bmp) 4153 a0 732, (O)1)
1

x(p) kn<p>(0)) =

=2
<v 0)1-(1+6 1+2007) ————————
k,ﬂ(p)( ) ( ( Tap) ( T)Cln(p)vp ”(p)(o)

1

I-1

< vk 7(p) (O) ( 26Tmp 1 - 26Tmp,2 - 206T) s
where the last line comes from Assumption C.1(b). By the proof of Lemma C.10, we have

Oc¢
25Tmp,1 + 25Tmp,2 +2057 < IL’

provided that
1
5 < Oc 6-221 Qmin, 5_c v
7= 2407 BI+4C2 |al|| 24 ’

A2
1 2 057 Amin, Oc

—, MO < /5
dl+2y(I-1) 23“46%. dl-1/224

2 2
T
23“46%- 24

Then, we compute

1

1
_ , , _log?d (6.\ T . log*d (6.\ T
vi,ﬂ(p)(t) <g, & g;= (Zc) &= gy = — Zc .




Now, consider the second stage. For t > T},, we have

d -2 & A2 =21

= ﬁi’mp)(t) < &) (1 - (a

Also, recall that the training process ends before time

1+£2067

M = D)o3axp) 75 3 p, (0)

1
&R T

+ 5Tmp) 411 = )0} anp () (1 = Tp)
n(p)

Tp,

For any ¢ € [T}, Tp,], we have

1

) < |1 aﬂ(p)(‘?f))[_] o
Viea(p) = €0 |1~ 212
an(P*)Vp*’ﬂ(p*)(O)

1
2(ds’ I-1\"T1-1
86(]—( ER +6Tmp) &)

€R

Ar(p)

+ 6Tmp) (14+2067)

<
Amin, Amin,
1
2 NI-1\"T-1
ER 8(log” d
S86(1_( +5Tmp)& ,
Amin, Amin,O¢

where the last line comes form choosing (C.2.1). For the last term to be bounded by &, it suffices to
require

&R 8(log>d)!~! 1 &R 1 amin,6c
+0 — < - &= +0 +6 Ss—————»
(amin* Tmp) Amin,O¢ 2 Amin, e | .2 2 8(10g2 d)-1
which is implied by
1
2 A 15
en < 1 amin*éc S 1 210—22[ @min,Oc¢ "
R> %5 + > == ’
6 8(log? d)! ! 6 C2 8(log*d)!-!
and by (6),
2 2 s A2 2
2 l 40'2] A in, Oc 1 s < l 40—21 Amin, O¢ 1
moy = 6 23“66%. 8(10g2 d)l—l ar-1/2’ 16 231+6C%_ 8(10g2 d)l—l di+2ya-1y°

1
) Sve=s
d (10 o) T
(10g2 d) 1/2-y1 6 231+6C0— 8 ||a||l

Combining the above conditions with (C.2.1), we conclude that ﬁi x(p) < €0 throughout training, as
long as the conditions of Corollary C.9 and the following conditions are true:

2
50 1 amin c
or < s < _—*,
=0 =% 8(log? d)!-1
A A 2
2 0_221 Amin, 6_¢ l 40—221 amin*éc 1
moy = 23I+4Cg_ di-1224 " 6 23“’66%- 8(10g2 d)-1 4ar-1/2’
N 2 n 2
Y T 1 1403 aminde 1
- 23’+4C(2,. 24 d1+2y(I-1) 6 23’+6C(27 8(log2 d)l‘l q+2ya-u’

24 6 CZ 8(log?d)!-!

1 1
D Y= A2 T Ty
05 Qmin, O¢ v 1 210—2[ Amin,0¢
9
BI4CE Nlall; 24
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d 1 46%%1 aiﬁn 6C 7Tﬁ%;7
S N
(log d) 7 \62376¢Z 8]lall

To complete the proof, it suffices to keep only the stronger one in each of the conditions on mo-lz, g,

and d. ]
Lemma C.13 (Lower right block). Consider k € [m],q € [P] with k,q > P.. Assume the

conditions of Corollary C.9 and the conditions of Lemma C.10, with 6, replaced by 6;. Then, we
have fi 2(g) S €0 throughout training.

Proof. By Lemma C.2, we have

d ) - A2 =2i
k@) S 22 2i0%:5(q) V. 2(q)
i=1

31+6 ~2 | = =1/2 I-1 2 I
+ 270 C(T|vk,,,(q)| {a,,(q)s / gy Vmo|V ||a||180}

=T d—Z T d—2
=g e | Y2 g V@) -

For the first term, we have

_AgA2 21 52 52
T1 = 45yarg) Vi r(g) T2 Z 2067505 (q) VY, n(q)
i=I+1

) 2] 2 52
< MGy nq)Viein(q) + 2Cotn(@) 80V n(q)

C2eg A2 52l
=1+ 210(:5_2 X 410'21€17r(q)vk,7r(q)'
21

Similar to the previous proofs, we may assume w.l.0.g. that ﬁi - 1/d. Then, for the second term,
we have

3146 ,~2 JI+1/2 12 I-1 2 1 =21
T, < 123%6¢2 g+l {ar(q)& / et vmoi v lall, gl} Vo n(q)

23I+6c2 m(TZ a
T 452 Z “51/28(1)7l v P (1) V(! (”1) £ X416—221an(q)‘_’i{n(q)'
27 g (g

As a result, we have

2 31462 2
i‘;z <1+ Coto + aa(cr2 C(’d’”/2 ggi-1y 290, lall, &
dr kemla) = 216’221 46’22, 0 Ar(q) An(q) 0

A2 2]
X 410‘21a,r(q>vk’ﬂ(q).

Note that this is the same as the bound in the proof of Lemma C.10 and Lemma C.11. Thus, to achieve
ﬁi x(q) S €05 it suffices to require the same conditions as in those two lemmas, with J, replaced by

0; (cf. Assumption C.1). m]

C.2.2 Upper Bound on the Norm Growth

Here, we verify Induction Hypothesis C.2(a).
Lemma C.14 (Upper bound on unused neurons). Consider k € [m] with k > P,. Suppose that

JE
R P
" \llal, 2

Then, we have ||vi||* < 60'3 throughout training.
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Proof. First, by Lemma B.1, Induction Hypothesis C.2(b) and Assumption 2.1, we have

d o P 0o P
2 2 a2 =2i 2 A2 ] 1 2
3 ol < dlloel® 365 ) apvil, < dllonl 3035, ) apet < 4llally & o
i=1 p=1 i=1 p=1

Thus, by Gronwall’s lemma, we have |lvk(1)||> < o2exp (4 |lall, elf) < ec? as long as ¢ <

@ lell, s(l))_l. By Lemma C.6 and Lemma C.8, the training process ends at time

2 dI—l
Tp, < -
AI(I = 1)03,ax(P) T 2 (p.,(0) 21(1 )62, amin,

Hence, it suffices to require

L d'! R P (e
Alall, &) ~ 21(I = 1)02,amin, el 2
_ 1
1 o [(I=1a2 ™7
= ry<-, > [ Smin. —( a1 .
1 lal, 2

]

Then, we consider k = p < P,. Unlike those unused neurons, since v, will eventually converge
to € (p), its norm cannot stay small. Our strategy here will be coupling its norm growth with the
tangent movement.

Lemma C.15 (Upper bound on ||vp||2 with p < P,). Consider p € [P.]. Suppose that the
hypotheses of Lemma C.14 and Lemma C.6 hold. Then, ”'UPH > 0'1 only lfV a(p) = 1 - & where

)
0'1 = 20’365/(’213 8/(163,)

Proof. Again, by Lemma B.1, Induction Hypothesis C.2(b) and Assumption 2.1, we have

I “”P” < 4””!7” Z 0'21 Zaﬂ(q)"p x(q) = 4””17” Z 0'21 (“ﬂ(p)"p xp) T llall; 50)
i=1 g=1 i=1

< 4oyl anip) 73 ey +4l10pl Nl 5.

ps ﬂ(P)

Hence, by Gronwall’s lemma, we have

t
||vp(t)”2 < a'g exp (4 [lall; aét) exp (4a,r(p) / v n(p)(s) ds)

2

Let ¢ > 0 be a small constant to be determined later and let ;) be the time ﬁp 2(p)

By the proof of Lemma C.3, we know

reaches 1 — ¢o/1.

dt p 2(p) 2 > (1= (1=co/I)—0(1)) 410'21a,,(p)vp 2(p) 2 0020'21a,,(p)vp 2(p)"

Integrate both sides, and we obtain

Ty
1>1-c¢o/l - v, ﬂ(p)(O) > c020'21a,,(p)/ ﬁzp{ﬂ(p)(s) ds.

As aresult, for r < Ty, we have

4
HUP(I)H2 < 0'3 exp (4 llally séTo) exp (&)

020747 (p)

2
< oj exp (4||a||186T0) eXP(C 52 )
0C9y
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Clear that Ty < Tp, and under the conditions of Lemma C.14, we have 4 ||a]l, e{)Tp* < 1. Therefore,

2
||vp(t)||2 < 0'3 exp(l+——=], Vi<T.
600'21
Now, consider the Ty < t < T}, where Tj is the time \7?3 2(p) reaches 1 — &. By Lemma C.5 (and the
proof of Lemma C.6), we know

d 72

P 10:‘;(60/8)
) 2
@ pp) = (L= colloyanp) (1% ) = Ti-Tos

(1 —Co)l a,r(p)

Thus, for t € [Ty, T1], we have
lop O < [[op (To)|[* exp (4 llally £ (71 = 7o) ) exp (4ax(p) (T = To))

log (co/€) )

< ||”p(T0)”2 (I+o(1))exp (4(1 - c0)I5},

4
< [lop (|2 (2) o

Choose ¢y = 1/2 and recall ||vp (To)”2 < a'g exp ( ‘272 ) Then, we conclude that
21

lop (| < 20265/ %578/03) . &2,
for all + < 7. Recall from Lemma C.6 that once 17?J 2(p) reaches 1 — £, it will stay above 1 — &. Thus,

this implies that ||’Up” > o'1 only if v v >1-¢& m}

x(p) =

C.3 Deferred Proofs

C.3.1 Proof of Lemma C.2

Proof of Lemma C.2. Recall from Lemma B.1 that
[(I - 5x8)) Ve L], & ( P

PN —21 =20 |5
B T P Ve LA _Zarv"’r)vk"’

r=1
: sz&; D il e, ©0) ' (1 = 0x5) o1, e)

i=1 L:l#k

Re-index the summation as Zr 1 Ax(r) 2 replace p with 7(g), and we obtain

k n(r)’

) P
- ) —2i-2 —2i -
Vin(q) = Z 2i05,; (an<q>vk’,n<q> - Z a”(")vkl,n(r)) Vi, (q)

i=I r=1

—2210'2, Z vl (B, B) 2~ (T = BB )1 €n(q) ) -
im

L:l#k

Therefore, we have

oo P

d_, -2 ) —2i-2 —2i

dtvk n(q) — ka,n(q) Z 2lo—2i aﬂ(q)vkl,n(q) - Z aﬂ(”)vkl,n(r)
i=1 r=1

= 1{k # q} 2Vi x(q) Z 21573 [[vgll’ (815 )" ™ (T = 545]) g, (g
i=I

=2V, (q) ZZZ'?T;{ Z lvill? (B, 0> " (T = 048] )01, € )
i=I l¢{k,q}
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d -2 d_2 d_2
= Tl de”(q) +T2 d[vk’ﬂ(‘n +T3 avk’ﬂ(q) .

We keep T as it is, and simplify T, and T3 as follows. Consider T,. When g ¢ L, we have ||’Uq H2 < 0'12,
and therefore,

(Wheng ¢ L) |Tz| < 2\‘7k,7r(q)| 221'5'221.0'12 < 2|\7k,,,(q)|C(270-12,
i=I

where the last inequality comes from Assumption 2.1. Now, suppose that g € L. In this case, we have
Dy = Sq€r(q) Where s, :=sgnvy r(4). This suggests writing

(01,00 " T = 5151 en()) = (T Bg) ((Bgs () — (Bhs g ) {Tks €x()))
= (05.90)" " Paunta) — (B Bg)” Vheon(a)-

By Induction Hypothesis C.2(a), we have 72 an(g) = > 1-&. First, thisimplies [V r(q)| = V1 — & > 1-&.

Hence, V4, z(q) = §¢4 % €. In addition, we have

Isqex(a) = 24l = \/2 = 2(sqen(q) Bg) = V2= 254(5q £ &) < V2&.

As a result, we have

(BkBg) = (B Sqen(q)) + (Th Sqn(q) =~ Bq) = SqPkniq) = [Sq€n(q) = Byl = 3gTa.n(q) = V22,
Combine these estimations with the previous identity, and we obtain

(B, )" T = 515 Bg. en()) = (T Bg) Tgnia) = (B Tg) " i)

2i—1 2i
= (Sql_)k,,r(q) + \/ﬁ) (Sq + é) - (Sqﬁk’,,(q) + V2§) Vi,n(q)-

Note that, for any a, 6 € R and integer N, we have

(a+6)N=aN+i Nctl\F"(S"=aN+(5NZl1 alV-n-lgn
\n n+1
N
_ +6 (Nfl)fn(sn
=a” Z( )n+1

n=0
=a" £ 6N (la] + |5V !
=gV £ N2V (5|a|N-1 v |5|N) .
Thus, we can further rewrite the above as
<’_’k’f’q>2i—1 ((I = 0B )Bq. €n(q))

[ 2i-1-2i-1 3i (=1/2-2 ~i—1)2 -
= (sq‘ vk‘ﬂ(q)+12‘( /vk’ﬂ(q)Vs’ /))(sqis)

=2i ~3i [ = - 2i-1 —i\\ -
- (vkl,n( ) £ i2” (8/ [Pk x| Vs’))Vk,nw)

_ =2 2i—1
= (1 Vi, ,r(q))vk ()

_vi’ l(q)8+2123’( ]/zvi’ 2( yVE g ]/2) +123lvk (q)( 1/2 ivk x(q )| Véi).

For the last three terms, clear that the second one is the largest as it has the smallest exponents on
both & and ¥y r(4). Also recall from Induction Hypothesis C.2(b) that [V¢ r(4)| < &o. Thus, we have

_ o \2i-1 T .
(0080 (= 8T8} = (17 ) sl 30% (B2 v &12).
As a result, we have

(When g € L)
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_ -~ A 2 .
T, = -1 {k * q}zvk,ﬂ(q) ZZZ(TZZi “U‘IH (( vi ﬂ(q)) Vilﬂl(q) + 3l231 ( 1/2 l : v 81 1/2))
i=I

=1k % )2 ) 2 ol (1-72 i) P2
i=1

£ 274 (g 3127 (812801 v 617112) Z 262 ||vg |

2
= -1 {k # q} 2|v,| ( ~ Vi, n(q)) Z 2"Tzzvk 7(q)
+ 12123 ? a,r(q)vk n(q)( 172 (I) Ly el 1/2)
Combining the cases g € L and g ¢ L, we obtain
2
T,=-1 {kiq,qeL}Z”vqn ( -V ﬂ(q>)2210'2lvk 2(q)

+ 121231C(27‘1n(q)‘7k,7r(q) (51/28(1) Ly el- 1/2) + Ziﬁk,,r(q)|c(2,_0'12.

Now, we estimate

T3 := —2Vk, z(q) 2216'22[ Z v ll? Bk, 0)* " (T = 040701, € )

i=1 Ig{k,q}
=20k, 2(q) ZZié—zzi Z v lI? (B, 0)* " (I = 048701, € )
i1 1¢LU k,q}
= 2Vk.n(q) Z 2i63, Z v lI? (B, 0)* " (I = 040701, € )
=1 lelN{k.q}
=:T3.1 + T3.2.

Similar to the previous analysis, for T3 1, we have

|T3.1] < 2|17k’n(q)|22i5'22i Z 0'12 < 2C(2T|\_/k,ﬂ(q)|(m— 1)0’12
i=1 1¢LUk,q}

Consider T3 . Note that by our previous analysis, for any / € L \ {k, g}, we have

[k, 0)* 1 (I - 00001, e (q))|

2i—1 2i
< (S[Vk,n(l) + V2§) Vix(g)| + (Slvk,n(l) + Vzé) Vi, n(q)

2i-1 2i
< (Veo+V28) eo + (Vo + V23)
Note that \/5_0% \% VEZi_l \Veo v \/§2i = 56 v &'. Hence, we can bound the last term as
[(Bk, o) =" (T - Bx8;) 81, ex ()] < 277 (e v &) .

Therefore,

Tl < 2kni) 9203 Y. w2 (e v &) < 27°C2 Yall, [Prniq)] (83 v g’) .
i=1 leL\{k,q}

As a result, for T3, we have

T3] < 22 [k ni)[(m = Dor? +275C2 [lally [ niq | (2 v 7).
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Combine our bounds for T, and T3, and we get

d_,

) P
=2 ) =2i-2 =2i
dl‘vk n(q) — 2vk,ﬂ(q) Z 210—21’ (a”(fl)vkl,ﬂ(q) - Z a”(’)vkl,ﬂ'(r))
i=1 r=1

—1{k+gq,q EL}ZquHZ( -V, ﬂ(q))ZZZO'zlvk 2(q)

+ 1212 C2 a gk, ,,(q)( 2gh- 1v5"1/2)i2|vk,,,(q)|c%,af

+ C2 [k niq|(m = D £ 275C2 [lally [ niq| (2 v 7).

For the last four error terms, clear that we can merge the second and the third terms, which leads to
2C(2T|17k,,,(q)|m0'12. Meanwhile, the largest coefficient is 12723/ C2.. Thus,

d_,

oo P
-2 A2 =2i-2 =2
arker(a) T =2V x(q) Z 2iby; (a”(CI)Vkl,n(q) - Z a”(r)vkl,n(r))
i=1 r=1

_]l{k;tq,qeL}Z”vq”z( -V, n(q))thrzlvk 2(q)

+ 1237°C2 15, ()] {a,,(q) ( V2gh=tv &'~ 1/2) VmatVlal, (sé v é’)} :

Finally, recall that £ < &. Hence, &'/%¢ hvels 172 = 1/28(’)" and g} v &' = gf.

Now, consider the second part of the lemma. In order for a(q)&'?el™' vma? v |all, €} < 6, clear
that we need mo-l2 < 0. Meanwhile, for the last condition, we have

T a-yrI
lalysl<s < a0n< o gx( 2 )",
1<0
lall, lall;

For the first condition, we have

2
anE el <6 = E< (L) 20-na-n

C.3.2 Proof of Theorem C.1

Proof of Theorem C.1. By Corollary C.9, Lemma C.10, C.11, C.12, C.13, C.14, and C.15. Induc-
tion Hypothesis C.2 holds throughout training and the conclusions of Theorem C.1 are true, provided
that all the conditions of these lemmas are met.

For easier reference, we collect the conditions of all above lemmas below:

y <1/Q2I), &, =1/3, 6,40=0r Aby,

23I+7c2 ” ”l 1 57 23I+4C2 ” ” 1
a -(1-y)I ally
& > Ep > 2 |la < d )
D (5 )1 amin* d-mI’ rR21 ” ”1 ’ 1 A221 Amin, di2-»r’

)
057 Qi o &
2 27 %min, INT T R
moy < —23’+7C(2,. ((6\,) eAN —dl—l/z) A o

(67)' 07

/\

52\’
1 £
&2 2= U-1) 921 R
231+7C2 pd A (6T ) A

231442 | gi+2yU-1) 12Cg'a71(17)’

2
i< 1 2 057 Amin, 6r,t

2
< , moy; < et
(231+4C2 24) q1+2yU-1) 1 231442 2(log d)?-2d!-1/2 24

_ 1
P Or.c i d 6’221 amin,  Ora| Or 1
z 1-1 2 2 21-2 y ’ 6T < s
(log d)]/)/ 4 (10g2 d) 1/2-yI 23I+4C0. “a”l 2 - 24 240
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2
or < > SRS ¢ > » €| 2 7 ,
240 6 8(log” d)!-! 48 231+6C2 | (log? d)2-2 d1+2v(I-1)
o1
, 10Oy i, O 1 d (! 402, ap. 8.\
6 231+6CZ. 8 lall,

mo; < — 5 — >

1 48 23”46%- (10g2 d)]—l dr-1/2 (logz d)ﬁ
In the following, for notational simplicity, we will use <, and 2 to hide constant that can only
depend on o . First, we consider the conditions on y, which are

d . (Sr_, ‘y(ll—w.
4

1
_ d ———
y < 37 an (10g2 d)l/y >

For concreteness, we will require v < 1/(41) and choose y such that

dr (5,,,)-1‘1
logzd_ 4 '

For such a y to exist, it suffices to have

d\/¢én (5r t)—,‘l d .
- > (ZL & —— 20,5
log? d 4 log®’ d r’t
First, for the conditions on the target accuracy &p, £g and error in time 67, we need
2
lall; 1 1 Drnin, Oc llall, 1
ED R o dmin. dl_1/4, d,_]/4 <o ER So (logzd)lfl’ amin*m So 6T So 6c/\6r /\(51.
Then, for &, we choose
2 2
6%‘5%,t ER éé,t A amin*dc 6%,[
(log? d)¥-2 d(log d)*I=D"

= _ 2 pI-1)
= d A A A
£%ofp d(logd)*I=D " amin,  d(logd)*d-1

The condition on mo7 is
2
Amin, 6r,t amin*dc 1

NERA (log d)21-2d1-172 A (log? d)/~1 d1-172

2 o ) Amin, OT
mo; So Amin, €D A I

5163, 5’8/(1‘%221), this is equivalent to

Since 0'12 = 20‘36
_8/(152 2
2 88/(10—21) . A Amin, OT A amin*ér,t A amin*éc 1
0y 3o —m Amin, €D dr-12 €R (log d)21*2d1*1/2 (10g2 d)lfl dl-1/2

Finally, the conditions on d are

1 2 -1
) 73 az. o /
% > 6;%, _ d > (amlm 6r,t) v min, € ,
log® d (log”= d)*U-1 llally

llally

which can be merged into

-4
d S _8 (amin* )_4 arznin*éc
(log2d)* ~7 " " \llall, ™ lall,
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D Online SGD Dynamics

Our goal in this section is to prove Theorem 2.1, which we restate below for convenience:

Theorem 2.1 (Main theorem for online SGD). Let C,C’ > 0 be large universal constants, depending

only on I and o, and set the initialization scale as oy = d=C. Let P, € [P], Gmin, = MiNpe(p,] Ap,
and 6y, be the target failure probability. Define A ~ ﬁp(m’m = 04(1). Assume the dimension d,

width m, learning rate n and target accuracies €p, eg = 04(1) satisfy

dz llallfA™®ayd . mz P, 1S amn llal?>m ' P simin(A%d ™! £7,),

m
6 -1 -1 j-I+1/4 -1/2 1/2
A’d™ 2 ep % |lally ay, d 4 p: £p° R ER R €D>

where <, % hide both constants and logarithmic factors. Then, with probability at least 1 — 6]*P, there

exists an ordering of the student neurons vy, . .., v, and a mapping n . [P.] — [P] of student
neurons to teacher neurons (see Equation (5)) such that, defining

~ 21— -1
Ty = (H(I = 1)051ap)1 0 {1 (0) " Vpe[P.], and Tou = (1+A/4) maxyerp,) Tp

we have:
(a) (Unused neurons). ||vi(1)||? < d=€ =: o-lzfor all k > P,.

(b) (Convergence). Vi’ﬂ(p)(t) > l-¢p, ||'vp(t)||2 =ax(pyrerforallp € [P], (IHA)T, <t < Tiax.
(c) (Sharp Transition). ﬁi’”(p)(t) <d V2 o, ()I* <ol forallp € [P.], t < (1= A)T,.

(d) (Loss Value). At time t, the population loss of the student network can be bounded by

1= > a1t = (1=A/T,} - 0(ep) < L) < 1= > a%  1{t > (1+A/4)T,} + O(ep).
PE[P:] PE[P.]

Similarly to the gradient flow setting, our proof will proceed by maintaining Induction Hypothesis
C.2 with high probability throughout training. We will additionally maintain the following induction

hypothesis on the growth of ||'u p||2.
Induction Hypothesis D.1. The neuron v, learns at time (1 + 0(1))7); that is

(a) ﬁi’”(p)(t) >1—-¢pforallre [(1 + %)TP,TmaX].

(b) |||vp||2 - a,,) <egforallt € [(1+4)Tp, Ty

To maintain these induction hypotheses, we rely on the following stochastic induction argument from
[RL24]. Suppose that the goal is to show a stochastic process X; stays close to its deterministic
counterpart x, with high probability. First, we assume X; ~ x; and use this induction hypothesis to
obtain estimations on the related quantities, such as the variance of the noises. Then, using these
estimations, we show that when X; is still close to x;, the probability that X; will drift away from
x; is small. This argument can be viewed as the stochastic counterpart of the continuity argument,
and can be made rigorous by considering the stopping time 7 that X; is no longer close to x; and
analyzing the stopped process (X;a¢);- One may refer to Section F.2 of [RL24] for more details on
this technique. Finally, we remark that this argument can be easily generalized to cases with multiple
induction hypotheses by considering the stopping time that any of them is violated.

D.1 Preliminaries

The following lemma decomposes the online SGD dynamics into the update on the radial component
|k (1)||* and the tangent component \7% p(t +1).

Lemma D.1. Fix k € [m], p € [P] and t > 0. Let 5p + € (0, 1) be target failure probability at this
- -1

step. Let C > 0 be a large universal constant. Suppose thatn < 2 (C [lall dlogQ/z(md/é]p))

and let Hy(t + 1) := @vkl — Vo, L denote the difference between the mini-batch gradient and the
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population at this step. Then, we have (denoting vy = v (t)):

00 P ) m
2 2 A2 =2i A2 2 /= = \2 2
o+ DIP = llogll® +4n| 363> apiy , = > 63 > llwil (@, 80 | okl
i=1 p=1 i=1 =1
=20 (vg, Hy) + &k r(1+1),

[ee]
) _ 2 2 ) —2i-2 ~2i
vk,p(t+1)—vk,p+277vk,p ZZlO’Zi apvi, Zaqvk’q
i=1 g=1

= 29kp Y 2i6%, Y odll? B 8 (1= 08B,
i=I L:l#k
((I - ox0])Hy. ep)

llvll

_277‘7k,p +§k,p(t+ 1),

where éx g(t + 1) and &, (¢ + 1) satisfy

- md _ 5 [ md
€k (t+1)] < Crd |lall} log® (E) locl, 1kp(+ D] < Cr (1v 52 ,d) llall} log? (E)

with probability at least 1 — 6p ¢.
Proof. Let k € [m] be fixed and ¢ > 0. We write
Vol = Vo L+ (mkz - VvkL) = Vo, £+ Hy,

where V denotes the mini-batch gradient. First, consider the dynamics of ||vy 112, By Lemma B.1, we
have that

vk (¢ + DIP = [Jor = 19, 1|
= Jlwgll? = 21 (vx, Vo L) = 27 (g, He) + 0% [V, 1|

0 P ) m
2 A2 =2i A2 2 /= =\2i 2
= lloklP> +4n| D63, > apiit, = > 63 > ol @, 8 |l
i=1 p=1 i=1 =1
N 2
=20 (v, Hie) + 02 ||V || -

By the tail bound in Lemma B.1, for any given direction u € S¢~!, with probability at least 1 — dp,

we have |<@vkl, u>‘ < Cllal logQ/z(m/dp) ||vg|l, for some universal constant C > 0. Take u to be
vy and ey, .. ., eq, and replace 6p with §p/(2d). Then, we obtain

[(vi, V)] < C llall; 10g22(md 58) Noil*, Vo] < C2d llall? 1og2 (md/6p) llwill?,

for some universal constant C > 0 with probability at least 1 — dp. Plugging in the bound for ||@,,kl||2
yields the desired update for ||vg (¢ + 1)]|%.

We next analyze the dynamics of ﬁi » where p € [P]. To this end, first we estimate 1/||vg (¢ + 1)]|%.
With probability 1 — 6p we have that,

2
lor(t + DI = l[vell® = 20¢w L vi) + 177 [V I
= el (1 20C llal 10g2/2(md/52) + C¥iP*d ||l 10g2 (md/65) )

- -1
Whenn <2 (C llall; dlogQ/z(md/ép)) , we have

NP

C’rd ||all{ log? (md/6w) < 21C ||all, log?" (md /5%) <
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Hence, we can use the identity

1
——=1-6+26% VI|§<1/2,
1+6 o] /
to obtain
- - 2

1 1 21 {(vi, Vo, 1 2|V, 1 d
2: . 1+ 77< k 2‘Uk>+n “ k2|| +8C2772||a||210g (m )
loe(z+ D" lokll [lokll l|lvell op

1 2n (v ,@v l 5
(1+ {6 Vuul) i2C2772d||a||%10gQ(’Z—d)).
P

= 2 2
llvkll loll

Therefore the update for vy , (¢t + 1) is

Vi,p —2vip <@vkl’ e,,) +17 <@’Ukl’ ep>2

)
ve (t+1)=
“r llvg (2 + D]
B _ <@ ,l,e > ~ (md
- (vi,p - vak,pﬁ + C2n2 ||a||%logQ (5—P)
20 (v, Vo, I 5 (md
X (1 + Mk—;) +2C*n%d ||a|)} log? (’Z—))
[loell P
(Volep) 21 (v Vo, l) ( 2 2 2 md
=72 —2ni, + v =0 |n (IV\") )||a|| lo ( ))
kp P ol lod? &P kp & \%
o _ I -5D])Vlep) 2 o (md
=V~ 2MVkp oc +0 (IVvkp )||a||110g Ik

Finally, write @vkl = VL + Hy, use our previous formula from Lemma B.1 for the tangent term of
V£, and we obtain

P

=2i-2 2i
vkp(t+ 1) = vkp +277vkp 2210'21 apvy —Zaqvkq
i=I g=1

=27k ) 2i6%; Y ol (@i 8> (I - 3B, ep)

i=1 L1k
= =T
= 2nVk,p (- vklr;ljffk’ep> +0 ( (1 Vi, ) lal?1og? (rg_g)) .
O
For notational convenience, we will define the quantity A := min(d., 6, d;).
D.2 Convergence Guarantees
In this subsection, we show under Induction Hypothesis C.2 that for all p € [P,], V> reaches 1

p.7(p)
in time (1 + o(1))T).

D.2.1 Tangent Dynamics

We begin by tracking the growth of the signal term 17?, 2(p)’ for p € [P.]. Our goal is to prove the
following lemma.

Lemma D.2 (Directional Convergence). Let p € [P.]. Inductively assume Induction Hypothesis
C.2, and that the conditions on Lemma C.3 hold. Let the target accuracy ep satisfy ep >

23l+73162
—2”{ 12, -ty 22 may \, laly ’} the dimension d satisfy

6’21 Aminy Aminy
27124 A4
4 opp gy #,
log d 0y
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the learning rate n satisfy
R -2
aﬂ(p)a'zzl llally~ op

< . min(d 'A%, 37 d ep, 3712
Clog(5121/A) log2 (%)

Jfor sufficiently large constant C. Then, with probability 1 — T,,4x0p,¢ — 0p - loglog d, we have

1 1-A/256
o S
Vd T 4I(I-1)62 nanw)"p n(p)(o)
1+A/8
(t) 51— - <t< Tm .
p n(p) 41(1 - 1)0' Inaﬂ(P)Vp n(p)(o) "
The proof of Lemma D.2 is split into stages based on the size of 17% x(p) Ve first consider the case

when \7; 2(p) is small. The update is given by the following:

Lemma D.3. Assume that Induction Hypothesis C.2 holds, and moreover that v v a(p) S < 0y for some

2
0y > 0. Let 67 > I‘(ir S Then, under the same conditions as Lemma C.3, we have
21

P T+ =7 n(p)(r) + 105N (p) Vo oy (D) + Z(1+1) + £ +1),

where B[Z(t + 1) | F7] < n? ||a|| and with probability 1 — 6p ¢.

p n(p)’

_ s [ md
e+ D) s (1 v vp ) llall? 1og? (6P f) +n57102,a,,(p)vp (p)

Proof. This follows directly from Lemma C.3 and Lemma D.1. m]

This motivates the following stochastic induction helper lemma, with proof deferred to Appendix D.5
Lemma D.4. Let (X;), satisfy
Xis1 = Xo + aX] + &+ Zit, Xo = x0, ®)
where (&;); is an adapted process and (Z;); is a martingale difference sequence. Define the processes
(> (x7)e by
X5 = (1 +a (xt)l l)xf, xg=(1+&)xo

il = (1+a/(xt)l l)xt_, xy = (1-é&)xo.

Suppose that when X; € [x; ,x7] we have |&,41| < X El + X, By + B3 with probability 1 — 6z ¢, and
E[Zt+1 | 7';] < Xto—%- Then, lf

X

2.2
= & _&Xo £X0 X5&°0p
= < T]AI oy < , z3S6—T, ando-%ﬁ%,
62,20 631 & 420
we have X; € [x7,x7] for allt < T, with probability 1 — Tép_ ¢ — Jp.
We can use this lemma to bound the time it takes for v v to reach some w(1/d) quantity.

n(p)
Lemma D.5 (Weak Recovery). Assume that the learnmg rate n satisfies

A2 g -2
a,,(ma'zzld 1||a||1 A25p

log(5121/A) log® ((spg)

Moreover, assume that the conditions of Lemma C.3 hold for 8, = d~'? 61 = Cf‘—;for sufficiently
large constant C, and also that

2,4 2 A4
d >22012A_ dzﬂ.

log d 6';1
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Define T* by
1 —AJ256

T* :=(1-A/256)T, =
41(1 - 1)6: Ina,r(,,)vp ﬂ(p)(O)

Then with probability 1 — T*6p ¢ — 6p,

1 7, =2
sup vp 2y < —= \/3 and (2/M)TT -V, o ,)(0) < vp’”(p)(TJr).

t<T+

Proof. We will apply Lemma D.4 to the process with X, = v 2(p )(t) a= 410'21na,r(p), &= 2561.
By Lemma D.23, the process (x}), satisfies

(1+ 8)\72 (0)
x;r < p.n(p)

1
-1
(1-410 = DEZmancy) (1+2)171720 2 (0) 1)

Therefore for
1-1I¢
T M= D)Egman vt (0

+

we have
at\ [ —
(I-Da (&)t =41 = D& na, (1 +&) 1722 1(0) - 1

Vp,x(p
<(+e)71(1-1e)
< exp(-¢)
<1-g/2.

Altogether, we can upper bound £} as

(1+¢&)v? (0) 1
¥ < P ﬂ(p) < 4e7 132 0) < —,
t (£/2) ~ p.n(p) vVd
d

as long as foe'd > 22912A2. As such, if X, < x; at time ¢, then the update in Lemma D.3 holds

for §, = 1/Vd. This update is indeed of the form (8); we must now verify that the conditions on
o-%, E1, Hy, B3 indeed hold. Recall that

1—(I-1 Al s g2 2
(I = Da (xp) 28/2= 5137

‘We therefore have that

-1 T x+

x / 0 —dt
0 I-1 -1

l—a(l—l)( ) z)

llog — mc+T) 1=2
1—(1-a(1—1)(x(+,)"1T+)’%%] I>2

»ﬂ

I
(==}

t

IA

(I-2)a ( +)1 I
alog(5121/A) =2
I-2)" af‘l()f’)2 I r>2°

and
T-1 T Ry
Z(xt)l 0 (XO) o %dt
=0 (1-a(1-1)(x3) r)



+ -1 1 _1

=X T

(1 —a(I-1) (xg)'_1 T) "

ngaf_](a/Z)_I*ll.

The condition on a'% is
2 &2
op 1
o2 < —  — o2 <xA I %pa | ———— V(-2
9z 4ZT AsT—1 _+ xt 9z S %o B log(5121/A) ( )

Since o-Z n 2 ||a||?, this is satisfied if we take

“ﬂ(p)a'zzld_l lall;? A%sp
~ log(5121/A)

Next, observe that 21 < 61 - nd x( p)Ia' We observe that

EXQ £ ﬁxoa/

T-1 _+1 ™~ +
62 X *o

a1 . _
> AT-T[7T-1 ~na,,(p)10'221 > Hy,

and thus the condition on Z; is satisfied since 7 = for a sufficiently large constant C. Next, we

CI2
see that 2, = n%d ||a||2 log?@ ( md ) and thus we require

g_xo AI_IX(I)_ICL'

g < —E s —0

6 Zt | R log(5121/A)

Ad_(l_l)’]aﬂ(p)a'zzl
log(5121/A)

~ d
= ntdal}1og? (| <
1 So.c
aﬂ(p)&zzld_l ”a”1_ZA

log(5121/A) logQ (%) ’

—n <<

which is indeed satisfied from our choice of 7. Finally, we see that 23 = > ||a||% logQ (ﬁ), and
thus we require )

£X0

md N
By s o =1 2 |la? 10g? (5_) S A = )03 max(p)xg
P&
an(py (I = 1)e2,d7 a7

log® (5Pf)

which is again satisfied by our choice of 7. Therefore the conditions of Lemma D.4 are satisfied, and
so with probability 1 — 7*6p s — 6p we have X; € [x;,x]] forallt < T*.

=n<

We conclude by lower bounding x; . By Lemma D.24,

0

(1 —a(l - 1)exp(—al) (xa)l_l t)

B X
X, 2

1
T-1

Plugging in @ = 416 nap x(p) < €, we see that

) oI
a(l - 1)exp(—al) (x(j)l "T* > exp(—al) (—O) > exp(—al)(1 —&)! > 1-2Is,
Xo
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and therefore

. > (1 —¢&)xo _— exp(—A/(1281))

> ™ > % = > (64/0) TTxy,
(21e)7T (A/128) 7T

as desired.
[m]

Next, we bound the time that \7?7 2(p) (1) grows to 1/3. We first introduce the following helper lemma,
with proof deferred to Appendix D.5.

Lemma D.6. Let (X;), satisfy
Xee1 2 X + X! + &1+ Ziwt,  Xo > Xo.

where (&;); is an adapted process and (Z;); is a martingale difference sequence. Define the process
X by

fre1 = (1+ "Dk, R0 =x0/2.

Suppose that when %, < X; < 6, we have |é;41| < E with probability 1 — 6p ¢ and E[Z;41 | ] < 0'%.
Then if
2
o
"< x_()’ M’
AT 16T
we with probability 1 — T6p, ¢ — Op either have X; > X; forallt < T, or sup, .r X; > 6.

2
and o5 <

The following lemma bounds the time it takes for v, z(p,) () to grow slightly.

Lemma D.7 (Intermediate growth). Let 6 > 1. Assume that for some Ts;q4, V
Assume that the learning rate n satisfies

iv,ﬂ(p)(T‘s/d) >6/d.

ax(pl(I - 1)o2,d 7" |all;? 5»
O (md
log ( 51{)
Moreover, assume that Induction Hypothesis C.2 and the same conditions as Lemma C.3 hold. Then,

dl—] . .
U152 nan ol T T such that

with probability 1 — T;0p ¢ — O p, there exists some t <

2 (st 1

vp,”(p)(T(;/d +1) > min 73
Proof. Define X; = 17; . (p)(T5/d + 1), so that Xy > 6/d =: xo. For notational convenience, let us
define § := min(6?/d, %) Let T be the last time at which £; < §. Fort < T, if X; < 6, then by
Lemma C.2 and Lemma D.1, we have

Ty D) 200 () + 2an () 165,75 () +ZE+ 1) +E@+ 1),

where E[Z(t + 1) | 7] < 612 [lal® and [(r + 1)] < 7°d5 |||l log2 ((;;—df) We would like to apply
Lemma D.6 with a = Zna,,(p)lé'zzl.

By Lemma D.24,

T %o
(52)(7‘2 ’

1
(1 —a(I-1) exp(—a'l))?(l)‘lT) ~

and thus
exp(al) < a1
T (I - DN T 21T - D)o nag et
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2
. o . s .
We next verify the conditions of the lemma. We first require 0'% < %, or equivalently

26]?

2
a
i llall}é < =%

= n?5 s d" "V a2 6p - I(T - )63 maxp)

=<6 ta T a2 65 - 11 - )62 max(p)
=0 S an(pl(I-1)53,d7"5 ||all;? 68

X0

We additionally require Z < 77. Plugging in &, x¢, 7, it suffices to take

- 5 md _ .
nzd ||a||% 610gQ (E) < 6'd II(I - 1)0'22,7761,,(,,)
arpyI(I - 1)0’21d 1 ||a||1
d
log? ((;’];f)

where we have used the fact that § < 67/d. Therefore by Lemma D.6, with high probability we

have X; > %, for all + < T. But this implies that we actually must have X; > & for some ¢ < T, as
desired. m]

=<

s

Putting everything together, we can now bound the total time it takes for \75J 2(p) (7) to reach 1/3.

Lemma D.8. Assume that the conditions of Lemma D.5 hold. Then, with high probability, there

exists somet < T = 1+4/16 such that v2 (1) = %
41(1—1)0‘217761,,(1,)\)17 R(P)(O) p.7(p)

Proof. On the event that Lemma D.5 holds, at time 7™, we have the bound
Vo, ,r(p)(T+) 2 (64/A)ﬁ Vo, n(p)(()) =: 6o/d,

for 6 := (64/A)1 ldv (p)(O) By Lemma D.7, with probability 1 —T36p, & — 55, 12 Ve ”(p)(t) Srows

1 dl 1
to a value of 6,)/d in tlme t < 2 =132 nancy o . Repeatedly applying this lemma for at most

loglog d iterations we get that v 2(p )(t) grows to be at least 1 3 in time

i a1 ~ a1 i 5’”")’k
0 21(1 - 1)0'21'7“7r(p)5(1_1)1k 201 = )3 max(p) £ ’
dI—l
<
I(I - 1) I?]aﬂ(p)(s
3 A/64
I(I-1)0 Ina,,(p)vp ﬂ(p)(O)
A/16
T 4I(I-1)0 Ina,,(p)vp ﬂ(p)(O)
with total failure probability at most 7'6p, & + dploglogd. O

Finally, we can lower bound the time it takes for \75J 2(p) 1O EIOW from % to 1 — ep. The proof of the
following is deferred to Appendix D.5.

Lemma D.9. Let (X;); > O satisfy
Xt £ (1 —a)X; + &1+ Zi1, Xo =X

where (&,); is an adapted process and (Z,); is a martingale difference sequence, and with probability
1 = 0p & we have |é141| < Eand E[Z;11 | F] < 0'% when X; < 1.5x¢. Then, if

2
ﬂ’ % < e“adp
4 16

[1]

<

we have with probability 1 — Top ¢ — Op.

X; < (1—a)'xg+¢&/2 < 1.5x
forallt <T.
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Lemma D.10 (Strong Recovery). Let us assume that Lemma D.8 holds, i.e for some time T3,
\7@ 2(p) (Th3) 2 % Let the target accuracy €p satisfy the same condition as in Lemma C.5. Choose
n so that

N2 ne 2
aﬂ(p)lo'zzl I”“”l op

log (ggdf)

Then with probability 1 — T6p ¢ — Op, we have

min(d‘lgp,e%)

n <

1

3
)21-ep, Y———1log(2/ep) <t <T.
1M (p)

=2
Ppo(p) (!
Proof. By Lemma D.1 and Lemma C.5, when ¥ v 2(p )(t) > 3 we have

VD) 2V () + 3-’102,;761,,(,,) (1 =57 oy (D) + €t + Zis

where
=~ md
€11 s 7 llallf dlog? (E) E[Z2, | ] < 7*lall}.

We would like to apply Lemma D.9, with @ = 3~ IIO'ZIna,r(p) and X; = 1— )(Tl/z +1),& =¢€p.
We first require Z < &%, which is satisfied by taking

5 ( md o
n* llall; dlog? (6_) < 37163 max e
P&
aﬂ(p)m'zzl 371d”! ”a”fz‘9
md
log (5rf)
2

Next, we require 0, < £%a6p/16, which is obtained by taking

=n<

2 Iy A2 - -2
772 “a“l S &’3 110-22]7]“”(17)6]? &=ns an(p)10-22[3 ! ”0'”1 826]?-

Altogether, with high probability,
_ 1
1- vi ﬂ(p)(T1/2+t) <(l-a)- 5 +ef2<¢

fort > a~!log(2/e) = log(2/¢). o

10' na()

Proof of Theorem D.2. This follows directly from combining Lemma D.5, Lemma D.8, and Lemma
D.10, and noting that

3! < A/16
162 SMax(py 4 -1)6, Ina,,(p)vp n(p)(O).

D.2.2 Radial Dynamics

In this subsection, we analyze the dynamics of Hv p“2’ when 17?7 2(p) (1) > 1 — &. In this regime, the
update on the norm is given by the following.
Lemma D.11. Assume that \7?) ”(p)(t) >1-&. Then

oo e+ DIP = o, OIF + 40 o, OIF (axio) = Nop ) + Zeor + £

where with probability 1 — 6p ¢
4
E[Z7, | 2] < llall} [op ()]
€l < (d lal}10g2 (nd 55, 2) + 1(Chan(p) + llall 228 + ma) ) o, (0]
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Proof. This follows directly from Lemma C.7 and Lemma D.1. O

We would like to prove that Inductive Hypothesis D.1(b) holds, assuming that D.1(a) holds. This is
given by the following result.

Lemma D.12. Assume that Inductive Hypothesis C.2 and Inductive Hypothesis D.I(a) hold. Let
~ 1+A/8
h-z < H(I=1) 63 nanp v 2 (0)
target accuracy €g satisfy
||(1,||1_ min amin*d_lgR
" log(2ax /o, )) log? (md/dp,¢) ’
Then, with probability 1 — Typqx0p, ¢ — Op,

be some time at which v v 2(p) 2 1 — &. Let the learning rate n and

8%(5]9 , ERZ log(Zak/O'g) (Cﬁ.aﬂ(p)é + |lall; 2216{) + mo'lz) ,

2 A/8
“’vp(t)|| - ak| <é&r, VYTi_z+ / <Ti-z+Tmax-
41(1 - 1)52 Ina,,(p)vp ”(p)(O)

To prove this lemma, we first lower bound the time it takes for ||'u p (t)|| to reach da . (p) for some
small quantity da,. We start by proving the following helper lemma, which resembles Lemma F.6
from [RL24] and whose proof is deferred to Appendix D.5.

Lemma D.13. Let (X;); satisfy

X1 =1+ )Xy + &1+ Zia, Xo=x0 >0,
where (&;); is an adapted process and (Z;); is a martingale difference sequence. Deﬁne x; = (1+a) xo.
Suppose that if X, = (1+£0.5)x;, then |&.41| < x,Z with probability 1 —p ¢ and]E[ | Fl < x%o-%.
Then, if

then we have with probability 1 — Tép ¢ — 0p that X; = (1 £0.5)x; forallt <T.

The following lemma then lower bounds the escape time.

]0g(26a,,(,,)/(r§) <

LemmaD.14. Let 6 = ————— for sufficiently large constant C. Define T = Tan o)
P

C log(2a,,(p>/o-2)
an(pyd”'lall;> 826
log€ (md/ &p,¢)

5-

—4C77 = Let the learning rate satisfy n <

. With probability 1 — 6p ¢ — Tdp, we

have sup, . ||v,, (T -5+ t)” > 0ax(p)-

Proof. When ||vp(t)||2 < dax(p), we can bound
lop ¢+ DIF = [op DI +4nanp) [lop O + Ziar + &,
where
g1l < noaxip) oo O BIZ2 | 7] < 0 lali o, 0
provided that
02 A, (Ud llall? 1og2 (md/ss, &) +Clanpé+llall, 2% el +ma-12)

Amin, d”™"'0 ||al|7
=g —” Iy , ot (Cza,, g+|all,2”¢ +mo-)<1
o (p) 1 0 1
log? (md/6p ¢)

Define the process X; = Hv,, (Th-s+ t)Hz, where xg = ||1;,,(T1_g)n2 and @ = 4na z(p). Assume that

sup, <7 X; < 0ar(p). We can thus apply Lemma D.13, since the conditions on o-%, E are indeed met:

2
0; < — 16T =1 < dg(p) ||a||1 opb
1
E<——1xC.
ar

But recall that for the process x; = (1 + @)’xo, for T = @~ ! log(26a z () /x0) we have x > 25 (p)
and thus X7 > day(p), a contradiction. Therefore there exists ¢ < T such that X; > dax(p), as
desired. O
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We next introduce the following helper lemma, with proof deferred to Appendix D.5.
Lemma D.15. Let (X;); satisfy
Xev1 = (1 = a(X) Xy + Erv1 + Zia1,

where (&;); is an adapted process and (Z;); is a martingale difference sequence, and with probability
1 — Op,¢ we have a(X;) € [a—,ay], |&41] < Eand E[th+1 | 7] < 0'% when X; € [—&/2,x0 + &/2].
Then, if for some € € (0, xp)
2a_op

16

ea_ )

< T, o7 <

we have with probability 1 — Top ¢ — 6p that
(lI-a)'x—-e/2<X; < (1—a)xy+e/2

[1]

forallt <T.
The following lemma bounds the time it takes for the norm to grow from da . (x) to approximately
ar(k), and furthermore establishes that it stays close to a x)

Lemma D.16. Inductively assume that Induction Hypothesis C.2 and Induction Hypothesis D.1(a)
are true. Pick 6 > 0, and let T* be some time at which ||vi(T*)||* € [Sax, ax/2). Let er > 0 be the
target accuracy. If

erd™" |lall* 6
10g2(md/6.¢)
then we have with probability 1 — T,,,,x0p ¢ — Op that

ns 8%3 ||a||1_2 Oopo A Rz 6! (C?Ta,r(p)é+ [lall 22156 +ma’2) ,

2log(ax(p)/er)

<t <T" +Thax.
Onaz(p)

”Up(f)’|2 € laxp) —€Rr.az(p)+er] VT +

Proof. Assume that the inductive hypothesis holds at time . By Lemma D.11, we have that
Jlop (¢ + DIF = oy DI + 4nllop OIF (@) = lop OIF) + Zess + £

4
forE[Z2, | 7] < P llall lo, 0" < 7 llal a2, and

€ < (17 llall} log@ (md/52.&) + n(Cran(pd + lall 221 el + mad)) anp.
Therefore
2 2 2
an(p) = op e+ D" = (1 =41 o, ]| ) (dn(m = [lop 0| ) +Zis1 + Erel
We thus would like to apply Lemma D.15 to the process X; = ax () — |[v, (t + T*)Hz, with & = gg.
We see that xg € [dx(p)/2, (1 = 6)ar(p)], so for X; € [-er/2, (1 —6/2)ax(p)] we can bound

20 < Yo 0 < 20

Therefore the conditions of Lemma D.15 are indeed satisfied. It thus suffices to take

_ ea_ 5 _
=< - = (nzd ||a||% logQ (md/6p,¢) + n(Cf,.aﬂ(p)s + llall; 2218(1) + mo-lz)) Azx(p) S N0Ax(p)ER

erd™'al|l7?6
< w, er 26! (Cf,.a,r(,,)é+ llall, 2218{)+m0'12) .
logQ(md/&p,_f)
as well as
2
EHa_Op
0y < e = llalf @}, < cknani) o0

2 -2
&5 |la opd
. z lally pS.

An(p)
Altogether, by Lemma D.15 with high probability we have

(1-a)'x—er/2< X < (1 —a_)'xo+er/2
Naively, we have the bound X; > —&g/2, which implies ||'up(t)||2 < agx(py + &r/2. Moreover, for
2log(ap/er)

>
r= Snax(p)

> a~!log(2xo/eRr), we have X, < eg. |
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Putting everything together, we can prove Lemma D.12.
Proof of Lemma D.12. We apply Lemma D.14 and Lemma D.16 with § = m. The

.. _ . . 2 .
conditions on 7, & are indeed satisfied, and moreover ||vp(t)H reaches the interval [ar(p) —
ER, Gz (p) + £R] within a time of

10g(25aﬂ(p)/ ) 210g(an(p)/<9R) log(an(p)/o'g) +2C10g(2a7r(p)/0'02) log(ax/er)
4770”(,,) 677a7r(p) naz(p)
A/8
<<
41(1 - 1)0, Ina,,(p)vp n(p) (0)

D.3 Maintaining the Induction Hypotheses

D.3.1 Upper Bounds on the Irrelevant Coordinates

We first track the growth of a failed coordinate vy (4 for (k,7(q)) € {(p,7m(p)}pe[p,]- The update
on Vi r(q) (1) is given by the following.

Lemma D.17. Assume that Induction Hypothesis C.2 holds at time t. Then
2 1) <2 4153 -1 L) |og||+ 2z +1 1
vk’n(q)(t+ ) < vk,n(q)(t) + A5V )| (q € [m],qelL) qu” +Z(+1)+&(+ 1),

where E[Z(t +1) | 7] < n* lall{ 9 (1), and

G+ DI < P+ 52, () llal1og2 (md /65.£) + Conan() 72 00 + 1Tk () (D)]Gerrors
where

o 13146 2 ~1/2 I-1 2 I
Serror := 12°71°C% (aﬂ(q)s / gy VmoyV ||a||180)

Proof. From the proof of Lemma C.10, we have that

d _,

A2 21 2 o1 -
71 ke (q) S UG ar(q) Vi, n(g) F 2Co0n(@) Vi ()80 + [V, 2(g)[Serrors

and so the desired result follows directly from combining the above with Lemma D.1. O

We will next require the following stochastic induction helper lemma, with proof deferred to Appendix
D.5.

Lemma D.18. Suppose that (X;), > 0 satisfies
Xeot < Xo +aX] + & +Zm, Xo < X0, )

where (&;); is an adapted process and (Z;); is a martingale difference sequence. Let X; be a solution
to the recurrence

Rep1 = R+ ak!, %o =(1+€)xo

Suppose that when X; < X;, we have |&.41| < th/zEl + X 5y + XtIE3 + B4 with probability 1 — 0p ¢
andB[Z(t+1) | ] < X,o-%. Then if

2 2
_ ey _ €Xp Op

—_— B ———, E3< as—,andUZSH)
TlAl/z T-1 4 gy -1l T-1

820 8 im0 &1 8 -0 & 8T 420 X

we have X, < X, for all t < T with probability 1 — Tép ¢ — 0p.

€EXQ €EX(

>[_I]
[1]
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We can now control the growth of ¥ (4) by applying Lemma D.18 with X, = vk n(q)(t). For
(k,n(q)) € {(p,m(p))}pe|p,), define the time T(x_r(4)) by

T, k<gq,kel[P]

Tknig) =Ty a<kqelP].

Tp* k, q > P*

By Assumption C.1(d), we have that
(1+A/4)d" !

41(I = )62 Namin,

Tik,n(q)) <

Lemma D.19 (Total growth of failed coordinates). Let (k,n(q)) € {(p,n(p))}pe[p,)- Assume that
the learning rate n satisfies

A — -2
. amin, 103,d7" |la||7* A%Sp

 Ilog(4/A) logQ(md/5p,§)

for some sufficiently large constant C. Furthermore, suppose that
Apmin. 6_221d—1+1/2A

123“66%-

51211 2 I
/80 vmoiVlall; gy <

Amin, d 1/ _1
> Y T-n
’ 1 Slara=0" 1062y g 27T

Then, with probability 1 — Tp 6p, ¢ — 20p, we have that v v 2(q) S €0 (and hence Induction Hypothesis
C.2(b) is true) for all t < Tp,.

Proof. First, we will show that ﬁi (@) (t) < &0/2 up to time T(x r(q)).- Next, we will show that
vi’ﬂ (g (1) does not grow too much more in the interval [T(x,x()), Tp.]-

Part 1 (1 < T (q))). Our goal will be to apply Lemma D.18 up to time T = T(x (q)), to the
process X; = vi n(q)(t), with @ = 416'221na,r(q), &= %, and xg = max(ﬁ, ﬁi’ﬂ(w).

We first aim to bound the quantity a(/ — l))?{)‘lT. We begin by considering the upper triangular
entries, i.e those where k < g and k € [P*], in which case T(x r(4)) = Tx. We have that

1+A/4

A1 = D)3 Max k) Ty 1) (0)

o ) ) 1 -1
a(l - l)x(l) "7 =41(1- l)azzlna,r(q) -(1+¢&)"" max (ﬁ,vi’n(q)) .

I-1
1 5212
dr(q) Max ((2d) ’vk,n(q))

aﬂ(k)‘ji{;(zk) (0)

< (1+&)"Y(1+A/4)

An(qg x
By the bound on the row gap in Assumption C.1(a), we have that ("_))2—,"2”(‘7()0) <1 A Moreover, by the
A (k) Vi, 7 (k)

definition of the greedy maximum selection process along with Assumption C.1(d), @ (x)V 22 (0) >

k,7t(k)
I-1
An(q) /@™ Lo< Altogether,

Y- I-1
Ar(q) MAXj>k Vj,n(q) (0) > a,r(q)/d , and thus a”(k)‘ji,n(k) 0 ST s 1+A

(1+&)1(1+A/4) - exp(A/Z)

-1 <
(=1 T+A = TT1+A

—A/4,

since € = % and A < 1/2.

Next, consider the lower triangular entries, with g < k, g € [P*]. We have that T (4)) = Ty, and
thus

-1
1 =2
max(ﬁ,vk ﬂ(q)(O))

5212
Vq, ﬂ(q)(o)

a(l-DET=1+e) " (1+A/4)
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721 2 (O)

By the bound on the column gap in Assumption C.1(b), we have % < 1= A Moreover, by
Assumption C.1(d), we have Ld()o) < é < 1+A Therefore a (I — 1))?(1) IT < w <

q,7(q)

1 —A/4 as well.
Finally, we consider the lower right block, with k, g > P, in which case T(, ,) = Tp,. We see that

1 =2
Ar(g) MaxX(55,V 0))
a(I-DE7'T = (1+e)(1+A/4) i 2d° "k,n(q)

aﬂ(P*)‘_)%:z (P,) (O)

—21 2 0

By the bound on the threshold gap in C.1(c), we have ‘72,“;(—‘”(()0) < ﬁ.
Py, t(Px)

definition of the greedy maximum selection process along with Assumption C.1(d), we have that

=2 —2 g1/ (2d)"! 1 1
aﬂ(p*)vp*’ﬂ(P*)(O) 2 Ap(q) MaXjsp, v n(q)(O) > ax(q)/d, and thus m <57 = T

Moreover, by the

Altogether, (1 — 1)£{~'T < M <1-A/4.
In all cases, we have a(I — 1))?(1) IT <1 - A/4. Thus by Lemma D.23, we can bound %7 by

A

X0

_1
(1-et- i)™

A

Xr <

< %0(A/4) T <d V)2 = g)2,

provided that —-— > 217 (4/A) 5T

Therefore by Lemma D.17, the update for v v (g )(t) is

ﬁi’ﬂ(q)(t +1) < vi’ﬂ(q)(t) +4Ia-2lnaﬂ(q)\7i{”(q) +Z(t+1)+E@+1),

which is indeed of the form (9) for o2 < 7n? lal? and E; < 7§leronZ2 <
n*d ||all} log? (md[de ¢),Es S C2nax(g)&0,Ea < 1* llall{ log? (md/dp ).
Next, we verify that the conditions on E, 0'%, in (10) hold. We first bound the quantity ZtT:_Ol X

"]

T X0

1—au—4>uw’1)#*

dt

X<
0

~
I
=}

-2

-1 —
{ log = axoT) I1=2
_ _ sl =174\ 7=
e [1 (1—a(l-D-THFE]| 152
a~'log(4/A) I1=2
- (1 ) le 83 1>27
Therefore
T-1
% <o '22 T min((1 - 2)7", log(4/A)) (11)
t=0
T-1 41/2,

Next, we can bound the quantity >}/ " £,
o172

T-1 T %
Yalts [ 0 d
=0 0

l—a(l-1) (%) "t SRy
( (I =1) (o) )

2)21/2 2173
B (1w ) )
a (21 -3)%!
<2A1/2
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Finally, we can bound the quantity "' 2/

/1—a<1 R

o 1 1

=X — -1
(1-a(l-DI-IT)™T
< xta”l(Af4)T
Let us consider the 0'% condition. Plugging in (11), it suffices to take
2 _ x(1)826]pa _ x(1)826]p . 41(3'22177a,r<q)
27 log(4/h) ~ log(4/A)

Plugging in o-Z n 2 ||lal?, and noting xo > this is satisfied if we take

2d’

amln*o—y d~'A? ”a”] Op

ns
Ilog(4/A)
Next, for the 2 constraint, we require
—_ EX0 EX0
i £ ————5 < Nlerror § — 15
T-1 A1/2 51/2
820 T%,

A —(I- 1/2
& Nberror S Amin, 0'2217761 ’ l)Ax()/

& Serror S Amin, 0'21d_1+1/2A
For =), plugging in (11) we require
6_1 sx(l) 162 21147 (q)
8log(4/A) 2log(4/A)
exy” 163 max(g)
2log(4/A)

—
Hy <

= n*d ||a|)? log@ (md /s ¢) <

Amin, 63,d7" |la]|

=n< -
log(4/A) logQ (md/dp,¢)

For =3, we require
SX()
8 ZT 1 AI

[x]

1
3 < — Cf,.na,r(q)so < (A/I) -1

2 A a0
& Conan(q)eo S ATTI TGy MA x(q)
= &9 5 C,2ATTH,

C . _ oL . . —_ .
which is indeed true since g9 < d 12 « C ‘TZA -1 0'221. Finally, for Z4, we require

— X0 - ~ —(I-
By < S—T — *|lal?10g2(md/sp.¢) < Ad™" - nagin, (I - 1)&2,d~ 0~
amin, (1 = 1)53,d 7" ||all
—n <<

10g2 (md/5p. ¢ )

Therefore the conditions of Lemma D.18 are satisfied, and so with probability 1 — T6p ¢ — 6p we
have X; < %; < gp/2forallt <T.

Part 2 (T(x r(q)) <t < Tp,) We now show that v 2(q) doesn’t increase too much in the time
interval [T(x,x(4))» Tp.]. The case where k, g > P, is tr1v1ally true.
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Consider the case when g < k,q € [P,], so that T = T,,. By Induction Hypothesis D.1(b), when
2 _
t > T,, we have that ||[vg (t)||” = ar(q) £ &r. When vi,”(q)(t) < &, we have that
T a@ U+ D) S V3 () + 405 mery )+ Z(E+1) + £+ 1),
where E[Z(t + 1) | 7] < n*llall}v2 Fx(q) (1), and

£+ DI < 77 llall} s0d log? (md/5.¢) + Conan(q)ef™ + 1y *Serror.
We would like to apply Lemma D.18 to the process X; = 2 i ”(q)(t +T,) up to time Tp+, with

a = 410' TMER, € = 0.5. We see that X < ﬂ = X, and so setting £y = 1.5x¢, we have that

dI—l

<Tp <
T2I( - 1) namm
and thus as long as eg < 815,““}%, we have
a(l-Def 't <215 el d  egay), =2 1.5\ d" " Vegal < 1/4 <1-(3/4)"!
N %0 _ 1.5x0 < 5y = 8

1 A
(1 —a(l - 1))2{)—%)”‘ (1 —a(I - Dl )’
We next verify that the conditions of Lemma D.18 hold . We first require
X0
T
o) I+1 1/2 (I-1)
— 77 ”a” 80d10g (md/5P f) + C oNarn(q)€y *NE, Serror S 1([ - l)o-zlnamm*d €0

-1
Ami I(I-1 a
—ns mlm ( ) ” ”l . 8(1) < [(I - 1)(A)221amin*d_(1_l)’
logQ(md/(S]p £)

52 2
o3 921%0

dl-1
Clearly the condition on 7 is satisfied. Next, plugging in g9 = d~'~7), we require

Amin, (

and  Oepror <

— 1
1-Iy

d> (1(1 - 1)&§,amim)
Finally, the condition on ¢ is indeed satisfied, since we already have

Serror S Amin, [(I = 1)G2,d 712N < apin, I(1 - 1)63,d e/

Additionally, since we can bound Z,T: 1 X+ < Teg, we require

%2
op ~
73 5 e =P llal} 5 s0del (1 = Doman,d™I7
&1 < amin,e0d" VI - 1)5, ||all;? 65,
which is again satisfied by our choice of 1. Altogether, we have X; < %, < gp forallt < Tp,.

Finally, consider the case when k < q, k € [P.], so that T Ty. By Induction Hypothesis D.1(a),
when # > Ty, we have that 7y ,,(k)(t) > 1 - &, and thus v v )(t) < & < g, as desired. O
D.3.2 Upper Bounds on the Norm Growth

We start with an upper bound on the norm of the unused neurons, i.e., vy with k > P..

Lemma D.20 (Bound on the unused neurons). Inductively assume that Induction Hypothesis C.2(b)
is true. Suppose that we choose

Amin, d~ II(I - 1)0_21 llall™ 25]1”
ns
logQ (Tmd/op)

Then, for any k € [m] with k > P, with probability at least 1 — &3 we have ||vi||> < 0(0’3) < 0'12
throughout training.
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Proof. By the proof of Lemma C.14 along with Lemma D.1, we have

okt + DIP < (1 +4nsf lal, ) loxll? = 27 g, Hie + D) + € r (e + 1)

1+A/4 dl-!

p - < - . Therefore
41(1-1) 0'221 17 Amin, v?f;fr(m) (0) 41(1-1) o'%,amin* n

The total running time of SGD is T =

1 -1 —(1—
el llall, d 40D |lq
el llall, - T 5 —20 _ lall,

T - 162 amin, 11— )52 amin,
L
since d 2 (%) " Thus (1+4ns] ||a||1)T < 1. In addition, by Lemma B.1, we have
57 Amins

Var (27 |lvell (B, Hie(1+ 1)) < 0* llallf lloll*
Hence, using the language of Lemma F.6 of [RL24], we have

o =0 (nelllall), o2 =0(Flal}of)

_ 5 (Tmd al-!
:=0(n2d||a||%logQ (5—) 0'3), T=0 = .
P 41(1 = 1)05,amin,

To satisfy the condition of that lemma, it suffices to choose

- -1
a'% < 06]1»0'8 = s SOI llal|™" dp
- A -2
e - amin, d”"1(I = 1)&3, llall

T <7 5
log* (Tmd/ép)

[1]

S

]

Then, we consider k = p < P,. Unlike those unused neurons, since v, will eventually converge
to € (p), its norm cannot stay small. Our strategy here will be coupling its norm growth with the
tangent movement. We will use the following extension to Lemma F.11 of [RL24]. The proof of this
lemma can be found in Section D.5.

Lemma D.21. Suppose that (X;), satisfies
Xen = Xe (X)) Xe + &1 + Zivt, Xo=x0 >0,

where a; : R — Ry is an F;-measurable non-decreasing function, (&,), is an adapted process, and
(Z:); is a martingale difference sequence. Let € > 0 be given and define the process

X =X + (X)), Xo=(1+8)xo.
FixT > 0, 6p € (0, 1). Suppose that there exists 2,0z > 0 and 6p ¢ € (0, 1) such that when X, < X,
we have |€;.1| < B with probability at least 1 — 6p ¢, and E[Z,,1 | F;] < 0'%. Then, if
2 < goxo/(2T) and 0'% < 82x(%6]p/(4T),
we have X, < X, forallt <T.

The following lemma verifies Induction Hypothesis C.2(a) for o = O (09&~€/?) for some constant C.

1
Lemma D.22 (Bound on ”v,,“z). Suppose that d > (w)l_” and n <

I(I_l)(}zzlamin*
amin, [(1-1)63,d""||a]l;*
log? (md/ 5¢.¢)
long as v> has not reached 1 — &.

p.7(p)

Then there exists a constant Cexp such that ||'vp||2 <0 (a'gé_CBXP) as

Proof. By the proof of Lemma C.15, when Induction Hypothesis C.2(b) holds we have

o+ D < [Jo||* + (an(p) 7 ) + llally £5) [ op|lF = Zp g (4 1) + &, (1 + 1),
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where, by Lemma B.1 and Lemma D.1, the conditional variance of Z, g is bounded by
0 (r]2 lla|? ||'up”4) and we have

5 (md
£,k (t +1)] < n*d [|a] log@ (’Z—) [v,|> with probability at least 1 — 5.
P

First, consider the situation where Vf) a(p) S 0.9. We prove by stochastic induction that Hv ,,H2 <
0(0'5). Under this induction hypothesis, using the language of Lemma D.21 with € = 0.5, we have

_ 5 (md dal-!

oz =0 lal}cf). E=0 (nzd lla]l3 1og? (—) crg) , T=0 _ .
2 1T = 1)5% dmin 1]

Hence, to meet the condition of Lemma D.21, it suffices to choose

4

o, 0p o R _
075 0 & nsamnd V0= 1) al 7 .
o2 min.d~ D I(1 = D&, a2
25 T & <

logQ~ ( 'g—g )
When these hold, then we have with probability at least 1 — O (dp) that ||vp (t)“2 = (1 +0.5)N?(¢) for
any t < T, where N? is defined via

— 2
N2(t+1) = N2(t) + 47 (a,,(p)vf,{”(p)(tn||a||1sg) N2(1),  N*(0) = 1.5 v, ()|

Now, we analyze the process N 2. First, note that

t—1
N0 < N2 O) | | (1 +4n (a,,<,,)v§,{,,(,,)(s) +llall, 8(’)))
s=0

13
< 1.50'3 exp (41]T llall, s(I)) exp (477:1”(,,) Z ﬁi{n(p)(s)) .
s=0

First, we see that
d"alyeg  a'all,

) = — < 1,
I(I = 1)65,amin,  1(I = 1)0%,amin,

ant llall; &) <

1
llell; )“’7

since d > (+
I(I_l)ozzlamin*

Next, By the proof of Lemma D.7, when \7?) 2(p) < 0.9, we have

2

= =2 A2 =21
Vp’ﬂ(p)(t +1) 2 Vp,,r(p)(t) + 2nan(p)1021vp,,,(p)(t) + Zis1 + 115

where with probability 1 — dp ¢ we have |§41] S n*d ||a||% logQ(md/ép,g), and the martingale term
Zy41 satisfies B[22, | 7] < n*|la||}. Therefore

t t t
52 52 A2 =21
vp,n(p)(t + 1) = vp,ﬂ(p)(o) + 277“”(1’)10-2[ Z vp,n(p) (S) + Zfsﬂ + Z Zs+l~
s=0 s=0

s=0
We first have
t
D &en| < Td|all} log? (md /55 ).
s=0
_ ) Cva2 -T2
Since 5T < O(L), we thus have |Z§=0 §~'S+1| < 1 whenever n < Aming (T =1) 67" llall

I(I-1) a'22,amin*
Next, by Doob’s submartingale inequality, we have

logQA(md/ép“g)

r

P lsup >

<
L

- 2
d'alli

<t lal> s —m8MM—
n llally <m 10 =152 amn

Zg| > 1
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amin, [(I-1) 62, ||lal > 6p

and thus if n g e we have that sup, , |Z§=1 Zs| < 1 with probability 1 — dp.
Altogether, on these events we have that

t

Nan(p) 163 D T2 () (9) < 1.5
s=0

As a result,

6
N%(1) < 1.50'3 exp (4)7T llall; e(l)) exp (A_z) = 0(0'3),
opy"

In other words, we have ||v, || = 0(02) when Py < 0.9.

Now, consider the situation where 72 € [0.9,1 — &]. By the proof of Lemma D.10, it takes at

p.7(p)
31 10g(2/ &) _ .
most —2=L2) jterations for 72 to grow from 0.9 to 1 — &. In this stage, we have
165 nar(p) p.r(p)

o (¢ + DI < [Jop|lF +4-10ax() [[op| = Zp.r (2 + 1) +&p r(2+1).

Let the corresponding deterministic process be M>(t + 1) = M?(t) +4. lna,,(p)Mz(t) with M%(Ty) =
O(O'g) where Ty is the time 17% 2(p) reaches 0.9. Using the language of Lemma F.6 of [RL24], we
have

— md
@ =4nanp). 03=00 lal}cd). == (2d||a||210g ( 6]?)%2).

Therefore, to meet the condition of Lemma F.6 of [RL24], it suffices to require

=< o, an(p 167, llall;?
T d3! logQ (’g—f) log(2/&)

2 2 -2
< (S]PQ’)CO &= ns a;‘r(p)6P ”a”]

Meanwhile, we have
M*(Th) < M*(To) exp (T = To) - 4.1nax(p)) < O ((’gé_cexp),

4.1.37

for Cex = > -
p 165,

D.4 Proof of Theorem 2.1

Proof. First, by Lemma B.2, with probability 1 — §p+/2, Assumption C.1 holds at initialization, with
A :=min(6y, 0, 6;) = O(—5—2—).

mP max(m,P)

Define Tinax = maxpe(p, | (1+A/HT), < L We will show that, with probability 1-6;/2,

I1(I- 1)0'2177dmm
that Induction Hypotheses C.2 and D.1 hold for all ¢ < Ti,ax With choice of parameters

We do so by union bounding over the consequence of the following lemmas:

¢ (Directional convergence) Lemma D.2 for all p € [P.], with ép = 16},*1(2%,63»’5 =

%. This implies the first half of part (b).

This

* (Convergence of norm) Lemma D.12 for all p € [P.], with ép = %, Op & = ﬁ

implies the second half of part (b).
» (Bound on the failed coordinates) Lemma D.19 for all (k,7(q)) ¢ {(p,7(p))}pe(pr.»

This verifies that Induction Hypothesis C.2(b) holds

St
with 6p = 175 P’(SPé: = 16Tmame

throughout training.

* (Bound on unused neurons) Lemma D.20 for all k € [m] \ [P.] with §p = %. This implies
part (a).

66



* (Upper bound on norm growth) Lemma D.22 for all p € [P.], with 6p = 5
part (c).

P This implies

Next, we verify that our choice of €g, &, 0y, 0] indeed satisfy the conditions of the lemmas. First,

Lemma D.2 requires the conditions on C.3 to hold Recall that we have chosen o7 = CA12 for

sufficiently large constant C, and we will select y < We thus require

<7
o152 472
ar g T gy Sel 4 g
C3 oy,A* logtd
242 .
mot < A Amin._
12231ng1—1/2
250
< A6, ' 1
~ 1223I+4C,27 dl+2yI-1)

2
. 6-22Iamin* AZ 1-2y1
P23ICE lall,

M

2.2 2(1-y)(I-1
34Tl 2 ) < (231+73IC2 ) d (=7 )
2 3 CO’ {51/2 I1-1 ma—l v ||a||18 } m 2 2]amm*FD

IA

1
€p 2 0_2 €0 v 0 234731 C2.
21 231+73IC2 ||f1||1d I(1-y)

0'2]amm*

Amin, Amin,

™
)
%

N 2
“ﬂ(p)o'zzl llally~ op

" Clog(5121/A)10g2 (md /6. ¢)

Next, Lemma D.12 requires
-2 -
”a”] . amin*d 18R 2
in ~ ER0p

~ 2 m 9
log(2ay /o) log? (md/dp,¢)

min(d 'A%, 371&2).

ER 2 log(Zak/O'O) (C azp)€ +llall 22180 + ma'lz)

Next, Lemma D.19 requires the conditions on Lemma C.9 and Lemma C.10 to hold, which are

9314731 2 J2031+4 2
ep > :Z C(J’ ||a||1 1 . er> 12”0;”1 221d_(1_7)1, A2 > c > C(T ”a”l 1 ,
52 dmin, d0T 52 dmin, 12T
)
m0-2 < O'zlamin* 1 A A2 8_R
L= 34702 bR epal-12) " 12
A2 2 24 2
s < Ty 2 20-na-1 . A 0'21 1 A ER
= 231+731C(2f D C1223’+4C(2, d1+2y-1) 12C(2,a,,(p)
and
2
~ 0'221 A 1 5 0—221 Amin, A
£ < ~ 5 mO'l < ) PYE)
23l+4c(ZT 24| 4l1+2y(I-1) 231+4CO_ 2(log d)21—2d1—1/2 24
o1
d (A ) - 7(11—1) d 6’221 Amin A Rt A2 A
— 2|+ , — > - — , — < —.
(log?a)tr — \4 (log? d) =1 \231*4C% llall, 22172 24 CI2 = 240
Moreover D.19 additionally requires
g < (amin*d-zzlA)z
~ \ 231+6C2 dl+2y(I-1)
1/2 1-1 2 ; min03d”HPA 2 amin, 037 d " 2A
&'%g, Vma’lv||a||]so<<W= mo; SW i
[on
) — 5=
Amin, 05 A 1-2Iy
d z ()
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Amin,

1.50d7I-1
> 21/7(4/A) 70D

ER S

log?” d

Finally, Lemma D.22 requires

1
T-Iy
a
d > —A! Iy
O'ZIamin*

_ amin 11 - 1&2,d! ||all}?
logQ~ (md/dp,¢)

0'12 > a'gé_C“P.

Assume that logff, -2 24 (4/A) 7. Then by choosing y to be the solution to 10; — =21/7(4/A) 7(’]*”,

we know that y < %. The constraints on d then become:

4 4
d2o A4 ViogtdA™2 v (||a||1A_2a_1 ) v log? =D (q) (||a||1A_1a_1 )

min, min,

4 ,-8 -4
Ro ”alllA amin*'

log¥’ d
The conditions on the target accuracies egr, £p become
lall, 1
Amin, d! -1/4

lall;
d1-1/4

€D Ro

ER R

Amin, Amin, A
Jra-1ny 7 10g2(1—1) d

ER So

Next, the constraints on & become (substituting d” = 2log® d(4/A) 7T):
A6 2 d?I-D er

A A A )
7 dlog*" Vg " log*V g log(1/a?)

€5
where we note we must also have £ > £p. We can therefore choose £ = gp, and observe that the

conditions become

N . lal,
dlog* T g ~7 P =T G 1A

amin*A 2 ||a||1
W 20 ER 2o €D log(l/cro) Vv m
The condition on mo becomes
2
2 Amin, A ER Amin, A
moy < A Amin, €D N A .
| ~o dl-12 min, €D log(l/crg) di-1/2 10g21—2d

.. . Cex . . _ —C’
We additionally require 0'3 <o 0'128 p |- Therefore it suffices to pick o = d €. o1 =d ¢, where
C > C’ > 0 are sufficiently large constants depending only on 7, o.

Next, we choose the learning rate . It suffices to set 1 as
-2 _ _
amin, llally*m~' P16y

o ~
log(5121/A) log? ((;"P—fi)

~

min(A%d~7, s%)).
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Finally, we prove part (d), and bound the population loss L at time ¢. Recall that L = ;. ; 6'22i£,~,

where
1 P m ) 1 m )
Li=glal? = 3 > ap ol o7, + 5 3 loelP ol (o, o).
p=1 k=1 k=1
Recall that L := {p € : “UP” > o}. By parts (b) and (c), we must have L = [k,] for some
integer k., and ¥ vp apy 21~ & for v, € L. We can decompose the loss as follows:
=3 ||a||2 DD aploelPwy 4 5 Z loel*
keL pe[P] keL
m
2 2, \2i 2 220 1 2 2, \2i
w0 P Lol @ m) = 30 3 ap el o, +5 5 ) ol o ¢, 9)
k,jeL,k#j k¢L pe[P] kgL j=1

The terms with k ¢ L are straightforward to bound, as

2 =20
> Z ap loxl* 5%, < mof llall,

k¢L pe[P
< 2
ZZZ”ka losIP @122 < 3mort > sl < mo lall,
kgL j=1 j=1

Next, for k # j € L, (f;k,i;j>2i < &, and thus
2 2o o \2 _ =i 2,2 2 =i
Do P ol @ 8)% < & D o) < 4llallf &
k,jeL,k#j ke[m]
Finally, we track the dominant loss term. We have

2 2 - 4
—||a|| - Z ap o> 77 vakn

keL pe[P keL

2 Z ) * 3 Z (“iuc) = llvell® Z apvy. p T ||Uk||4)
keL

peP

‘We can bound

2 =2i 2 =i =i 2
loell> > apii, <l ). apé’ <& vl llall; -

pznr(k) p#n(k)
Moreover, 1 — 77’ < 2i&. Altogether,
P
2
Li=3 Z ey + 35 Z (“’“k) - “”"”2) *0(®).
kel
and since }; 67, = 1, we have
L=3 Z P+ 3 O (an ~ loel?) £ 0(@)
keL

as well. Next, if t < (1 — A/4)T,, then p ¢ L, and thus

L> 22 2 -0@) 25> Z a2, - 1(t> (1= A/9T,) - 0(2).
k¢L
On the other hand, if r > (1 + A/4)T,, then p € L and |a,r(p) - ||1112,||| < &R, and thus
£<_—2 ZP (p) " 1(t> (1+A/HT,) + O(Pieg + &),
pe

where the desired claim follows by additionally choosing 8% < P lep. m}
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D.5 Deferred Proofs

Proof of Lemma D.4. Assume WLOG that the bounds on X, always hold. Inductively unroll the
recursion as

t t
Xi = XoPo + ) Poés + ) Py Z,

s=1 s=1

where P, := [T'Z}(1 + aX!~") > 1. As such,

t t
PyiX, = Xo+ Z Pylé + Z Py Z,.
s=1 s=1

The error term gets bounded as

t t T-1 T-1
-1 — I — —_
Z Py s < Z & < By Z (x7) + 2, Zx;r +TE;
s=1 s=1 t=0 t=0

with high probability for all 7. We can bound each term by xo&/6. The martingale term can be
controlled by Doob’s inequality,

t t T-1
P|sup| Y Pylz|> Ml <MY B[22 < M0} ) xf < 6k,
r<t |5 s=1 =0

when we take M = xpe/2. Altogether, we have that Py in > Xy — xpé&, and thus

t—1 t—1

X, > Pos(1—€)xp= 1_[(1 +0erI_1)x6 > l_l (l +a (xr_)l_l)xa =x;.

s=1 s=1

Similarly, we have Py 1X, > Xo + xp&, and thus
-1

X, < Pos(1+6€)xg = 1_[(1 +aX! " hHxl < (1 +a (x:')l_l)xar =x],

s=1 s

~
—_

]
—_

as desired. ]

Proof of Lemma D.6. Assume that the bounds on X; always hold. If sup,_, X > ¢ then we are done;
otherwise, unroll the recursion as

t t
Xp = XoPou+ ) PsiZs+ ) Pyiks,
s=1 s=1
where P, := [T/ (1 + @X!~") > 1. As such,

t t
Py X, = Xo + Z Polés + Z Pyl Z.
s=1 s=1

The error term is bounded as

t
—1 X0
2, Posés
s=1

t
< Y &I <ET <
s=1

for high probability for all # < T. Next, we bound the martingale term by Doob’s inequality:

t

> PAZ,

s=1
when we take M = xy/4. Altogether,

P |sup

r<t

t
> Ml <M ZE[ZSZ] < M720LT < 65,

s=1

X[ > P()JX()/Z > )2'[,

as desired. O

70



Proof of Lemma D.9. Expanding the recursion,

X, <(1-a)

We can bound the error term by

and by Doob’s inequality bound the
=1

a3
r<t 5=0

P (1-0)°Z_,

since we take M = g/4. Therefore
X < (1

t—1
Z(l - a’)xftfs
s=0

t—1 -1
Xo+ Y (1=a)y'é s+ ) (1-)'Zi .
s=0 s=0

t—1
< 52(1 —a) <Ba"' <
s=0

martingale by

t—1

> Ml <M Z(l —a) B E[ZL] < M?02a™! < 6,

s=0

—a)'Xo+e/2 < (1—a)xo+e/2.

Proof of Lemma D.13. Expanding the recursion,

=1 t—1
Xi=(1+a) Xo+ ) (1+0) ¢ s+ ) (1+0)Z
s=0 s=0

t

= (1+0) "X, =Xo+ ) (1+@) "6+ Y (1+ )7,

We can bound the error term by
t

D+a)E

s=1

s=1 s=1

t
- - - X0
< :Zl(l +a) - (1+a)’xg =ETxg < 1

By Doob’s inequality, we can bound the martingale term by

t—1

2(1 +a) S Z,

s=0

P |sup >M

t<T

-1
< M_za'% Z(l +a)7 .1 +a)2‘vx§ = M_ZO'%Tx(Z) < Jp,
s=0

since we chose M = xo/4. Altogether,
(1+a@)7'X, =x9 £0.5x0 = X; = (1 £0.5)x,,

as desired.

Proof of Lemma D.15. Define Py ;

= Hi;:,(l + a(X;)). Expanding the recursion,

-1 -1

X; =Py Xo + Z Pi_si&ros+ Z Pi s 1Zis.

We can bound the error term by

t—1
D P
s=0

s=0 s=0

< 52(1 —a ) <Ea’l <e/4.

By Doob’s inequality, we can bound the martingale term by

t-1

D PisiZiy

s=0

P [sup

t<T

since we chose M = &/4. Therefore

>M

=1
<M7o% Z(l —a)¥ < Moka- < 6,
s=0

X, <Py Xo+e/2< (1 —a)xo+e/2
X, > Po Xo—¢e/22 (1 —ay)'xg—¢/2,

as desired.
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Proof of Lemma D.18. Assume WLOG that the bounds on X; always hold. (X;), is stochastically
dominated by the process where X;41 = X; + a/X,I + &1 + Ziv1, S0 we can WLOG track this latter
process. Expanding out the recursion, we get that

t
X, = XoPos+ )| Poi(s + Zs),

s=1

where P ; = Hi;l(l +a/XrI‘1). Since X, > 0, Py_s > 1 and thus

t t
PoiX, = Xo+ Y Poiés+ Y PoZ,

s=1 s=1

The error term gets bounded as

t t T-1 T-1 T-1

-1 — ~1/2 0 = N — N4 —_
E Py &s| < E €] < By E X"+ 5 E X + B3 E X +TEy
s=1 s=1 t=0 =0 t=0

with high probability for all z. We can bound each term by xpe/8. The martingale term can be
controlled by Doob’s inequality:

t T T-1
P [sup ZPO‘éZS > M| < M‘zzE[Zf] <M7202 Y & < 6,
U s5=1 1=0
when we take M = xpe/2. Altogether, we get
X; < Po,,xo(l +€) = Py %o < %4,
as desired. m]

Proof of Lemma D.21. We may assume w.l.0.g. that the bounds on &; and the conditional variance of
Z;+1 always hold. Define

Hf«;i(l +ar (X)), t>s,
1, t=s.

PS,I(X) = {

Note that since @, > 0, we have P, ; > 1. Then, we can unroll the recurrence relationship as

X = XoPo(X) + ) Py y(X) (£5-1 + Zs1) -

s=1

Divide both sides with Py ;, and we obtain

t t
Poy(X)Xo = Xo+ ) PoL(X)é 1+ ) PoL(X)Zoy.
s=1 s=1

For the second term, we have

! t
D Pos(X0é-i| < D lé-il < TS,
s=1 s=1

for all + < T with probability at least 1 — T'p ¢. For the RHS to be bounded by £x¢/2, it suffices to
choose E < goxo/(2T). Meanwhile, by Doob’s submartingale inequality, for any M > 0, we have

t t 2
-1 2 2. o1
P sup § Py Zsa|2M| <M E E|Py2Z;_] < TR
=" ls=1 s=1

2
Choose M = &xp/2. Then, the RHS becomes 4;?;. For it to be bounded by dp, we need

02 < &%xj0p/(4T). The above two results imply that with the conditions on & and Z stated in the

lemma, we have, with probability at least 1 — 6p — T'0p, ¢, that
X, = Po(X)(1 £ &)x0 < Po (X)X < Pos(X)Xo < X,

where the second inequality comes from the monotonicity of x — a; (x). m}
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Lemma D.23. Let (x;); € [0, 1] follow the update
R =% +ak].

Then

A

X0

X; < -

(1 —a(l - 1);2{)-1;) .

Proof. Define the continuous time process x(¢) be the ODE x(t) = ax(¢)! with initial condition
X0 = x(0). We prove by induction that X; < x(¢). Observe that both processes are monotonically

increasing. Therefore

t+1
Rre1 = % +ak! <x(0) +ax () <x(1) + / ax(s)lds =x(t+1).
t

The desired result is obtained by solving the ODE for x(7) with initial condition x(0) = xo.

Lemma D.24. Let (x;); € [0, 1] follow the update
X4l = Xp + CV.X'II.

Then
X0

X > —.
(1 —a(l-1) exp(—oz[)x(’)‘]t) o

Proof. We have that

_ X = X1

- (xr-1)!

_ (xt)l X T X1
et ()2

1 Xt
< (xr) 1/ lldx
('xl—l) Xt—1 X

_ (xo)! 1 _ 1
=D D K

t-1

[0

=U-1"'1 +axt<il))1 (x_ -

_ 1 1
< (I-1)""exp(al) (ﬁ - 1_1) .
XX
Therefore
1 1

-1 = 7
X; X, -

T a(l - 1)exp(—al),
1
so summing and solving for x, yields

X0

(1 —a(l-1) exp(—al)x(l)_lt)

X 2

1
I-1
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E Scaling Law Derivations

We have shown that direction e,y will be learned at time (1 + 0(1))T,, where T), is defined by

-1
Ty i= (41U = D62 an(p) 17 () (0)

Suppose that the signal follows the power law a,, = pP/Z where B> 1/2and Z = 25:1 pP is the
normalizing constant. In Section 3.1, we informally derive the scaling law £(¢) oc r~(?#=D/B_1n this
section, we prove that this is true up to a multiplicative constant (cf. Corollary 2.2).

To this end, it suffices to (1) argue that teacher neurons p with large signal strength a, are likely to
lie in the set of learned neurons {7 (p) : p € [P.]}, and (2) bound the fluctuations of \72p 2(p) 0). A

lower bound on the fluctuations is given in Lemma B.2(d). The following lemma shows that neurons
with large signal strength do indeed get learned.

Lemma E.1. Assume that a,, « p~P for B > 1/2. Let 5p = 1/poly(m) be the target failure probability.
Then there exists a universal constant C so that, with probability 1 — 0p, all teacher neurons q
satisfying ag > Cap, lie in the set of learned neurons, i.e q € {n(p) : p € [P.]}.

Proof. Let zy,..., 2, be independent N (0, I;) variables. We remark that {¥; };c[] is equal in
distribution to {2;/||zl|}ie[m]. First, with probability 1 — 2m exp(-Cd), we have that lzilI> =
(1 £0.5)d for all i € [m]. Moreover, P(maxge[m],pe[P,] izk,pi >z) < 2mP.e~%/2, and therefore

maxge[m],pe[P,] Zi’P < 2log(2mP,/5p) with probability 1 — ép. Let us condition on these two
events.

Let y > 1 be some threshold. We begin by computing P(maxye[m], p>p, a,,Z,% p 2 ap,y). By
standard Gaussian tail bounds and a union bound, we have that
2
P(ke[f}?ﬁw Wp = AP 7) 2, zmeXp( )
Substituting a,, = p~#/Z for B > §, we get that
_ary) _ Y Ps) < [T exp (22 (2
2 exp( 2a,, ) =2 exp( 2(P*) ) = /P eXp( (%) )dp

p>P,
p>P.
4\/—

exp(—y/DVP, +

Therefore

P( max apZ,% > Clp*)/) < 24P.mexp(—y/2) < 6p
ke[m],p>P, P

for y = 2log(24mP../6p).

Next, we aim to upper bound the quantity a(p, )v The first case is when {n(p) : p €

P.,n(P.)"
[P.]} = [P.]. Since maXye[m], pe[p.] zk’p < 2log(2mP./dp), it is clear that a,,(p*)ﬁ%)*,ﬂ(&) <
4ap, log(ZmP*/ép)/d Otherwise, there exists some g € [P,] such that 7(q) > P.. We then have

that a,r(p*)v a(P) S a,r(q)v 2(q) S <2ap,y/d =4ap, log(24mP,/ép)/d.
Let e, be some teacher neuron Wthh was not selected by the greedy maximum selection process, i.e

q & {n(p) : p € [P«]}. Then we must have aq\'/f,,q < a,r(p*)ﬁ%) <(P.) for all p > P.. Therefore

P(q ¢ {n(p) : p € [PI}) < P (Upspagih g < anp)Th_nip,) )

6ap
<P (up>p*z§, 4 < 10g(24mP* /5@)
Lz _,-7/2 s 1,322
Fory > 1, one can bound P(Z; > y) > F l+Zze > T . Therefore
1 9a ap m—P,
Bla  1n(p): p < 1P1) = (1= S exp =222 log(am 60) |
V21 ag
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9ap, m/2

V2r
Yap
< exp|- m (24mP*) aq
B 22z \ o
If a, satisfies
9log(24mP. /6
a > an og(24mP. /6)

log(57&=) ~ loglog(P/67)’

then plugging in we obtain P(¢ ¢ {n(p) : p € [P.]}) < 6p/P. Finally, since P, < m, for

9log(24mP, /5 . .
n?g( mP./ ) < C for some universal constant C. Union
log(5.7=)~loglog(P/de)

bounding over all g yields the desired result. O

ép = 1/poly(m) we can upper bound

Now, we are ready to prove our main theorem on the scaling law.

Proof of Proposition 2.2. By Theorem 2.1, we know that with probability at least 1 — o(1), we have

1= > @, L(t=(1-A/4T,) - 0(ep) < L) < 1= > aZ, Lt = (1+A/4)T,) +0(ep).
PE[P.] PE[P]

It suffices to estimate the LHS and RHS. For the RHS, by Lemma E.1 we have that {¢g : a; > Cap,} C

{n(p) : p € [P.]}, and by Lemma B.2 we have mincp, 175) a(p) 2 (log P.)/d, and thus

1+o(1) Cd'!

2 2

a 1{r> > a 1{t> ——Mm—+——
Z n(p) ( 41(1 - 1)5'22,775171(17)‘721_2 (O)) Z n(p) ( Nar(p) 10g21—2 P,

pelP.] p.m(p) Pe[P]
p.c-lP ~
* Cdl-!
> Z a?,]l t > — 155 |-
ool na,log”~“ P,

Therefore, letting K = nZ~'C~! 10g21 ~2 P,, we have

Rus( < LoD S sy [0 47 ) 4o
() 7= ) p P11z g v p 2 PO+ Olen)

P
1+0(1 1/p
L L+o() Zp—wn{p > (Kt/d"') /\P*C_l/ﬂ}+0(sD)
p=1

272
-2 0
272 dl-1 * 272 J(kejai-1)"E p,c- 116
l+o()) |{ Kt \72 1+o0(1) 1 Kt \TZBVIE L
N I

When B > 1/2, we have 0 < 28 — 1 < 2. Hence, when ¢ > d'~!/K, P, > C'/P the first term can be
merged into the first term. Therefore,

RHS(1) < Cg v PPV 4 0(ep).

K1 \~(2B-DIB
(&)

We next consider the LHS. In Lemma E.1, we proved that a - (p,) \7%, 2Py S 4ap, log(24mP./6p)/d

with probability 1 — dp. Repeating the argument for all p € [P,] and union bounding, with probability
1 — 6p we have that a,r(p)ﬁi (p) < 4ap log(24mP?/65)/d for p € [P,]. We can therefore upper

bound the LHS as

1-0(1) ) ( cdl-! )
2 2
ALtz < a2 1|ty ———
(p) = ) =211 = (p) = 21-2
p;’*] mr ( A1 - 1)0_2177“”(17)"1,,,,(1,)(0) p;*] T naplog™ ~“m
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Letting k = nZ~'¢~log* =2 m, we can similarly write

P I-1
1 d
LHSt>—§ Bt < VpzP.p -0
()_222p=1p {_kp‘ﬁ Pz } (ep)

1

P
> Zp*mn {p > (kt/d"" ") AP} - O(sp)
p=1
1 P 2
> — “dg-0(e
272 [kr/d")'/ﬂAP* 1 1-0(ep)

-(28-1)/B
1 1 kt (28—
(( ) v P, _pl=B _ 0(ep).

> | ——
=27228-1 (\a1

When ¢ < 278/CB-1)pBa!=1/k the last term can be merged into the second last term. This gives the
lower bound

VP*—(Zﬁ—l)

-28-1)/p
kt
) - O(SD).

LHS(z) > cp [(g

Altogether, the desired claim in part (b) follows from choosing P, = O(=2-).

logm

Finally, we observe that Lemma E.1 implies that all directions e, with p < P.C -lB = @(&) are

learned, and Theorem 2.1 implies that this learning happens at time ®(pfd’~'5~"). The conclusion
in part (a) directly follows. O
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction are supported by our
main theorem, Theorem 2.1, and the application to scaling laws in Proposition 2.2.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss limitations in the “Limitations" section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

77



Justification: Assumptions for the theoretical setup are detailed in Section 2. The proof of
Theorem 2.1 is presented in Appendix D, and the proof of Proposition 2.2 is presented in
Appendix E.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Details to reproduce the simulations in Figure 2 are given in Section 2.4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

78



Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA] .
Justification: This is a theory paper; toy experiments are conducted on Gaussian data.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experimental details are provided in Section 2.4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Error bars are provided in Figure 2.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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« It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [NA] .

Justification: This is a theory paper; toy experiments are conducted on Gaussian data.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, this submission follows the NeurIPS Code of Ethics
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

e The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The goal of this paper is to advance the theoretical understanding of SGD
training of two-layer neural networks. There are no direct societal impacts of our work that
we feel must be specifically highlighted here.
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* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

81


paperswithcode.com/datasets

13.

14.

15.

16.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve human subjects.
Guidelines:
» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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