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Abstract

We study the complexity of online stochastic gradient descent (SGD) for learning
a two-layer neural network with 𝑃 neurons on isotropic Gaussian data: 𝑓∗ (x) =∑𝑃
𝑝=1 𝑎𝑝 ·𝜎(⟨x, v∗

𝑝⟩),x ∼ N(0, I𝑑), where the activation𝜎 is an even function with
information exponent 𝑘∗ > 2 (defined as the lowest degree in Hermite expansion),
{v∗
𝑝}𝑝∈[𝑃 ] ⊂ R𝑑 are orthonormal signal directions, and non-negative second-layer

coefficients satisfy
∑
𝑝 𝑎

2
𝑝 = 1. We focus on the challenging “extensive-width”

regime 𝑃 ≫ 1 and permit diverging condition number in the second-layer, covering
as a special case the power-law scaling 𝑎𝑝 ≍ 𝑝−𝛽 where 𝛽 ∈ R≥0. We provide a
precise analysis of SGD dynamics for the training of a student two-layer network to
minimize the mean squared error (MSE) objective, and identify sharp transition
times to recover each signal direction. In the power-law setting, we characterize
scaling law exponents for the MSE loss with respect to the number of training
samples and SGD steps, as well as the number of trainable parameters. Our
analysis entails that while the learning of individual teacher neurons exhibits
abrupt transitions, the juxtaposition of 𝑃 ≫ 1 emergent learning curves at different
timescales leads to a smooth scaling law in the cumulative objective.

1 Introduction

Recent works have studied the gradient-based training of shallow neural networks for learning
low-dimensional target functions (i.e., functions in R𝑑 that depend on 𝑃 ≪ 𝑑 directions), such as
single-index models [BAGJ21, BES+22, BBSS22, DNGL23, BMZ23, DPVLB24] and multi-index
models [DLS22, AAM22, BBPV23, CWPPS23, BAGP24, TDD+24], to illustrate the adaptivity (and
hence the improved statistical efficiency) of neural networks through feature learning. For such
target functions on unstructured (isotropic) input data, it is known that optimization may exhibit an
emergent risk curve: learning undergoes an extensive “search phase” during which the loss plateaus
(the length of which depends on properties of the nonlinearity), followed by a sharp “descent phase”
where strong recovery is achieved rapidly. For instance, when the target is a single-index model
𝑓∗ (x) = 𝜎(x · θ), θ ∈ R𝑑 , the initial search phase of online SGD scales as 𝑡 ≍ 𝑑Θ(𝑘∗ ) , where 𝑘∗ ∈ R+
is the information exponent of the link function 𝜎 (defined as the index of its first nonzero Hermite
coefficient [DH18, BAGJ21]), whereas the final descent phase occurs in 𝜂𝑡 = Θ̃(1) time.
The sharp phase transition observed in the gradient-based learning of low-dimensional target functions
may seem at odds with the phenomenon of neural scaling laws [HNA+17, KMH+20, HBM+22],
where increasing compute and data empirically leads to a predictable power-law decay in the loss. A
plausible explanation lies in considering an additive model, where the objective can be decomposed
into a large number of distinct “skills”, each of which occupies only a small fraction of the trainable
parameters [DDH+21, EHO+22, PSZA23]. While the acquisition of individual skills may exhibit
abrupt transitions – empirically observed in [WTB+22, GHL+22] – the juxtaposition of numerous
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emergent learning curves occurring at different timescales results in a smooth power-law rate for the
cumulative objective [MLGT24, NFLL24].
Motivated by the above, we consider an idealized setting where each learning task is represented by a
Gaussian single-index model, so the additive model reduces to a two-layer neural network

𝑓∗ (x) =
∑𝑃
𝑝=1 𝑎𝑝 𝜎(v∗

𝑝 · x), x ∼ N(0, I𝑑),

where {v∗
𝑝}𝑃𝑝=1 are orthonormal index features, 𝑎1 ≥ · · · ≥ 𝑎𝑃 ≥ 0 are second-layer weights ordered

in descending magnitude, and 𝜎 : R → R is an even activation function with information exponent
𝑘∗ > 2; this implies that (online) SGD learning of each task has an emergent learning curve with
poly(𝑑) initial plateau. This target function is a subclass of multi-index models (with ridge-separable
nonlinearity), for which the complexity of gradient-based optimization has been recently studied
[OSSW24, SBH24, RL24]. We highlight the following technical challenges to be addressed.
• Extensive width (𝑃 ≫ 1). Most existing results on SGD learning have focused on the “narrow-width”

regime such as 𝑃 = 1 for single-index models [BAGJ21, DNGL23, MHPG+22, DTA+24, LOSW24]
and 𝑃 = 𝑂𝑑 (1) for multi-index models [DLS22, BBPV23, DKL+23, BAGP24, ZG24]. However,
to obtain a smooth power-law scaling from a sum of “discrete” learning curves, the number of tasks
should be large; this motivates us to study the extensive-width regime where we allow 𝑃 → ∞ as
𝑑 → ∞, which yields an infinite-dimensional effective dynamics [BAGJ22].

• Large condition number ( 𝑎max
𝑎min

≫ 1). Existing works in the extensive-width regime usually
assumed identical second layer (𝑎1 = ... = 𝑎𝑃) [RL24, SBH24] or proved optimization complexity
that scales exponentially with the condition number 𝜅 = 𝑎max

𝑎min
[LMZ20, OSSW24] (to our knowledge

the only exceptions are [GRWZ21, BAGP24] which considered unnatural algorithmic modifications
such as Stiefel constraint or tensor deflation with re-initialization). Such exponential dependency
implies that in the poly-time learnable regime 𝜅 = 𝑂𝑑 (1), the signal strength for individual tasks
can only differ by constant, and consequently, there is insufficient timescale separation to produce a
power-law risk curve. We thus focus on the challenging large condition number regime 𝜅 ≫ 1.

• Single-phase training. Prior works on multi-index learning typically employed a layer-wise
training procedure, where correlation loss SGD is first applied to the first-layer parameters to
recover the index features, followed by convex optimization to solve for the optimal second layer
[DLS22, BES+22, AAM23, OSSW24]. Such stage-wise training creates complications in the
scaling law description due to the changing computational procedure. Hence we aim to characterize
a natural, single-phase algorithm where both layers are updated simultaneously.

1.1 Our Contributions

We study the learning of an additive model (1) with orthogonal first-layer weights and even activation
with information exponent 𝑘∗ > 2, using a student two-layer network with𝑚 neurons trained via online
SGD to minimize the mean squared error (MSE) loss. We consider the extensive-width regime 𝑃 ≫ 1,
and allow the scale of second-layer parameters of the target (teacher model) to depend polynomially
on the width 𝑃. We establish polynomial runtime and sample complexity for single-phase SGD
training and provide a sharp characterization of the recovery time for each teacher neuron.
Theorem ((Informal) sample complexity). Assume the teacher model has 𝑃 ≲ 𝑑𝑐 orthogonal neurons
for some small but fixed 𝑐 > 0, and the activation 𝜎 is an even function with information exponent
𝑘∗ > 2. To recover the top 𝑃∗ ≤ 𝑃 teacher directions, we can train a student network (2) with
𝑚 = Θ̃(𝑃∗) neurons via online SGD with sample and runtime complexity 𝑛 ≍ 𝑇 ≍ 𝑎−2

𝑃∗
· 𝑑𝑘∗−1poly(𝑃).

As a corollary, we know that a student width 𝑚 = Θ̃(𝑃) and sample size 𝑛 = Θ̃(𝑎−2
min𝑑

𝑘∗−1poly(𝑃))
are sufficient to learn all teacher neurons, where 𝑎min := min𝑝∈[𝑃 ] 𝑎𝑝 . Prior to our work, [OSSW24]
studied the learning of the same target function class using a layer-wise training procedure that
deviates from common practice. Their analysis requires 𝑚 ≳ 𝑃Ω(1/𝑎min ) student neurons, which is
computationally prohibitive since 𝑃, 𝑎−1

min can both scale with the dimensionality 𝑑. Interestingly,
we show that this limitation can be overcome by considering an arguably more natural single-phase
training algorithm. At a technical level, our analysis leverages the following key ingredients.
• Single-stage training. We consider a 2-homogeneous student model and simultaneously train

both layers via online SGD under the MSE loss; this differs from prior layer-wise analyses
where the first-layer weights are optimized under correlation loss. In our large condition number
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setting, the correlation loss analysis yields super-polynomial complexity to compensate for the
signal discrepancy across different tasks [OSSW24]; in contrast, our single-phase MSE dynamics
circumvents this issue by automatically deflating the learned tasks from the loss.

• Decoupled dynamics. When 𝑃 ≫ 1, the effective dynamics of SGD cannot be captured by a finite
set of summary statistics. To understand the convergence of this high-dimensional system, we show
that the evolution of different signal directions can be approximately decoupled via an “automatic”
deflation mechanism and carefully controlling the influence of the irrelevant coordinates.

Applying our general learnability result, we precisely characterize the scaling of the population loss
along the online SGD trajectory in the following power-law setting.
Proposition ((Informal) scaling law). Under the same conditions and hyperparameters as the previous
theorem, and assuming 𝑎𝑝 ≍ 𝑝−𝛽 for 𝛽 > 1/2, then (ignoring logarithmic factors) we have

(a) Emergence. The 𝑝-th teacher neuron (where 𝑝 ≲ 𝑚) is recovered at time 𝜂𝑡 ∼ 𝑝𝛽𝑑𝑘∗/2−1.
(b) Scaling law. The population squared error follows a power-law decay up to approximation

barrier L(𝑡) ∼
(
𝑡𝜂𝑑1−𝑘∗/2) 1−2𝛽

𝛽 ∨ 𝑚1−2𝛽 .

Optimization time 𝑡

Cumulative loss
𝐿 (𝑡) ∼ (𝑡𝜂𝑑1−𝑘∗/2)

1−2𝛽
𝛽

Loss at 𝑝-th task
(emergence at 𝑡 ∼ 𝑝𝛽𝑑𝑘∗/2−1)

.

.

.

Figure 1: Power-law scaling of MSE loss as a
result of superposition of emergent risk curves.

This proposition confirms the additive model intuition
from [MLGT24, NFLL24] in a high-dimensional feature
learning setting, where the length of the “search phase”
(plateau) for each feature direction v∗

𝑝 is modulated
by the magnitude of the second-layer coefficient 𝑎𝑝,
and the simultaneous learning of all directions yields a
power-law decay in the cumulative loss (see Figure 1).
However, unlike these prior works, our problem setting
does not imply that the learning of different tasks can be
decoupled a priori, as student neurons may be attracted
to multiple teacher directions and also interact with each
other through the squared loss.

2 Problem Setting and Main Results

In this section, we present our main results on SGD learning and scaling laws.

2.1 Setting and Algorithm

Architecture: two-layer neural network. Let 𝜎 : R → R denote the nonlinear link function. We
assume the target function is given by the following additive model

𝑓∗ (x) =
∑𝑃
𝑝=1 𝑎𝑝𝜎(v∗

𝑝 · x), ∀x ∈ R𝑑 , (1)

where x ∼ 𝛾 := N (0, I𝑑) is the input, {v∗
𝑝}𝑝∈[𝑃 ] ⊂ R𝑑 are orthonormal with 𝑃 ≫ 1, 𝜎 ∈ 𝐿2 (𝛾)

satisfies Assumption 2.1, and 𝑎1 ≥ · · · ≥ 𝑎𝑃 ≥ 0 are normalized so that
∑
𝑝 𝑎

2
𝑝 = 1. Since the

input distribution and our learning algorithm are rotationally invariant, we may assume w.l.o.g. that
v∗
𝑝 = e𝑝 , where e𝑝 ∈ R𝑑 is the 𝑝-th standard basis vector. While our scaling results will assume 𝑎𝑝

follows a power law decay, no such assumptions are required for our optimization results.
Assumption 2.1 (Link function). Let {ℎ𝑘}𝑘∈N≥0 denote the normalized Hermite polynomials.

(a) 𝜎 is even and has information exponent IE(𝜎) = 2𝐼 for 𝐼 > 1, that is, the Hermite expansion of
𝜎 is given as 𝜎 =

∑∞
𝑖=𝐼 𝜎̂2𝑖ℎ2𝑖 , and we require 𝜎̂2𝐼 ≥ 𝑐𝜎; we also assume ∥𝜎∥𝐿2 (𝛾) = 1, and

∥𝜎′∥𝐿2 (𝛾) , ∥𝜎′′∥𝐿2 (𝛾) ≤ 𝐶𝜎 , where constants 𝑐𝜎 , 𝐶𝜎 > 0.

(b) 𝜎 and 𝜎′ have polynomial growth. That is, there exist universal constants 𝐶,𝑄 > 0 such that
|𝜎(𝑥) | ∨ |𝜎′ (𝑥) | ≤ 𝐶 (1 + 𝑥2)𝑄/2 for all 𝑥 ∈ R.

Remark. We focus on high information exponent IE(𝜎) > 2 link functions as in [OSSW24, SBH24,
GWB25]. This setting entails that the learning of each single-index task is “hard" in the sense that
online SGD exhibits a long loss plateau, and we utilize this assumption to prove (approximate)
decoupling of individual tasks. The condition on even 𝜎 simplifies the analysis by removing the 1/2
probability of neurons initialized in the wrong hemisphere (see e.g., [BAGJ21]).
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Our learner network (student model) is a width-𝑚 two-layer neural network:

𝑓 (x) := 𝑓
(
x; {v𝑘}𝑚𝑘=1

)
=

∑𝑚
𝑘=1 ∥v𝑘 ∥

2 𝜎(v̄𝑘 · x), (2)

where {v𝑘}𝑚𝑘=1 ⊂ R𝑑 are trainable parameters and v̄𝑘 := v𝑘/∥v𝑘 ∥. Note that this student network is
parameterized to be 2-homogeneous in each v𝑘 , i.e., the second-layer coefficients are coupled with the
norm of the first-layer weights. Such 2-homogeneous parameterization has been used in many prior
works [LMZ20, WWL+20, GRWZ21]; this setting originated from the analysis of training both layers
of ReLU networks under balanced initialization (see e.g., [CB20]), and allows us to couple the growth
of the second layer norm ∥v𝑘 ∥2 with the direction convergence of v̄𝑘 . We believe that a similar proof
strategy can be applied to simultaneous training of networks with decoupled second-layer weights.

Algorithm: online SGD. The performance of the learner is measured using the mean squared error
(MSE) loss. For each x ∈ R𝑑 , the per-sample MSE loss is defined as

𝑙 (x) = 𝑙
(
x; {v𝑘}𝑚𝑘=1

)
=

1
2

(
𝑓∗ (x) − 𝑓

(
x; {v𝑘}𝑚𝑘=1

) )2
. (3)

Using a Hermite expansion calculation ([GLM18]), one can show that the population MSE loss can
be expressed as a tensor decomposition loss as follows:

L := E
N(0,I𝑑 )

[𝑙 (x)] =
∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

( ∥a∥2

2
−

𝑃∑︁
𝑝=1

𝑚∑︁
𝑘=1

𝑎𝑝 ∥v𝑘 ∥2 〈
v̄𝑘 , v

∗
𝑝

〉2𝑖 + 1
2

𝑚∑︁
𝑘,𝑙=1

∥v𝑘 ∥2 ∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩2𝑖
)
. (4)

We use online stochastic gradient descent (SGD) to train the learner model. Let {(x𝑡 , 𝑓∗ (x𝑡 ))}𝑡∈N
be our dataset with x𝑡

i.i.d.∼ N (0, I𝑑) being the fresh sample at step 𝑡. We initialize the student
neurons v𝑘 ∼ Unif (S𝑑−1 (𝜎0)), where 𝜎0 = 1/poly(𝑑) is a parameter we specify in the sequel.
Let 𝜂 > 0 be the step size. At each step, we update the neurons using vanilla gradient descent:
v𝑘 (𝑡 + 1) = v𝑘 (𝑡) − 𝜂∇v𝑘

𝑙 (x𝑡 ), for all 𝑘 ∈ [𝑚], where 𝑙 is the per-sample loss defined in (3).

2.2 Complexity of SGD Learning

Our main theorem provides a sharp characterization of the sample complexity of online SGD and the
recovery time of individual single-index tasks. To characterize the learning order of the first 𝑃∗ ≤ 𝑃
tasks, we introduce an ordering of student neurons v1, . . . , v𝑚 and a mapping 𝜋 : [𝑃∗] → [𝑃] that
specifies which student neurons converge to a particular task (teacher neuron). This mapping function
is explicitly defined via the greedy maximum selection procedure (5) which we explain in Section 3.1
— intuitively speaking, after the reordering, for 𝑝 ∈ [𝑃∗], v𝑝 is the neuron that eventually converges
to direction v∗

𝜋 (𝑝) , and the directions are learned sequentially based on the signal strength {𝑎𝑝}𝑃𝑝=1.

Let 𝑣̄𝑝,𝑞 (𝑡) := ⟨v̄𝑝 , v∗
𝑞⟩ denote the overlap between the 𝑝-th student neuron (ordered) and the 𝑞-th

teacher neuron at time 𝑡. The following theorem describes the convergence of student neuron v𝑝 to the
corresponding teacher v∗

𝜋 (𝑝) in terms of direction: 𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) → 1, and norm: ∥v𝑝 (𝑡)∥2 → 𝑎𝜋 (𝑝) .

Theorem 2.1 (Main theorem for online SGD). Let 𝐶,𝐶′ > 0 be large universal constants, depending
only on 𝐼 and 𝜎, and set the initialization scale as 𝜎0 = 𝑑−𝐶 . Let 𝑃∗ ∈ [𝑃], 𝑎min∗ = min𝑝∈[𝑃∗ ] 𝑎𝑝,
and 𝛿∗P be the target failure probability. Define Δ ≃ 𝛿∗P

𝑚𝑃max(𝑚,𝑃) = 𝑜𝑑 (1). Assume the dimension 𝑑,
width 𝑚, learning rate 𝜂 and target accuracies 𝜀𝐷 , 𝜀𝑅 = 𝑜𝑑 (1) satisfy

𝑑 ⪆ ∥a∥4
1 Δ

−8𝑎−4
min∗ , 𝑚 ⪆ 𝑃∗, 𝜂 ⪅ 𝑎min∗ ∥a∥−2

1 𝑚−1𝑃−1𝛿∗P min(Δ2𝑑−𝐼 , 𝜀2
𝐷),

Δ6𝑑−1 ⪆ 𝜀𝐷 ⪆ ∥a∥1 𝑎
−1
min∗𝑑

−𝐼+1/4, 𝑃
−1/2
∗ 𝜀

1/2
𝐷

⪆ 𝜀𝑅 ⪆ 𝜀𝐷 ,

where ⪅,⪆ hide both constants and logarithmic factors. Then, with probability at least 1 − 𝛿∗P, there
exists an ordering of the student neurons v1, . . . , v𝑚 and a mapping 𝜋 : [𝑃∗] → [𝑃] of student
neurons to teacher neurons (see Equation (5)) such that, defining

𝑇𝑝 :=
(
4𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝑎𝜋 (𝑝)𝜂𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

)−1 ∀𝑝 ∈ [𝑃∗], and 𝑇max := (1 + Δ/4) max𝑝∈[𝑃∗ ] 𝑇𝑝

we have:
(a) (Unused neurons). ∥v𝑘 (𝑡)∥2 ≤ 𝑑−𝐶

′
=: 𝜎2

1 for all 𝑘 > 𝑃∗.
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(b) (Convergence). 𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) ≥ 1−𝜀𝐷 , ∥v𝑝 (𝑡)∥2 = 𝑎𝜋 (𝑝)±𝜀𝑅 for all 𝑝 ∈ [𝑃∗], (1+Δ)𝑇𝑝 ≤ 𝑡 ≤ 𝑇max.

(c) (Sharp Transition). 𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) ≤ 𝑑−1/2, ∥v𝑝 (𝑡)∥2 ≤ 𝜎2

1 for all 𝑝 ∈ [𝑃∗], 𝑡 ≤ (1 − Δ)𝑇𝑝 .

(d) (Loss Value). At time 𝑡, the population loss of the student network can be bounded by

1 −
∑︁
𝑝∈[𝑃∗ ]

𝑎2
𝜋 (𝑝)1

{
𝑡 ≥ (1−Δ/4)𝑇𝑝

}
−𝑂 (𝜀𝐷) ≤ L(𝑡) ≤ 1 −

∑︁
𝑝∈[𝑃∗ ]

𝑎2
𝜋 (𝑝)1

{
𝑡 ≥ (1+Δ/4)𝑇𝑝

}
+𝑂 (𝜀𝐷).

We observe the following conclusions about Theorem 2.1.
• Points (b) and (c) suggest a sharp transition in the learning of the teacher neuron v∗

𝜋 (𝑝) around time
𝑇𝑝 ≃ (𝜂𝑎𝜋 (𝑝) ⟨v̄𝑝 (0), v∗

𝜋 (𝑝)⟩
2(𝐼−1) )−1. In particular, for time 𝑡 ≤ (1 − 𝑜(1))𝑇𝑝 , minimal progress

is made on the learning of v∗
𝜋 (𝑝) , as ⟨v̄𝑝 , v∗

𝜋 (𝑝)⟩
2, ∥v𝑝 ∥2/𝑎𝜋 (𝑝) ≪ 1. Then, at some point during

the short time interval (1 ± 𝑜(1))𝑇𝑝, both directional and norm convergence occur rapidly as the
quantities ⟨v̄𝑝 , v∗

𝜋 (𝑝)⟩
2 and ∥v𝑝 ∥2 approach 1 and 𝑎𝜋 (𝑝) respectively.

• The theorem implies that a student width of 𝑚 ≳ 𝑃∗ log(𝑃∗) is sufficient to recover 𝑃∗ teacher
neurons; this minimal (logarithmic) overparameterization allows us to establish near-optimal width
dependence for the scaling laws in the ensuing section.

• Selecting 𝜂 = Θ̃(𝑎min𝑑
−𝐼 poly(𝑚, 𝑃)), the runtime required to recover all directions {v∗

𝑘
}𝑘∈[𝑃 ] up to

1/𝑑 error, and thus obtain an MSE loss of 𝑂 (1/𝑑), is 𝑇 = Θ̃(𝑑2𝐼−1 poly(𝑃)𝑎−2
min) = 𝑑

IE(𝜎)−1𝑃Θ(1) ,
which is polynomial in all problem parameters — this contrasts with the exponential dependence on
the condition number in [LMZ20, OSSW24]. Moreover, our Assumption 2.1 permits high-degree
link functions; hence when deg(𝜎) ≫ IE(𝜎), the sample complexity in Theorem 2.1 is far superior
to the 𝑛 ≳ 𝑑deg(𝜎) rate for neural networks in the kernel/lazy regime [JGH18, COB19, GMMM21].

2.3 Neural Scaling Laws

Now we apply Theorem 2.1 to the setting where the second-layer 𝑎𝑝 follows a power-law decay.
Proposition 2.2 (Scaling laws). Consider the same setting as in Theorem 2.1, and suppose 𝑎𝑝 = 𝑝−𝛽/𝑍
where 𝛽 > 1/2 and 𝑍 =

∑𝑃
𝑝=1 𝑝

−2𝛽 is the normalizing constant. Then, with high probability,

(a) For 𝑝 ≤ 𝑃∗ = Θ̃(𝑚), the 𝑝-th teacher neuron v∗
𝑝 is learned at time 𝑡 = Θ̃(𝑝𝛽𝑑𝐼−1𝜂−1).

(b) There exist constants 0 < 𝑐𝛽 < 𝐶𝛽 and 0 < 𝑐′
𝛽
< 𝐶′

𝛽
that can depend only on 𝛽 such that

𝑐𝛽

[ (
𝑚

log𝑚

)1−2𝛽
+

(
𝐾0𝜂𝑡
𝑑𝐼−1

) 1−2𝛽
𝛽

]
−𝑂 (𝜀𝐷) ≤ L(𝑡) ≤ 𝐶𝛽

[ (
𝑚

log𝑚

)1−2𝛽
+

(
𝐾0𝜂𝑡
𝑑𝐼−1

) 1−2𝛽
𝛽

]
+𝑂 (𝜀𝐷),

∀𝑡 ∈ [𝑇min, 𝑇max], where 𝐾0 := log2𝐼−2 𝑚/𝑍 , 𝑇min = 𝐶′
𝛽
𝑑𝐼−1/(𝐾0𝜂), 𝑇max = 𝑐′

𝛽
𝑃𝛽𝑑𝐼−1/(𝐾0𝜂).

Remark. We make the following remarks.
• As in the literature on neural scaling laws [KMH+20, HBM+22, PPXP24], our scaling law in

Proposition 2.2 consists of the approximation bottleneck Θ̃(𝑚1−2𝛽), governed by the width of the
student network, and the optimization bottleneck Θ

(
(𝜂𝑡𝑑1−𝐼 ) (1−2𝛽)/𝛽 ) , governed by the number of

online SGD steps (or equivalently number of samples).

• Note that the times the first and last directions get learned are approximately 𝑑𝐼−1/(𝐾0𝜂) and
𝑃𝛽𝑑𝐼−1/(𝐾0𝜂). Hence [𝑇min, 𝑇max] covers the time interval where most directions are learned.

• We state the risk scaling for square-summable second-layer coefficients 𝛽 > 1/2 similar to prior
theoretical works on scaling laws [BAP24, LWK+24]. In the “heavy-tailed” regime (𝛽 < 1/2),
we can also apply Theorem 2.1 to obtain L(𝑡) = Θ̃

(
(1 − (𝑃/𝑚)1−2𝛽)+ ∨ (1 − (𝑡𝜂𝑑𝐼−1) (1−2𝛽)/𝛽)+

)
.

Note that in this setting, the required student width is roughly proportional to the teacher width
𝑚 = Θ̃(𝑃) in order to achieve small approximation error.

“Unstable” discretization. Given a fixed training budget 𝑡, it can be quite pessimistic to choose the
learning rate 𝜂 ∝ 𝑎min∗ ≍ 𝑎𝑃∗ for 𝑃∗ = Θ̃(𝑚), since at any 𝑡 ≪ (𝜂𝑎𝜋 (𝑃∗ ) 𝑣̄2𝐼−2

𝑃∗ , 𝜋 (𝑃∗ ) (0))
−1, far fewer

than 𝑃∗ directions are learned. As such, consider pre-specifying the runtime 𝑡 (or equivalently the
sample size 𝑛). If we only are interested in learning the top 𝑝 neurons, we can apply Theorem 2.1
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(a) Theoretical scaling law. (b) Empirical scaling law.

Figure 2: Theoretical and empirical risk curves with 𝛽 = 0.8. (𝑎) Idealized scaling curves described in
Section 3.1. (𝑏) Empirical scaling curve of GD training on the population loss with 𝑑 = 2048, 𝑃 = 1024.

with 𝑃∗ = 𝑝, which gives a larger learning rate of 𝜂 = Θ̃( 𝑎𝜋 (𝑝) 𝑑
−𝐼

poly(𝑃) ). The 𝑝-th direction is now learned
at 𝑇𝑝 = Θ̃(𝑎−2

𝜋 (𝑝)𝑑
2𝐼−1 poly(𝑃)) = Θ̃(𝑝2𝛽𝑑2𝐼−1 poly(𝑃)). This leads to an “unstable" scaling law.

Corollary 2.3 (Unstable scaling law). Let 𝑚 be the student network width and 𝑛 be the total number
of training examples. Then, there exists a choice of learning rate 𝜂 (depending on 𝑛, 𝑚) such that
with high probability the population loss after 𝑡 = 𝑛 steps of online SGD is

L(𝑛) = Θ̃

(
𝑚1−2𝛽 +

( 𝑛

𝑑2𝐼−1 poly(𝑃)

) (1−2𝛽)/(2𝛽)
)
±𝑂 (𝜀𝐷).

We remark that the above sample size scaling matches the minimax optimal rate for Gaussian sequence
models (see e.g., [Joh17]), and the exponent is consistent with existing scaling law analyses of SGD
on linear models [BAP24, LWK+24, PPXP24]. Note that despite the matching exponents (in terms of
the decay rate 𝛽), the underlying mechanism and our theoretical analysis differ from these prior results
due to the presence of nonlinear feature learning, which is reflected, for example, by the learning rate
selection in our unstable discretization — see Section 3.3 for more discussions.

2.4 Simulations: Compute-optimal Frontier

In Figure 2, we plot (𝑎) the idealized scaling curves assuming decoupled learning and an exact
emergence time for each task (see Section 3.1), and (𝑏) the MSE loss curves for GD training (with
fixed step size) on the population loss, where we set 𝑑 = 2048, 𝑃 = 1024, 𝜎 = ℎ4, and vary the
student width. While the idealized scaling law does not exactly hold at finite 𝑑, the slope of MSE loss
vs. compute (on logarithmic scale) is independent of the problem dimension; we therefore compare
the slope of the compute-optimal frontier in (𝑎) (𝑏). Omitting the dimensionality 𝑑 (which does not
vary across models) in Proposition 2.2, we know that given a fixed computational budget T ≍ 𝑚𝑡, the
compute-optimal model under constant learning rate exhibits the following scaling,

L ∼ T (1−2𝛽)/(1+𝛽) , 𝑚 ∼ T 1/(1+𝛽) .

We set the power-law exponent to be 𝛽 = 0.8 in Figure 2. Observe that:

• The sum of staircase-like emergent learning curves yields a smooth power-law scaling in the
cumulative MSE loss towards the tail, followed by a plateau due to the approximation error.

• The compute-optimal slope (dashed black line) is roughly consistent between the theoretical
and empirical risk curves. Specifically, for 𝛽 = 0.8 we theoretically predict a loss scaling of
L ∼ (𝑚𝑡)1/3 for the compute-optimal model; note that the empirical slope is slightly steeper due to
the finite-width truncation error of the infinite power-law sum.

3 Overview of Proof Ideas

We discuss the proof ideas in this section. In Section 3.1, we describe the idealized dynamics, and
show that they imply a loss scaling law when the signal strength {𝑎𝑝}𝑃𝑝=1 follows a power law. In

6



Section 3.2 we show that gradient flow approximates this idealized dynamics, and in Section 3.3 we
discretize the gradient flow with online SGD. For ease of presentation, we will assume a Hermite-4
link function 𝜎 = ℎ4 in this section; the same argument follows for more general activations.

3.1 The Idealized Learning Dynamics

Learning a single task. First, consider the single-index setting and suppose the target function
is x ↦→ 𝑎ℎ4 (e1 · x). Let v ∈ R𝑑 denote the learner neuron. It is known that, under gradient flow,
the correlation of v with the ground-truth direction e1 approximately follows the quadratic ODE:
d
d𝑡 𝑣̄

2
1 ≈ 8𝑎𝑣̄4

1 prior to weak recovery, i.e., when 𝑣̄2
1 = 𝑜(1) [BAGJ21]. This ODE has a closed-form

solution: 𝑣̄2
1 (𝑡) =

(
1/𝑣̄2

1 (0) − 8𝑎𝑡
)−1. We have two immediate observations from this formula:

(i) 𝑣̄2
1 = ⟨v̄, e1⟩2 will grow from Θ̃(1/𝑑) to a nontrivial value around time (8𝑎𝑣̄2

1 (0))
−1.

(ii) 𝑣̄2
1 stays small for most of the time and then suddenly increases around time (8𝑎𝑣̄2

1 (0))
−1.

The above claims imply an emergent learning curve for the directional recovery of the single-index
task. Due to the 2-homogeneous parameterization, we can show that the norm of v will not grow
until strong recovery is achieved, and the norm growth occurs at a much shorter timescale than the
dynamics of v̄. Consequently, the MSE loss remains nearly constant for an extensive period of time,
followed by a sharp drop by 𝑎2/2 at the aforementioned critical time.

Decoupled learning of multiple tasks. Next consider the multi-index setting where we have 𝑃
orthonormal ground-truth directions {e𝑝}𝑝∈[𝑃 ] with signal strength {𝑎𝑝}𝑝∈[𝑃 ] . Assume these 𝑃
single-index models are fully decoupled, i.e., for each 𝑝 ∈ [𝑃], there is exactly one learner neuron
v𝑝 associated with direction e𝑝 , and the learning of different directions do not interfere — in other
words, we are learning 𝑃 single-index models independently and simultaneously. Then from our
previous discussion, we know that direction e𝑝 will be learned around time (8𝑎𝑝 𝑣̄2

𝑝,𝑝 (0))−1 and the
MSE loss will have a sudden drop of size 𝑎2

𝑝/2. Therefore, the idealized loss can be expressed as the
sum of loss decrements at different times (we omit the constant factor 1/2 for concise presentation)

𝐿̃ (𝑡) = ∑𝑃
𝑝=1 𝑎

2
𝑝1

{
𝑡 < (8𝑎𝑝 𝑣̄2

𝑝,𝑝 (0))−1} .
See Figure 2(a) for illustration. Based on this heuristic, we can derive the iteration/sample scaling in
Proposition 2.2. Suppose that the signal strength follows a power law 𝑎𝑝 = 𝑝−𝛽 for some 𝛽 > 1/2,
and assume identical initial overlap for all neurons 𝑣̄2

𝑝,𝑝 (0) = 𝑣2 for all 𝑝 ∈ [𝑃], so that direction e𝑝
is learned at exactly 𝑡 = 𝑝𝛽𝑣−2/8. Then, when 𝑃 is large, we have

𝐿̃
(
𝑝𝛽𝑣−2/8

)
≈ ∑∞

𝑞=𝑝 𝑞
−2𝛽 ≈

∫ ∞
𝑝
𝑠−2𝛽 d𝑠 = 𝑝1−2𝛽/(2𝛽 − 1).

Applying the change-of-variables 𝑡 = 𝑝𝛽𝑣−2/8, 𝑝 = (8𝑣2𝑡)1/𝛽 , we arrive at the idealized loss scaling
𝐿̃ (𝑡) ≈ (2𝛽 − 1)−1 (8𝑣2) (1−2𝛽)/𝛽 · 𝑡−(2𝛽−1)/𝛽 .

Width scaling. To obtain the student width dependence, we show that a width-𝑚 student network
can learn Θ̃(𝑚) directions – note that this is sharp up to logarithmic factors. Hence the approximation
error can be computed as a truncation of the top Θ̃(𝑚) tasks:

∑𝑃

𝑞=Θ̃(𝑚) 𝑞
−2𝛽 ≈ Θ̃(𝑚1−2𝛽).

3.2 The Gradient Flow Dynamics

In the previous section, we assumed complete decoupling of the learning of each single-index task.
We now discuss how this condition holds approximately under gradient flow.

Re-indexing and greedy maximum selection. To simplify notation, we first re-index the neurons
based on the initial correlation with the ground-truth directions. Let V ⊂ R𝑑 be the collection
of initialized neurons. Define (𝜋(1), v1) := argmax𝑞∈[𝑃 ],v∈V 𝑎𝑞 𝑣̄

2𝐼−2
𝑞 . By our previous heuristic

argument, we expect e𝜋 (1) to be the first direction recovered, and v1 – which achieves maximal
overlap (weighted by 𝑎𝜋 (1) ) with e𝜋 (1) at initialization – to be the student neuron that converges to
this direction first. After e𝜋 (1) is fitted by v1, we remove this task from the cumulative objective;
assuming the remaining student neurons have not moved too much during this process, we can
determine the next task to be learned and the corresponding neuron via

(𝜋(𝑝 + 1), v𝑝+1) = argmax𝑞∈[𝑃 ]\{𝜋 (1) ,..., 𝜋 (𝑝) }
v∈V\{v1 ,...,v𝑝 }

𝑎𝑞 𝑣̄
2𝐼−2
𝑞 , ∀𝑝 ∈ [min{𝑃, 𝑚} − 1] . (5)
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𝜋(1) 𝜋(2) · · · 𝜋(𝑃∗) · · · 𝜋(𝑃)
1

2
.
.
.

𝑃∗

.

.

.

𝑃
.
.
.
𝑚

𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝)

𝑎𝜋 (𝑃∗) 𝑣̄
2𝐼−2
𝑃∗ , 𝜋 (𝑃∗)

Figure 3: The greedy maximum selection matrix. The red diagonal
entries represent the relevant neurons that eventually achieve overlap
close to 1. The remaining irrelevant entries can be partitioned into
three groups: the upper triangular entries 𝑣̄𝑝,𝜋 (𝑞) with 𝑝 ∈ [𝑃∗]
and 𝑝 < 𝑞 ∈ [𝑃], the lower triangular entries, 𝑣̄𝑘, 𝜋 (𝑝) with
𝑝 ∈ [𝑃∗] and 𝑝 < 𝑘 ∈ [𝑚], and the lower right block 𝑣̄𝑘, 𝜋 (𝑞) with
𝑘 > 𝑃∗, 𝑞 > 𝑃∗. We will control these blocks using the row gap
(purple arrow), column gap (blue arrow), and the threshold gap
(green arrows), respectively.

Finally, if 𝑃 < 𝑚 we index the remaining unused neurons as {v𝑃+1, . . . , v𝑚}, and if 𝑚 < 𝑃 we
assign {𝜋(𝑚 + 1), . . . , 𝜋(𝑃)} to the unlearned teacher neurons arbitrarily so that 𝜋 is a permutation
of [𝑃]. Following [BAGP24], we call (5) the greedy maximum selection scheme and the matrix
{𝑎𝜋 (𝑝) 𝑣̄2𝐼−2

𝑘, 𝜋 (𝑝) (0)}𝑘∈[𝑚], 𝑝∈[𝑃 ] the greedy maximum selection matrix (cf. Figure 3). Note that by
construction, 𝑎𝜋 (𝑝) 𝑣̄2𝐼−2

𝑝,𝜋 (𝑝) is larger than all entries below it or on its right-hand side. We have the
following quantitative estimates on the gaps between the on-diagonal and remaining entries of the
maximum selection matrix at initialization. See Appendix B.2 for the formal statement and proof.
Lemma 3.1 (Initialization (informal)). Consider the greedy maximum selection matrix (cf. Figure 3).
At initialization, with high probability, the gap between the first 𝑃∗ diagonal entries and all entries
below them in the same column or to their right in the same row is lower bounded by 1/poly 𝑃 (instead
of 1/poly 𝑑). The same also holds for the (𝑃∗, 𝜋(𝑃∗))-th entry and all entries in the lower right block.

Approximately decoupled dynamics. We claim that when all irrelevant coordinates are small,
the learning of different teacher directions can still be approximately decoupled. By Lemma B.1,
the dynamics of the overlap 𝑣̄2

𝑝,𝜋 (𝑝) can be decomposed into a primary signal term and the sum of
contributions from the remaining coordinates:

d
d𝑡 𝑣̄

2
𝑝,𝜋 (𝑝) ≈ 8

(
𝑎𝜋 (𝑝)

(
1 − 𝑣̄2

𝑝,𝜋 (𝑝)
)
𝑣̄2
𝑝,𝜋 (𝑝) −

∑
𝑞:𝑞≠𝑝 𝑎𝜋 (𝑞) 𝑣̄

4
𝑝,𝜋 (𝑞)

)
𝑣̄2
𝑝,𝜋 (𝑝) .

When the overlap 𝑣̄2
𝑝,𝜋 (𝑝) is small, the signal term is of order 𝑎𝜋 (𝑝) 𝑣̄2

𝑝,𝜋 (𝑝) = Ω(𝑎𝜋 (𝑝)/𝑑). Also, if
we assume all irrelevant coordinates (i.e., 𝑣̄2

𝑝,𝜋 (𝑞) for 𝑞 ≠ 𝑝) are small, say bounded by 𝑑−0.9, then∑
𝑞:𝑞≠𝑝 𝑎𝜋 (𝑞) 𝑣̄

4
𝑝,𝜋 (𝑞) ≤ 𝑑−1.8 ∑

𝑞:𝑞≠𝑝 𝑎𝜋 (𝑞) ≤ 𝑃1/2𝑑−1.8 ≪ 𝑎𝜋 (𝑝)/𝑑, as long as 𝑎min𝑃
1/2 ≫ 𝑑−0.8.

As a result, when 𝑣̄2
𝑝,𝜋 (𝑝) is still small, we have

d
d𝑡 𝑣̄

2
𝑝,𝜋 (𝑝) ≈

(
1 ± 𝑎−1

min𝑑
−0.8) × 8𝑎𝜋 (𝑝) 𝑣̄4

𝑝,𝜋 (𝑝) .

Now suppose 𝑎min ≫ 𝑑−0.3. Then, the above implies that 𝑣̄2
𝑝,𝜋 (𝑝) has a sharp transition around time

(1 ± 𝑜(1)) (8𝑎𝜋 (𝑝) 𝑣̄2
𝑝,𝜋 (𝑝) )

−1 = Θ̃(𝑑/𝑎𝜋 (𝑝) ), and the 𝑜(1) error term can be made much smaller
than 1/poly(𝑃) when 𝑑 is large — this will be useful in bounding the growth of irrelevant coordinates.
Similar to the analysis in [GRWZ21], we know that once v̄𝑝 converges to e𝜋 (𝑝) , the convergence of
norm 𝑎𝜋 (𝑝) occurs within𝑂 (log 𝑑) time, and its dynamics become local in the sense that the influence
of other teacher neurons becomes negligible. In addition, after e𝜋 (𝑝) is learned, the remaining learner
neurons will no longer be affected by this target direction.

Bounding the irrelevant coordinates. We show that the irrelevant coordinates, i.e., ones that are
not in {𝑣̄𝑝,𝜋 (𝑝) }𝑝∈[𝑃∗ ] (cf. Figure 3), stay small throughout training using the fact that the dynamics
have sharp transitions. Here, we only consider the lower triangular entries of the greedy maximum
selection matrix, i.e., 𝑣̄𝑘, 𝜋 (𝑝) with 𝑝 ∈ [𝑃∗] and 𝑝 < 𝑘 ∈ [𝑚], which we control using the column
gap. The other entries can be controlled using similar strategies – see Appendix C.2 for details. Recall
that d

d𝑡 𝑣̄
2
𝑘, 𝜋 (𝑝) ≈ 8𝑎𝜋 (𝑝) 𝑣̄4

𝑘, 𝜋 (𝑝) , which has a sharp transition around time (8𝑎𝜋 (𝑝) 𝑣̄2
𝑘, 𝜋 (𝑝) (0))

−1.
From the column gap in Lemma 3.1, this implies that 𝑣̄2

𝑘, 𝜋 (𝑝) stays small before v𝑝 fits 𝑎𝜋 (𝑝)e𝜋 (𝑝) .
After that, the signal from 𝑎𝜋 (𝑝)e𝜋 (𝑝) will be close to 0, and consequently 𝑣̄2

𝑘, 𝜋 (𝑝) will cease to grow.

3.3 Online Stochastic Gradient Descent

We next outline the proof of Theorem 2.1, which requires converting the analysis of the gradient flow
dynamics to one for the online SGD trajectory. At a high level, our proof relies on the martingale-
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plus-drift argument used in prior works [BAGJ21, AAM23, DNGL23, OSSW24, RL24]. In order to
rigorously handle the interdependence of the different martingale arguments, we rely on the stochastic
induction arguments of [RL24]. The complete proof of Theorem 2.1 is presented in Appendix D.

Controlling the irrelevant coordinates. First, consider a lower triangular entry (𝑘, 𝜋(𝑞)) (i.e
𝑞 ∈ [𝑃∗], 𝑞 < 𝑘). We wish to argue that 𝑣̄2

𝑘, 𝜋 (𝑞) stays small during the time it takes for 𝑣̄2
𝑞,𝜋 (𝑞) to

reach 1. By Lemma B.1 and a similar argument to Section 3.2, the update on 𝑣̄2
𝑘, 𝜋 (𝑞) is given by

𝑣̄2
𝑘, 𝜋 (𝑞) (𝑡 + 1) ≤ 𝑣̄2

𝑘, 𝜋 (𝑞) (𝑡) + 8𝜂𝑎𝜋 (𝑞) 𝑣̄4
𝑘, 𝜋 (𝑞) (𝑡) + 𝜉𝑡+1 + 𝑍𝑡+1,

where 𝜉𝑡+1 ≪ 1 is an error term we will ignore for ease of exposition, and 𝑍𝑡+1 is the fluctuation

𝑍𝑡+1 =
2𝜂𝑣̄𝑘,𝜋 (𝑞) (𝑡 )

∥v𝑘 (𝑡 ) ∥
〈
(I − v̄𝑘 (𝑡)v̄𝑘 (𝑡)⊤)

(
∇v𝑘 (𝑡 ) 𝑙 (x𝑡 ) − ∇v𝑘 (𝑡 )L

)
, e𝜋 (𝑞)

〉
.

By Lemma B.1, the conditional variance can be bounded as E[𝑍2
𝑡+1 | F𝑡 ] ≲ 𝜂2𝑣̄2

𝑘, 𝜋 (𝑞) (𝑡). Hence by
Doob’s inequality, the total martingale term

��∑𝑇
𝑡=1 𝑍𝑡

�� is bounded by Θ̃(𝜂
√︁
𝑇/𝑑) with high probability

(we use the heuristic that 𝑣2
𝑘, 𝜋 (𝑞) (𝑡) is Θ̃(𝑑−1) on average). [BAGJ21] selects 𝜂 ≲ 𝑑−2𝑎𝜋 (𝑞) ,

which bounds the martingale by Θ̃(𝑑−1). 𝑣̄2
𝑘, 𝜋 (𝑞) (𝑡) can thus be coupled to the deterministic

process 𝑥𝑡+1 = 𝑥𝑡 + 8𝜂𝑎𝜋 (𝑞)𝑥2
𝑡 with 𝑥0 = 1.5𝑣̄2

𝑘, 𝜋 (𝑞) (0), which implies the time at which 𝑣2
𝑘, 𝜋 (𝑞) (𝑡)

ceases to stay small is within a constant factor of its corresponding gradient flow escape time
(8𝜂𝑎𝜋 (𝑞) 𝑣̄2

𝑘, 𝜋 (𝑞) (0))
−1. However, this is insufficient for our purposes, as the gradient flow escape

time of 𝑣̄2
𝑞,𝜋 (𝑞) is (8𝜂𝑎𝜋 (𝑞) 𝑣̄2

𝑞,𝜋 (𝑞) (0))
−1, which by Lemma 3.1 is only a 1+1/poly(𝑃) factor smaller

than the escape time of 𝑣2
𝑘, 𝜋 (𝑞) (𝑡). By decreasing 𝜂 by a 1/poly(𝑃) factor, the total martingale term

can instead be bounded by Θ̃(𝑣̄2
𝑘, 𝜋 (𝑞) (0)/poly(𝑃)), thus guaranteeing the online SGD escape times

for 𝑣̄2
𝑘, 𝜋 (𝑞) , 𝑣̄

2
𝑞,𝜋 (𝑞) are within 1 + 1/poly(𝑃) factors of their gradient flow escape times, and hence

that 𝑣̄2
𝑘, 𝜋 (𝑞) will stays small during the time it takes for 𝑣̄2

𝑞,𝜋 (𝑞) to grow to ≈ 1. Afterwards, the signal
from e𝜋 (𝑞) will be close to 0. The upper triangular entries (𝑘 ∈ [𝑃∗], 𝑘 < 𝑞) can be handled similarly.

On the unstable discretization. Next, consider the entries 𝑣̄2
𝑘, 𝜋 (𝑞) where 𝑞 > 𝑃∗. In the

argument above, since the martingale term scales as Θ(𝜂
√︁
𝑇/𝑑) and e𝜋 (𝑞) is learned at time

𝑇 = 𝑇𝑞 = Θ̃(𝑑𝜂−1𝑎−1
𝜋 (𝑞) ), we selected a learning rate of 𝜂 ∝ 𝑑−2𝑎𝜋 (𝑞) . However, it is pessimistic

to scale 𝜂 with the signal strength of a neuron which is not learned, as this can be arbitrarily small.
Instead, if we are only interested in recovering the top 𝑃∗ directions, the martingale term only needs to
be small up to time 𝑇𝑃∗ = Θ̃(𝑑𝜂−1𝑎−1

𝜋 (𝑃∗ ) ). We can therefore scale 𝜂 with 𝑎𝜋 (𝑃∗ ) ≫ 𝑎𝜋 (𝑞) . This can
be interpreted as an unstable discretization: the choice of 𝜂 is too large for any of the directions 𝜋(𝑞)
with 𝑞 > 𝑃∗ to be learned, yet nevertheless, we can still control their growth and show that they remain
small until the time that e𝜋 (𝑃∗ ) is learned. Altogether, it suffices to choose 𝜂 ∝ 𝑎𝜋 (𝑃∗ )𝑑−2/poly(𝑃).

Controlling the relevant coordinates. Finally, consider the growth of the relevant coordinates
𝑣̄2
𝑝,𝜋 (𝑝) for 𝑝 ∈ [𝑃∗]. Following the argument in Section 3.2, the update on 𝑣̄2

𝑝,𝜋 (𝑝) is approximately

𝑣̄2
𝑝,𝜋 (𝑝) (𝑡 + 1) ≈ 𝑣̄2

𝑝,𝜋 (𝑝) (𝑡) + 8𝜂𝑎𝜋 (𝑝)
(
1 − 𝑣̄2

𝑝,𝜋 (𝑝) (𝑡)
)
𝑣̄4
𝑝,𝜋 (𝑝) (𝑡) + 𝑍𝑡+1,

where the 𝑍𝑡+1 satisfies E[𝑍2
𝑡+1 | F𝑡 ] ≲ 𝜂2𝑣̄2

𝑝,𝜋 (𝑝) (𝑡). By choosing the learning rate 𝜂 ≲

𝑑−2𝑎𝜋 (𝑝)/poly(𝑃), we can bound 𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) between two deterministic processes (𝑥+𝑡 )𝑡 , (𝑥−𝑡 )𝑡

which satisfy 𝑥±0 = (1 ± 1
poly(𝑃) )𝑣̄

2
𝑝,𝜋 (𝑝) (0) and follow the updates 𝑥±

𝑡+1 = 𝑥±𝑡 + 8𝜂𝑎𝜋 (𝑝) (𝑥±𝑡 )2. This
guarantees that 𝑣̄2

𝑝,𝜋 (𝑝) ≪ 1 up to a time of (1− 1
poly(𝑃) ) (8𝜂𝑎𝜋 (𝑝) 𝑣̄

2
𝑝,𝜋 (𝑝) (0))

−1. Lower bounding the
process 𝑣2

𝑝,𝜋 (𝑝) (𝑡) is slightly more challenging, as 𝑥+𝑡 diverges from 𝑥−𝑡 in the time interval when the
sharp transition occurs. To handle this, we partition [ 1

𝑑
, 1

3 ] into smaller subintervals, and rerun separate
martingale-plus-drift arguments on each subinterval. We conclude by showing that once 𝑣̄2

𝑝,𝜋 (𝑝) (𝑡)
crosses 1/3, it rapidly converges to 1, after which



v𝑝

2 rapidly converges to 𝑎𝜋 (𝑝) . Altogether,
Lemma D.2 shows that v̄𝑝 indeed converges to e𝜋 (𝑝) in time (1 ± 1

poly(𝑃) ) (8𝜂𝑎𝜋 (𝑝) 𝑣̄
2
𝑝,𝜋 (𝑝) (0))

−1.
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4 Conclusion

In this work, we study the (online) SGD training dynamics and sample complexity of learning a
two-layer neural network with orthogonal ground truth weights and signal strengths {𝑎𝑝}𝑝∈[𝑃 ] ⊂ R≥0,
where the width 𝑃 and the condition number 𝑎max/𝑎min can potentially be large. We establish a
sample and runtime complexity that is polynomial in the problem dimensionality, teacher width, and
condition number; as an application of our sharp analysis, when the second-layer coefficients of the
teacher model follow a power law 𝑎𝑝 ≍ 𝑝−𝛽 for 𝛽 > 1/2, we derive scaling laws for the population
MSE as a function of the student network width and the number of SGD steps.
Our current results assume input data with identity covariance; one interesting extension is to consider
anisotropic data x ∼ N (0,𝚺) analogous to [MHWSE23, BQI25], and derive a two-parameter scaling
law when the eigenvalues of 𝚺 also follow a power law. Another future direction is to consider a
decaying learning rate schedule that achieves the unstable scaling law (Corollary 2.3) at any time 𝑡.
Finally, our analysis relies on high information exponent link functions to decouple the learning of
different directions, which does not cover the case of IE(𝜎) = 2 studied in [MBB23, RL24] — for
this setting, the scaling behavior for SGD training is studied in a companion work [BAEVW25] for
the special case of quadratic activation function.
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Limitations

One limitation of our work is that we require the input data to be drawn from the standard
Gaussian. We remark that this assumption is common in prior works on learning multi-index
models [BAGJ21, DLS22, AAM23, DNGL23, OSSW24, RL24]. However, it would be interesting
to understand how our results generalize to other input distributions. Another limitation is that we
assume 𝜎 is an even function with information exponent ≥ 4. One final limitation is that Corollary 2.3
requires is not anytime, and requires specifying the number of SGD steps 𝑛. It would be interesting to
consider a decaying learning rate that can achieve Corollary 2.3 at any time 𝑡.

A Additional Related Works

Theory of scaling laws. Neural scaling laws describe how the performance of deep learning models
improves predictably as a power-law function of increased computational resources, data, and model
size [HNA+17, KMH+20, HBM+22, BDK+24]. When the optimization algorithm is not taken into
account, such scaling relations have been established for the approximation and estimation errors of
deep neural networks [P+97, Suz18, SH20], as well as for the (precise) generalization error of simple
closed-form estimators such as ridge regression [CLKZ21, MRS22, DLM24, AZVP24]. Recent
works have also studied the loss scaling in distillation and synthetic data [IGT+24, JMS24], associative
memory [CDB23, NLB24] and hierarchical models [CW24, CPT+24, ABRC24, PWL25], among
other theoretical settings.
The scaling laws of SGD in sketched linear regression have been characterized in [BAP24, PPXP24,
LWK+24] — this problem setting corresponds to a two-layer linear network with random, untrained
first-layer weights, and is parallel to earlier works [RR17, NS20] on learning random features model
under source and capacity conditions (see e.g., [CDV07, VY24]). However, this linear setup fails
to capture the feature learning efficiency of neural networks. On the other hand, existing scaling
analyses for the additive setting [Hut21, MLGT24, NFLL24] explicitly decompose the loss into an
independent sum, simplifying the analysis due to task decoupling. We aim to understand a more
natural – yet arguably more challenging – nonlinear feature learning scenario where the individual
tasks are not decoupled.

Learning shallow neural networks. The learning of two-layer neural networks with near-orthogonal
neurons has been extensively studied in the deep learning theory literature. Existing works have studied
the optimization dynamics for variants of ReLU [LMZ20, ZGJ21, Chi22], quadratic [GMMM19,
MVEZ20, MBB23], and general Hermite activation functions [OSSW24, RL24, SBH24]. In the
absence of the (near-)orthogonality assumption, this function class can be computationally hard to
learn, as suggested by statistical query lower bounds [DKKZ20, GGJ+20]. Our target function is
a subclass of additive models [Sto85, HT87], where the individual components take the form of
single-index models — see [Bac17, OSSW24] for further discussion.

B Structure of Gradient and Initialization

B.1 Population and Per-sample Gradients

In this subsection, we compute the population gradient and derive variance and tail bounds for the
per-sample gradient. Namely, we prove the following lemma.
Lemma B.1. Consider the setting described in Section 2. Assume w.l.o.g. that v∗

𝑝 = e𝑝 for 𝑝 ∈ [𝑃].
The radial and tangent components of the population gradient are given by

−
〈
∇v𝑘

L, v𝑘
〉
= 2 ∥v𝑘 ∥2

∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

𝑃∑︁
𝑝=1

𝑎𝑝 𝑣̄
2𝑖
𝑘, 𝑝 − 2 ∥v𝑘 ∥2

∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

𝑚∑︁
𝑙=1

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩2𝑖 ,

−

[
(I − v̄𝑘 v̄

⊤
𝑘
)∇v𝑘

L
]
𝑝

∥v𝑘 ∥
=

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

©­«𝑎𝑝 𝑣̄2𝑖−2
𝑘, 𝑝 −

𝑃∑︁
𝑞=1

𝑎𝑞 𝑣̄
2𝑖
𝑘,𝑞

ª®¬ 𝑣̄𝑘, 𝑝
−

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

∑︁
𝑙:𝑙≠𝑘

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩2𝑖−1 〈
(I − v̄𝑘 v̄

⊤
𝑘 )v̄𝑙 , e𝑝

〉
.
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Suppose that
∑𝑚
𝑘=1 ∥v𝑘 ∥

2 = 𝑂 (∥a∥1). Let u ∈ S𝑑−1 be a fixed direction. Put 𝑄̃ = 4(1 + 𝑄). Then,
there exists a universal constant 𝐶 ≥ 1 such that, for any 𝑠 ≥ 𝐶,

Var
〈
∇v𝑘

𝑙 (x),u
〉

∥v𝑘 ∥
≤ 𝐶 ∥a∥2

1 , P

(�����
〈
∇v𝑘

𝑙 (x),u
〉

∥v𝑘 ∥

����� ≥ 𝑠

)
≤ 𝐶𝑚 exp

(
−𝐶−1 (𝑠/∥a∥1)2/𝑄̃

)
.

Proof. The proof of the variance and tail bounds is essentially the same as the proof of Lemma A.5
of [RL24].2 Now, we compute the population gradient. First, recall from (4) that the population loss
is given as

L =

∞∑︁
𝑖=𝐼

𝜎̂2
𝑖

©­« ∥a∥
2

2
−

𝑃∑︁
𝑝=1

𝑚∑︁
𝑘=1

𝑎𝑝 ∥v𝑘 ∥2 〈
v̄𝑘 , v

∗
𝑝

〉𝑖 + 1
2

𝑚∑︁
𝑘,𝑙=1

∥v𝑘 ∥2 ∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩𝑖
ª®¬ =:

∞∑︁
𝑖=𝐼

L𝑖 .

For its gradient, first note that for each 𝑖 ≥ 𝐼,

∇v

(
∥v∥2 ⟨v̄,u⟩𝑖

)
= ∇v

(
⟨v,u⟩𝑖

∥v∥𝑖−2

)
=
∇v ⟨v,u⟩𝑖

∥v∥𝑖−2 − ⟨v,u⟩𝑖

∥v∥𝑖−2
∇v ∥v∥𝑖−2

∥v∥𝑖−2

=
𝑖 ⟨v,u⟩𝑖−1 u

∥v∥𝑖−2 − ⟨v,u⟩𝑖

∥v∥𝑖−2
(𝑖 − 2) ∥v∥𝑖−3 v̄

∥v∥𝑖−2

= 𝑖 ⟨v̄,u⟩𝑖−1 ∥v∥ u − (𝑖 − 2) ⟨v̄,u⟩𝑖 v.

Then, for each 𝑘 ∈ [𝑚], we compute

∇v𝑘
L𝑖 = −𝜎̂2

𝑖 ∥v𝑘 ∥
𝑃∑︁
𝑝=1

𝑎𝑝

(
𝑖𝑣̄𝑖−1
𝑘, 𝑝e𝑝 − (𝑖 − 2)𝑣̄𝑖𝑘, 𝑝v̄𝑘

)
+ 2𝜎̂2

𝑖 ∥v𝑘 ∥2 v𝑘 + 𝜎̂2
𝑖 ∥v𝑘 ∥

∑︁
𝑙:𝑙≠𝑘

∥v𝑙 ∥2
(
𝑖 ⟨v̄𝑘 , v̄𝑙⟩𝑖−1 v̄𝑙 − (𝑖 − 2) ⟨v̄𝑘 , v̄𝑙⟩𝑖 v̄𝑘

)
.

Hence, for the radial component, we have〈
∇v𝑘

L𝑖 , v𝑘
〉
= −2𝜎̂2

𝑖 ∥v𝑘 ∥2
𝑃∑︁
𝑝=1

𝑎𝑝 𝑣̄
𝑖
𝑘, 𝑝 + 2𝜎̂2

𝑖 ∥v𝑘 ∥2
𝑚∑︁
𝑙=1

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩𝑖 .

Meanwhile, for the tangent component, we have

(I − v̄𝑘 v̄
⊤
𝑘 )∇v𝑘

L𝑖 = −𝜎̂2
𝑖 ∥v𝑘 ∥

𝑃∑︁
𝑝=1

𝑎𝑝𝑖𝑣̄
𝑖−1
𝑘, 𝑝 (I − v̄𝑘 v̄

⊤
𝑘 )e𝑝

+ 𝜎̂2
𝑖 ∥v𝑘 ∥

∑︁
𝑙:𝑙≠𝑘

∥v𝑙 ∥2 𝑖 ⟨v̄𝑘 , v̄𝑙⟩𝑖−1 (I − v̄𝑘 v̄
⊤
𝑘 )v̄𝑙

= −𝜎̂2
𝑖 ∥v𝑘 ∥

𝑃∑︁
𝑝=1

𝑎𝑝𝑖𝑣̄
𝑖−1
𝑘, 𝑝

(
e𝑝 − 𝑣̄𝑘, 𝑝v̄𝑘

)
+ 𝜎̂2

𝑖 ∥v𝑘 ∥
∑︁
𝑙:𝑙≠𝑘

∥v𝑙 ∥2 𝑖 ⟨v̄𝑘 , v̄𝑙⟩𝑖−1 (v̄𝑙 − ⟨v̄𝑘 , v̄𝑙⟩ v̄𝑘) .

In particular, for each 𝑝 ∈ [𝑃], we have[
(I − v̄𝑘 v̄

⊤
𝑘
)∇v𝑘

L𝑖
]
𝑝

∥v𝑘 ∥
= −𝑖𝜎̂2

𝑖

©­«𝑎𝑝 𝑣̄𝑖−2
𝑘, 𝑝 −

𝑃∑︁
𝑞=1

𝑎𝑞 𝑣̄
𝑖
𝑞

ª®¬ 𝑣̄𝑘, 𝑝
+ 𝑖𝜎̂2

𝑖

∑︁
𝑙:𝑖≠𝑘

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩𝑖−1 (
𝑣̄𝑙, 𝑝 − ⟨v̄𝑘 , v̄𝑙⟩ 𝑣̄𝑘, 𝑝

)
.

2Note that though Lemma A.3 of [RL24] is stated for i.i.d. random variables, the original theorem in [KC22]
requires only independence and therefore applies to our setting.
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Sum over 𝑖 ≥ 𝐼, and we obtain〈
∇v𝑘

L, v𝑘
〉
= −2 ∥v𝑘 ∥2

∞∑︁
𝑖=𝐼

𝜎̂2
𝑖

𝑃∑︁
𝑝=1

𝑎𝑝 𝑣̄
𝑖
𝑘, 𝑝 + 2 ∥v𝑘 ∥2

∞∑︁
𝑖=𝐼

𝜎̂2
𝑖

𝑚∑︁
𝑙=1

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩𝑖 ,[
(I − v̄𝑘 v̄

⊤
𝑘
)∇v𝑘

L
]
𝑝

∥v𝑘 ∥
= −

∞∑︁
𝑖=𝐼

𝑖𝜎̂2
𝑖

©­«𝑎𝑝 𝑣̄𝑖−2
𝑘, 𝑝 −

𝑃∑︁
𝑞=1

𝑎𝑞 𝑣̄
𝑖
𝑞

ª®¬ 𝑣̄𝑘, 𝑝
+

∞∑︁
𝑖=𝐼

𝑖𝜎̂2
𝑖

∑︁
𝑙:𝑙≠𝑘

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩𝑖−1 (
𝑣̄𝑙, 𝑝 − ⟨v̄𝑘 , v̄𝑙⟩ 𝑣̄𝑘, 𝑝

)
.

□

B.2 The formal version of Lemma 3.1: Initialization

In this subsection, we prove the following formal version of Lemma 3.1.
Lemma B.2 (Initialization). Let 𝛿P ∈ (𝑒− log2 𝑑 , 1) be the target failure probability. Suppose that 𝛿𝑟 =
𝛿P 𝜋

2𝑚𝑃2 , 𝛿𝑡 = 𝛿𝑐 =
𝛿P 𝜋

12𝑚2𝑃
, 𝑑 ≥ 400(𝐼−1)2

𝛿2
𝑐

log
(

2𝜋
3𝛿𝑐

)
, 𝑚 ≥ 4𝑃∗ log(𝑃∗/𝛿P) ∨ 100 log(𝑃/𝛿P), 𝑚

log3 𝑚
≥

512 log2 (𝑃∗/𝛿P) Then, the following holds with probability at least 1 −𝑂 (𝛿P).
(a) (Row gap). For any 𝑝 ∈ [𝑃∗] and 𝑝 < 𝑞 ∈ [𝑃], we have 𝑎𝜋 (𝑝) 𝑣̄2𝐼−2

𝑝,𝜋 (𝑝) ≥ (1 + 𝛿𝑟 )𝑎𝜋 (𝑞) 𝑣̄2𝐼−2
𝑝,𝜋 (𝑞) .

(b) (Column gap). For any 𝑝 ∈ [𝑃∗] and 𝑝 < 𝑘 ∈ [𝑚], we have 𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) ≥ (1 + 𝛿𝑐)𝑣̄2𝐼−2

𝑘, 𝜋 (𝑝) .

(c) (Threshold gap). For any 𝑃∗ < 𝑞 ≤ 𝑃, 𝑃∗ < 𝑘 ≤ 𝑚, we have 𝑎𝜋 (𝑃∗ ) 𝑣̄2𝐼−2
𝑃∗ , 𝜋 (𝑃∗ ) ≥ (1 +

𝛿𝑡 )𝑎𝜋 (𝑞) 𝑣̄2𝐼−2
𝑘, 𝜋 (𝑞) .

(d) (Regularity conditions). max𝑘∈[𝑚] ∥v̄𝑘 ∥2
∞ ≤ log2 𝑑/𝑑, min𝑝∈[𝑃∗ ] 𝑣̄2

𝑝,𝜋 (𝑝) ≥ (log 𝑃∗)/𝑑 and
min𝑞∈[𝑃 ] max 𝑗>𝑃∗ 𝑣̄2

𝑗 ,𝑞
≥ 1/𝑑.

Proof of Lemma B.2 (row gap). Consider an arbitrary neuron v and let z ∼ N (0, I𝑑). Note that
v̄
𝑑
= z/∥z∥ and therefore, for any 𝑖 ≠ 𝑗 , 𝑣̄𝑖/𝑣̄ 𝑗

𝑑
= 𝑧𝑖/𝑧 𝑗 , which follows the standard Cauchy distribution.

We know that P[𝑧𝑖/𝑧 𝑗 ≤ 𝑧] = 𝜋−1 arctan(𝑧) + 1/2. Fix 𝑖 ≠ 𝑗 , we compute

P
[
𝑎𝑖 𝑣̄

2𝐼−2
𝑖 ∈ (1 ± 𝛿𝑟 )𝑎 𝑗 𝑣̄2𝐼−2

𝑗

]
= 2P

[(
(1 − 𝛿𝑟 )

𝑎 𝑗

𝑎𝑖

) 1
2𝐼−2

≤ 𝑣̄𝑖

𝑣̄ 𝑗
≤

(
(1 + 𝛿𝑟 )

𝑎 𝑗

𝑎𝑖

) 1
2𝐼−2

]
=

2
𝜋

(
arctan

(
(1 + 𝛿𝑟 )

𝑎 𝑗

𝑎𝑖

) 1
2𝐼−2

− arctan
(
(1 − 𝛿𝑟 )

𝑎 𝑗

𝑎𝑖

) 1
2𝐼−2

)

=
2
𝜋

arctan

©­­­­­«
(
(1 + 𝛿𝑟 )

𝑎 𝑗

𝑎𝑖

) 1
2𝐼−2 −

(
(1 − 𝛿𝑟 )

𝑎 𝑗

𝑎𝑖

) 1
2𝐼−2

1 +
(
(1 + 𝛿𝑟 ) (1 − 𝛿𝑟 )

𝑎2
𝑗

𝑎2
𝑖

) 1
2𝐼−2

ª®®®®®¬
,

where the last line comes from arctan 𝑎 − arctan 𝑏 = arctan 𝑎−𝑏
1+𝑎𝑏 . Note that for any 𝑝 ∈ (0, 1), by the

concavity of 𝑧 ↦→ 𝑧𝑝 , we have 𝑎𝑝 − 𝑏𝑝 ≤ 𝑝𝑏𝑝 (𝑎 − 𝑏). Therefore,

(
(1 + 𝛿𝑟 )

𝑎 𝑗

𝑎𝑖

) 1
2𝐼−2

−
(
(1 − 𝛿𝑟 )

𝑎 𝑗

𝑎𝑖

) 1
2𝐼−2

≤ 1
2𝐼 − 2

(
(1 − 𝛿𝑟 )

𝑎 𝑗

𝑎𝑖

) 1
2𝐼−2 −1

𝛿𝑟
𝑎 𝑗

𝑎𝑖
≤ 1

2𝐼 − 2

(
𝑎 𝑗

𝑎𝑖

) 1
2𝐼−2

𝛿𝑟 .

Recall that arctan 𝑧 ≤ 𝑧. Thus,

P
[
𝑎𝑖 𝑣̄

2𝐼−2
𝑖 ∈ (1 ± 𝛿𝑟 )𝑎 𝑗 𝑣̄2𝐼−2

𝑗

]
≤ 2
𝜋

1
2𝐼−2

(
𝑎 𝑗

𝑎𝑖

) 1
2𝐼−2

𝛿𝑟

1 +
(
(1 − 𝛿2

𝑟 )
𝑎2
𝑗

𝑎2
𝑖

) 1
2𝐼−2

=
𝛿𝑟

(𝐼 − 1)𝜋

(
𝑎𝑖𝑎 𝑗

) 1
2𝐼−2

(𝑎2
𝑖
) 1

2𝐼−2 + (1 − 𝛿2
𝑟 )

1
2𝐼−2 (𝑎2

𝑗
) 1

2𝐼−2
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≤ 𝛿𝑟

(𝐼 − 1)𝜋

(
𝑎2
𝑖
∨ 𝑎2

𝑗

) 1
2𝐼−2

(𝑎2
𝑖
) 1

2𝐼−2 + (1 − 𝛿2
𝑟 )

1
2𝐼−2 (𝑎2

𝑗
) 1

2𝐼−2

≤ 𝛿𝑟

(𝐼 − 1)𝜋(1 − 𝛿2
𝑟 )

1
2𝐼−2

.

The last term is upper bounded by 2𝛿𝑟/𝜋 as long as 𝛿𝑟 ≤ 1/2. Apply union bound over all 𝑚 neurons
and all 𝑃2 (𝑖, 𝑗)-pairs, and we get

P
[
∃𝑘 ∈ [𝑚], 𝑖 ≠ 𝑗 ∈ [𝑃], 𝑎𝑖 𝑣̄2𝐼−2

𝑘,𝑖 ∈ (1 ± 𝛿𝑟 )𝑎 𝑗 𝑣̄2𝐼−2
𝑘, 𝑗

]
≤ 2𝑚𝑃2

𝜋
𝛿𝑟 .

Choose 𝛿𝑟 =
𝛿P 𝜋

2𝑚𝑃2 , so that the above implies 𝑎𝑖 𝑣̄2𝐼−2
𝑘,𝑖

∉ (1 ± 𝛿𝑟 )𝑎 𝑗 𝑣̄2𝐼−2
𝑘, 𝑗

for all 𝑘 ∈ [𝑚] and
𝑖 ≠ 𝑗 ∈ [𝑃] with probability at least 1 − 𝛿P. To complete the proof, recall that by the definition of the
greedy maximum selection process, we have 𝑎𝜋 (𝑝) 𝑣̄2

𝑝,𝜋 (𝑝) ≥ 𝑎𝜋 (𝑞) 𝑣̄
2
𝑝,𝜋 (𝑞) . □

Proof of Lemma B.2 (column gap). Let z1, . . . , z𝑚 be independent N (0, I𝑑) variables. Fix 𝑘 ≠ 𝑙 ∈
[𝑚] and 𝑝 ∈ [𝑃]. Note that (𝑣̄𝑘, 𝜋 (𝑝) , 𝑣̄𝑙, 𝜋 (𝑝) )

𝑑
= (𝑧𝑘, 𝑝/∥z𝑘 ∥ , 𝑧𝑙, 𝑝/∥z𝑙 ∥). Hence, we can write

P
[
𝑣̄2𝐼−2
𝑘, 𝜋 (𝑝) ∈ (1 ± 𝛿𝑐)𝑣̄2𝐼−2

𝑙, 𝜋 (𝑝)

]
= P

[(
𝑧𝑘, 𝑝

𝑧𝑘,𝑙

)2𝐼−2
∈ (1 ± 𝛿𝑐)

(
∥z𝑘 ∥
∥z𝑙 ∥

)2𝐼−2
]

≤ P

[(
𝑧𝑘, 𝑝

𝑧𝑘,𝑙

)2𝐼−2
∈ 1 ± 3𝛿𝑐

]
+ P

[(
∥z𝑘 ∥
∥z𝑙 ∥

)2𝐼−2
∉ 1 ± 𝛿𝑐

]
.

By our previous calculation, we know the first term is bounded by 6𝛿𝑐/𝜋. Meanwhile, by the standard
concentration results for N (0, I𝑑), we have

P
[���� ∥z𝑘 ∥
E ∥z𝑘 ∥

− 1
���� ≥ 𝑡] ≤ 2 exp

(
−(E ∥z𝑘 ∥)2𝑡2/2

)
≤ 2 exp

(
−𝑑𝑡2/4

)
, ∀𝑡 ≥ 0.

In other words, with probability at least 1 − 4 exp
(
−𝑑𝑡2/4

)
, we have

∥z𝑘 ∥2𝐼−2 = (1 ± 𝑡)2𝐼−2 = 1 ± 4(𝐼 − 1)𝑡, ∥z𝑙 ∥2𝐼−2 = 1 ± 4(𝐼 − 1)𝑡,

and therefore (∥z𝑘 ∥ /∥z𝑙 ∥)2𝐼−2 = 1 ± 10(𝐼 − 1)𝑡. Choose 𝑡 = 𝛿𝑐/(10(𝐼 − 1)), and we obtain

P

[(
∥z𝑘 ∥
∥z𝑙 ∥

)2𝐼−2
∉ 1 ± 𝛿𝑐

]
≤ 4 exp

(
−𝑑

4
𝛿2
𝑐

100(𝐼 − 1)2

)
.

As a result, we have

P
[
𝑣̄2𝐼−2
𝑘, 𝜋 (𝑝) ∈ (1 ± 𝛿𝑐)𝑣̄2𝐼−2

𝑙, 𝜋 (𝑝)

]
≤ 6𝛿𝑐

𝜋
+ 4 exp

(
−𝑑

4
𝛿2
𝑐

100(𝐼 − 1)2

)
.

Take union bound over 𝑘 ≠ 𝑙 ∈ [𝑚] and 𝑝 ∈ [𝑃], and we get

P
[
∃𝑘 ≠ 𝑙 ∈ [𝑚], 𝑝 ∈ [𝑃], 𝑣̄2𝐼−2

𝑘, 𝜋 (𝑝) ∈ (1 ± 𝛿𝑐)𝑣̄2𝐼−2
𝑙, 𝜋 (𝑝)

]
≤ 𝑚2𝑃

(
6𝛿𝑐
𝜋

+ 4 exp
(
−𝑑

4
𝛿2
𝑐

100(𝐼 − 1)2

))
.

For the RHS to be bounded by 𝛿P, it suffices to require

𝑚2𝑃
12𝛿𝑐
𝜋

≤ 𝛿P ⇐ 𝛿𝑐 ≤
𝛿P𝜋

12𝑚2𝑃
,

4 exp
(
−𝑑

4
𝛿2
𝑐

100(𝐼 − 1)2

)
≤ 6𝛿𝑐

𝜋
⇐ 𝑑 ≥ 400(𝐼 − 1)2

𝛿2
𝑐

log
(

2𝜋
3𝛿𝑐

)
.

To complete the proof, recall that by the definition of the greedy maximum selection, we have
𝑣̄2
𝑝,𝜋 (𝑝) ≥ 𝑣̄

2
𝑘, 𝜋 (𝑝) when 𝑘 > 𝑝. □
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Proof of Lemma B.2 (threshold gap). Consider arbitrary 𝑘 ≠ 𝑙 ∈ [𝑚] and 𝑝 ≠ 𝑞 ∈ [𝑃]. We estimate
the gap between 𝑎𝜋 (𝑝) 𝑣̄2𝐼−2

𝑘, 𝜋 (𝑝) and 𝑎𝜋 (𝑞) 𝑣̄2𝐼−2
𝑙, 𝜋 (𝑞) . Let z𝑘 , z𝑙 be independent N (0, I𝑑) variables; we

have (𝑣̄𝑘, 𝜋 (𝑝) , 𝑣̄𝑙, 𝜋 (𝑞) )
𝑑
= (𝑧𝑘, 𝑝/∥z𝑘 ∥ , 𝑧𝑙,𝑞/∥z𝑙 ∥). As in the proof of column gap, we can write

P
[
𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑘, 𝜋 (𝑝) ∈ (1 ± 𝛿𝑡 )𝑎𝜋 (𝑞) 𝑣̄2𝐼−2

𝑙, 𝜋 (𝑝)

]
= P

[
𝑎𝜋 (𝑝)
𝑎𝜋 (𝑞)

(
𝑧𝑘, 𝑝

𝑧𝑘,𝑙

)2𝐼−2
∈ (1 ± 𝛿𝑡 )

(
∥z𝑘 ∥
∥z𝑙 ∥

)2𝐼−2
]

≤ P

[
𝑎𝜋 (𝑝)
𝑎𝜋 (𝑞)

(
𝑧𝑘, 𝑝

𝑧𝑘,𝑙

)2𝐼−2
∈ 1 ± 3𝛿𝑡

]
+ P

[(
∥z𝑘 ∥
∥z𝑙 ∥

)2𝐼−2
∉ 1 ± 𝛿𝑡

]
.

By the proof of the row gap and the column gap, the last two terms are bounded by 6𝛿𝑡
𝜋

and
4 exp

(
− 𝑑4

𝛿2
𝑡

100(𝐼−1)2

)
, respectively. Note that this is the same as the bounds in the column gap proof

(up to changing 𝛿𝑐 to 𝛿𝑡 ). Thus, we have

P
[
∃𝑘 ≠ 𝑙 ∈ [𝑚], 𝑝 ∈ [𝑃], 𝑣̄2𝐼−2

𝑘, 𝜋 (𝑝) ∈ (1 ± 𝛿𝑐)𝑣̄2𝐼−2
𝑙, 𝜋 (𝑝)

]
≤ 𝛿P,

provided that

𝛿𝑡 ≤
𝛿P𝜋

12𝑚2𝑃
, 𝑑 ≥ 400(𝐼 − 1)2

𝛿2
𝑡

log
(

2𝜋
3𝛿𝑡

)
.

To complete the proof, note that by the definition of the greedy maximum selection process, we have
𝑎𝜋 (𝑃∗ ) 𝑣̄

2𝐼−2
𝑃∗ , 𝜋 (𝑃∗ ) ≥ 𝑎𝜋 (𝑞) 𝑣̄

2𝐼−2
𝑘, 𝜋 (𝑞) for all 𝑃∗ < 𝑘 ≤ 𝑚 and 𝑃∗ < 𝑞 ≤ 𝑃. □

Proof of Lemma B.2 (regularity conditions). First, we consider the upper bound. Let z1, . . . , z𝑚

be independent N (0, I𝑑) random vectors. We have (v̄𝑘)𝑘
𝑑
= (z𝑘/∥z𝑘 ∥)𝑘 . By the stan-

dard Gaussian concentration results, we have P(max𝑘∈[𝑚] ∥z𝑘 ∥∞ ≥ 𝑧) ≤ 2𝑚𝑑𝑒−𝑧2/2 and
P(max𝑘∈[𝑚] |∥z𝑘 ∥ /E ∥z1∥ − 1| ≥ 𝜀) ≤ 2𝑚𝑒−𝜀2𝑑/3. Therefore, we have max𝑘 ∥v̄𝑘 ∥2

∞ ≤ log2 𝑑/𝑑
with probability at least 1 −𝑂 (𝛿P).
Now, we consider the lower bound. Let 𝐾 be a parameter to be determined later. Our goal is to show
that with high probability, 𝑎𝜋 (𝑝) 𝑣̄2

𝑝,𝜋 (𝑝) is at least the 𝐾-th largest entry of the 𝜋(𝑝)-th column of
the greedy maximum selection matrix. In other words, at most the first 𝐾 − 1 largest entries can be
covered by the earlier neurons.
For any 𝑘 ≠ 𝑙 ∈ [𝑚], the events that the 𝑘-th and 𝑙-th neurons are used by some earlier are independent.
In addition, by symmetry, the probability that the 𝑘-th row is used by some other neuron is at most
𝑃∗/(𝑚 − 𝑃∗), as we always have at least 𝑚 − 𝑃∗ neurons remained. Meanwhile, since the coordinates
of v̄𝑘 are negatively correlated, conditioned on that 𝑣̄2

𝑘, 𝜋 (𝑝) is among the 𝐾 largest entries of that
column, the probability that that row gets used is still upper bounded by 𝑃∗/(𝑚 − 𝑃∗). Thus,

P [all first 𝐾 largest entries of the 𝜋(𝑝)-th column are used] ≤
(

𝑃∗
𝑚 − 𝑃∗

)𝐾
.

By union bound, the probability that one of {𝑣̄2
𝑝,𝜋 (𝑝) }𝑝∈[𝑃∗ ] is not at least the 𝐾-th largest in that

column is upper bounded by 𝑃∗
(

𝑃∗
𝑚−𝑃∗

)𝐾
. For this to be upper bounded by 𝛿P, it suffices to have

𝑃∗

(
𝑃∗

𝑚 − 𝑃∗

)𝐾
≤ 𝛿P ⇐ 𝐾 ≥ log (𝑃∗/𝛿P)

log ((𝑚 − 𝑃∗)/𝑃∗)
⇐

{
𝐾 = log (𝑃∗/𝛿P) ,
𝑚 ≥ 4𝑃∗ log(𝑃∗/𝛿P).

Finally, by Lemma B.3, provided that3
𝑚

log𝑚
≥ 128𝜋 log2 (𝑃∗/𝛿P) and

𝑚

log3 𝑚
≥ 512 log2 (𝑃∗/𝛿P),

we have with probability at least 1 − 𝛿P that

𝑣̄2
𝑝,𝜋 (𝑝) (0) ≥

1
𝑑

log
(

𝑚

log(𝑃∗/𝛿P)

)
≥ log 𝑃∗

𝑑
, ∀𝑝 ∈ [𝑃∗] .

3Note that the second condition is stronger, so it suffices to keep the second one.
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We conclude by establishing the last regularity condition. For fixed 𝑗 , 𝑞, the PDF of 𝑍 := 𝑣̄ 𝑗 ,𝑞 is
𝑝𝑍 (𝑧) =

Γ ( 𝑑2 )
√
𝜋Γ ( 𝑑−1

2 ) (1 − 𝑧2) 𝑑−3
2 , and therefore

P(𝑣̄2
𝑗 ,𝑞 ≤ 1

𝑑
) ≤ 2

√
𝑑
·

Γ( 𝑑2 )√
𝜋Γ( 𝑑−1

2 )
≤ 2

√
𝑑
·
√︁
𝑑/2
√
𝜋

≤
√︂

2
𝜋
≤ 0.8,

where the first inequality upper bounds the PDF by 𝑝𝑍 (0), and the second is Gautschi’s inequality.
Therefore

P(max
𝑗>𝑃∗

𝑣̄2
𝑗 ,𝑞 ≤ 1/𝑑) ≤ P(

∑︁
𝑗∈[𝑚]

1(𝑣̄2
𝑗 ,𝑞 ≥ 1/𝑑) ≤ 𝑃∗).

Note that
∑
𝑗∈[𝑚] 1(𝑣̄2

𝑗 ,𝑞
≥ 1/𝑑) is subGaussian with variance proxy ≤ 𝑚. Therefore for 𝑚 ≥ 10𝑃∗

P(
∑︁
𝑗∈[𝑚]

1(𝑣̄2
𝑗 ,𝑞 ≥ 1/𝑑) ≤ 𝑃∗) ≤ exp(−(𝑃∗ − 0.2𝑚)2/𝑚) = exp(−𝑚/100).

Union bounding over all 𝑞 ∈ [𝑃], we get

P( min
𝑞∈[𝑃 ]

max
𝑗>𝑃∗

𝑣̄2
𝑗 ,𝑞 ≤ 1/𝑑) ≤ 𝑃 exp(−𝑚/100) ≤ 𝛿P

for 𝑚 ≥ 100 log(𝑃/𝛿P). □

Lemma B.3. Let 𝑍1, . . . , 𝑍𝑚 be independent N (0, 1) variables. Suppose that
𝑚

log𝑚
≥ 128𝜋 log2 (1/𝛿P) and

𝑚

log3 𝑚
≥ 512𝜋𝐾2.

Then, with probability at least 1 − 𝛿P, the 𝐾-th largest among 𝑍1, . . . , 𝑍𝑚 is at least
√︁

log(𝑚/𝐾).

Proof. Let Φ denote the CDF of N (0, 1). Then, the CDF 𝐹𝐾 of the 𝐾-th largest element among
𝑍1, . . . , 𝑍𝑚 is

𝐹𝐾 (𝑧) =
𝐾−1∑︁
𝑘=1

(
𝑚

𝑘

)
(1 −Φ(𝑧))𝑘Φ𝑚−𝑘 (𝑧)

It is well-known that the mill’s ratio of N (0, 1) satisfies
1

√
2𝜋

𝑧

1 + 𝑧2 𝑒
−𝑧2/2 ≤ 1 −Φ(𝑧) ≤ 1

√
2𝜋

1
𝑧
𝑒−𝑧

2/2.

Meanwhile, we have
(𝑚
𝑘

)
≤ 𝑚𝑘𝑒𝑘/𝑘 𝑘 . As a result,

𝐹𝐾 (𝑧) ≤
𝐾−1∑︁
𝑘=1

(𝑚𝑒
𝑘

) 𝑘 (
1

√
2𝜋

1
𝑧
𝑒−𝑧

2/2
) 𝑘 (

1 − 1
√

2𝜋
𝑧

1 + 𝑧2 𝑒
−𝑧2/2

)𝑚−𝑘

≤
𝐾−1∑︁
𝑘=1

(
𝑚𝑒

𝑘

1
√

2𝜋
1
𝑧

) 𝑘
exp

(
− 𝑘𝑧

2

2

)
exp

(
−𝑚 − 𝑘

√
2𝜋

𝑧

1 + 𝑧2 𝑒
−𝑧2/2

)
.

Choose 𝑧 =
√︁
(1 − 𝜀)2 log(𝑚/𝐾) for some 𝜀 ∈ (0, 1). Then, we have 𝑒−𝑧2/2 = (𝐾/𝑚)1−𝜀 and

𝐹𝐾 (𝑧) ≤
𝐾−1∑︁
𝑘=1

(
𝑚𝑒

𝑘

1
√

2𝜋
1
𝑧

(
𝐾

𝑚

)1−𝜀
) 𝑘

exp

(
−𝑚 − 𝑘

√
2𝜋

𝑧

1 + 𝑧2

(
𝐾

𝑚

)1−𝜀
)
.

Choose 𝜀 = 1/2 and suppose that 𝐾 ≤ 𝑚/2. Then, we have

𝐹𝐾 (𝑧) ≤
𝐾−1∑︁
𝑘=1

(
𝑚1/2𝐾1/2

) 𝑘
exp

(
− 1

4
√

2𝜋
𝑚1/2

𝑧

)
≤
𝐾−1∑︁
𝑘=1

exp
(
𝑘

2
log(𝑚𝐾) − 1

4
√

2𝜋
𝑚1/2

𝑧

)
≤ exp

(
2𝐾 log𝑚 − 1

4
√

2𝜋
𝑚1/2√︁
log𝑚

)
.
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To merge the first term into the second term, it suffices to require

2𝐾 log𝑚 ≤ 1
8
√

2𝜋
𝑚1/2√︁
log𝑚

⇐ 𝑚

log3 𝑚
≥ 512𝜋𝐾2.

Finally, we compute

exp

(
− 1

8
√

2𝜋
𝑚1/2√︁
log𝑚

)
≤ 𝛿P ⇐ 𝑚

log𝑚
≥ 128𝜋 log2 (1/𝛿P)

□

C Gradient Flow Analysis

In this section, we analyze the gradient flow dynamics and show that gradient flow implements the
greedy maximum selection scheme. We will assume the following on the initialization.
Assumption C.1 (Initialization). Suppose 𝑃∗ ≤ min{𝑃, 𝑚}. We assume that the following hold at
initialization.

(a) (Row gap) For any 𝑝 ∈ [𝑃∗] and 𝑝 < 𝑞 ∈ [𝑃], we have 𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) ≥ (1 +

𝛿𝑟 )𝑎𝜋 (𝑞) 𝑣̄2𝐼−2
𝑝,𝜋 (𝑞) .

(b) (Column gap) For any 𝑝 ∈ [𝑃∗] and 𝑝 < 𝑘 ∈ [𝑚], we have 𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) ≥ (1 + 𝛿𝑐)𝑣̄2𝐼−2

𝑘, 𝜋 (𝑝) .

(c) (Threshold gap) For any 𝑃∗ < 𝑘 ∈ [𝑚] and 𝑃∗ < 𝑞 ∈ [𝑃], we have 𝑎𝜋 (𝑃∗ ) 𝑣̄2𝐼−2
𝑃∗ , 𝜋 (𝑃∗ ) ≥

(1 + 𝛿𝑡 )𝑎𝜋 (𝑞) 𝑣̄2𝐼−2
𝑘, 𝜋 (𝑞) .

(d) (Regularity conditions) max𝑘∈[𝑚] ∥v̄𝑘 ∥2
∞ ≤ log2 𝑑/𝑑 and min𝑝∈[𝑃∗ ] 𝑣̄2

𝑝,𝜋 (𝑝) ≥ 1/𝑑.

Remark. By Lemma B.2, this assumption hold with high probability with 𝛿𝑐, 𝛿𝑟 , 𝛿𝑡 = 1/poly(𝑃).

Now, we formally state the main theorem for gradient flow. The proof is deferred to the end of this
section (cf. Section C.3). In the statement, we hide the constants that depend only on 𝜎.
Theorem C.1 (Main theorem for gradient flow). Assume Assumption C.1 holds at initialization. Let
𝜀𝐷 , 𝜀𝑅 be our target accuracies and 𝛿𝑇 be the target error in time. Put 𝛿𝑟 ,𝑡 := 𝛿𝑟 ∧ 𝛿𝑡 . Suppose that4

𝜀𝐷 ≳𝜎
∥a∥1
𝑎min∗

1
𝑑𝐼−1/4 ,

1
𝑑𝐼−1/4 ≲𝜎 𝜀𝑅 ≲𝜎

𝑎2
min∗𝛿𝑐

(log2 𝑑)𝐼−1
,

∥a∥1
𝑎min∗

1
𝑑1/4 ≲𝜎 𝛿𝑇 ≲𝜎 𝛿𝑐 ∧ 𝛿𝑟 ∧ 𝛿𝑡 ,

𝑑

(log2 𝑑)4𝐼
≳𝜎 𝛿−8

𝑟 ,𝑡 ∨
(
𝑎min∗
∥a∥1

𝛿𝑟 ,𝑡

)−4
∨

(
𝑎2

min∗𝛿𝑐

∥a∥1

)−4

.

Choose the initialization scale to be

𝜎2
0 ≈𝜎

𝜀8/(𝐼 𝜎̂2
2𝐼 )

𝑚

(
𝑎min∗𝜀𝐷 ∧

𝑎min∗𝛿𝑇

𝑑𝐼−1/2 ∧ 𝜀𝑅 ∧
𝑎min∗𝛿𝑟 ,𝑡

(log 𝑑)2𝐼−2𝑑𝐼−1/2 ∧
𝑎2

min∗𝛿𝑐

(log2 𝑑)𝐼−1

1
𝑑𝐼−1/2

)
,

where 𝜀 =𝜎 𝜀
2
𝐷
𝑑2(𝐼−1)∧ 𝛿2

𝑇
𝛿2
𝑟,𝑡

𝑑 (log 𝑑)4(𝐼−1) ∧ 𝜀𝑅
𝑎min∗

∧ 𝛿4
𝑟,𝑡

𝑑 (log 𝑑)4(𝐼−1) ∧
𝑎2

min∗ 𝛿
2
𝑐

(log2 𝑑)2𝐼−2
𝛿2
𝑟,𝑡

𝑑 (log 𝑑)4(𝐼−1) . For each 𝑝 ∈ [𝑃∗],
define

𝑇𝑝 :=
1

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

= Θ

(
1

𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

)
= Θ̃

(
1

𝑎𝜋 (𝑝)𝑑𝐼−1

)
.

Then, we have the following over time interval [0, (1 + 20𝛿𝑇 )𝑇𝑃∗ ]:
4Note that the lower bounds are 1/poly(𝑑), and we know from Lemma B.2 that 𝛿𝑐 , 𝛿𝑟 , 𝛿𝑟 are 1/poly(𝑃).

Hence, the range from which 𝜀𝐷 , 𝜀𝑅 , 𝛿𝑇 can be chosen is not restrictive.
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(a) (Unused neurons) ∥v𝑘 ∥2 ≤ 𝜎2
1 for all 𝑘 > 𝑃∗.

(b) (Learning) For any 𝑝 ∈ [𝑃∗], 𝑣̄2
𝑝,𝜋 (𝑝) ≥ 1 − 𝜀𝐷 and



v𝑝

2
= 𝑎𝜋 (𝑝) ± 𝜀𝑅 for all 𝑡 ≥

(1 + 20𝛿𝑇 )𝑇𝑝 .

(c) (Sharp transition) For any 𝑝 ∈ [𝑃∗], 𝑣̄2
𝑝,𝜋 (𝑝) ≤

(
4
𝛿𝑇

) 1
𝐼−1 log2 𝑑

𝑑
and



v𝑝

2 ≤ 𝜎2
1 for all

𝑡 ≤ (1 − 10𝛿𝑇 )𝑇𝑝 .

In words, for each 𝑝 ∈ [𝑃∗], v̄𝑝 converges to e𝜋 (𝑝) and fit 𝑎𝜋 (𝑝) at time (1 ± 𝑜(1))𝑇𝑝 , and all other
neurons stay small throughout training.

Our proof will be a large (continuous) induction argument. Namely, we assume a collection of
induction hypotheses, analyze the dynamics under these conditions, derive the convergence guarantees,
and show that these induction hypotheses hold throughout training. One may refer to, for example,
Section A.1 of [GRWZ21] or Chapter 1.3 of [Tao06] for details on this method.
We will maintain the following induction hypothesis.
Induction Hypothesis C.2. Let 𝜎1 > 𝜎0, 𝜀 ≤ 𝜀0, 𝛾 be 𝑜(1) parameters. We say this induction
hypothesis holds at a time point if the following hold at that time point.

(a) Define 𝐿 := {𝑘 ∈ [𝑚] : ∥v𝑘 ∥ ≥ 𝜎1}. For any 𝑝 ∈ [𝑚], v𝑝 ∈ 𝐿 implies 𝑝 ≤ 𝑃∗ and
𝑣̄2
𝑝,𝜋 (𝑝) ≥ 1 − 𝜀.

(b) For any (𝑘, 𝜋(𝑞)) that is not in {(𝑝, 𝜋(𝑝)) : 𝑝 ∈ [𝑃∗]}, we have 𝑣̄2
𝑘, 𝜋 (𝑞) ≤ 𝜀0 := 𝑑−(1−𝛾) .

(c) We have


v𝑝

2 ≤ 2𝑎𝑙 for any 𝑝 ∈ [𝑃 ∧ 𝑚] and 𝑣̄2

𝑝,𝜋 (𝑝) ≥ 1/𝑑 for any 𝑝 ∈ [𝑃∗].
Remark. Condition (a) states that the norm of a neuron is large (when compared to 𝜎0) only if it is
close to one ground-truth direction. Condition (b) means that all irrelevant coordinates stay small
throughout training. Condition (c) includes some basic regularity conditions.

Before proceeding to the proofs, we state the following lemma that controls the interaction between
different learner neurons. The proof is deferred to Section C.3.
Lemma C.2. Suppose that Induction Hypothesis C.2 is true at time 𝑡. Then, at time 𝑡, for any 𝑘 ∈ [𝑚]
and 𝑞 ∈ [𝑃], we have

d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑞) = 2𝑣̄2

𝑘, 𝜋 (𝑞)

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

(
𝑎𝜋 (𝑞) 𝑣̄

2𝑖−2
𝑘, 𝜋 (𝑞) −

𝑃∑︁
𝑟=1

𝑎𝜋 (𝑟 ) 𝑣̄
2𝑖
𝑘, 𝜋 (𝑟 )

)
− 1 {𝑘 ≠ 𝑞, 𝑞 ∈ 𝐿} 2



v𝑞

2
(
1 − 𝑣̄2

𝑘, 𝜋 (𝑞)

) ∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖 𝑣̄

2𝑖
𝑘, 𝜋 (𝑞)

± 𝐼23𝐼+6𝐶2
𝜎

��𝑣̄𝑘, 𝜋 (𝑞) �� {𝑎𝜋 (𝑞)𝜀1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
}
.

In addition, for any target 𝛿 > 0, we have

𝑎𝜋 (𝑞)𝜀
1/2𝜀𝐼−1

0 ∨ 𝑚𝜎2
1 ∨ ∥a∥1 𝜀

𝐼
0 ≤ 𝛿 ⇐



𝜀 ≤
(

𝛿

𝑎𝜋 (𝑞)

)2
𝑑2(1−𝛾) (𝐼−1) ,

𝑚𝜎2
1 ≤ 𝛿,

𝑑 ≥
(
𝛿

∥a∥1

)− 1
(1−𝛾) 𝐼

.

(6)

The rest of this section is organized as follows. In Section C.1, we assume Induction Hypothesis C.2
and show that v𝑝 (𝑝 ∈ [𝑃∗]) converges to e𝜋 (𝑝) and fits 𝑎𝜋 (𝑝) at time (1 ± 𝑜(1))𝑇𝑝. Then, in
Section C.2, we verify Induction Hypothesis C.2. Finally, in Section C.3, we prove Lemma C.2 and
Theorem C.1.

C.1 Convergence Guarantees

In this subsection, we show under Induction Hypothesis C.2 that v𝑝 (𝑝 ∈ [𝑃∗]) converges to e𝜋 (𝑝)

and fits 𝑎𝜋 (𝑝) at time (1 ± 𝑜(1))𝑇𝑝 . We will first consider the dynamics of v̄𝑝 and then


v𝑝

2. Our

main result is the following, whose proof can be found at the end of this subsection.

24



Corollary C.9 (Convergence). Let 𝜀𝐷 , 𝜀𝑅 be our target accuracy in the tangent and radial directions,
and 𝛿𝑇 the target error in time. Suppose that 𝛾 < 1/(2𝐼), 𝛿′𝑣 = 1/3,

𝜀𝐷 ≥ 23𝐼+7𝐶2
𝜎

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝑑 (1−𝛾) 𝐼

, 𝜀𝑅 ≥ 12 ∥a∥1 22𝐼𝑑−(1−𝛾) 𝐼 , 𝛿𝑇 ≥ 23𝐼+4𝐶2
𝜎

𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝑑1/2−𝛾𝐼 ,

𝑚𝜎2
1 ≤

𝜎̂2
2𝐼𝑎min∗

23𝐼+7𝐶2
𝜎

(
(𝛿′𝑣)𝐼𝜀 ∧

𝛿𝑇

𝑑𝐼−1/2

)
∧ 𝜀𝑅

12
,

𝜀 ≤
(
(𝛿′𝑣)𝐼 𝜎̂2

2𝐼

23𝐼+7𝐶2
𝜎

)2

𝜀2
𝐷𝑑

2(1−𝛾) (𝐼−1) ∧
(
𝛿𝑇

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

)2
1

𝑑1+2𝛾 (𝐼−1) ∧
𝜀𝑅

12𝐶2
𝜎𝑎𝜋 (𝑝)

.

Then, for any 𝑝 ∈ [𝑃∗], we have

𝑣̄2
𝑝,𝜋 (𝑝) ≥ 1 − 𝜀𝐷 ,



v𝑝

2
= 𝑎𝜋 (𝑝) ± 𝜀𝑅, ∀𝑡 ≥ (1 + 20𝛿𝑇 )𝑇𝑝 ,

𝑣̄2
𝑝,𝜋 (𝑝) ≤

(
4
𝛿𝑇

) 1
𝐼−1 log2 𝑑

𝑑
,



v𝑝

2 ≤ 𝜎2
1 , ∀𝑡 ≤ (1 − 10𝛿𝑇 )𝑇𝑝 ,

where

𝑇𝑝 :=
1

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

= Θ

(
1

𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

)
= Θ̃

(
1

𝑎𝜋 (𝑝)𝑑𝐼−1

)
.

C.1.1 Tangent Dynamics

Here, we analyze the diagonal entries {𝑣̄2
𝑝,𝜋 (𝑝) }𝑝∈[𝑃∗ ] . Let 𝑝 ∈ [𝑃∗] be fixed. For 𝛿 ∈ (0, 1), let

𝑇𝛿 denote the time 𝑣̄2
𝑝,𝜋 (𝑝) reaches 𝛿. We split the training process into [0, 𝑇𝛿𝑣 ], [𝑇𝛿𝑣 , 𝑇𝛿′𝑣 ] and

[𝑇𝛿′𝑣 , 𝑇1−𝜀], where 𝛿𝑣 = 𝑜(1) and 𝛿′𝑣 = 𝑂 (1) are two parameters to be chosen later. Our goal is
to show that 𝑣̄2

𝑝,𝜋 (𝑝) will converge to close to 1 around time (1 ± 𝑂 (𝛿𝑇 ))𝑇𝑝, where 𝑇𝑝 is the time
indicated by the idealized process and 𝛿𝑇 is a parameter measuring the error.
Lemma C.3 (Dynamics of the diagonal entries (Stage 1)). Suppose that at time 𝑡 ∈ [0, 𝑇𝛿𝑣 ],
Induction Hypothesis C.2 is true and the following hold:

𝛿𝑣 ≤
𝛿𝑇

2
2𝐼𝜎̂2

2𝐼

𝐶2
𝜎

, 𝛾 <
1
2𝐼
, 𝑚𝜎2

1 ≤ 𝛿𝑇
𝜎̂2

2𝐼𝑎min∗

23𝐼+4𝐶2
𝜎𝑑

𝐼−1/2
,

𝜀 ≤
(
𝛿𝑇

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

)2
1

𝑑1+2𝛾 (𝐼−1) , 𝑑 ≥
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1

𝛿𝑇

)− 2
1−2𝛾𝐼

.

Then, at time 𝑡 ∈ [0, 𝑇𝛿𝑣 ], for any 𝑝 ∈ [𝑃∗], we have
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝) = (1 ± 3𝛿𝑇 ) × 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑝) .

Proof. First, by Lemma C.2, we have

d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝) = 2𝑣̄2

𝑝,𝜋 (𝑝)2𝐼𝜎̂
2
2𝐼

(
𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) −

𝑃∑︁
𝑟=1

𝑎𝜋 (𝑟 ) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑟 )

)
+ 2𝑣̄2

𝑝,𝜋 (𝑝)

∞∑︁
𝑖=𝐼+1

2𝑖𝜎̂2
2𝑖

(
𝑎𝜋 (𝑝) 𝑣̄

2𝑖−2
𝑝,𝜋 (𝑝) −

𝑃∑︁
𝑟=1

𝑎𝜋 (𝑟 ) 𝑣̄
2𝑖
𝑝, 𝜋 (𝑟 )

)
± 𝐼23𝐼+6𝐶2

𝜎

��𝑣̄𝑝,𝜋 (𝑝) �� {𝑎𝜋 (𝑝)𝜀1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
}

=: T1

(
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝)

)
+ T2

(
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝)

)
+ T3

(
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝)

)
.

For the signal term T1, by Induction Hypothesis C.2(b), we have

T1 = 4𝐼𝜎̂2
2𝐼

(
𝑎𝜋 (𝑝)

(
1 − 𝑣̄2

𝑝,𝜋 (𝑝)

)
𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) −

∑︁
𝑟 :𝑟≠𝑝

𝑎𝜋 (𝑟 ) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑟 )

)
𝑣̄2
𝑝,𝜋 (𝑝)
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= 4𝐼𝜎̂2
2𝐼

(
𝑎𝜋 (𝑝) (1 ± 𝛿𝑣) 𝑣̄2𝐼−2

𝑝,𝜋 (𝑝) ± 𝜀
𝐼
0 ∥a∥1

)
𝑣̄2
𝑝,𝜋 (𝑝)

=

(
1 ± 𝛿𝑣 ±

𝜀𝐼0 ∥a∥1

𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝)

)
× 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑝) .

We want the error terms in the coefficient to be bounded by 𝛿𝑇 . For this to happen, we first
require 𝛿𝑣 ≤ 𝛿𝑇/2. Then, recall from Induction Hypothesis C.2(c) that 𝑣̄2

𝑝,𝜋 (𝑝) ≥ 1/𝑑. Also recall
𝜀0 = 𝑑−(1−𝛾) . Hence, we have

𝜀𝐼0 ∥a∥1

𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝)

≤ 𝛿𝑇

2
⇐ 𝑑𝐼𝛾−1 ≤

𝑎min∗
∥a∥1

𝛿𝑇

2
⇐ 𝛾 < 1/𝐼, 𝑑 ≥

(
𝑎min∗
∥a∥1

𝛿𝑇

2

) −1
1−𝐼𝛾

.

When the above conditions hold, we have

T1 = (1 ± 𝛿𝑇 ) × 4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑝) .

Then, consider T2. We have

|T2 | ≤ 2𝐶2
𝜎 𝑣̄

2
𝑝,𝜋 (𝑝)

(
𝑎𝜋 (𝑝) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑝) + ∥a∥1 𝜀

𝐼
0

)
≤

(
𝑎𝜋 (𝑝) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑝) + ∥a∥1 𝜀

𝐼
0

) 𝐶2
𝜎

2𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝)

× 4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑝) .

Again, for the coefficient to be bounded by 𝛿𝑇 , it suffices to require

𝐶2
𝜎𝑎𝜋 (𝑝) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑝)

2𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝)

≤ 𝛿𝑇

2
⇐

𝐶2
𝜎 𝑣̄

2
𝑝,𝜋 (𝑝)

2𝐼𝜎̂2
2𝐼

≤ 𝛿𝑇

2
⇐ 𝛿𝑣 ≤

𝛿𝑇

2
2𝐼𝜎̂2

2𝐼

𝐶2
𝜎

,

𝐶2
𝜎 ∥a∥1 𝜀

𝐼
0

2𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝)

≤ 𝛿𝑇

2
⇐ 𝜀𝐼0𝑑

𝐼−1 ≤ 𝛿𝑇

2
2𝐼𝜎̂2

2𝐼

𝐶2
𝜎

𝑎min∗
∥a∥1

⇐ 𝛾 < 1/𝐼, 𝑑 ≥
(
𝛿𝑇

2
2𝐼𝜎̂2

2𝐼

𝐶2
𝜎

𝑎min∗
∥a∥1

) −1
1−𝛾𝐼

.

Finally, consider T3. We have

|T3 | ≤ 𝐼23𝐼+6𝐶2
𝜎

��𝑣̄𝑝,𝜋 (𝑝) �� {𝑎𝜋 (𝑝)𝜀1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
}

=
{
𝑎𝜋 (𝑝)𝜀

1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
} 23𝐼+4𝐶2

𝜎𝑑
𝐼−1/2

𝜎̂2
2𝐼𝑎𝜋 (𝑝)

× 4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑝) .

By (6), for 𝑎𝜋 (𝑞)𝜀1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0 ≤ 𝜎̂2

2𝐼𝑎𝜋 (𝑝)
23𝐼+4𝐶2

𝜎𝑑
𝐼−1/2 𝛿𝑇 to hold, it suffices to have

𝑚𝜎2
1 ≤

𝜎̂2
2𝐼𝑎min∗

23𝐼+4𝐶2
𝜎𝑑

𝐼−1/2
𝛿𝑇 , 𝜀 ≤

(
𝜎̂2

2𝐼

23𝐼+4𝐶2
𝜎

𝛿𝑇

)2
1

𝑑1+2𝛾 (𝐼−1) , 𝑑 ≥
(

1
∥a∥1

𝜎̂2
2𝐼𝑎𝜋 (𝑝)

23𝐼+4𝐶2
𝜎𝑑

𝐼−1/2
𝛿𝑇

)− 1
(1−𝛾) 𝐼

.

Note that the last condition has 𝑑 on both sides. Rearrange terms and it becomes

𝑑
1− 𝐼−1/2

(1−𝛾) 𝐼 ≥
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1

𝛿𝑇

)− 1
(1−𝛾) 𝐼

⇐ 𝛾 <
1
2𝐼
, 𝑑 ≥

(
𝜎̂2

2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1

𝛿𝑇

)− 2
1−2𝛾𝐼

.

Combining the above bounds, we get
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝) = (1 ± 3𝛿𝑇 ) × 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑝) ,

as long as the following conditions are true:

T1 : 𝛿𝑣 ≤
𝛿𝑇

2
, 𝛾 < 1/𝐼, 𝑑 ≥

(
𝑎min∗
∥a∥1

𝛿𝑇

2

) −1
1−𝐼𝛾

,
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T2 : 𝛿𝑣 ≤
𝛿𝑇

2
2𝐼𝜎̂2

2𝐼

𝐶2
𝜎

, 𝛾 < 1/𝐼, 𝑑 ≥
(
𝛿𝑇

2
2𝐼𝜎̂2

2𝐼

𝐶2
𝜎

𝑎min∗
∥a∥1

) −1
1−𝛾𝐼

,

T3 : 𝑚𝜎2
1 ≤ 𝛿𝑇

𝜎̂2
2𝐼𝑎min∗

23𝐼+4𝐶2
𝜎𝑑

𝐼−1/2
, 𝜀 ≤

(
𝛿𝑇

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

)2
1

𝑑1+2𝛾 (𝐼−1) ,

𝛾 <
1
2𝐼
, 𝑑 ≥

(
𝜎̂2

2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1

𝛿𝑇

)− 2
1−2𝛾𝐼

.

Clear that the second set of conditions is stronger than the first set. In addition, since 1
1−𝛾𝐼 ≤

2
1−2𝛾𝐼 ,

the last condition on 𝑑 is stronger than the first one. Hence, we can prune the above as

𝛿𝑣 ≤
𝛿𝑇

2
2𝐼𝜎̂2

2𝐼

𝐶2
𝜎

, 𝛾 <
1
2𝐼
, 𝑚𝜎2

1 ≤ 𝛿𝑇
𝜎̂2

2𝐼𝑎min∗

23𝐼+4𝐶2
𝜎𝑑

𝐼−1/2
,

𝜀 ≤
(
𝛿𝑇

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

)2
1

𝑑1+2𝛾 (𝐼−1) , 𝑑 ≥
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1

𝛿𝑇

)− 2
1−2𝛾𝐼

.

□

We will see that the time needed for Stage 1 is much larger than all other stages combined, which
allows the estimations to be looser in later stages.
Lemma C.4 (Dynamics of the diagonal entries (Stage 2)). Suppose that at time 𝑡 ∈ [𝑇𝛿𝑣 , 𝑇𝛿′𝑣 ],
Induction Hypothesis C.2 is true. In addition, suppose that the conditions of Lemma C.3 holds and
𝛿′𝑣 ≤ 1/3. Then, at time 𝑡 ∈ [𝑇𝛿𝑣 , 𝑇𝛿′𝑣 ], for any 𝑝 ∈ [𝑃∗], we have

d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝) ≥

1
2
× 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑝) .

Proof. Similar to the previous proof, by Lemma C.2, we have

d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝) = 2𝑣̄2

𝑝,𝜋 (𝑝)2𝐼𝜎̂
2
2𝐼

(
𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) −

𝑃∑︁
𝑟=1

𝑎𝜋 (𝑟 ) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑟 )

)
+ 2𝑣̄2

𝑝,𝜋 (𝑝)

∞∑︁
𝑖=𝐼+1

2𝑖𝜎̂2
2𝑖

(
𝑎𝜋 (𝑝) 𝑣̄

2𝑖−2
𝑝,𝜋 (𝑝) −

𝑃∑︁
𝑟=1

𝑎𝜋 (𝑟 ) 𝑣̄
2𝑖
𝑝, 𝜋 (𝑟 )

)
± 𝐼23𝐼+6𝐶2

𝜎

��𝑣̄𝑝,𝜋 (𝑝) �� {𝑎𝜋 (𝑝)𝜀1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
}

=: T1

(
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝)

)
+ T2

(
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝)

)
+ T3

(
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝)

)
.

Since 𝑣̄2
𝑝,𝜋 (𝑝) is larger this time, under the same conditions of Lemma C.3, we have

|T3 | ≤ 𝛿𝑇 × 4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑝) .

In addition, we have

T2 ≥ −2𝑣̄2
𝑝,𝜋 (𝑝)

∞∑︁
𝑖=𝐼+1

2𝑖𝜎̂2
2𝑖

∑︁
𝑟 :𝑟≠𝑃

𝑎𝜋 (𝑟 ) 𝑣̄
2𝑖
𝑝, 𝜋 (𝑟 ) ≥ −2𝐶2

𝜎 𝑣̄
2
𝑝,𝜋 (𝑝) ∥a∥1 𝜀

𝐼+1
0

= −
𝐶2
𝜎 ∥a∥1 𝜀

𝐼+1
0

2𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝)

× 4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑝) .

For the same reason, under the conditions of Lemma C.3, the coefficient is bounded by 𝛿𝑇 . Hence

d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝) ≥ T1

(
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝)

)
− 2𝛿𝑇 × 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑝) .
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Finally, we lower bound T1. To this end, we compute

T1 = 2𝑣̄2
𝑝,𝜋 (𝑝)2𝐼𝜎̂

2
2𝐼

(
𝑎𝜋 (𝑝)

(
1 − 𝑣̄2

𝑝,𝜋 (𝑝)

)
𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) −

∑︁
𝑟 :𝑟≠𝑝

𝑎𝜋 (𝑟 ) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑟 )

)
≥ 2𝑣̄2

𝑝,𝜋 (𝑝)2𝐼𝜎̂
2
2𝐼

(
𝑎𝜋 (𝑝)

(
1 − 𝛿′𝑣

)
𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) − ∥a∥1 𝜀

𝐼
0

)
=

(
1 − 𝛿′𝑣 −

∥a∥1 𝜀
𝐼
0

𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝)

)
× 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑝) .

We will see that since the initial 𝑣̄2
𝑝,𝜋 (𝑝) in Stage 2 is much larger than 1/𝑑, Stage 2 is much shorter

than Stage 1, whence we only need the error in the coefficient to be smaller than a constant, say, 1/2.
To this end, it suffices to require 𝛿′𝑣 ≤ 1/3 and ∥a∥1𝜀

𝐼
0

𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝)

≤ 1
3 , and the second condition is again

implied by the conditions of Lemma C.3. □

Lemma C.5 (Dynamics of the diagonal entries (Stage 3)). Suppose that at time 𝑡 ∈ [𝑇𝛿′𝑣 , 𝑇1−𝜀],
Induction Hypothesis C.2 is true. In addition, suppose that the conditions of Lemma C.3 holds and
𝜀 ≥ 23𝐼+7𝐶2

𝜎

(𝛿′𝑣 ) 𝐼 𝜎̂2
2𝐼

{
𝜀1/2𝜀𝐼−1

0 ∨ 𝑚𝜎2
1

𝑎min∗
∨ ∥a∥1
𝑎min∗

𝜀𝐼0

}
.5 Then, at time 𝑡 ∈ [𝑇𝛿′𝑣 , 𝑇1−𝜀], for any 𝑝 ∈ [𝑃∗], we have

d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝) ≥

(
𝛿′𝑣

) 𝐼
𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝)
(
1 − 𝑣̄2

𝑝,𝜋 (𝑝)

)
.

Proof. By the proof of Lemma C.4, we have

d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝) = T1

(
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝)

)
+ T2

(
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝)

)
+ T3

(
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝)

)
,

where

T1 ≥ 2𝑣̄2
𝑝,𝜋 (𝑝)2𝐼𝜎̂

2
2𝐼

(
𝑎𝜋 (𝑝)

(
1 − 𝑣̄2

𝑝,𝜋 (𝑝)

)
𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) − ∥a∥1 𝜀

𝐼
0

)
,

T2 ≥ −2𝐶2
𝜎 ∥a∥1 𝜀

𝐼+1
0 ,

|T3 | ≤ 𝐼23𝐼+6𝐶2
𝜎

{
𝑎𝜋 (𝑝)𝜀

1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
}
.

For the first term, we compute

T1 ≥ 𝛿′𝑣

((
𝛿′𝑣

) 𝐼−1 −
∥a∥1 𝜀

𝐼
0

𝑎𝜋 (𝑝)𝜀

)
× 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝)
(
1 − 𝑣̄2

𝑝,𝜋 (𝑝)

)
When 𝜀 ≥ 2∥a∥1𝜀

𝐼
0

𝑎min∗ (𝛿′𝑣 ) 𝐼−1 , we can further rewrite the above as

T1 ≥
(
𝛿′𝑣

) 𝐼
2

× 4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑝)

(
1 − 𝑣̄2

𝑝,𝜋 (𝑝)

)
.

When 𝑣̄2
𝑝,𝜋 (𝑝) ≤ 1 − 𝜀, the RHS is lower bounded by ( 𝛿′𝑣) 𝐼

2 × 4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑝)𝜀. Our goal now is to show

ensure T2 and T3 are both bounded by ( 𝛿′𝑣) 𝐼
8 × 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝)𝜀. For T2, we compute

−T2 ≤ 2𝐶2
𝜎 ∥a∥1 𝜀

𝐼+1
0 ≤

(𝛿′𝑣)𝐼
8

× 4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑝)𝜀 ⇐ 𝜀 ≥ 4𝐶2

𝜎

(𝛿′𝑣)𝐼 𝐼𝜎̂2
2𝐼

∥a∥1
𝑎min∗

𝜀𝐼+1
0 .

Then, for T3, by (6), we

𝑎𝜋 (𝑝)𝜀
1/2𝜀𝐼−1

0 ∨ 𝑚𝜎2
1 ∨ ∥a∥1 𝜀

𝐼
0 ≤

(
𝛿′𝑣

) 𝐼
𝜎̂2

2𝐼

223𝐼+6𝐶2
𝜎

𝑎𝜋 (𝑝)𝜀

5Note that the order of the RHS is higher than 1. This allows 𝜀 to be smaller than 𝜀0 and 𝜀.
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⇐ 𝜀 ≤
( (
𝛿′𝑣

) 𝐼
𝜎̂2

2𝐼

223𝐼+6𝐶2
𝜎

𝜀

)2

𝑑2(1−𝛾) (𝐼−1) , 𝑚𝜎2
1 ≤

(
𝛿′𝑣

) 𝐼
𝜎̂2

2𝐼

223𝐼+6𝐶2
𝜎

𝑎min∗𝜀,

𝑑 ≥
(

1
∥a∥1

(
𝛿′𝑣

) 𝐼
𝜎̂2

2𝐼

223𝐼+6𝐶2
𝜎

𝑎𝜋 (𝑝)𝜀

)− 1
(1−𝛾) 𝐼

.

Then, rearrange terms so that they become conditions on 𝜀:

𝜀 ≥ 23𝐼+7𝐶2
𝜎

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

(
𝜀1/2𝜀𝐼−1

0 ∨
𝑚𝜎2

1
𝑎min∗

∨ ∥a∥1
𝑎min∗

𝜀𝐼0

)
.

Combine the above results, and we obtain

d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝) ≥

(
𝛿′𝑣

) 𝐼
4

× 4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑝)

(
1 − 𝑣̄2

𝑝,𝜋 (𝑝)

)
,

provided that

𝜀 ≥
2 ∥a∥1 𝜀

𝐼
0

𝑎min∗ (𝛿′𝑣)𝐼−1 ∨ 4𝐶2
𝜎

(𝛿′𝑣)𝐼 𝐼𝜎̂2
2𝐼

∥a∥1
𝑎min∗

𝜀𝐼+1
0 ∨ 23𝐼+7𝐶2

𝜎

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

(
𝜀1/2𝜀𝐼−1

0 ∨
𝑚𝜎2

1
𝑎min∗

∨ ∥a∥1
𝑎min∗

𝜀𝐼0

)
.

Note that (the last condition of) the third condition dominate the first two conditions. Hence, we can
simplify the above condition to be

𝜀 ≥ 23𝐼+7𝐶2
𝜎

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

(
𝜀1/2𝜀𝐼−1

0 ∨
𝑚𝜎2

1
𝑎min∗

∨ ∥a∥1
𝑎min∗

𝜀𝐼0

)
.

□

Now, we combine the previous lemmas and estimate the convergence rate of v̄𝑝 .
Lemma C.6 (Directional convergence). Inductively assume Induction Hypothesis C.2. Let 𝜀 be the
target accuracy and 𝛿𝑇 the target error in time. Suppose that

𝛾 <
1
2𝐼
, 𝛿′𝑣 =

1
3
,

𝜀 ≥ exp

(
−4𝐶2

𝜎

𝐼𝜎̂2
2𝐼

(𝛿′𝑣)𝐼
8𝐼

(
𝑑

log2 𝑑

) 𝐼+1/𝐼−2
)
, 𝑚𝜎2

1 ≤
𝜎̂2

2𝐼𝑎min∗

23𝐼+7𝐶2
𝜎

(
(𝛿′𝑣)𝐼𝜀 ∧

𝛿𝑇

𝑑𝐼−1/2

)
,

𝑑 ≥
(

23𝐼+7𝐶2
𝜎

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝜀

) 1
(1−𝛾) 𝐼

∨
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1

𝛿𝑇

)− 2
1−2𝛾𝐼

,

𝜀 ≤
(
(𝛿′𝑣)𝐼 𝜎̂2

2𝐼

23𝐼+7𝐶2
𝜎

)2

𝜀2𝑑2(1−𝛾) (𝐼−1) ∧
(
𝛿𝑇

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

)2
1

𝑑1+2𝛾 (𝐼−1) .

Then, for any 𝑝 ∈ [𝑃∗], the time needed for 𝑣̄2
𝑝,𝜋 (𝑝) to reach 1 − 𝜀 satisfies

𝑇1−𝜀 =
1 ± 10𝛿𝑇

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

= Θ

(
1

𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

)
= Θ̃

(
1

𝑎𝜋 (𝑝)𝑑𝐼−1

)
.

Moreover, the requirements on 𝑑 can be removed if we choose6

𝜀 ≥ 23𝐼+7𝐶2
𝜎

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝑑 (1−𝛾) 𝐼

= Θ

(
∥a∥1
𝑎min∗

1
𝑑 (1−𝛾) 𝐼

)
,

𝛿𝑇 ≥ 23𝐼+4𝐶2
𝜎

𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝑑1/2−𝛾𝐼 = Θ

(
∥a∥1
𝑎min∗

1
𝑑1/2−𝛾𝐼

)
.

6Note that this condition on 𝜀 is stronger than the existing one.
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Proof (Part I): convergence rate. By Lemma C.3, for any 𝑡 ∈ [0, 𝑇𝛿𝑣 ], we have

d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝) = (1 ± 3𝛿𝑇 ) × 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝)
(
𝑣̄2
𝑝,𝜋 (𝑝)

) 𝐼
⇒ 𝑣̄2

𝑝,𝜋 (𝑝) (𝑡) = 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

(
1 − (1 ± 3𝛿𝑇 ) 4𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)𝑡

)− 1
𝐼−1
.

This implies

1 − 4𝛿𝑇
4𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

©­«1 −
(
𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) (0)
𝛿𝑣

) 𝐼−1ª®¬ ≤ 𝑇𝛿𝑣 ≤ 1 + 4𝛿𝑇
4𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

.

For the lower bound, note that(
𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) (0)
𝛿𝑣

) 𝐼−1

≤ 𝛿𝑇 ⇐ 𝛿𝑣 ≥ 𝛿
−1
𝐼−1
𝑇
𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) (0) ⇐ 𝛿𝑣 ≥

(
log2 𝑑

𝑑𝛿𝑇

) 𝐼−1

.

When the above condition holds, we have

𝑇𝛿𝑣 =
1 ± 6𝛿𝑇

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

.

For Stage 2, by Lemma C.4, we have
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝) ≥ 2𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝)
(
𝑣̄2
𝑝,𝜋 (𝑝)

) 𝐼
⇒ 𝑣̄2

𝑝,𝜋 (𝑝) (𝑡) ≥ 𝛿𝑣
(
1 − 2𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝑎𝜋 (𝑝)𝛿
𝐼−1
𝑣 (𝑡 − 𝑇𝛿𝑣 )

)− 1
𝐼−1

⇒ 𝑇𝛿′𝑣 − 𝑇𝛿𝑣 ≤ 1
2𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝑎𝜋 (𝑝)𝛿
𝐼−1
𝑣

≤
4𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) (0)
𝛿𝐼−1
𝑣

𝑇𝛿𝑣 .

For the coefficient to be smaller than 𝛿𝑇 , it suffices to require

4𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) (0)
𝛿𝐼−1
𝑣

≤ 𝛿𝑇 ⇐ 𝛿𝑣 ≥
(

4𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) (0)
𝛿𝑇

) 1
𝐼−1

⇐ 𝛿𝑣 ≥
(

4
𝛿𝑇

) 1
𝐼−1 log2 𝑑

𝑑
.

Finally, for Stage 3, by Lemma C.5, we have
d
d𝑡

(
1 − 𝑣̄2

𝑝,𝜋 (𝑝)

)
≤ −

(
𝛿′𝑣

) 𝐼
𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝)
(
1 − 𝑣̄2

𝑝,𝜋 (𝑝)

)
⇒ 1 − 𝑣̄2

𝑝,𝜋 (𝑝) (𝑡) ≤ exp
(
−

(
𝛿′𝑣

) 𝐼
𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑡
)

⇒ 𝑇1−𝜀 − 𝑇𝛿𝑣 ≤ log(1/𝜀)
(𝛿′𝑣)𝐼 𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝)
≤

8𝐼𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) (0) log(1/𝜀)

(𝛿′𝑣)𝐼
𝑇𝛿𝑣 .

Again, for the coefficient to be smaller than 𝛿𝑇 , it suffices to require

8𝐼𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) (0) log(1/𝜀)

(𝛿′𝑣)𝐼
≤ 𝛿𝑇 ⇐ 𝜀 ≥ exp

(
−

𝛿𝑇
(
𝛿′𝑣

) 𝐼
8𝐼𝑣̄2𝐼−2

𝑝,𝜋 (𝑝) (0)

)
⇐ 𝜀 ≥ exp

(
−
𝛿𝑇

(
𝛿′𝑣

) 𝐼
8𝐼

(
𝑑

log2 𝑑

) 𝐼−1
)
.

Combine the above results, and we obtain

𝑇1−𝜀 = 𝑇𝛿𝑣 ± 2𝛿𝑇𝑇𝛿𝑣 =
1 ± 10𝛿𝑇

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

,

provided that the conditions of Lemma C.3, C.4, C.5 hold and

𝛿𝑣 ≥
(

log2 𝑑

𝑑𝛿𝑇

) 𝐼−1

∨
(

4
𝛿𝑇

) 1
𝐼−1 log2 𝑑

𝑑
and 𝜀 ≥ exp

(
−
𝛿𝑇

(
𝛿′𝑣

) 𝐼
8𝐼

(
𝑑

log2 𝑑

) 𝐼−1
)
.

□
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Proof (Part II): resolving the conditions. We now resolve the needed conditions. For easier reference,
we list the requirements of Lemma C.3, C.4, C.5, and this lemma below:

𝛿𝑣 ≤
𝛿𝑇

2
2𝐼𝜎̂2

2𝐼

𝐶2
𝜎

, 𝛾 <
1
2𝐼
, 𝑚𝜎2

1 ≤ 𝛿𝑇
𝜎̂2

2𝐼𝑎min∗

23𝐼+4𝐶2
𝜎𝑑

𝐼−1/2
,

𝜀 ≤
(
𝛿𝑇

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

)2
1

𝑑1+2𝛾 (𝐼−1) , 𝑑 ≥
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1

𝛿𝑇

)− 2
1−2𝛾𝐼

,

𝛿′𝑣 ≤ 1/3,

𝜀 ≥ 23𝐼+7𝐶2
𝜎

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

{
𝜀1/2𝜀𝐼−1

0 ∨
𝑚𝜎2

1
𝑎min∗

∨ ∥a∥1
𝑎min∗

𝜀𝐼0

}
,

𝛿𝑣 ≥
(

log2 𝑑

𝑑𝛿𝑇

) 𝐼−1

∨
(

4
𝛿𝑇

) 1
𝐼−1 log2 𝑑

𝑑
, 𝜀 ≥ exp

(
−
𝛿𝑇

(
𝛿′𝑣

) 𝐼
8𝐼

(
𝑑

log2 𝑑

) 𝐼−1
)
.

(7)

We proceed under the following principle. First, 𝜀 is a given parameter, so we should have minimal
restrictions on it. 𝛿𝑇 should be interpreted as the final output of the lemma. In other parts of the proof,
we only need to be 1/poly 𝑃 small, and it is relatively easy to obtain contains of form 𝛿𝑇 ≥ 1/𝑑𝑐.
Hence, we will try to change condition on other parameters to conditions on 𝛿𝑇 . Finally, 𝛿𝑣 , 𝛿′𝑣 are
only used in this proof, so it suffices to ensure the existence of them.
We start with the conditions on 𝜀, which are

𝜀 ≥ 23𝐼+7𝐶2
𝜎

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

{
𝜀1/2𝜀𝐼−1

0 ∨
𝑚𝜎2

1
𝑎min∗

∨ ∥a∥1
𝑎min∗

𝜀𝐼0

}
∨ exp

(
−
𝛿𝑇

(
𝛿′𝑣

) 𝐼
8𝐼

(
𝑑

log2 𝑑

) 𝐼−1
)
.

This can be translated into

𝜀𝐼0 ≤
(𝛿′𝑣)𝐼 𝜎̂2

2𝐼

23𝐼+7𝐶2
𝜎

𝑎min∗
∥a∥1

𝜀, 𝑚𝜎2
1 ≤

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

23𝐼+7𝐶2
𝜎

𝑎min∗𝜀, 𝜀1/2𝜀𝐼−1
0 ≤

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

23𝐼+7𝐶2
𝜎

𝜀,

𝛿𝑇 ≥ 8𝐼
(𝛿′𝑣)𝐼

(
log2 𝑑

𝑑

) 𝐼−1

log
(

1
𝜀

)
.

Then, consider 𝛿𝑣 , 𝛿′𝑣 . We choose 𝛿′𝑣 = 1/3. For the existence of 𝛿𝑣 , it suffices to require (cf. the first
and second last conditions of (7))(

log2 𝑑

𝑑𝛿𝑇

) 𝐼−1

∨
(

4
𝛿𝑇

) 1
𝐼−1 log2 𝑑

𝑑
≤ 𝛿𝑇

2
2𝐼𝜎̂2

2𝐼

𝐶2
𝜎

⇐ 𝛿𝑇 ≥
(
𝐶2
𝜎

𝐼𝜎̂2
2𝐼

)1/𝐼 (
log2 𝑑

𝑑

)1−1/𝐼

∨
(

4𝐶2
𝜎

𝐼𝜎̂2
2𝐼

log2 𝑑

𝑑

)1−1/𝐼

⇐ 𝛿𝑇 ≥ 4𝐶2
𝜎

𝐼𝜎̂2
2𝐼

(
log2 𝑑

𝑑

)1−1/𝐼

.

This condition will also be stronger than the previous one, as long as

4𝐶2
𝜎

𝐼𝜎̂2
2𝐼

(
log2 𝑑

𝑑

)1−1/𝐼

≥ 8𝐼
(𝛿′𝑣)𝐼

(
log2 𝑑

𝑑

) 𝐼−1

log
(

1
𝜀

)
⇐ 𝜀 ≥ exp

(
−4𝐶2

𝜎

𝐼𝜎̂2
2𝐼

(𝛿′𝑣)𝐼
8𝐼

(
𝑑

log2 𝑑

) 𝐼+1/𝐼−2
)
.

While this is a restriction on 𝜀, it is very mild as the RHS is super-polynomially small. Now, we have
replaced (7) with

𝜀 ≥ exp

(
−4𝐶2

𝜎

𝐼𝜎̂2
2𝐼

(𝛿′𝑣)𝐼
8𝐼

(
𝑑

log2 𝑑

) 𝐼+1/𝐼−2
)
, 𝑚𝜎2

1 ≤
𝜎̂2

2𝐼𝑎min∗

23𝐼+7𝐶2
𝜎

(
(𝛿′𝑣)𝐼𝜀 ∧

𝛿𝑇

𝑑𝐼−1/2

)
,
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𝛿𝑇 ≥ 4𝐶2
𝜎

𝐼𝜎̂2
2𝐼

(
log2 𝑑

𝑑

)1−1/𝐼

,

𝜀𝐼0 ≤
(𝛿′𝑣)𝐼 𝜎̂2

2𝐼

23𝐼+7𝐶2
𝜎

𝑎min∗
∥a∥1

𝜀, 𝜀1/2𝜀𝐼−1
0 ≤

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

23𝐼+7𝐶2
𝜎

𝜀,

𝛾 <
1
2𝐼
, 𝜀 ≤

(
𝛿𝑇

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

)2
1

𝑑1+2𝛾 (𝐼−1) , 𝑑 ≥
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1

𝛿𝑇

)− 2
1−2𝛾𝐼

.

Consider the last two lines. For the second last line, we compute

𝜀𝐼0 ≤
(𝛿′𝑣)𝐼 𝜎̂2

2𝐼

23𝐼+7𝐶2
𝜎

𝑎min∗
∥a∥1

𝜀 ⇐ 𝑑 ≥
(

23𝐼+7𝐶2
𝜎

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝜀

) 1
(1−𝛾) 𝐼

,

𝜀1/2𝜀𝐼−1
0 ≤

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

23𝐼+7𝐶2
𝜎

𝜀 ⇐ 𝜀 ≤
(
(𝛿′𝑣)𝐼 𝜎̂2

2𝐼

23𝐼+7𝐶2
𝜎

)2

𝜀2𝑑2(1−𝛾) (𝐼−1) .

For the last line, we convert the conditions into conditions on 𝛿𝑇 :

𝜀 ≤
(
𝛿𝑇

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

)2
1

𝑑1+2𝛾 (𝐼−1) ⇔ 𝛿𝑇 ≥ 23𝐼+4𝐶2
𝜎

𝜎̂2
2𝐼

√︁
𝜀𝑑1+2𝛾 (𝐼−1) ,

𝑑 ≥
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1

𝛿𝑇

)− 2
1−2𝛾𝐼

⇔ 𝛿𝑇 ≥ 23𝐼+4𝐶2
𝜎

𝜎̂2
2𝐼

∥a∥1
𝑎min∗

𝑑−1/2+𝛾𝐼 .

Thus, the conditions are

𝜀 ≥ exp

(
−4𝐶2

𝜎

𝐼𝜎̂2
2𝐼

(𝛿′𝑣)𝐼
8𝐼

(
𝑑

log2 𝑑

) 𝐼+1/𝐼−2
)
, 𝑚𝜎2

1 ≤
𝜎̂2

2𝐼𝑎min∗

23𝐼+7𝐶2
𝜎

(
(𝛿′𝑣)𝐼𝜀 ∧

𝛿𝑇

𝑑𝐼−1/2

)
,

𝑑 ≥
(

23𝐼+7𝐶2
𝜎

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝜀

) 1
(1−𝛾) 𝐼

, 𝜀 ≤
(
(𝛿′𝑣)𝐼 𝜎̂2

2𝐼

23𝐼+7𝐶2
𝜎

)2

𝜀2𝑑2(1−𝛾) (𝐼−1) .

𝛾 <
1
2𝐼
, 𝛿𝑇 ≥ 4𝐶2

𝜎

𝐼𝜎̂2
2𝐼

(
log2 𝑑

𝑑

)1−1/𝐼

∨ 23𝐼+4𝐶2
𝜎

𝜎̂2
2𝐼

√︁
𝜀𝑑1+2𝛾 (𝐼−1) ∨ 23𝐼+4𝐶2

𝜎

𝜎̂2
2𝐼

∥a∥1
𝑎min∗

𝑑−1/2+𝛾𝐼 .

Note that 1/2 − 𝛾𝐼 ≤ 1/2 ≤ 1 − 1/𝐼 when 𝐼 ≥ 2. Hence, the condition on 𝛿𝑇 is equivalent to

𝛿𝑇 ≥ 23𝐼+4𝐶2
𝜎

𝜎̂2
2𝐼

√︁
𝜀𝑑1+2𝛾 (𝐼−1) ∨ 23𝐼+4𝐶2

𝜎

𝜎̂2
2𝐼

∥a∥1
𝑎min∗

𝑑−1/2+𝛾𝐼 .

To complete the proof, it suffices to revert the above conditions to conditions on 𝜀 and 𝛿𝑇 . □

C.1.2 Radial Dynamics

Now, we estimate the time needed for a neuron to fit the ground truth after it converges in direction.
Lemma C.7 (Dynamics of the norm (converged)). Suppose that Induction Hypothesis C.2 is true at
time 𝑡. Then, at time 𝑡, for any 𝑝 ∈ [𝑃∗] with 𝑣̄2

𝑝,𝜋 (𝑝) ≥ 1 − 𝜀, we have

d
d𝑡



v𝑝

2
= 4



v𝑝

2
(
𝑎𝜋 (𝑝) −



v𝑝

2 ±
(
2𝐶2

𝜎𝑎𝜋 (𝑝)𝜀 + 2 ∥a∥1 22𝐼𝜀𝐼0 + 2𝑚𝜎2
1

))
.

Proof. By Lemma B.1, we have

1
2

d
d𝑡



v𝑝

2
= 2



v𝑝

2
∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

𝑃∑︁
𝑞=1

𝑎𝜋 (𝑞) 𝑣̄
2𝑖
𝑝, 𝜋 (𝑞) − 2



v𝑝

2
∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

𝑚∑︁
𝑙=1

∥v𝑙 ∥2 〈
v̄𝑝 , v̄𝑙

〉2𝑖

= 2


v𝑝

2

∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

©­«
𝑃∑︁
𝑞=1

𝑎𝜋 (𝑞) 𝑣̄
2𝑖
𝑝, 𝜋 (𝑞) −



v𝑝

2ª®¬ − 2


v𝑝

2

∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

∑︁
𝑙:𝑙≠𝑝

∥v𝑙 ∥2 〈
v̄𝑝 , v̄𝑙

〉2𝑖
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=: T1

(
1
2

d
d𝑡



v𝑝

2
)
+ T2

(
1
2

d
d𝑡



v𝑝

2
)
.

First, for T1, first recall from Assumption 2.1 that
∑∞
𝑖=𝐼 𝜎̂

2
2𝑖 = 1, and

∑∞
𝑖=𝐼 2𝑖𝜎̂2

2𝑖 ≤
∑∞
𝑖=𝐼 𝑖

2𝜎̂2
2𝑖 ≤ 𝐶

2
𝜎 .

Also note that for any small 𝛿 ∈ (0, 1) and integer 𝑁 , we have

(1 − 𝛿)𝑁 = 1 − 𝑁𝛿 + 𝛿2
𝑁−2∑︁
𝑘=0

(
𝑁

𝑘 + 2

)
(−𝛿)𝑘

= 1 − 𝑁𝛿 ± 𝑁2𝛿2
𝑁−2∑︁
𝑘=0

(
𝑁 − 2
𝑘

)
(−𝛿)𝑘 = 1 − 𝑁𝛿 ± 𝑁2𝛿2.

Hence, we can write

T1 = 2


v𝑝

2

∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

(
𝑎𝜋 (𝑝) −



v𝑝

2
)

+ 2


v𝑝

2

∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖𝑎𝜋 (𝑝)

(
𝑣̄2𝑖
𝑝, 𝜋 (𝑝) − 1

)
+ 2



v𝑝

2
∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

∑︁
𝑞:𝑞≠𝑝

𝑎𝜋 (𝑞) 𝑣̄
2𝑖
𝑝, 𝜋 (𝑞)

= 2


v𝑝

2

(
𝑎𝜋 (𝑝) −



v𝑝

2
)
± 4𝐶2

𝜎



v𝑝

2
𝑎𝜋 (𝑝)𝜀 ± 2



v𝑝

2 ∥a∥1 𝜀
𝐼
0.

Meanwhile, for T2, by the proof of Lemma C.2, we have

|T2 | ≤ 2


v𝑝

2

∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

∑︁
𝑙∈𝐿\{𝑝}

∥v𝑙 ∥2 〈
v̄𝑝 , v̄𝑙

〉2𝑖 + 2


v𝑝

2

∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

∑︁
𝑙∉𝐿∪{𝑝}

∥v𝑙 ∥2 〈
v̄𝑝 , v̄𝑙

〉2𝑖

≤ 4


v𝑝

2

∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

∑︁
𝑙∈𝐿\{𝑝}

𝑎𝜋 (𝑙)
(√
𝜀0 +

√
2𝜀

)2𝑖
+ 2



v𝑝

2
𝑚𝜎2

1

≤ 4


v𝑝

2 ∥a∥1 22𝐼𝜀𝐼0 + 2



v𝑝

2
𝑚𝜎2

1 .

As a result, we have
d
d𝑡



v𝑝

2
= 4



v𝑝

2
(
𝑎𝜋 (𝑝) −



v𝑝

2
)

± 8


v𝑝

2

(
𝐶2
𝜎𝑎𝜋 (𝑝)𝜀 + ∥a∥1 𝜀

𝐼
0 + ∥a∥1 22𝐼𝜀𝐼0 + 𝑚𝜎

2
1

)
= 4



v𝑝

2
(
𝑎𝜋 (𝑝) −



v𝑝

2 ±
(
2𝐶2

𝜎𝑎𝜋 (𝑝)𝜀 + 2 ∥a∥1 22𝐼𝜀𝐼0 + 2𝑚𝜎2
1

))
.

□

Lemma C.8 (Fitting the signal). Inductively assume Induction Hypothesis C.2. Consider 𝑝 ∈ [𝑃∗]
and 𝜀 ≥ 4

(
𝐶2
𝜎𝑎𝜋 (𝑝)𝜀 + ∥a∥1 22𝐼𝜀𝐼0 + 𝑚𝜎

2
1
)
. Then, after 𝑣̄2

𝑝,𝜋 (𝑝) reaches 1 − 𝜀, it takes at most
3 log

(
𝑎2
𝜋 (𝑝) /(𝜎

2
0 𝜀)

)
𝑎𝜋 (𝑝)

amount of time for


v𝑝

2 to reach 𝑎𝜋 (𝑝) ± 𝜀. In addition, once it enters this range,

it will stay there.

Proof. Let 𝑇0 be the time 𝑣̄2
𝑝,𝜋 (𝑝) reaches 1 − 𝜀. By the proof of Lemma C.6, 𝑣̄2

𝑝,𝜋 (𝑝) will stay above
1 − 𝜀 after time 𝑇0. By Lemma C.7 and our hypothesis on 𝜀, we have

d
d𝑡



v𝑝

2
= 4



v𝑝

2
(
𝑎𝜋 (𝑝) −



v𝑝

2 ± 𝜀

2

)
.

In particular, this implies that once


v𝑝

2 reaches 𝑎𝜋 (𝑝) ± 𝜀, it will stay in this range. Let 𝑇𝑅,1/2 and

𝑇𝑅,1−𝜀 be the time


v𝑝

2 reaches 𝑎𝜋 (𝑝)/2 and 1 − 𝜀, respectively. For any 𝑡 ≤ 𝑇𝑅,1/2, we have

d
d𝑡



v𝑝

2 ≥
4𝑎𝜋 (𝑝)

3


v𝑝

2 ⇒



v𝑝 (𝑡)

2 ≥ 𝜎2
0 exp

(4𝑎𝜋 (𝑝)
3

(𝑡 − 𝑇0)
)
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⇒ 𝑇𝑅,1/2 − 𝑇0 ≤
3 log

(
𝑎𝜋 (𝑝)/𝜎2

0
)

𝑎𝜋 (𝑝)
.

After 𝑇𝑅,1/2 and before 𝑇𝑅,1−𝜀 , we have

d
d𝑡



v𝑝

2 ≥ 𝑎𝜋 (𝑝)
(
𝑎𝜋 (𝑝) −



v𝑝

2 ± 𝜀

2

)
≥
𝑎𝜋 (𝑝)

2

(
𝑎𝜋 (𝑝) −



v𝑝

2
)

⇒ 𝑎𝜋 (𝑝) (𝑡) −


v𝑝

2 ≤

𝑎𝜋 (𝑝)
2

exp
(
−𝑎𝜋 (𝑝) (𝑡 − 𝑇𝑅,1/2)/2

)
⇒ 𝑇𝑅,1−𝜀 − 𝑇𝑅,1/2 ≤

3 log
(
𝑎𝜋 (𝑝)/𝜀

)
𝑎𝜋 (𝑝)

.

As a result, we have

𝑇𝑅,1−𝜀 − 𝑇0 ≤ 3
𝑎𝜋 (𝑝)

(
log

(
𝑎𝜋 (𝑝)/𝜎2

0

)
+ log

(
𝑎𝜋 (𝑝)/𝜀

) )
=

3 log
(
𝑎2
𝜋 (𝑝)/(𝜎

2
0 𝜀)

)
𝑎𝜋 (𝑝)

.

□

We are now ready to prove the main result of this subsection, which we restate below.
Corollary C.9 (Convergence). Let 𝜀𝐷 , 𝜀𝑅 be our target accuracy in the tangent and radial directions,
and 𝛿𝑇 the target error in time. Suppose that 𝛾 < 1/(2𝐼), 𝛿′𝑣 = 1/3,

𝜀𝐷 ≥ 23𝐼+7𝐶2
𝜎

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝑑 (1−𝛾) 𝐼

, 𝜀𝑅 ≥ 12 ∥a∥1 22𝐼𝑑−(1−𝛾) 𝐼 , 𝛿𝑇 ≥ 23𝐼+4𝐶2
𝜎

𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝑑1/2−𝛾𝐼 ,

𝑚𝜎2
1 ≤

𝜎̂2
2𝐼𝑎min∗

23𝐼+7𝐶2
𝜎

(
(𝛿′𝑣)𝐼𝜀 ∧

𝛿𝑇

𝑑𝐼−1/2

)
∧ 𝜀𝑅

12
,

𝜀 ≤
(
(𝛿′𝑣)𝐼 𝜎̂2

2𝐼

23𝐼+7𝐶2
𝜎

)2

𝜀2
𝐷𝑑

2(1−𝛾) (𝐼−1) ∧
(
𝛿𝑇

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

)2
1

𝑑1+2𝛾 (𝐼−1) ∧
𝜀𝑅

12𝐶2
𝜎𝑎𝜋 (𝑝)

.

Then, for any 𝑝 ∈ [𝑃∗], we have

𝑣̄2
𝑝,𝜋 (𝑝) ≥ 1 − 𝜀𝐷 ,



v𝑝

2
= 𝑎𝜋 (𝑝) ± 𝜀𝑅, ∀𝑡 ≥ (1 + 20𝛿𝑇 )𝑇𝑝 ,

𝑣̄2
𝑝,𝜋 (𝑝) ≤

(
4
𝛿𝑇

) 1
𝐼−1 log2 𝑑

𝑑
,



v𝑝

2 ≤ 𝜎2
1 , ∀𝑡 ≤ (1 − 10𝛿𝑇 )𝑇𝑝 ,

where

𝑇𝑝 :=
1

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

= Θ

(
1

𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

)
= Θ̃

(
1

𝑎𝜋 (𝑝)𝑑𝐼−1

)
.

Proof. First, by Lemma C.3 (and the proof of Lemma C.6), we have

𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) ≤ 𝛿𝑣 :=

(
4
𝛿𝑇

) 1
𝐼−1 log2 𝑑

𝑑
, ∀𝑡 ≤ 1 − 10𝛿𝑇

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

Meanwhile, by Lemma C.6, we have 𝑣̄2
𝑝,𝜋 (𝑝) ≤ 𝛿𝑣 𝑣̄

2
𝑝,𝜋 (𝑝) ≥ 1 − 𝜀𝐷 after time

𝑇𝑇 =
1 ± 10𝛿𝑇

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

= Θ

(
1

𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

)
,

as long as 𝛾 < 1/(2𝐼), 𝛿′𝑣 = 1/3, and

𝜀𝐷 ≥ 23𝐼+7𝐶2
𝜎

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝑑 (1−𝛾) 𝐼

, 𝛿𝑇 ≥ 23𝐼+4𝐶2
𝜎

𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝑑1/2−𝛾𝐼 ,
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𝑚𝜎2
1 ≤

𝜎̂2
2𝐼𝑎min∗

23𝐼+7𝐶2
𝜎

(
(𝛿′𝑣)𝐼𝜀 ∧

𝛿𝑇

𝑑𝐼−1/2

)
,

𝜀 ≤
(
(𝛿′𝑣)𝐼 𝜎̂2

2𝐼

23𝐼+7𝐶2
𝜎

)2

𝜀2
𝐷𝑑

2(1−𝛾) (𝐼−1) ∧
(
𝛿𝑇

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

)2
1

𝑑1+2𝛾 (𝐼−1) .

By Lemma C.8, fitting 𝑎𝜋 (𝑝) to ±𝜀𝑅 takes 𝑇𝑅 amount of time, where

𝑇𝑅 :=
3 log

(
𝑎2
𝜋 (𝑝)/(𝜎

2
0 𝜀𝑅)

)
𝑎𝜋 (𝑝)

.

Since 𝛿𝑇 ≥ 23𝐼+4𝐶2
𝜎

𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝑑1/2−𝛾𝐼 , we have

𝑇𝑅 ≤ 𝛿𝑇𝑇𝑇 ⇐ log
(
𝑎2
𝜋 (𝑝)/(𝜎

2
0 𝜀𝑅)

)
≤ 𝛿𝑇𝑑

𝐼−1

24𝐼 (𝐼 − 1)𝜎̂2
2𝐼 (log 𝑑)2𝐼−2

⇐ 𝜀𝑅 ≥
𝑎2
𝜋 (𝑝)

𝜎2
0

exp

(
− 𝑑 (1−𝛾) 𝐼−1/2

𝜎̂2
2𝐼 (log 𝑑)2𝐼−2

)
.

Again, this condition is mild as the RHS decays exponentially fast. To meet the conditions of
Lemma C.8, it suffices to require

𝜀 ≤ 𝜀𝑅

12𝐶2
𝜎𝑎𝜋 (𝑝)

, 𝑚𝜎2
1 ≤ 𝜀𝑅

12
, 𝜀𝑅 ≥ 12 ∥a∥1 22𝐼𝑑−(1−𝛾) 𝐼 .

Note that last condition on 𝜀𝑅 is stronger than the previous condition on 𝜀𝑅. □

C.2 Maintaining the Induction Hypotheses

In this subsection, we show Induction Hypothesis C.2 is true throughout training. Recall the meaning
and requirements of 𝜀𝐷 , 𝜀𝑅, 𝛿𝑇 from Corollary C.9.

C.2.1 Upper Bounds on the Irrelevant Coordinates

Lemma C.10 (Upper triangular entries (case I)). Consider 𝑝 ∈ [𝑃∗] and 𝑝 < 𝑞 ∈ [𝑃] with
𝑎𝜋 (𝑞) ≥ 𝑎min∗/(2(log 𝑑)2𝐼−2). Assume the conditions of Corollary C.9 and

𝜀 ≤
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝛿𝑟

24

)2
1

𝑑1+2𝛾 (𝐼−1) , 𝑚𝜎2
1 ≤

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
2(log 𝑑)2𝐼−2𝑑𝐼−1/2

𝛿𝑟

24
,

𝑑

(log2 𝑑)1/𝛾
≥

(
𝛿𝑟

4

)− 1
𝛾 (𝐼−1)

,
𝑑

(log2 𝑑)
𝐼−1

1/2−𝛾𝐼
≥

(
𝜎̂2

2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1 22𝐼−2

𝛿𝑟

24

)− 1
1/2−𝛾𝐼

, 𝛿𝑇 ≤ 𝛿𝑟

240
.

Then, 𝑣̄2
𝑝,𝜋 (𝑞) ≤ 𝜀0 throughout training.

Remark. Recall from Lemma C.6 that we only need 𝛿𝑇 ≥ Θ̃(1/𝑑1/2−𝛾𝐼 ) and by Lemma B.2,
𝛿𝑟 = 1/poly(𝑃). Hence, the last condition can hold as long as 𝑑 is large.

Proof. First, by Corollary C.9, we know 𝑣̄2
𝑝,𝜋 (𝑝) ≥ 1 − 𝜀 after time

𝑇𝑝 :=
1 ± 20𝛿𝑇

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

.

This automatically implies 𝑣̄2
𝑝,𝜋 (𝑝) ≤ 𝜀 ≤ 𝜀0 after time 𝑇𝑝. Hence, it suffices to consider the time

before 𝑇𝑝 . By Lemma C.2 and the choice 𝜀0 ≥ 𝜀, we have

d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑞) ≤ 2

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖𝑎𝜋 (𝑞) 𝑣̄

2𝑖
𝑝, 𝜋 (𝑞) + 𝐼2

3𝐼+6𝐶2
𝜎

��𝑣̄𝑝,𝜋 (𝑞) �� {𝑎𝜋 (𝑞)𝜀1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
}
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=: T1

(
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑞)

)
+ T2

(
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑞)

)
.

Since our goal is to upper bound 𝑣̄2
𝑝,𝜋 (𝑞) , we may assume w.l.o.g. that 𝑣̄2

𝑝,𝜋 (𝑝) ≥ 1/𝑑, as we only
need to track those 𝑡. Then, for T2, we have

T2 ≤ 𝐼23𝐼+6𝐶2
𝜎𝑑

𝐼−1/2 {
𝑎𝜋 (𝑞)𝜀

1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
}
𝑣̄2𝐼
𝑝, 𝜋 (𝑞) .

Meanwhile, for T1, we have

T1 = 4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑞) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑞) + 2

∞∑︁
𝑖=𝐼+1

2𝑖𝜎̂2
2𝑖𝑎𝜋 (𝑞) 𝑣̄

2𝑖
𝑝, 𝜋 (𝑞)

≤ 4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑞) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑞) + 2𝑎𝜋 (𝑞) 𝑣̄2𝐼

𝑝, 𝜋 (𝑞)𝜀0

∞∑︁
𝑖=𝐼+1

2𝑖𝜎̂2
2𝑖

≤ 4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑞) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑞) + 2𝐶2

𝜎𝑎𝜋 (𝑞) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑞)𝜀0.

Combining the above two bounds, we obtain
d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑞) ≤ 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑞) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑞) + 2𝐶2

𝜎𝑎𝜋 (𝑞) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑞)𝜀0

+ 𝐼23𝐼+6𝐶2
𝜎𝑑

𝐼−1/2
{
𝑎𝜋 (𝑞)

(
𝜀1/2𝜀𝐼−1

0 ∨ 𝜀𝐼−1/2
)
∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0

}
𝑣̄2𝐼
𝑝, 𝜋 (𝑞)

≤
(
1 + 𝛿Tmp

)
4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑞) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑞) ,

where

𝛿Tmp =
2𝐶2

𝜎𝑎𝜋 (𝑞)𝜀0

4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑞)

+
𝐼23𝐼+6𝐶2

𝜎𝑑
𝐼−1/2 {

𝑎𝜋 (𝑞)
(
𝜀1/2𝜀𝐼−1

0 ∨ 𝜀𝐼−1/2) ∨ 𝑚𝜎2
1 ∨ ∥a∥1 𝜀

𝐼
0
}

4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑞)

≤ 𝐶2
𝜎𝜀0

2𝐼𝜎̂2
2𝐼

+ 23𝐼+4𝐶2
𝜎𝑑

𝐼−1/2

𝜎̂2
2𝐼𝑎𝜋 (𝑞)

{
𝑎𝜋 (𝑞)𝜀

1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
}

=: 𝛿Tmp,1 + 𝛿Tmp,2.
As a result, for any 𝑡 ≤ 𝑇𝑝 , we have

𝑣̄2
𝑝,𝜋 (𝑞) (𝑡) ≤ 𝑣̄

2
𝑝,𝜋 (𝑞) (0)

(
1 − (𝐼 − 1)

(
1 + 𝛿Tmp

)
4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑞) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑞) (0)𝑡

)− 1
𝐼−1

In particular, this implies

𝑣̄2
𝑝,𝜋 (𝑞) (𝑡) ≤ 𝑣̄

2
𝑝,𝜋 (𝑞) (0)

(
1 −

(
1 + 𝛿Tmp

)
(1 + 20𝛿𝑇 )

𝑎𝜋 (𝑞) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑞) (0)

𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

)− 1
𝐼−1

≤ 𝑣̄2
𝑝,𝜋 (𝑞) (0)

(
1 −

(
1 + 𝛿Tmp

)
(1 + 20𝛿𝑇 )

1 + 𝛿𝑟

)− 1
𝐼−1

≤ 𝑣̄2
𝑝,𝜋 (𝑞) (0)

(
𝛿𝑟

2
− 2𝛿Tmp − 20𝛿𝑇

)− 1
𝐼−1

,

where the second line comes from Assumption C.1(a). Now, we find conditions under which the last
term is upper bounded by 𝜀0 = 𝑑−(1−𝛾) . We will first find conditions under which 2𝛿Tmp+20𝛿𝑇 ≤ 𝛿𝑟/4
and then upper bound 𝑣̄2

𝑝,𝜋 (𝑞) (0) (𝛿𝑟/4)−
1

𝐼−1 .

We compute

2𝛿Tmp,1 ≤ 𝛿𝑟

12
⇐ 𝑑 ≥

(
𝐼𝜎̂2

2𝐼

𝐶2
𝜎

𝛿𝑟

12

)− 1
1−𝛾

,

20𝛿𝑇 ≤ 𝛿𝑟

12
⇐ 𝛿𝑇 ≤ 𝛿𝑟

240
,
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and by (6),

2𝛿Tmp,2 ≤ 𝛿𝑟

12
⇐ 𝑎𝜋 (𝑞)𝜀

1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0 ≤

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎𝜋 (𝑞)

𝑑𝐼−1/2
𝛿𝑟

24

⇐ 𝜀 ≤
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝛿𝑟

24

)2
1

𝑑1+2𝛾 (𝐼−1) , 𝑚𝜎2
1 ≤

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎𝜋 (𝑞)

𝑑𝐼−1/2
𝛿𝑟

24
,

𝑑 ≥
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎𝜋 (𝑞)
∥a∥1

𝛿𝑟

24

)− 1
1/2−𝛾𝐼

.

The above conditions ensure 𝛿𝑟/4 ≥ 2𝛿Tmp + 20𝛿𝑇 . By Assumption C.1(d), 𝑣̄2
𝑝,𝜋 (𝑝) (0) ≤ log2 𝑑/𝑑.

Hence, in order for 𝑣̄2
𝑝,𝜋 (𝑞) (0) (𝛿𝑟/4)−1/(𝐼−1) to be smaller than 𝜀0, it suffices to have

log2 𝑑

𝑑

(
𝛿𝑟

4

)− 1
𝐼−1

≤ 𝑑−(1−𝛾) ⇐ 𝑑𝛾

log2 𝑑
≥

(
𝛿𝑟

4

)− 1
𝐼−1

.

We now clean up the conditions required by this lemma, which are the conditions of Corollary C.9 and

𝜀 ≤
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝛿𝑟

24

)2
1

𝑑1+2𝛾 (𝐼−1) , 𝑚𝜎2
1 ≤

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎𝜋 (𝑞)

𝑑𝐼−1/2
𝛿𝑟

24
,

𝑑

(log2 𝑑)1/𝛾
≥

(
𝛿𝑟

4

)− 1
𝛾 (𝐼−1)

, 𝑑 ≥
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎𝜋 (𝑞)
∥a∥1

𝛿𝑟

24

)− 1
1/2−𝛾𝐼

∨
(
𝐼𝜎̂2

2𝐼

𝐶2
𝜎

𝛿𝑟

12

)− 1
1−𝛾

, 𝛿𝑇 ≤ 𝛿𝑟

240
.

For the condition on 𝑑, since 1/2 − 𝛾𝐼 ≤ 1/2 ≤ 1 − 𝛾, the first part of it is stronger. Finally, we use
the hypothesis 𝑎𝜋 (𝑞) ≥ 𝑎min∗/(2(log 𝑑)2𝐼−2) to replace (the first part of) the second condition with

𝑑 ≥
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1 22𝐼−2

𝛿𝑟

24

)− 1
1/2−𝛾𝐼

(log2 𝑑)
𝐼−1

1/2−𝛾𝐼 .

□

Lemma C.11 (Upper triangular entries (case II)). Consider 𝑝 ∈ [𝑃∗] and 𝑝 < 𝑞 ∈ [𝑃] with
𝑎𝜋 (𝑞) ≤ 𝑎min∗/(2 log2𝐼−2 𝑑). Suppose that the hypotheses of Lemma C.10 are true. Then, 𝑣̄2

𝑝,𝜋 (𝑞) ≤ 𝜀0
throughout training.

Proof. By the proof of Lemma C.10, we have

d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑞) ≤ 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑞) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑞) + 2𝐶2

𝜎𝑎𝜋 (𝑞) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑞)𝜀0

+ 𝐼23𝐼+6𝐶2
𝜎𝑑

𝐼−1/2 {
𝑎𝜋 (𝑞)𝜀

1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
}
𝑣̄2𝐼
𝑝, 𝜋 (𝑞) .

Suppose that 𝑎𝜋 (𝑞) ≤ 𝑎min∗/𝑀 for some 𝑀 ≥ 1 to be determined later. Then, we have

d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑞) ≤ 4𝐼𝜎̂2

2𝐼
𝑎min∗
𝑀

𝑣̄2𝐼
𝑝, 𝜋 (𝑞) + 2𝐶2

𝜎

𝑎min∗
𝑀

𝑣̄2𝐼
𝑝, 𝜋 (𝑞)𝜀0

+ 𝐼23𝐼+6𝐶2
𝜎𝑑

𝐼−1/2
{ 𝑎min∗
𝑀

𝜀1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0

}
𝑣̄2𝐼
𝑝, 𝜋 (𝑞)

≤
(
1 + 𝛿Tmp

)
4𝐼𝜎̂2

2𝐼
𝑎min∗
𝑀

𝑣̄2𝐼
𝑝, 𝜋 (𝑞) ,

where

𝛿Tmp =
𝐶2
𝜎𝜀0

2𝐼𝜎̂2
2𝐼

+ 23𝐼+6𝐶2
𝜎

4𝜎̂2
2𝐼

𝑑𝐼−1/2 𝑀

𝑎min∗

{ 𝑎min∗
𝑀

𝜀1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ 𝜀𝐼0
}

=: 𝛿Tmp,1 + 𝛿Tmp,2.

37



As a result, for any 𝑡 ≤ 𝑇𝑝 , we have

𝑣̄2
𝑝,𝜋 (𝑞) (𝑡) ≤ 𝑣̄

2
𝑝,𝜋 (𝑞) (0)

𝑎min∗
𝑀

(
1 −

(
1 + 𝛿Tmp

)
(1 + 20𝛿𝑇 )

𝑎min∗ 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑞) (0)

𝑀𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

)− 1
𝐼−1

.

Recall from Assumption C.1 that 𝑣̄2
𝑝,𝜋 (𝑝) (0) ≥ 1/𝑑 and 𝑣̄2

𝑝,𝜋 (𝑞) (0) ≤ log2 𝑑/𝑑. Hence, with
𝑀 = 2 log2𝐼−2 𝑑, we have

𝑎min∗ 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑞) (0)

𝑀𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

≤
𝑎min∗
𝑎𝜋 (𝑝)

log2𝐼−2 𝑑

𝑀
≤ 1

2
.

Hence,

𝑣̄2
𝑝,𝜋 (𝑞) (𝑡) ≤ 𝑣̄

2
𝑝,𝜋 (𝑞) (0)

(
1 −

(
1 + 𝛿Tmp

)
(1 + 10𝛿𝑇 )
2

)− 1
𝐼−1

.

As a result, to ensure 𝑣̄2
𝑝,𝜋 (𝑞) ≤ 𝜀0 throughout training, it suffices to have 𝛿Tmp ≤ 0.1 and 𝛿𝑇 ≤ 0.01.

The second condition clear holds under the hypotheses of Lemma C.10. For the same reason, we have
𝛿Tmp,1 ≤ 0.05 and the first term in 𝛿Tmp,2 will also be sufficiently small. Finally, we compute

𝑑𝐼−1/2
{
𝑀

𝑎min∗
𝑚𝜎2

1 ∨ 𝑀 ∥a∥1
𝑎min∗

𝜀𝐼0

}
≤ 1

20
4𝜎̂2

2𝐼

23𝐼+6𝐶2
𝜎

⇐ 𝑚𝜎2
1 ≤ 1

20
4𝜎̂2

2𝐼

23𝐼+6𝐶2
𝜎

𝑎min∗

2 log2𝐼−2 𝑑

1
𝑑𝐼−1/2 ,

𝑑

log
4𝐼

1−2𝛾𝐼 𝑑
≥

(
1

40
4𝜎̂2

2𝐼

23𝐼+6𝐶2
𝜎

𝑎min∗
∥a∥1

)− 2
1−2𝛾𝐼

,

which are also covered by the conditions of Lemma C.10. In fact, 𝑀 is chosen to balance the
requirements of these two lemmas. □

Lemma C.12 (Lower triangular entries). Consider 𝑝 ∈ [𝑃∗] and 𝑝 < 𝑘 ∈ [𝑚]. Assume the conditions
of Corollary C.9 and

𝛿𝑇 ≤ 𝛿𝑐

240
, 𝜀𝑅 ≤ 1

6
𝑎2

min∗𝛿𝑐

8(log2 𝑑)𝐼−1
, 𝜀 ≤

(
1

48
4𝜎̂2

2𝐼

23𝐼+6𝐶2
𝜎

)2
𝑎2

min∗𝛿
2
𝑐

(log2 𝑑)2𝐼−2

1
𝑑1+2𝛾 (𝐼−1) ,

𝑚𝜎2
1 ≤ 1

48
𝜎̂2

2𝐼

23𝐼+4𝐶2
𝜎

𝑎2
min∗𝛿𝑐

(log2 𝑑)𝐼−1

1
𝑑𝐼−1/2 ,

𝑑

(log2 𝑑)
𝐼−1

1/2−𝛾𝐼
≥

(
1
6

4𝜎̂2
2𝐼

23𝐼+6𝐶2
𝜎

𝑎2
min∗𝛿𝑐

8 ∥a∥1

)− 1
1/2−𝛾𝐼

.

Then, we have 𝑣̄2
𝑘, 𝜋 (𝑝) ≤ 𝜀0 throughout training.

Proof. First, by Lemma C.2, we have

d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑝) = 2𝑣̄2

𝑘, 𝜋 (𝑝)

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

(
𝑎𝜋 (𝑝) 𝑣̄

2𝑖−2
𝑘, 𝜋 (𝑝) −

𝑃∑︁
𝑟=1

𝑎𝜋 (𝑟 ) 𝑣̄
2𝑖
𝑘, 𝜋 (𝑟 )

)
− 1 {𝑝 ∈ 𝐿} 2



v𝑝

2
(
1 − 𝑣̄2

𝑘, 𝜋 (𝑝)

) ∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖 𝑣̄

2𝑖
𝑘, 𝜋 (𝑝)

± 𝐼23𝐼+6𝐶2
𝜎

��𝑣̄𝑘, 𝜋 (𝑝) �� {𝑎𝜋 (𝑝)𝜀1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
}

≤ 2
(
1 − 𝑣̄2

𝑘, 𝜋 (𝑝)

) ∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

(
𝑎𝜋 (𝑝) − 1 {𝑝 ∈ 𝐿}



v𝑝

2
)
𝑣̄2𝑖
𝑘, 𝜋 (𝑝)

+ 𝐼23𝐼+6𝐶2
𝜎

��𝑣̄𝑘, 𝜋 (𝑝) �� {𝑎𝜋 (𝑝)𝜀1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
}

=: T1

(
d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑝)

)
+ T2

(
d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑝)

)
.
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Similar to the proof of Lemma C.10, we assume w.l.o.g. that 𝑣̄2
𝑘, 𝜋 (𝑝) ≥ 1/𝑑 and write

T2 ≤ 𝐼23𝐼+6𝐶2
𝜎 𝑣̄

2𝐼
𝑘, 𝜋 (𝑝)𝑑

𝐼−1/2 {
𝑎𝜋 (𝑝)𝜀

1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
}
.

For the first term, we have

T1 ≤ 4𝐼𝜎̂2
2𝐼

���𝑎𝜋 (𝑝) − 1 {𝑝 ∈ 𝐿}


v𝑝

2

���𝑣̄2𝐼
𝑘, 𝜋 (𝑝) + 2

∞∑︁
𝑖=𝐼+1

2𝑖𝜎̂2
2𝑖𝑎𝜋 (𝑝) 𝑣̄

2𝑖
𝑘, 𝜋 (𝑝)

≤ 4𝐼𝜎̂2
2𝐼

���𝑎𝜋 (𝑝) − 1 {𝑝 ∈ 𝐿}


v𝑝

2

���𝑣̄2𝐼
𝑘, 𝜋 (𝑝) + 2𝐶2

𝜎𝑎𝜋 (𝑝) 𝑣̄
2𝐼
𝑘, 𝜋 (𝑝)𝜀0

≤
(�����1 −

1 {𝑝 ∈ 𝐿}


v𝑝

2

𝑎𝜋 (𝑝)

����� + 𝐶2
𝜎𝜀0

2𝐼𝜎̂2
2𝐼

)
× 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼
𝑘, 𝜋 (𝑝) .

Therefore,
d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑝) ≤

(�����1 −
1 {𝑝 ∈ 𝐿}



v𝑝

2

𝑎𝜋 (𝑝)

����� + 𝛿Tmp
)
× 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼
𝑘, 𝜋 (𝑝) ,

where

𝛿Tmp :=
𝐶2
𝜎𝜀0

2𝐼𝜎̂2
2𝐼

+ 23𝐼+6𝐶2
𝜎

4𝜎̂2
2𝐼

𝑑𝐼−1/2

{
𝜀1/2𝜀𝐼−1

0 ∨
𝑚𝜎2

1
𝑎min∗

∨ ∥a∥1
𝑎min∗

𝜀𝐼0

}
=: 𝛿Tmp,1 + 𝛿Tmp,2.

By Corollary C.9, we know 𝑝 ∈ 𝐿 and


v𝑝

2

= 𝑎𝜋 (𝑝) ± 𝜀𝑅 for 𝜀𝑅 satisfying the condition in
Corollary C.9 after time

𝑇𝑝 :=
1 ± 20𝛿𝑇

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

.

We now analyze the stages [0, 𝑇𝑝] and [𝑇𝑝 , 𝑇𝑃∗ ], separately. Let 𝜀′0 ≤ 𝜀0 be a parameter to be chosen
later. We want to show that 𝑣̄2

𝑘, 𝜋 (𝑝) is upper bounded by 𝜀′0 in the first stage and by 𝜀0 in the second
stage.
First, for 𝑡 ≤ 𝑇𝑝 , we have d

d𝑡 𝑣̄
2
𝑘, 𝜋 (𝑝) ≤

(
1 + 𝛿Tmp

)
× 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼
𝑘, 𝜋 (𝑝) and therefore

𝑣̄2
𝑘, 𝜋 (𝑝) (𝑡) ≤ 𝑣̄

2
𝑘, 𝜋 (𝑝) (0)

(
1 − (𝐼 − 1) (1 + 𝛿Tmp)4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑘, 𝜋 (𝑝) (0)𝑡

)− 1
𝐼−1

≤ 𝑣̄2
𝑘, 𝜋 (𝑝) (0)

(
1 − (1 + 𝛿Tmp) (1 + 20𝛿𝑇 )

𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑘, 𝜋 (𝑝) (0)

𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

)− 1
𝐼−1

≤ 𝑣̄2
𝑘, 𝜋 (𝑝) (0)

(
𝛿𝑐

2
− 2𝛿Tmp,1 − 2𝛿Tmp,2 − 20𝛿𝑇

)− 1
𝐼−1

,

where the last line comes from Assumption C.1(b). By the proof of Lemma C.10, we have

2𝛿Tmp,1 + 2𝛿Tmp,2 + 20𝛿𝑇 ≤ 𝛿𝑐

4
,

provided that

𝛿𝑇 ≤ 𝛿𝑐

240
, 𝑑 ≥

(
𝜎̂2

2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1

𝛿𝑐

24

)− 1
1/2−𝛾𝐼

,

𝜀 ≤
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝛿𝑐

24

)2
1

𝑑1+2𝛾 (𝐼−1) , 𝑚𝜎2
1 ≤

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
𝑑𝐼−1/2

𝛿𝑐

24
.

Then, we compute

𝑣̄2
𝑘, 𝜋 (𝑝) (𝑡) ≤ 𝜀

′
0 ⇐ 𝜀′0 ≥ log2 𝑑

𝑑

(
𝛿𝑐

4

)− 1
𝐼−1

⇐ 𝜀′0 =
log2 𝑑

𝑑

(
𝛿𝑐

4

)− 1
𝐼−1

.
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Now, consider the second stage. For 𝑡 ≥ 𝑇𝑝 , we have

d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑝) ≤

(
𝜀𝑅

𝑎𝜋 (𝑝)
+ 𝛿Tmp

)
× 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼
𝑘, 𝜋 (𝑝)

⇒ 𝑣̄2
𝑘, 𝜋 (𝑝) (𝑡) ≤ 𝜀

′
0

(
1 −

(
𝜀𝑅

𝑎𝜋 (𝑝)
+ 𝛿Tmp

)
4𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝑎𝜋 (𝑝) (𝜀
′
0)
𝐼−1 (𝑡 − 𝑇𝑝)

)− 1
𝐼−1

.

Also, recall that the training process ends before time

𝑇𝑃∗ =
1 ± 20𝛿𝑇

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎𝜋 (𝑃∗ ) 𝑣̄

2𝐼−2
𝑃∗ , 𝜋 (𝑃∗ ) (0)

.

For any 𝑡 ∈ [𝑇𝑝 , 𝑇𝑃∗ ], we have

𝑣̄2
𝑘, 𝜋 (𝑝) ≤ 𝜀

′
0

(
1 −

(
𝜀𝑅

𝑎𝜋 (𝑝)
+ 𝛿Tmp

)
(1 + 20𝛿𝑇 )

𝑎𝜋 (𝑝) (𝜀′0)
𝐼−1

𝑎𝜋 (𝑃∗ ) 𝑣̄
2𝐼−2
𝑃∗ , 𝜋 (𝑃∗ ) (0)

)− 1
𝐼−1

≤ 𝜀′0

(
1 −

(
𝜀𝑅

𝑎min∗
+ 𝛿Tmp

) 2(𝑑𝜀′0)
𝐼−1

𝑎min∗

)− 1
𝐼−1

≤ 𝜀′0
(
1 −

(
𝜀𝑅

𝑎min∗
+ 𝛿Tmp

)
8(log2 𝑑)𝐼−1

𝑎min∗𝛿𝑐

)− 1
𝐼−1

,

where the last line comes form choosing (C.2.1). For the last term to be bounded by 𝜀0, it suffices to
require (

𝜀𝑅

𝑎min∗
+ 𝛿Tmp

)
8(log2 𝑑)𝐼−1

𝑎min∗𝛿𝑐
≤ 1

2
⇐ 𝜀𝑅

𝑎min∗
+ 𝛿Tmp,1 + 𝛿Tmp,2 ≤ 1

2
𝑎min∗𝛿𝑐

8(log2 𝑑)𝐼−1
,

which is implied by

𝜀𝑅 ≤ 1
6

𝑎2
min∗𝛿𝑐

8(log2 𝑑)𝐼−1
, 𝑑 ≥

(
1
6

2𝐼𝜎̂2
2𝐼

𝐶2
𝜎

𝑎min∗𝛿𝑐

8(log2 𝑑)𝐼−1

)− 1
1−𝛾

,

and by (6),

𝑚𝜎2
1 ≤ 1

6
4𝜎̂2

2𝐼

23𝐼+6𝐶2
𝜎

𝑎2
min∗𝛿𝑐

8(log2 𝑑)𝐼−1

1
𝑑𝐼−1/2 , 𝜀 ≤

(
1
6

4𝜎̂2
2𝐼

23𝐼+6𝐶2
𝜎

𝑎min∗𝛿𝑐

8(log2 𝑑)𝐼−1

)2
1

𝑑1+2𝛾 (𝐼−1) ,

𝑑

(log2 𝑑)
𝐼−1

1/2−𝛾𝐼
≥

(
1
6

4𝜎̂2
2𝐼

23𝐼+6𝐶2
𝜎

𝑎2
min∗𝛿𝑐

8 ∥a∥1

)− 1
1/2−𝛾𝐼

Combining the above conditions with (C.2.1), we conclude that 𝑣̄2
𝑘, 𝜋 (𝑝) ≤ 𝜀0 throughout training, as

long as the conditions of Corollary C.9 and the following conditions are true:

𝛿𝑇 ≤ 𝛿𝑐

240
, 𝜀𝑅 ≤ 1

6
𝑎2

min∗𝛿𝑐

8(log2 𝑑)𝐼−1
,

𝑚𝜎2
1 ≤

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
𝑑𝐼−1/2

𝛿𝑐

24
∧ 1

6
4𝜎̂2

2𝐼

23𝐼+6𝐶2
𝜎

𝑎2
min∗𝛿𝑐

8(log2 𝑑)𝐼−1

1
𝑑𝐼−1/2 ,

𝜀 ≤
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝛿𝑐

24

)2
1

𝑑1+2𝛾 (𝐼−1) ∧
(

1
6

4𝜎̂2
2𝐼

23𝐼+6𝐶2
𝜎

𝑎min∗𝛿𝑐

8(log2 𝑑)𝐼−1

)2
1

𝑑1+2𝛾 (𝐼−1) ,

𝑑 ≥
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1

𝛿𝑐

24

)− 1
1/2−𝛾𝐼

∨
(

1
6

2𝐼𝜎̂2
2𝐼

𝐶2
𝜎

𝑎min∗𝛿𝑐

8(log2 𝑑)𝐼−1

)− 1
1−𝛾

,
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𝑑

(log2 𝑑)
𝐼−1

1/2−𝛾𝐼
≥

(
1
6

4𝜎̂2
2𝐼

23𝐼+6𝐶2
𝜎

𝑎2
min∗𝛿𝑐

8 ∥a∥1

)− 1
1/2−𝛾𝐼

.

To complete the proof, it suffices to keep only the stronger one in each of the conditions on 𝑚𝜎2
1 , 𝜀,

and 𝑑. □

Lemma C.13 (Lower right block). Consider 𝑘 ∈ [𝑚], 𝑞 ∈ [𝑃] with 𝑘, 𝑞 > 𝑃∗. Assume the
conditions of Corollary C.9 and the conditions of Lemma C.10, with 𝛿𝑟 replaced by 𝛿𝑡 . Then, we
have 𝑣̄2

𝑘, 𝜋 (𝑞) ≤ 𝜀0 throughout training.

Proof. By Lemma C.2, we have

d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑞) ≤ 2

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖𝑎𝜋 (𝑞) 𝑣̄

2𝑖
𝑘, 𝜋 (𝑞)

± 𝐼23𝐼+6𝐶2
𝜎

��𝑣̄𝑘, 𝜋 (𝑞) �� {𝑎𝜋 (𝑞)𝜀1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
}

=: T1

(
d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑞)

)
+ T2

(
d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑞)

)
.

For the first term, we have

T1 = 4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑞) 𝑣̄

2𝐼
𝑘, 𝜋 (𝑞) + 2

∞∑︁
𝑖=𝐼+1

2𝑖𝜎̂2
2𝑖𝑎𝜋 (𝑞) 𝑣̄

2𝑖
𝑘, 𝜋 (𝑞)

≤ 4𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑞) 𝑣̄

2𝐼
𝑘, 𝜋 (𝑞) + 2𝐶2

𝜎𝑎𝜋 (𝑞)𝜀0𝑣̄
2𝐼
𝑘, 𝜋 (𝑞)

=

(
1 + 𝐶

2
𝜎𝜀0

2𝐼𝜎̂2
2𝐼

)
× 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑞) 𝑣̄
2𝐼
𝑘, 𝜋 (𝑞) .

Similar to the previous proofs, we may assume w.l.o.g. that 𝑣̄2
𝑘, 𝜋 (𝑞) ≥ 1/𝑑. Then, for the second term,

we have

T2 ≤ 𝐼23𝐼+6𝐶2
𝜎𝑑

𝐼+1/2 {
𝑎𝜋 (𝑞)𝜀

1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0
}
𝑣̄2𝐼
𝑘, 𝜋 (𝑞)

=
23𝐼+6𝐶2

𝜎

4𝜎̂2
2𝐼

𝑑𝐼+1/2

{
𝜀1/2𝜀𝐼−1

0 ∨
𝑚𝜎2

1
𝑎𝜋 (𝑞)

∨ ∥a∥1
𝑎𝜋 (𝑞)

𝜀𝐼0

}
× 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑞) 𝑣̄
2𝐼
𝑘, 𝜋 (𝑞) .

As a result, we have

d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑞) ≤

(
1 + 𝐶

2
𝜎𝜀0

2𝐼𝜎̂2
2𝐼

+ 23𝐼+6𝐶2
𝜎

4𝜎̂2
2𝐼

𝑑𝐼+1/2

{
𝜀1/2𝜀𝐼−1

0 ∨
𝑚𝜎2

1
𝑎𝜋 (𝑞)

∨ ∥a∥1
𝑎𝜋 (𝑞)

𝜀𝐼0

})
× 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑞) 𝑣̄
2𝐼
𝑘, 𝜋 (𝑞) .

Note that this is the same as the bound in the proof of Lemma C.10 and Lemma C.11. Thus, to achieve
𝑣̄2
𝑘, 𝜋 (𝑞) ≤ 𝜀0, it suffices to require the same conditions as in those two lemmas, with 𝛿𝑟 replaced by
𝛿𝑡 (cf. Assumption C.1). □

C.2.2 Upper Bound on the Norm Growth

Here, we verify Induction Hypothesis C.2(a).
Lemma C.14 (Upper bound on unused neurons). Consider 𝑘 ∈ [𝑚] with 𝑘 > 𝑃∗. Suppose that

𝛾 <
1
𝐼
, 𝑑 ≥

(
𝑎min∗
∥a∥1

𝐼 (𝐼 − 1)𝜎̂2
2𝐼

2

)− 1
1−𝛾𝐼

.

Then, we have ∥v𝑘 ∥2 ≤ 𝑒𝜎2
0 throughout training.
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Proof. First, by Lemma B.1, Induction Hypothesis C.2(b) and Assumption 2.1, we have

d
d𝑡

∥v𝑘 ∥2 ≤ 4 ∥v𝑘 ∥2
∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

𝑃∑︁
𝑝=1

𝑎𝑝 𝑣̄
2𝑖
𝑘, 𝑝 ≤ 4 ∥v𝑘 ∥2

∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

𝑃∑︁
𝑝=1

𝑎𝑝𝜀
𝑖
0 ≤ 4 ∥a∥1 𝜀

𝐼
0 ∥v𝑘 ∥

2 .

Thus, by Gronwall’s lemma, we have ∥v𝑘 (𝑡)∥2 ≤ 𝜎2
0 exp

(
4 ∥a∥1 𝜀

𝐼
0𝑡

)
≤ 𝑒𝜎2

0 as long as 𝑡 ≤
(4 ∥a∥1 𝜀

𝐼
0)

−1. By Lemma C.6 and Lemma C.8, the training process ends at time

𝑇𝑃∗ ≤
2

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎𝜋 (𝑃∗ ) 𝑣̄

2𝐼−2
𝑃∗ , 𝜋 (𝑃∗ ) (0)

≤ 𝑑𝐼−1

2𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎min∗

.

Hence, it suffices to require

1
4 ∥a∥1 𝜀

𝐼
0
≥ 𝑑𝐼−1

2𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎min∗

⇐ 𝑑𝛾𝐼−1 ≤
𝑎min∗
∥a∥1

𝐼 (𝐼 − 1)𝜎̂2
2𝐼

2

⇐ 𝛾 <
1
𝐼
, 𝑑 ≥

(
𝑎min∗
∥a∥1

𝐼 (𝐼 − 1)𝜎̂2
2𝐼

2

)− 1
1−𝛾𝐼

.

□

Then, we consider 𝑘 = 𝑝 ≤ 𝑃∗. Unlike those unused neurons, since v𝑝 will eventually converge
to e𝜋 (𝑝) , its norm cannot stay small. Our strategy here will be coupling its norm growth with the
tangent movement.

Lemma C.15 (Upper bound on


v𝑝

2 with 𝑝 ≤ 𝑃∗). Consider 𝑝 ∈ [𝑃∗]. Suppose that the

hypotheses of Lemma C.14 and Lemma C.6 hold. Then,


v𝑝

2 ≥ 𝜎2

1 only if 𝑣̄2
𝑝,𝜋 (𝑝) ≥ 1 − 𝜀, where

𝜎2
1 := 2𝜎2

0 𝑒
5/𝜎̂2

2𝐼 𝜀−8/(𝐼 𝜎̂2
2𝐼 ) .

Proof. Again, by Lemma B.1, Induction Hypothesis C.2(b) and Assumption 2.1, we have

d
d𝑡



v𝑝

2 ≤ 4


v𝑝

2

∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

𝑃∑︁
𝑞=1

𝑎𝜋 (𝑞) 𝑣̄
2𝑖
𝑝, 𝜋 (𝑞) ≤ 4



v𝑝

2
∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

(
𝑎𝜋 (𝑝) 𝑣̄

2𝑖
𝑝, 𝜋 (𝑝) + ∥a∥1 𝜀

𝑖
0

)
≤ 4



v𝑝

2
𝑎𝜋 (𝑝) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑝) + 4



v𝑝

2 ∥a∥1 𝜀
𝐼
0.

Hence, by Gronwall’s lemma, we have

v𝑝 (𝑡)

2 ≤ 𝜎2
0 exp

(
4 ∥a∥1 𝜀

𝐼
0𝑡

)
exp

(
4𝑎𝜋 (𝑝)

∫ 𝑡

0
𝑣̄2𝐼
𝑝, 𝜋 (𝑝) (𝑠) d𝑠

)
.

Let 𝑐0 > 0 be a small constant to be determined later and let 𝑇0 be the time 𝑣̄2
𝑝,𝜋 (𝑝) reaches 1 − 𝑐0/𝐼.

By the proof of Lemma C.3, we know

d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝) ≥ (1 − (1 − 𝑐0/𝐼) − 𝑜(1)) 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑝) ≥ 𝑐02𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑝) .

Integrate both sides, and we obtain

1 ≥ 1 − 𝑐0/𝐼 − 𝑣̄2
𝑝,𝜋 (𝑝) (0) ≥ 𝑐02𝜎̂2

2𝐼𝑎𝜋 (𝑝)

∫ 𝑇0

0
𝑣̄2𝐼
𝑝, 𝜋 (𝑝) (𝑠) d𝑠.

As a result, for 𝑡 ≤ 𝑇0, we have

v𝑝 (𝑡)

2 ≤ 𝜎2
0 exp

(
4 ∥a∥1 𝜀

𝐼
0𝑇0

)
exp

(
4𝑎𝜋 (𝑝)

𝑐02𝜎̂2
2𝐼𝑎𝜋 (𝑝)

)
≤ 𝜎2

0 exp
(
4 ∥a∥1 𝜀

𝐼
0𝑇0

)
exp

(
2

𝑐0𝜎̂
2
2𝐼

)
.
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Clear that 𝑇0 ≤ 𝑇𝑃∗ and under the conditions of Lemma C.14, we have 4 ∥a∥1 𝜀
𝐼
0𝑇𝑃∗ ≤ 1. Therefore,

v𝑝 (𝑡)

2 ≤ 𝜎2

0 exp

(
1 + 2

𝑐0𝜎̂
2
2𝐼

)
, ∀𝑡 ≤ 𝑇0.

Now, consider the 𝑇0 ≤ 𝑡 ≤ 𝑇1, where 𝑇1 is the time 𝑣̄2
𝑝,𝜋 (𝑝) reaches 1 − 𝜀. By Lemma C.5 (and the

proof of Lemma C.6), we know

d
d𝑡
𝑣̄2
𝑝,𝜋 (𝑝) ≥ (1 − 𝑐0)𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝)
(
1 − 𝑣̄2

𝑝,𝜋 (𝑝)

)
⇒ 𝑇1 − 𝑇0 ≤ log (𝑐0/𝜀)

(1 − 𝑐0)𝐼𝜎̂2
2𝐼𝑎𝜋 (𝑝)

.

Thus, for 𝑡 ∈ [𝑇0, 𝑇1], we have

v𝑝 (𝑡)

2 ≤


v𝑝 (𝑇0)



2 exp
(
4 ∥a∥1 𝜀

𝐼
0 (𝑇1 − 𝑇0)

)
exp

(
4𝑎𝜋 (𝑝) (𝑇1 − 𝑇0)

)
≤



v𝑝 (𝑇0)


2 (1 + 𝑜(1)) exp

(
4

log (𝑐0/𝜀)
(1 − 𝑐0)𝐼𝜎̂2

2𝐼

)
≤



v𝑝 (𝑇0)


2 2

( 𝑐0
𝜀

) 4
(1−𝑐0 ) 𝐼 𝜎̂2

2𝐼 .

Choose 𝑐0 = 1/2 and recall


v𝑝 (𝑇0)



2 ≤ 𝜎2
0 exp

(
1 + 2

𝑐0 𝜎̂
2
2𝐼

)
. Then, we conclude that

v𝑝 (𝑡)

2 ≤ 2𝜎2

0 𝑒
5/𝜎̂2

2𝐼 𝜀−8/(𝐼 𝜎̂2
2𝐼 ) =: 𝜎2

1 ,

for all 𝑡 ≤ 𝑇1. Recall from Lemma C.6 that once 𝑣̄2
𝑝,𝜋 (𝑝) reaches 1 − 𝜀, it will stay above 1 − 𝜀. Thus,

this implies that


v𝑝

2 ≥ 𝜎2

1 only if 𝑣̄2
𝑝,𝜋 (𝑝) ≥ 1 − 𝜀. □

C.3 Deferred Proofs

C.3.1 Proof of Lemma C.2

Proof of Lemma C.2. Recall from Lemma B.1 that

−

[
(I − v̄𝑘 v̄

⊤
𝑘
)∇v𝑘

L
]
𝑝

∥v𝑘 ∥
=

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

(
𝑎𝑝 𝑣̄

2𝑖−2
𝑘, 𝑝 −

𝑃∑︁
𝑟=1

𝑎𝑟 𝑣̄
2𝑖
𝑘,𝑟

)
𝑣̄𝑘, 𝑝

−
∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

∑︁
𝑙:𝑙≠𝑘

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩2𝑖−1 〈
(I − v̄𝑘 v̄

⊤
𝑘 )v̄𝑙 , e𝑝

〉
.

Re-index the summation as
∑𝑃
𝑟=1 𝑎𝜋 (𝑟 ) 𝑣̄

2𝑖
𝑘, 𝜋 (𝑟 ) , replace 𝑝 with 𝜋(𝑞), and we obtain

¤̄𝑣𝑘, 𝜋 (𝑞) =
∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

(
𝑎𝜋 (𝑞) 𝑣̄

2𝑖−2
𝑘, 𝜋 (𝑞) −

𝑃∑︁
𝑟=1

𝑎𝜋 (𝑟 ) 𝑣̄
2𝑖
𝑘, 𝜋 (𝑟 )

)
𝑣̄𝑘, 𝜋 (𝑞)

−
∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

∑︁
𝑙:𝑙≠𝑘

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩2𝑖−1 〈
(I − v̄𝑘 v̄

⊤
𝑘 )v̄𝑙 , e𝜋 (𝑞)

〉
.

Therefore, we have

d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑞) = 2𝑣̄2

𝑘, 𝜋 (𝑞)

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

(
𝑎𝜋 (𝑞) 𝑣̄

2𝑖−2
𝑘, 𝜋 (𝑞) −

𝑃∑︁
𝑟=1

𝑎𝜋 (𝑟 ) 𝑣̄
2𝑖
𝑘, 𝜋 (𝑟 )

)
− 1 {𝑘 ≠ 𝑞} 2𝑣̄𝑘, 𝜋 (𝑞)

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖



v𝑞

2 〈
v̄𝑘 , v̄𝑞

〉2𝑖−1 〈
(I − v̄𝑘 v̄

⊤
𝑘 )v̄𝑞 , e𝜋 (𝑞)

〉
− 2𝑣̄𝑘, 𝜋 (𝑞)

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

∑︁
𝑙∉{𝑘,𝑞}

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩2𝑖−1 〈
(I − v̄𝑘 v̄

⊤
𝑘 )v̄𝑙 , e𝜋 (𝑞)

〉
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=: T1

(
d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑞)

)
+ T2

(
d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑞)

)
+ T3

(
d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑞)

)
.

We keep T1 as it is, and simplify T2 and T3 as follows. Consider T2. When 𝑞 ∉ 𝐿, we have


v𝑞

2 ≤ 𝜎2

1 ,
and therefore,

(When 𝑞 ∉ 𝐿) |T2 | ≤ 2
��𝑣̄𝑘, 𝜋 (𝑞) �� ∞∑︁

𝑖=𝐼

2𝑖𝜎̂2
2𝑖𝜎

2
1 ≤ 2

��𝑣̄𝑘, 𝜋 (𝑞) ��𝐶2
𝜎𝜎

2
1 ,

where the last inequality comes from Assumption 2.1. Now, suppose that 𝑞 ∈ 𝐿. In this case, we have
v̄𝑞 ≈ 𝑠𝑞e𝜋 (𝑞) where 𝑠𝑞 := sgn 𝑣̄𝑞,𝜋 (𝑞) . This suggests writing〈

v̄𝑘 , v̄𝑞
〉2𝑖−1 〈

(I − v̄𝑘 v̄
⊤
𝑘 )v̄𝑞 , e𝜋 (𝑞)

〉
=

〈
v̄𝑘 , v̄𝑞

〉2𝑖−1 (〈
v̄𝑞 , e𝜋 (𝑞)

〉
−

〈
v̄𝑘 , v̄𝑞

〉 〈
v̄𝑘 , e𝜋 (𝑞)

〉)
=

〈
v̄𝑘 , v̄𝑞

〉2𝑖−1
𝑣̄𝑞,𝜋 (𝑞) −

〈
v̄𝑘 , v̄𝑞

〉2𝑖
𝑣̄𝑘, 𝜋 (𝑞) .

By Induction Hypothesis C.2(a), we have 𝑣̄2
𝑞,𝜋 (𝑞) ≥ 1−𝜀. First, this implies |𝑣̄𝑞,𝜋 (𝑞) | ≥

√
1 − 𝜀 ≥ 1−𝜀.

Hence, 𝑣̄𝑞,𝜋 (𝑞) = 𝑠𝑞 ± 𝜀. In addition, we have

𝑠𝑞e𝜋 (𝑞) − v̄𝑞


 = √︃

2 − 2
〈
𝑠𝑞e𝜋 (𝑞) , v̄𝑞

〉
=

√︁
2 − 2𝑠𝑞 (𝑠𝑞 ± 𝜀) ≤

√
2𝜀.

As a result, we have〈
v̄𝑘 , v̄𝑞

〉
=

〈
v̄𝑘 , 𝑠𝑞e𝜋 (𝑞)

〉
+

〈
v̄𝑘 , 𝑠𝑞e𝜋 (𝑞) − v̄𝑞

〉
= 𝑠𝑞 𝑣̄𝑘, 𝜋 (𝑞) ±



𝑠𝑞e𝜋 (𝑞) − v̄𝑞


 = 𝑠𝑞 𝑣̄𝑘, 𝜋 (𝑞) ± √

2𝜀.

Combine these estimations with the previous identity, and we obtain〈
v̄𝑘 , v̄𝑞

〉2𝑖−1 〈
(I − v̄𝑘 v̄

⊤
𝑘 )v̄𝑞 , e𝜋 (𝑞)

〉
=

〈
v̄𝑘 , v̄𝑞

〉2𝑖−1
𝑣̄𝑞,𝜋 (𝑞) −

〈
v̄𝑘 , v̄𝑞

〉2𝑖
𝑣̄𝑘, 𝜋 (𝑞)

=

(
𝑠𝑞 𝑣̄𝑘, 𝜋 (𝑞) ±

√
2𝜀

)2𝑖−1 (
𝑠𝑞 ± 𝜀

)
−

(
𝑠𝑞 𝑣̄𝑘, 𝜋 (𝑞) ±

√
2𝜀

)2𝑖
𝑣̄𝑘, 𝜋 (𝑞) .

Note that, for any 𝑎, 𝛿 ∈ R and integer 𝑁 , we have

(𝑎 + 𝛿)𝑁 = 𝑎𝑁 +
𝑁∑︁
𝑛=1

(
𝑁

𝑛

)
𝑎𝑁−𝑛𝛿𝑛 = 𝑎𝑁 + 𝛿

𝑁−1∑︁
𝑛=0

(
𝑁

𝑛 + 1

)
𝑎𝑁−𝑛−1𝛿𝑛

= 𝑎𝑁 + 𝛿
𝑁−1∑︁
𝑛=0

(
𝑁 − 1
𝑛

)
𝑁

𝑛 + 1
𝑎 (𝑁−1)−𝑛𝛿𝑛

= 𝑎𝑁 ± 𝛿𝑁 ( |𝑎 | + |𝛿 |)𝑁−1

= 𝑎𝑁 ± 𝑁2𝑁−1
(
𝛿 |𝑎 |𝑁−1 ∨ |𝛿 |𝑁

)
.

Thus, we can further rewrite the above as〈
v̄𝑘 , v̄𝑞

〉2𝑖−1 〈
(I − v̄𝑘 v̄

⊤
𝑘 )v̄𝑞 , e𝜋 (𝑞)

〉
=

(
𝑠2𝑖−1
𝑞 𝑣̄2𝑖−1

𝑘, 𝜋 (𝑞) ± 𝑖2
3𝑖

(
𝜀1/2𝑣̄2𝑖−2

𝑘, 𝜋 (𝑞) ∨ 𝜀
𝑖−1/2

)) (
𝑠𝑞 ± 𝜀

)
−

(
𝑣̄2𝑖
𝑘, 𝜋 (𝑞) ± 𝑖2

3𝑖
(
𝜀1/2��𝑣̄𝑘, 𝜋 (𝑞) ��2𝑖−1 ∨ 𝜀𝑖

))
𝑣̄𝑘, 𝜋 (𝑞)

=

(
1 − 𝑣̄2

𝑘, 𝜋 (𝑞)

)
𝑣̄2𝑖−1
𝑘, 𝜋 (𝑞)

± 𝑣̄2𝑖−1
𝑘, 𝜋 (𝑞)𝜀 ± 2𝑖23𝑖

(
𝜀1/2𝑣̄2𝑖−2

𝑘, 𝜋 (𝑞) ∨ 𝜀
𝑖−1/2

)
± 𝑖23𝑖 𝑣̄𝑘, 𝜋 (𝑞)

(
𝜀1/2��𝑣̄𝑘, 𝜋 (𝑞) ��2𝑖−1 ∨ 𝜀𝑖

)
.

For the last three terms, clear that the second one is the largest as it has the smallest exponents on
both 𝜀 and 𝑣̄𝑘, 𝜋 (𝑞) . Also recall from Induction Hypothesis C.2(b) that |𝑣̄𝑘, 𝜋 (𝑞) | ≤ 𝜀0. Thus, we have〈

v̄𝑘 , v̄𝑞
〉2𝑖−1 〈

(I − v̄𝑘 v̄
⊤
𝑘 )v̄𝑞 , e𝜋 (𝑞)

〉
=

(
1 − 𝑣̄2

𝑘, 𝜋 (𝑞)

)
𝑣̄2𝑖−1
𝑘, 𝜋 (𝑞) ± 3𝑖23𝑖

(
𝜀1/2𝜀𝑖−1

0 ∨ 𝜀𝑖−1/2
)
.

As a result, we have

(When 𝑞 ∈ 𝐿)
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T2 = −1 {𝑘 ≠ 𝑞} 2𝑣̄𝑘, 𝜋 (𝑞)
∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖



v𝑞

2
((

1 − 𝑣̄2
𝑘, 𝜋 (𝑞)

)
𝑣̄2𝑖−1
𝑘, 𝜋 (𝑞) ± 3𝑖23𝑖

(
𝜀1/2𝜀𝑖−1

0 ∨ 𝜀𝑖−1/2
))

= −1 {𝑘 ≠ 𝑞} 2
∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖



v𝑞

2
(
1 − 𝑣̄2

𝑘, 𝜋 (𝑞)

)
𝑣̄2𝑖
𝑘, 𝜋 (𝑞)

± 2𝑣̄𝑘, 𝜋 (𝑞)3𝐼23𝐼
(
𝜀1/2𝜀𝐼−1

0 ∨ 𝜀𝐼−1/2
) ∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖



v𝑞

2

= −1 {𝑘 ≠ 𝑞} 2


v𝑞

2

(
1 − 𝑣̄2

𝑘, 𝜋 (𝑞)

) ∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖 𝑣̄

2𝑖
𝑘, 𝜋 (𝑞)

± 12𝐼23𝐼𝐶2
𝜎𝑎𝜋 (𝑞) 𝑣̄𝑘, 𝜋 (𝑞)

(
𝜀1/2𝜀𝐼−1

0 ∨ 𝜀𝐼−1/2
)
.

Combining the cases 𝑞 ∈ 𝐿 and 𝑞 ∉ 𝐿, we obtain

T2 = −1 {𝑘 ≠ 𝑞, 𝑞 ∈ 𝐿} 2


v𝑞

2

(
1 − 𝑣̄2

𝑘, 𝜋 (𝑞)

) ∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖 𝑣̄

2𝑖
𝑘, 𝜋 (𝑞)

± 12𝐼23𝐼𝐶2
𝜎𝑎𝜋 (𝑞) 𝑣̄𝑘, 𝜋 (𝑞)

(
𝜀1/2𝜀𝐼−1

0 ∨ 𝜀𝐼−1/2
)
± 2

��𝑣̄𝑘, 𝜋 (𝑞) ��𝐶2
𝜎𝜎

2
1 .

Now, we estimate

T3 := −2𝑣̄𝑘, 𝜋 (𝑞)
∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

∑︁
𝑙∉{𝑘,𝑞}

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩2𝑖−1 〈
(I − v̄𝑘 v̄

⊤
𝑘 )v̄𝑙 , e𝜋 (𝑞)

〉
:= −2𝑣̄𝑘, 𝜋 (𝑞)

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

∑︁
𝑙∉𝐿∪{𝑘,𝑞}

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩2𝑖−1 〈
(I − v̄𝑘 v̄

⊤
𝑘 )v̄𝑙 , e𝜋 (𝑞)

〉
− 2𝑣̄𝑘, 𝜋 (𝑞)

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

∑︁
𝑙∈𝐿\{𝑘,𝑞}

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩2𝑖−1 〈
(I − v̄𝑘 v̄

⊤
𝑘 )v̄𝑙 , e𝜋 (𝑞)

〉
=: T3.1 + T3.2.

Similar to the previous analysis, for T3.1, we have

|T3.1 | ≤ 2
��𝑣̄𝑘, 𝜋 (𝑞) �� ∞∑︁

𝑖=𝐼

2𝑖𝜎̂2
2𝑖

∑︁
𝑙∉𝐿∪{𝑘,𝑞}

𝜎2
1 ≤ 2𝐶2

𝜎

��𝑣̄𝑘, 𝜋 (𝑞) ��(𝑚 − 1)𝜎2
1 .

Consider T3.2. Note that by our previous analysis, for any 𝑙 ∈ 𝐿 \ {𝑘, 𝑞}, we have��⟨v̄𝑘 , v̄𝑙⟩2𝑖−1 〈
(I − v̄𝑘 v̄

⊤
𝑘 )v̄𝑙 , e𝜋 (𝑞)

〉��
≤

����(𝑠𝑙 𝑣̄𝑘, 𝜋 (𝑙) ± √
2𝜀

)2𝑖−1
𝑣̄𝑙, 𝜋 (𝑞)

���� + ����(𝑠𝑙 𝑣̄𝑘, 𝜋 (𝑙) ± √
2𝜀

)2𝑖
𝑣̄𝑘, 𝜋 (𝑞)

����
≤

(√
𝜀0 +

√
2𝜀

)2𝑖−1 √
𝜀0 +

(√
𝜀0 +

√
2𝜀

)2𝑖
.

Note that √𝜀0
2𝑖 ∨

√
𝜀

2𝑖−1√
𝜀0 ∨

√
𝜀

2𝑖
= 𝜀𝑖0 ∨ 𝜀

𝑖 . Hence, we can bound the last term as��⟨v̄𝑘 , v̄𝑙⟩2𝑖−1 〈
(I − v̄𝑘 v̄

⊤
𝑘 )v̄𝑙 , e𝜋 (𝑞)

〉�� ≤ 2𝑖+2 (
𝜀𝑖0 ∨ 𝜀

𝑖
)
.

Therefore,

|T3.2 | ≤ 2𝑣̄𝑘, 𝜋 (𝑞)
∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

∑︁
𝑙∈𝐿\{𝑘,𝑞}

∥v𝑙 ∥2 2𝑖+2 (
𝜀𝑖0 ∨ 𝜀

𝑖
)
≤ 2𝐼+5𝐶2

𝜎 ∥a∥1
��𝑣̄𝑘, 𝜋 (𝑞) �� (𝜀𝐼0 ∨ 𝜀𝐼 ) .

As a result, for T3, we have

|T3 | ≤ 2𝐶2
𝜎

��𝑣̄𝑘, 𝜋 (𝑞) ��(𝑚 − 1)𝜎2
1 + 2𝑖+5𝐶2

𝜎 ∥a∥1
��𝑣̄𝑘, 𝜋 (𝑞) �� (𝜀𝐼0 ∨ 𝜀𝐼 ) .
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Combine our bounds for T2 and T3, and we get

d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑞) = 2𝑣̄2

𝑘, 𝜋 (𝑞)

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

(
𝑎𝜋 (𝑞) 𝑣̄

2𝑖−2
𝑘, 𝜋 (𝑞) −

𝑃∑︁
𝑟=1

𝑎𝜋 (𝑟 ) 𝑣̄
2𝑖
𝑘, 𝜋 (𝑟 )

)
− 1 {𝑘 ≠ 𝑞, 𝑞 ∈ 𝐿} 2



v𝑞

2
(
1 − 𝑣̄2

𝑘, 𝜋 (𝑞)

) ∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖 𝑣̄

2𝑖
𝑘, 𝜋 (𝑞)

± 12𝐼23𝐼𝐶2
𝜎𝑎𝜋 (𝑞) 𝑣̄𝑘, 𝜋 (𝑞)

(
𝜀1/2𝜀𝐼−1

0 ∨ 𝜀𝐼−1/2
)
± 2

��𝑣̄𝑘, 𝜋 (𝑞) ��𝐶2
𝜎𝜎

2
1

± 𝐶2
𝜎

��𝑣̄𝑘, 𝜋 (𝑞) ��(𝑚 − 1)𝜎2
1 ± 2𝐼+5𝐶2

𝜎 ∥a∥1
��𝑣̄𝑘, 𝜋 (𝑞) �� (𝜀𝐼0 ∨ 𝜀𝐼 ) .

For the last four error terms, clear that we can merge the second and the third terms, which leads to
2𝐶2

𝜎

��𝑣̄𝑘, 𝜋 (𝑞) ��𝑚𝜎2
1 . Meanwhile, the largest coefficient is 12𝐼23𝐼𝐶2

𝜎 . Thus,

d
d𝑡
𝑣̄2
𝑘, 𝜋 (𝑞) = 2𝑣̄2

𝑘, 𝜋 (𝑞)

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

(
𝑎𝜋 (𝑞) 𝑣̄

2𝑖−2
𝑘, 𝜋 (𝑞) −

𝑃∑︁
𝑟=1

𝑎𝜋 (𝑟 ) 𝑣̄
2𝑖
𝑘, 𝜋 (𝑟 )

)
− 1 {𝑘 ≠ 𝑞, 𝑞 ∈ 𝐿} 2



v𝑞

2
(
1 − 𝑣̄2

𝑘, 𝜋 (𝑞)

) ∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖 𝑣̄

2𝑖
𝑘, 𝜋 (𝑞)

± 𝐼23𝐼+6𝐶2
𝜎

��𝑣̄𝑘, 𝜋 (𝑞) �� {𝑎𝜋 (𝑞) (
𝜀1/2𝜀𝐼−1

0 ∨ 𝜀𝐼−1/2
)
∨ 𝑚𝜎2

1 ∨ ∥a∥1

(
𝜀𝐼0 ∨ 𝜀

𝐼
)}
.

Finally, recall that 𝜀 ≤ 𝜀0. Hence, 𝜀1/2𝜀𝐼−1
0 ∨ 𝜀𝐼−1/2 = 𝜀1/2𝜀𝐼−1

0 and 𝜀𝐼0 ∨ 𝜀
𝐼 = 𝜀𝐼0.

Now, consider the second part of the lemma. In order for 𝑎𝜋 (𝑞)𝜀1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0 ≤ 𝛿, clear

that we need 𝑚𝜎2
1 ≤ 𝛿. Meanwhile, for the last condition, we have

∥a∥1 𝜀
𝐼
0 ≤ 𝛿 ⇐ 𝑑−(1−𝛾) 𝐼 ≤ 𝛿

∥a∥1
⇐ 𝑑 ≥

(
𝛿

∥a∥1

)− 1
(1−𝛾) 𝐼

.

For the first condition, we have

𝑎𝜋 (𝑞)𝜀
1/2𝜀𝐼−1

0 ≤ 𝛿 ⇐ 𝜀 ≤
(

𝛿

𝑎𝜋 (𝑞)

)2
𝑑2(1−𝛾) (𝐼−1) .

□

C.3.2 Proof of Theorem C.1

Proof of Theorem C.1. By Corollary C.9, Lemma C.10, C.11, C.12, C.13, C.14, and C.15. Induc-
tion Hypothesis C.2 holds throughout training and the conclusions of Theorem C.1 are true, provided
that all the conditions of these lemmas are met.
For easier reference, we collect the conditions of all above lemmas below:

𝛾 < 1/(2𝐼), 𝛿′𝑣 = 1/3, 𝛿𝑟 ,𝑡 = 𝛿𝑟 ∧ 𝛿𝑡 ,

𝜀𝐷 ≥ 23𝐼+7𝐶2
𝜎

(𝛿′𝑣)𝐼 𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝑑 (1−𝛾) 𝐼

, 𝜀𝑅 ≥ 12 ∥a∥1 22𝐼𝑑−(1−𝛾) 𝐼 , 𝛿𝑇 ≥ 23𝐼+4𝐶2
𝜎

𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝑑1/2−𝛾𝐼 ,

𝑚𝜎2
1 ≤

𝜎̂2
2𝐼𝑎min∗

23𝐼+7𝐶2
𝜎

(
(𝛿′𝑣)𝐼𝜀 ∧

𝛿𝑇

𝑑𝐼−1/2

)
∧ 𝜀𝑅

12
,

𝜀 ≤
(
(𝛿′𝑣)𝐼 𝜎̂2

2𝐼

23𝐼+7𝐶2
𝜎

)2

𝜀2
𝐷𝑑

2(1−𝛾) (𝐼−1) ∧
(
𝛿𝑇

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

)2
1

𝑑1+2𝛾 (𝐼−1) ∧
𝜀𝑅

12𝐶2
𝜎𝑎𝜋 (𝑝)

,

𝜀 ≤
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝛿𝑟 ,𝑡

24

)2
1

𝑑1+2𝛾 (𝐼−1) , 𝑚𝜎2
1 ≤

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
2(log 𝑑)2𝐼−2𝑑𝐼−1/2

𝛿𝑟 ,𝑡

24
,

𝑑

(log2 𝑑)1/𝛾
≥

(
𝛿𝑟 ,𝑡

4

)− 1
𝛾 (𝐼−1)

,
𝑑

(log2 𝑑)
𝐼−1

1/2−𝛾𝐼
≥

(
𝜎̂2

2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1 22𝐼−2

𝛿𝑟 ,𝑡

24

)− 1
1/2−𝛾𝐼

, 𝛿𝑇 ≤
𝛿𝑟 ,𝑡

240
,
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𝛿𝑇 ≤ 𝛿𝑐

240
, 𝜀𝑅 ≤ 1

6
𝑎2

min∗𝛿𝑐

8(log2 𝑑)𝐼−1
, 𝜀 ≤

(
1

48
4𝜎̂2

2𝐼

23𝐼+6𝐶2
𝜎

)2
𝑎2

min∗𝛿
2
𝑐

(log2 𝑑)2𝐼−2

1
𝑑1+2𝛾 (𝐼−1) ,

𝑚𝜎2
1 ≤ 1

48
𝜎̂2

2𝐼

23𝐼+4𝐶2
𝜎

𝑎2
min∗𝛿𝑐

(log2 𝑑)𝐼−1

1
𝑑𝐼−1/2 ,

𝑑

(log2 𝑑)
𝐼−1

1/2−𝛾𝐼
≥

(
1
6

4𝜎̂2
2𝐼

23𝐼+6𝐶2
𝜎

𝑎2
min∗𝛿𝑐

8 ∥a∥1

)− 1
1/2−𝛾𝐼

.

In the following, for notational simplicity, we will use ≲𝜎 and ≳𝜎 to hide constant that can only
depend on 𝜎. First, we consider the conditions on 𝛾, which are

𝛾 <
1
2𝐼

and
𝑑

(log2 𝑑)1/𝛾
≥

(
𝛿𝑟 ,𝑡

4

)− 1
𝛾 (𝐼−1)

.

For concreteness, we will require 𝛾 ≤ 1/(4𝐼) and choose 𝛾 such that

𝑑𝛾

log2 𝑑
=

(
𝛿𝑟 ,𝑡

4

)− 1
𝐼−1

.

For such a 𝛾 to exist, it suffices to have

𝑑1/(4𝐼 )

log2 𝑑
≥

(
𝛿𝑟 ,𝑡

4

)− 1
𝐼−1

⇐ 𝑑

log8𝐼 𝑑
≳ 𝛿−8

𝑟 ,𝑡 .

First, for the conditions on the target accuracy 𝜀𝐷 , 𝜀𝑅 and error in time 𝛿𝑇 , we need

𝜀𝐷 ≳𝜎
∥a∥1
𝑎min∗

1
𝑑𝐼−1/4 ,

1
𝑑𝐼−1/4 ≲𝜎 𝜀𝑅 ≲𝜎

𝑎2
min∗𝛿𝑐

(log2 𝑑)𝐼−1
,

∥a∥1
𝑎min∗

1
𝑑1/4 ≲𝜎 𝛿𝑇 ≲𝜎 𝛿𝑐 ∧ 𝛿𝑟 ∧ 𝛿𝑡 .

Then, for 𝜀, we choose

𝜀 =𝜎 𝜀
2
𝐷𝑑

2(𝐼−1) ∧
𝛿2
𝑇
𝛿2
𝑟 ,𝑡

𝑑 (log 𝑑)4(𝐼−1) ∧
𝜀𝑅

𝑎min∗
∧

𝛿4
𝑟 ,𝑡

𝑑 (log 𝑑)4(𝐼−1) ∧
𝑎2

min∗𝛿
2
𝑐

(log2 𝑑)2𝐼−2

𝛿2
𝑟 ,𝑡

𝑑 (log 𝑑)4(𝐼−1) .

The condition on 𝑚𝜎2
1 is

𝑚𝜎2
1 ≲𝜎 𝑎min∗𝜀𝐷 ∧

𝑎min∗𝛿𝑇

𝑑𝐼−1/2 ∧ 𝜀𝑅 ∧
𝑎min∗𝛿𝑟 ,𝑡

(log 𝑑)2𝐼−2𝑑𝐼−1/2 ∧
𝑎2

min∗𝛿𝑐

(log2 𝑑)𝐼−1

1
𝑑𝐼−1/2

Since 𝜎2
1 := 2𝜎2

0 𝑒
5/𝜎̂2

2𝐼 𝜀−8/(𝐼 𝜎̂2
2𝐼 ) , this is equivalent to

𝜎2
0 ≲𝜎

𝜀8/(𝐼 𝜎̂2
2𝐼 )

𝑚

(
𝑎min∗𝜀𝐷 ∧

𝑎min∗𝛿𝑇

𝑑𝐼−1/2 ∧ 𝜀𝑅 ∧
𝑎min∗𝛿𝑟 ,𝑡

(log 𝑑)2𝐼−2𝑑𝐼−1/2 ∧
𝑎2

min∗𝛿𝑐

(log2 𝑑)𝐼−1

1
𝑑𝐼−1/2

)
.

Finally, the conditions on 𝑑 are

𝑑

log8𝐼 𝑑
≳ 𝛿−8

𝑟 ,𝑡 ,
𝑑

(log2 𝑑)4(𝐼−1)
≥

(
𝑎min∗
∥a∥1

𝛿𝑟 ,𝑡

)− 1
1/4

∨
(
𝑎2

min∗𝛿𝑐

∥a∥1

)− 1
1/4

,

which can be merged into

𝑑

(log2 𝑑)4𝐼
≳𝜎 𝛿−8

𝑟 ,𝑡 ∨
(
𝑎min∗
∥a∥1

𝛿𝑟 ,𝑡

)−4
∨

(
𝑎2

min∗𝛿𝑐

∥a∥1

)−4

,

□
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D Online SGD Dynamics

Our goal in this section is to prove Theorem 2.1, which we restate below for convenience:
Theorem 2.1 (Main theorem for online SGD). Let 𝐶,𝐶′ > 0 be large universal constants, depending
only on 𝐼 and 𝜎, and set the initialization scale as 𝜎0 = 𝑑−𝐶 . Let 𝑃∗ ∈ [𝑃], 𝑎min∗ = min𝑝∈[𝑃∗ ] 𝑎𝑝,
and 𝛿∗P be the target failure probability. Define Δ ≃ 𝛿∗P

𝑚𝑃max(𝑚,𝑃) = 𝑜𝑑 (1). Assume the dimension 𝑑,
width 𝑚, learning rate 𝜂 and target accuracies 𝜀𝐷 , 𝜀𝑅 = 𝑜𝑑 (1) satisfy

𝑑 ⪆ ∥a∥4
1 Δ

−8𝑎−4
min∗ , 𝑚 ⪆ 𝑃∗, 𝜂 ⪅ 𝑎min∗ ∥a∥−2

1 𝑚−1𝑃−1𝛿∗P min(Δ2𝑑−𝐼 , 𝜀2
𝐷),

Δ6𝑑−1 ⪆ 𝜀𝐷 ⪆ ∥a∥1 𝑎
−1
min∗𝑑

−𝐼+1/4, 𝑃
−1/2
∗ 𝜀

1/2
𝐷

⪆ 𝜀𝑅 ⪆ 𝜀𝐷 ,

where ⪅,⪆ hide both constants and logarithmic factors. Then, with probability at least 1 − 𝛿∗P, there
exists an ordering of the student neurons v1, . . . , v𝑚 and a mapping 𝜋 : [𝑃∗] → [𝑃] of student
neurons to teacher neurons (see Equation (5)) such that, defining

𝑇𝑝 :=
(
4𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝑎𝜋 (𝑝)𝜂𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

)−1 ∀𝑝 ∈ [𝑃∗], and 𝑇max := (1 + Δ/4) max𝑝∈[𝑃∗ ] 𝑇𝑝

we have:
(a) (Unused neurons). ∥v𝑘 (𝑡)∥2 ≤ 𝑑−𝐶

′
=: 𝜎2

1 for all 𝑘 > 𝑃∗.

(b) (Convergence). 𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) ≥ 1−𝜀𝐷 , ∥v𝑝 (𝑡)∥2 = 𝑎𝜋 (𝑝)±𝜀𝑅 for all 𝑝 ∈ [𝑃∗], (1+Δ)𝑇𝑝 ≤ 𝑡 ≤ 𝑇max.

(c) (Sharp Transition). 𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) ≤ 𝑑−1/2, ∥v𝑝 (𝑡)∥2 ≤ 𝜎2

1 for all 𝑝 ∈ [𝑃∗], 𝑡 ≤ (1 − Δ)𝑇𝑝 .

(d) (Loss Value). At time 𝑡, the population loss of the student network can be bounded by

1 −
∑︁
𝑝∈[𝑃∗ ]

𝑎2
𝜋 (𝑝)1

{
𝑡 ≥ (1−Δ/4)𝑇𝑝

}
−𝑂 (𝜀𝐷) ≤ L(𝑡) ≤ 1 −

∑︁
𝑝∈[𝑃∗ ]

𝑎2
𝜋 (𝑝)1

{
𝑡 ≥ (1+Δ/4)𝑇𝑝

}
+𝑂 (𝜀𝐷).

Similarly to the gradient flow setting, our proof will proceed by maintaining Induction Hypothesis
C.2 with high probability throughout training. We will additionally maintain the following induction
hypothesis on the growth of



v𝑝

2.
Induction Hypothesis D.1. The neuron v𝑝 learns at time (1 ± 𝑜(1))𝑇𝑝; that is

(a) 𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) ≥ 1 − 𝜀𝐷 for all 𝑡 ∈

[
(1 + Δ

8 )𝑇𝑝 , 𝑇max
]
.

(b)
���

v𝑝

2 − 𝑎𝑝

��� ≤ 𝜀𝑅 for all 𝑡 ∈
[
(1 + Δ

4 )𝑇𝑝 , 𝑇max
]

To maintain these induction hypotheses, we rely on the following stochastic induction argument from
[RL24]. Suppose that the goal is to show a stochastic process 𝑋𝑡 stays close to its deterministic
counterpart 𝑥𝑡 with high probability. First, we assume 𝑋𝑡 ≈ 𝑥𝑡 and use this induction hypothesis to
obtain estimations on the related quantities, such as the variance of the noises. Then, using these
estimations, we show that when 𝑋𝑡 is still close to 𝑥𝑡 , the probability that 𝑋𝑡 will drift away from
𝑥𝑡 is small. This argument can be viewed as the stochastic counterpart of the continuity argument,
and can be made rigorous by considering the stopping time 𝜏 that 𝑋𝑡 is no longer close to 𝑥𝑡 and
analyzing the stopped process (𝑋𝑡∧𝜏)𝑡 . One may refer to Section F.2 of [RL24] for more details on
this technique. Finally, we remark that this argument can be easily generalized to cases with multiple
induction hypotheses by considering the stopping time that any of them is violated.

D.1 Preliminaries

The following lemma decomposes the online SGD dynamics into the update on the radial component
∥v𝑘 (𝑡)∥2 and the tangent component 𝑣̄2

𝑘, 𝑝
(𝑡 + 1).

Lemma D.1. Fix 𝑘 ∈ [𝑚], 𝑝 ∈ [𝑃] and 𝑡 > 0. Let 𝛿P, 𝜉 ∈ (0, 1) be target failure probability at this

step. Let 𝐶 > 0 be a large universal constant. Suppose that 𝜂 ≤ 2
(
𝐶 ∥a∥1 𝑑 log𝑄̃/2 (𝑚𝑑/𝛿P)

)−1

and let H𝑘 (𝑡 + 1) := ∇̂v𝑘
𝑙 − ∇v𝑘

L denote the difference between the mini-batch gradient and the
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population at this step. Then, we have (denoting v𝑘 := v𝑘 (𝑡)):

∥v𝑘 (𝑡 + 1)∥2 = ∥v𝑘 ∥2 + 4𝜂 ©­«
∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

𝑃∑︁
𝑝=1

𝑎𝑝 𝑣̄
2𝑖
𝑘, 𝑝 −

∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

𝑚∑︁
𝑙=1

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩2𝑖ª®¬ ∥v𝑘 ∥2

− 2𝜂 ⟨v𝑘 ,H𝑘⟩ + 𝜉𝑘,𝑅 (𝑡 + 1),

𝑣̄2
𝑘, 𝑝 (𝑡 + 1) = 𝑣̄2

𝑘, 𝑝 + 2𝜂𝑣̄2
𝑘, 𝑝 ·

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

©­«𝑎𝑝 𝑣̄2𝑖−2
𝑘, 𝑝 −

𝑃∑︁
𝑞=1

𝑎𝑞 𝑣̄
2𝑖
𝑘,𝑞

ª®¬
− 2𝜂𝑣̄𝑘, 𝑝

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

∑︁
𝑙:𝑙≠𝑘

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩2𝑖−1 〈
(I − v̄𝑘 v̄

⊤
𝑘 )v̄𝑙 , e𝑝

〉
− 2𝜂𝑣̄𝑘, 𝑝

〈
(I − v̄𝑘 v̄

⊤
𝑘
)H𝑘 , e𝑝

〉
∥v𝑘 ∥

+ 𝜉𝑘, 𝑝 (𝑡 + 1),

where 𝜉𝑘,𝑅 (𝑡 + 1) and 𝜉𝑘, 𝑝 (𝑡 + 1) satisfy

|𝜉𝑘,𝑅 (𝑡+1) | ≤ 𝐶𝜂2𝑑 ∥a∥2
1 log𝑄̃

(
𝑚𝑑

𝛿P, 𝜉

)
∥v𝑘 ∥2 , |𝜉𝑘, 𝑝 (𝑡+1) | ≤ 𝐶𝜂2

(
1 ∨ 𝑣̄2

𝑘, 𝑝𝑑

)
∥a∥2

1 log𝑄̃
(
𝑚𝑑

𝛿P, 𝜉

)
with probability at least 1 − 𝛿P, 𝜉 .

Proof. Let 𝑘 ∈ [𝑚] be fixed and 𝑡 > 0. We write

∇̂v𝑘
𝑙 = ∇v𝑘

L +
(
∇̂v𝑘

𝑙 − ∇v𝑘
L

)
=: ∇v𝑘

L +H𝑘 ,

where ∇̂ denotes the mini-batch gradient. First, consider the dynamics of ∥v𝑘 ∥2. By Lemma B.1, we
have that

∥v𝑘 (𝑡 + 1)∥2 =


v𝑘 − 𝜂∇̂v𝑘

𝑙


2

= ∥v𝑘 ∥2 − 2𝜂
〈
v𝑘 ,∇v𝑘

L
〉
− 2𝜂 ⟨v𝑘 ,H𝑘⟩ + 𝜂2 

∇̂v𝑘

𝑙


2

= ∥v𝑘 ∥2 + 4𝜂 ©­«
∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

𝑃∑︁
𝑝=1

𝑎𝑝 𝑣̄
2𝑖
𝑘, 𝑝 −

∞∑︁
𝑖=𝐼

𝜎̂2
2𝑖

𝑚∑︁
𝑙=1

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩2𝑖ª®¬ ∥v𝑘 ∥2

− 2𝜂 ⟨v𝑘 ,H𝑘⟩ + 𝜂2 

∇̂v𝑘
𝑙


2
.

By the tail bound in Lemma B.1, for any given direction u ∈ S𝑑−1, with probability at least 1 − 𝛿P,
we have

��〈∇̂v𝑘
𝑙,u

〉�� ≤ 𝐶 ∥a∥1 log𝑄̃/2 (𝑚/𝛿P) ∥v𝑘 ∥ , for some universal constant 𝐶 > 0. Take u to be
v𝑘 and e1, . . . , e𝑑 , and replace 𝛿P with 𝛿P/(2𝑑). Then, we obtain��〈v𝑘 , ∇̂v𝑘

𝑙
〉�� ≤ 𝐶 ∥a∥1 log𝑄̃/2 (𝑚𝑑/𝛿P) ∥v𝑘 ∥2 ,



∇̂v𝑘
𝑙


2 ≤ 𝐶2𝑑 ∥a∥2

1 log𝑄̃ (𝑚𝑑/𝛿P) ∥v𝑘 ∥2 ,

for some universal constant 𝐶 > 0 with probability at least 1 − 𝛿P. Plugging in the bound for


∇̂v𝑘

𝑙


2

yields the desired update for ∥v𝑘 (𝑡 + 1)∥2.
We next analyze the dynamics of 𝑣̄2

𝑘, 𝑝
where 𝑝 ∈ [𝑃]. To this end, first we estimate 1/∥v𝑘 (𝑡 + 1)∥2.

With probability 1 − 𝛿P we have that,

∥v𝑘 (𝑡 + 1)∥2 = ∥v𝑘 ∥2 − 2𝜂⟨∇v𝑘
𝑙, v𝑘⟩ + 𝜂2 

∇v𝑘

𝑙


2

= ∥v𝑘 ∥2
(
1 ± 2𝜂𝐶 ∥a∥1 log𝑄̃/2 (𝑚𝑑/𝛿P) ± 𝐶2𝜂2𝑑 ∥a∥2

1 log𝑄̃ (𝑚𝑑/𝛿P)
)
.

When 𝜂 ≤ 2
(
𝐶 ∥a∥1 𝑑 log𝑄̃/2 (𝑚𝑑/𝛿P)

)−1
, we have

𝐶2𝜂2𝑑 ∥a∥2
1 log𝑄̃ (𝑚𝑑/𝛿P) ≤ 2𝜂𝐶 ∥a∥1 log𝑄̃/2 (𝑚𝑑/𝛿P) ≤

1
4
.
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Hence, we can use the identity
1

1 + 𝛿 = 1 − 𝛿 ± 2𝛿2, ∀ |𝛿 | ≤ 1/2,

to obtain

1
∥v𝑘 (𝑡 + 1)∥2 =

1
∥v𝑘 ∥2

(
1 +

2𝜂
〈
v𝑘 , ∇̂v𝑘

𝑙
〉

∥v𝑘 ∥2 +
𝜂2



∇̂v𝑘
𝑙


2

∥v𝑘 ∥2 ± 8𝐶2𝜂2 ∥a∥2
1 log𝑄̃

(
𝑚𝑑

𝛿P

))
=

1
∥v𝑘 ∥2

(
1 +

2𝜂
〈
v𝑘 , ∇̂v𝑘

𝑙
〉

∥v𝑘 ∥2 ± 2𝐶2𝜂2𝑑 ∥a∥2
1 log𝑄̃

(
𝑚𝑑

𝛿P

))
.

Therefore the update for v𝑘, 𝑝 (𝑡 + 1) is

𝑣̄2
𝑘, 𝑝 (𝑡 + 1) =

𝑣2
𝑘, 𝑝

− 2𝜂𝑣𝑘, 𝑝
〈
∇̂v𝑘

𝑙, e𝑝
〉
+ 𝜂2 〈

∇̂v𝑘
𝑙, e𝑝

〉2

∥v𝑘 (𝑡 + 1)∥2

=

(
𝑣̄2
𝑘, 𝑝 − 2𝜂𝑣̄𝑘, 𝑝

〈
∇̂v𝑘

𝑙, e𝑝
〉

∥v𝑘 ∥
± 𝐶2𝜂2 ∥a∥2

1 log𝑄̃
(
𝑚𝑑

𝛿P

))
×

(
1 +

2𝜂
〈
v𝑘 , ∇̂v𝑘

𝑙
〉

∥v𝑘 ∥2 ± 2𝐶2𝜂2𝑑 ∥a∥2
1 log𝑄̃

(
𝑚𝑑

𝛿P

))
= 𝑣̄2

𝑘, 𝑝 − 2𝜂𝑣̄𝑘, 𝑝

〈
∇̂v𝑘

𝑙, e𝑝
〉

∥v𝑘 ∥
+

2𝜂
〈
v𝑘 , ∇̂v𝑘

𝑙
〉

∥v𝑘 ∥2 𝑣̄2
𝑘, 𝑝 ±𝑂

(
𝜂2

(
1 ∨ 𝑣̄2

𝑘, 𝑝𝑑

)
∥a∥2

1 log𝑄̃
(
𝑚𝑑

𝛿P

))
= 𝑣̄2

𝑘, 𝑝 − 2𝜂𝑣̄𝑘, 𝑝

〈
(I − v̄𝑘 v̄

⊤
𝑘
)∇̂𝑙, e𝑝

〉
∥v𝑘 ∥

±𝑂
(
𝜂2

(
1 ∨ 𝑣̄2

𝑘, 𝑝𝑑

)
∥a∥2

1 log𝑄̃
(
𝑚𝑑

𝛿P

))
.

Finally, write ∇̂v𝑘
𝑙 = ∇L +H𝑘 , use our previous formula from Lemma B.1 for the tangent term of

∇L, and we obtain

𝑣̄2
𝑘, 𝑝 (𝑡 + 1) = 𝑣̄2

𝑘, 𝑝 + 2𝜂𝑣̄2
𝑘, 𝑝 ·

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

©­«𝑎𝑝 𝑣̄2𝑖−2
𝑘, 𝑝 −

𝑃∑︁
𝑞=1

𝑎𝑞 𝑣̄
2𝑖
𝑘,𝑞

ª®¬
− 2𝜂𝑣̄𝑘, 𝑝

∞∑︁
𝑖=𝐼

2𝑖𝜎̂2
2𝑖

∑︁
𝑙:𝑙≠𝑘

∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩2𝑖−1 〈
(I − v̄𝑘 v̄

⊤
𝑘 )v̄𝑙 , e𝑝

〉
− 2𝜂𝑣̄𝑘, 𝑝

〈
(I − v̄𝑘 v̄

⊤
𝑘
)H𝑘 , e𝑝

〉
∥v𝑘 ∥

±𝑂
(
𝜂2

(
1 ∨ 𝑣̄2

𝑘, 𝑝𝑑

)
∥a∥2

1 log𝑄̃
(
𝑚𝑑

𝛿P

))
.

□

For notational convenience, we will define the quantity Δ := min(𝛿𝑐, 𝛿𝑟 , 𝛿𝑡 ).

D.2 Convergence Guarantees

In this subsection, we show under Induction Hypothesis C.2 that for all 𝑝 ∈ [𝑃∗], 𝑣̄2
𝑝,𝜋 (𝑝) reaches 1

in time (1 ± 𝑜(1))𝑇𝑝 .

D.2.1 Tangent Dynamics

We begin by tracking the growth of the signal term 𝑣̄2
𝑝,𝜋 (𝑝) , for 𝑝 ∈ [𝑃∗]. Our goal is to prove the

following lemma.
Lemma D.2 (Directional Convergence). Let 𝑝 ∈ [𝑃∗]. Inductively assume Induction Hypothesis
C.2, and that the conditions on Lemma C.3 hold. Let the target accuracy 𝜀𝐷 satisfy 𝜀𝐷 ≥
23𝐼+73𝐼𝐶2

𝜎

𝜎̂2
2𝐼

{
𝜀1/2𝜀𝐼−1

0 ∨ 𝑚𝜎2
1

𝑎min∗
∨ ∥a∥1
𝑎min∗

𝜀𝐼0

}
, the dimension 𝑑 satisfy

𝑑

log4 𝑑
≥ 220𝐼2Δ−2, 𝑑 ≥ 𝐶2𝐼2𝐶4

𝜎Δ
−4

𝜎̂4
2𝐼

,
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the learning rate 𝜂 satisfy

𝜂 ≤
𝑎𝜋 (𝑝) 𝜎̂

2
2𝐼 ∥a∥

−2
1 𝛿P

𝐶 log(512𝐼/Δ) log𝑄̃
(
𝑚𝑑
𝛿P, 𝜉

) min(𝑑−𝐼Δ2, 3−𝐼𝑑−1𝜀𝐷 , 3−𝐼𝜀2
𝐷)

for sufficiently large constant 𝐶. Then, with probability 1 − 𝑇𝑚𝑎𝑥𝛿P, 𝜉 − 𝛿P · log log 𝑑, we have

𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) ≤

1
√
𝑑
, ∀𝑡 ≤ 1 − Δ/256

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) ≥ 1 − 𝜀𝐷 , ∀ 1 + Δ/8

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

≤ 𝑡 ≤ 𝑇𝑚𝑎𝑥 .

The proof of Lemma D.2 is split into stages based on the size of 𝑣̄2
𝑝,𝜋 (𝑝) . We first consider the case

when 𝑣̄2
𝑝,𝜋 (𝑝) is small. The update is given by the following:

Lemma D.3. Assume that Induction Hypothesis C.2 holds, and moreover that 𝑣̄2
𝑝,𝜋 (𝑝) ≤ 𝛿𝑣̄ for some

𝛿𝑣̄ > 0. Let 𝛿𝑇 ≥ 𝐶2
𝜎 𝛿𝑣̄

𝐼 𝜎̂2
2𝐼

. Then, under the same conditions as Lemma C.3, we have

𝑣̄2
𝑝,𝜋 (𝑝) (𝑡 + 1) = 𝑣̄2

𝑝,𝜋 (𝑝) (𝑡) + 4𝐼𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑝) (𝑡) + 𝑍 (𝑡 + 1) + 𝜉 (𝑡 + 1),

where E[𝑍 (𝑡 + 1) | F𝑡 ] ≲ 𝜂2 ∥a∥2
1 𝑣̄

2
𝑝,𝜋 (𝑝) , and with probability 1 − 𝛿P, 𝜉 .

|𝜉 (𝑡 + 1) | ≲ 𝜂2 (1 ∨ 𝑣̄2
𝑝,𝜋 (𝑝)𝑑) ∥a∥

2
1 log𝑄̃

(
𝑚𝑑

𝛿P, 𝜉

)
+ 𝜂𝛿𝑇 𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑝) 𝑣̄
2𝐼
𝑝, 𝜋 (𝑝)

Proof. This follows directly from Lemma C.3 and Lemma D.1. □

This motivates the following stochastic induction helper lemma, with proof deferred to Appendix D.5
Lemma D.4. Let (𝑋𝑡 )𝑡 satisfy

𝑋𝑡+1 = 𝑋𝑡 + 𝛼𝑋 𝐼𝑡 + 𝜉𝑡+1 + 𝑍𝑡+1, 𝑋0 = 𝑥0, (8)
where (𝜉𝑡 )𝑡 is an adapted process and (𝑍𝑡 )𝑡 is a martingale difference sequence. Define the processes
(𝑥+𝑡 )𝑡 , (𝑥−𝑡 )𝑡 by

𝑥+𝑡+1 =

(
1 + 𝛼

(
𝑥+𝑡

) 𝐼−1
)
𝑥+𝑡 , 𝑥+0 = (1 + 𝜀)𝑥0

𝑥−𝑡+1 =

(
1 + 𝛼

(
𝑥−𝑡

) 𝐼−1
)
𝑥−𝑡 , 𝑥−0 = (1 − 𝜀)𝑥0.

Suppose that when 𝑋𝑡 ∈ [𝑥−𝑡 , 𝑥+𝑡 ] we have |𝜉𝑡+1 | ≤ 𝑋 𝐼𝑡 Ξ1 + 𝑋𝑡Ξ2 + Ξ3 with probability 1 − 𝛿P, 𝜉 , and
E[𝑍𝑡+1 | F𝑡 ] ≤ 𝑋𝑡𝜎

2
𝑍

. Then, if

Ξ1 ≤ 𝜀𝑥0

6
∑𝑇−1
𝑡=0 𝑥

𝐼
𝑡

, Ξ2 ≤ 𝜀𝑥0

6
∑𝑇−1
𝑡=0 𝑥𝑡

, Ξ3 ≤ 𝜀𝑥0
6𝑇

, and 𝜎2
𝑍 ≤

𝑥2
0𝜀

2𝛿P

4
∑𝑇−1
𝑡=0 𝑥𝑡

,

we have 𝑋𝑡 ∈ [𝑥−𝑡 , 𝑥+𝑡 ] for all 𝑡 ≤ 𝑇 , with probability 1 − 𝑇𝛿P, 𝜉 − 𝛿P.

We can use this lemma to bound the time it takes for 𝑣̄2
𝑝,𝜋 (𝑝) to reach some 𝜔(1/𝑑) quantity.

Lemma D.5 (Weak Recovery). Assume that the learning rate 𝜂 satisfies

𝜂 ≪
𝑎𝜋 (𝑝) 𝜎̂

2
2𝐼𝑑

−𝐼 ∥a∥−2
1 Δ2𝛿P

log(512𝐼/Δ) log𝑄̃
(
𝑚𝑑
𝛿P, 𝜉

) .
Moreover, assume that the conditions of Lemma C.3 hold for 𝛿𝑣 = 𝑑−1/2, 𝛿𝑇 = Δ2

𝐶𝐼2 for sufficiently
large constant 𝐶, and also that

𝑑

log4 𝑑
≥ 220𝐼2Δ−2, 𝑑 ≥ 𝐶2𝐶4

𝜎 𝐼
2Δ−4

𝜎̂4
2𝐼

.
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Define 𝑇+ by

𝑇+ := (1 − Δ/256)𝑇𝑝 =
1 − Δ/256

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

.

Then with probability 1 − 𝑇+𝛿P, 𝜉 − 𝛿P,

sup
𝑡≤𝑇+

𝑣2
𝑝,𝜋 (𝑝) (𝑡) ≤

1
√
𝑑

and (2/Δ) 1
𝐼−1 · 𝑣̄2

𝑝,𝜋 (𝑝) (0) ≤ 𝑣̄
2
𝑝,𝜋 (𝑝) (𝑇

+).

Proof. We will apply Lemma D.4 to the process with 𝑋𝑡 = 𝑣̄2
𝑝,𝜋 (𝑝) (𝑡), 𝛼 = 4𝐼𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑝) , 𝜀 = Δ
256𝐼 .

By Lemma D.23, the process (𝑥+𝑡 )𝑡 satisfies

𝑥+𝑡 ≤
(1 + 𝜀)𝑣̄2

𝑝,𝜋 (𝑝) (0)(
1 − 4𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑝) (1 + 𝜀)𝐼−1𝑣̄2𝐼−2
𝑝,𝜋 (𝑝) (0) · 𝑡

) 1
𝐼−1

Therefore for

𝑡 ≤ 𝑇+ ≤ 1 − 𝐼𝜀
4𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

,

we have

(𝐼 − 1)𝛼
(
𝑥+0

) 𝐼−1 · 𝑡 = 4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝) (1 + 𝜀)𝐼−1𝑣̄2𝐼−2

𝑝,𝜋 (𝑝) (0) · 𝑡

≤ (1 + 𝜀)𝐼−1 (1 − 𝐼𝜀)
≤ exp(−𝜀)
≤ 1 − 𝜀/2.

Altogether, we can upper bound 𝑥+𝑡 as

𝑥+𝑡 ≤
(1 + 𝜀)𝑣̄2

𝑝,𝜋 (𝑝) (0)

(𝜀/2)
1

𝐼−1
≤ 4𝜀−1𝑣̄2

𝑝,𝜋 (𝑝) (0) ≤
1
√
𝑑
,

as long as 𝑑

log4 𝑑
≥ 220𝐼2Δ−2. As such, if 𝑋𝑡 ≤ 𝑥+𝑡 at time 𝑡, then the update in Lemma D.3 holds

for 𝛿𝑣 = 1/
√
𝑑. This update is indeed of the form (8); we must now verify that the conditions on

𝜎2
𝑍
,Ξ1,Ξ2,Ξ3 indeed hold. Recall that

1 − (𝐼 − 1)𝛼
(
𝑥+0

) 𝐼−1
𝑇 ≥ 𝜀/2 =

Δ

512𝐼
.

We therefore have that
𝑇−1∑︁
𝑡=0

𝑥+𝑡 ≤
∫ 𝑇

0

𝑥+0(
1 − 𝛼(𝐼 − 1)

(
𝑥+0

) 𝐼−1
𝑡

) 1
𝐼−1
𝑑𝑡

≤

𝛼−1 log

(
1

1−𝛼𝑥+0𝑇

)
𝐼 = 2

1
(𝐼−2)𝛼(𝑥+0 ) 𝐼−2

[
1 − (1 − 𝛼(𝐼 − 1)

(
𝑥+0

) 𝐼−1
𝑇+) 𝐼−2

𝐼−1

]
𝐼 > 2

≤
{
𝛼−1 log(512𝐼/Δ) 𝐼 = 2
(𝐼 − 2)−1𝛼−1 (𝑥+0 )

2−𝐼 𝐼 > 2 .

and
𝑇−1∑︁
𝑡=0

(𝑥+𝑡 )𝐼 ≤
∫ 𝑇

0

(
𝑥+0

) 𝐼(
1 − 𝛼(𝐼 − 1)

(
𝑥+0

) 𝐼−1
𝑡

) 𝐼
𝐼−1
𝑑𝑡
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= 𝑥+0𝛼
−1

©­­­­­«
1(

1 − 𝛼(𝐼 − 1)
(
𝑥+0

) 𝐼−1
𝑇

) 1
𝐼−1

− 1

ª®®®®®¬
≤ 𝑥+0𝛼

−1 (𝜀/2)− 1
𝐼−1 .

The condition on 𝜎2
𝑍

is

𝜎2
𝑍 ≤

𝑥2
0𝜀

2𝛿P

4
∑𝑇−1
𝑡=0 𝑥

+
𝑡

⇐= 𝜎2
𝑍 ≲ 𝑥𝐼0Δ

2𝐼−2𝛿P𝛼 ·
(

1
log(512𝐼/Δ) ∨ (𝐼 − 2)

)
Since 𝜎2

𝑍
≲ 𝜂2 ∥a∥2

1, this is satisfied if we take

𝜂 ≲
𝑎𝜋 (𝑝) 𝜎̂

2
2𝐼𝑑

−𝐼 ∥a∥−2
1 Δ2𝛿P

log(512𝐼/Δ) .

Next, observe that Ξ1 ≲ 𝛿𝑇 · 𝜂𝑎𝜋 (𝑝) 𝐼𝜎̂2
2𝐼 . We observe that

𝜀𝑥0

6
∑𝑇−1
𝑡=0 𝑥

+
𝑡
𝐼
≳
𝜀

𝐼
𝐼−1 𝑥0𝛼

𝑥+0
≳ Δ

𝐼
𝐼−1 𝐼−

𝐼
𝐼−1 · 𝜂𝑎𝜋 (𝑝) 𝐼𝜎̂2

2𝐼 ≫ Ξ1,

and thus the condition on Ξ1 is satisfied since 𝛿𝑇 = Δ2

𝐶𝐼2 for a sufficiently large constant 𝐶. Next, we

see that Ξ2 = 𝜂2𝑑 ∥a∥2
1 log𝑄̃

(
𝑚𝑑
𝛿P, 𝜉

)
, and thus we require

Ξ2 ≤ 𝜀𝑥0

6
∑𝑇
𝑡=1 𝑥𝑡

⇐= Ξ2 ≲
Δ𝐼−1𝑥𝐼−1

0 𝛼

log(512𝐼/Δ)

⇐= 𝜂2𝑑 ∥a∥2
1 log𝑄̃

(
𝑚𝑑

𝛿P, 𝜉

)
≪

Δ𝑑−(𝐼−1)𝜂𝑎𝜋 (𝑝) 𝜎̂
2
2𝐼

log(512𝐼/Δ)

⇐= 𝜂 ≪
𝑎𝜋 (𝑝) 𝜎̂

2
2𝐼𝑑

−𝐼 ∥a∥−2
1 Δ

log(512𝐼/Δ) log𝑄̃
(
𝑚𝑑
𝛿P, 𝜉

) ,
which is indeed satisfied from our choice of 𝜂. Finally, we see that Ξ3 = 𝜂2 ∥a∥2

1 log𝑄̃
(
𝑚𝑑
𝛿P, 𝜉

)
, and

thus we require

Ξ3 ≤ 𝜀𝑥0
6𝑇

⇐= 𝜂2 ∥a∥2
1 log𝑄̃

(
𝑚𝑑

𝛿P, 𝜉

)
≲ Δ(𝐼 − 1)𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑝)𝑥
𝐼
0

⇐= 𝜂 ≪
𝑎𝜋 (𝑝) (𝐼 − 1)𝜎̂2

2𝐼𝑑
−𝐼 ∥a∥−2

1 Δ

log𝑄̃
(
𝑚𝑑
𝛿P, 𝜉

) .

which is again satisfied by our choice of 𝜂. Therefore the conditions of Lemma D.4 are satisfied, and
so with probability 1 − 𝑇+𝛿P, 𝜉 − 𝛿P we have 𝑋𝑡 ∈ [𝑥−𝑡 , 𝑥+𝑡 ] for all 𝑡 ≤ 𝑇+.
We conclude by lower bounding 𝑥−𝑡 . By Lemma D.24,

𝑥−𝑡 ≥
𝑥−0(

1 − 𝛼(𝐼 − 1) exp(−𝛼𝐼)
(
𝑥−0

) 𝐼−1
𝑡

) 1
𝐼−1
.

Plugging in 𝛼 = 4𝐼𝜎̂2
2𝐼𝜂𝑎𝑝,𝜋 (𝑝) ≤ 𝜀, we see that

𝛼(𝐼 − 1) exp(−𝛼𝐼)
(
𝑥−0

) 𝐼−1
𝑇+ ≥ exp(−𝛼𝐼)

(
𝑥−0
𝑥0

) 𝐼−1
≥ exp(−𝛼𝐼) (1 − 𝜀)𝐼 ≥ 1 − 2𝐼𝜀,
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and therefore

𝑥−𝑇+ ≥ (1 − 𝜀)𝑥0

(2𝐼𝜀)
1

𝐼−1
≥ 𝑥0 ·

exp(−Δ/(128𝐼))
(Δ/128) 1

𝐼−1
≥ (64/Δ) 1

𝐼−1 𝑥0,

as desired.
□

Next, we bound the time that 𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) grows to 1/3. We first introduce the following helper lemma,

with proof deferred to Appendix D.5.
Lemma D.6. Let (𝑋𝑡 )𝑡 satisfy

𝑋𝑡+1 ≥ 𝑋𝑡 + 𝛼𝑋 𝐼𝑡 + 𝜉𝑡+1 + 𝑍𝑡+1, 𝑋0 > 𝑥0.

where (𝜉𝑡 )𝑡 is an adapted process and (𝑍𝑡 )𝑡 is a martingale difference sequence. Define the process
𝑥𝑡 by

𝑥𝑡+1 = (1 + 𝛼𝑥𝐼−1
𝑡 )𝑥𝑡 , 𝑥0 = 𝑥0/2.

Suppose that when 𝑥𝑡 ≤ 𝑋𝑡 ≤ 𝛿, we have |𝜉𝑡+1 | ≤ Ξ with probability 1 − 𝛿P, 𝜉 and E[𝑍𝑡+1 | F𝑡 ] ≤ 𝜎2
𝑍

.
Then if

Ξ ≤ 𝑥0
4𝑇
, and 𝜎2

𝑍 ≤
𝑥2

0𝛿P

16𝑇
,

we with probability 1 − 𝑇𝛿P, 𝜉 − 𝛿P either have 𝑋𝑡 ≥ 𝑥𝑡 for all 𝑡 ≤ 𝑇 , or sup𝑡≤𝑇 𝑋𝑡 > 𝛿.

The following lemma bounds the time it takes for 𝑣̄𝑝,𝜋 (𝑝) (𝑡) to grow slightly.

Lemma D.7 (Intermediate growth). Let 𝛿 > 1. Assume that for some 𝑇𝛿/𝑑 , 𝑣̄2
𝑝,𝜋 (𝑝) (𝑇𝛿/𝑑) ≥ 𝛿/𝑑.

Assume that the learning rate 𝜂 satisfies

𝜂 ≪
𝑎𝜋 (𝑝) 𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝑑
−𝐼 ∥a∥−2

1 𝛿P

log𝑄̃
(
𝑚𝑑
𝛿P, 𝜉

) .

Moreover, assume that Induction Hypothesis C.2 and the same conditions as Lemma C.3 hold. Then,
with probability 1 − 𝑇∗

𝛿
𝛿P, 𝜉 − 𝛿𝑃 , there exists some 𝑡 ≤ 𝑑𝐼−1

2𝐼 (𝐼−1) 𝜎̂2
2𝐼 𝜂𝑎𝜋 (𝑝) 𝛿𝐼−1 =: 𝑇∗

𝛿
such that

𝑣̄2
𝑝,𝜋 (𝑝) (𝑇𝛿/𝑑 + 𝑡) > min

(
𝛿𝐼

𝑑
,

1
3

)
Proof. Define 𝑋𝑡 = 𝑣̄2

𝑝,𝜋 (𝑝) (𝑇𝛿/𝑑 + 𝑡), so that 𝑋0 ≥ 𝛿/𝑑 =: 𝑥0. For notational convenience, let us
define 𝛿 := min(𝛿𝐼/𝑑, 1

3 ). Let 𝑇 be the last time at which 𝑥𝑡 ≤ 𝛿. For 𝑡 ≤ 𝑇 , if 𝑋𝑡 ≤ 𝛿, then by
Lemma C.2 and Lemma D.1, we have

𝑣̄2
𝑝,𝜋 (𝑝) (𝑡 + 1) ≥ 𝑣̄2

𝑝,𝜋 (𝑝) (𝑡) + 2𝜂𝑎𝜋 (𝑝) 𝐼𝜎̂2
2𝐼 𝑣̄

2𝐼
𝑝, 𝜋 (𝑝) (𝑡) + 𝑍 (𝑡 + 1) + 𝜉 (𝑡 + 1),

where E[𝑍 (𝑡 + 1) | F𝑡 ] ≲ 𝛿𝜂2 ∥a∥2
1 and |𝜉 (𝑡 + 1) | ≲ 𝜂2𝑑𝛿 ∥a∥2

1 log𝑄̃
(
𝑚𝑑
𝛿P, 𝜉

)
. We would like to apply

Lemma D.6 with 𝛼 = 2𝜂𝑎𝜋 (𝑝) 𝐼𝜎̂2
2𝐼 .

By Lemma D.24,

𝛿 ≥ 𝑥𝑇 ≥ 𝑥0(
1 − 𝛼(𝐼 − 1) exp(−𝛼𝐼)𝑥𝐼−1

0 𝑇

) 1
𝐼−1
,

and thus

𝑇 ≤ exp(𝛼𝐼)
𝛼(𝐼 − 1)𝑥𝐼−1

0
≤ 𝑑𝐼−1

2𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝)𝛿

𝐼−1
.
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We next verify the conditions of the lemma. We first require 𝜎2
𝑍
≤ 𝑥2

0 𝛿P
16𝑇 , or equivalently

𝜂2 ∥a∥2
1 𝛿 ≲

𝛿2𝛿P

𝑑2𝑇
⇐= 𝜂2𝛿 ≲ 𝑑−(𝐼+1)𝛿𝐼+1 ∥a∥−2

1 𝛿P · 𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝)

⇐= 𝜂 ≲ 𝛿−1𝑑−(𝐼+1)𝛿𝐼+1 ∥a∥−2
1 𝛿P · 𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑝)

⇐= 𝜂 ≲ 𝑎𝜋 (𝑝) 𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑑

−𝐼𝛿 ∥a∥−2
1 𝛿P

We additionally require Ξ ≤ 𝑥0
4𝑇 . Plugging in Ξ, 𝑥0, 𝑇 , it suffices to take

𝜂2𝑑 ∥a∥2
1 𝛿 log𝑄̃

(
𝑚𝑑

𝛿P, 𝜉

)
≪ 𝛿𝐼𝑑−𝐼 𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑝)

⇐= 𝜂 ≪
𝑎𝜋 (𝑝) 𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝑑
−𝐼 ∥a∥−2

1

log𝑄̃
(
𝑚𝑑
𝛿P, 𝜉

) ,

where we have used the fact that 𝛿 ≤ 𝛿𝐼/𝑑. Therefore by Lemma D.6, with high probability we
have 𝑋𝑡 ≥ 𝑥𝑡 for all 𝑡 ≤ 𝑇 . But this implies that we actually must have 𝑋𝑡 > 𝛿 for some 𝑡 ≤ 𝑇 , as
desired. □

Putting everything together, we can now bound the total time it takes for 𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) to reach 1/3.

Lemma D.8. Assume that the conditions of Lemma D.5 hold. Then, with high probability, there
exists some 𝑡 ≤ 𝑇 =

1+Δ/16
4𝐼 (𝐼−1) 𝜎̂2

2𝐼 𝜂𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

such that 𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) ≥

1
3 .

Proof. On the event that Lemma D.5 holds, at time 𝑇+, we have the bound

𝑣̄2
𝑝,𝜋 (𝑝) (𝑇

+) ≥ (64/Δ) 1
𝐼−1 𝑣̄2

𝑝,𝜋 (𝑝) (0) =: 𝛿0/𝑑,

for 𝛿0 := (64/Δ) 1
𝐼−1 𝑑𝑣̄2

𝑝,𝜋 (𝑝) (0). By Lemma D.7, with probability 1−𝑇∗
𝛿
𝛿P, 𝜉 − 𝛿P, 𝑣2

𝑝,𝜋 (𝑝) (𝑡) grows
to a value of 𝛿𝐼0/𝑑 in time 𝑡 ≤ 𝑑𝐼−1

2𝐼 (𝐼−1) 𝜎̂2
2𝐼 𝜂𝑎𝜋 (𝑝) 𝛿

𝐼−1
0

. Repeatedly applying this lemma for at most

log log 𝑑 iterations we get that 𝑣2
𝑝,𝜋 (𝑝) (𝑡) grows to be at least 1

3 in time
∞∑︁
𝑘=0

𝑑𝐼−1

2𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝)𝛿

(𝐼−1) 𝐼𝑘
0

=
𝑑𝐼−1

2𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝)

∞∑︁
𝑘=0

𝛿
−(𝐼−1) 𝐼𝑘
0

≤ 𝑑𝐼−1

𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝)𝛿

𝐼−1
0

=
Δ/64

𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

≤ Δ/16
4𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

with total failure probability at most 𝑇𝛿P, 𝜉 + 𝛿P log log 𝑑. □

Finally, we can lower bound the time it takes for 𝑣̄2
𝑝,𝜋 (𝑝) to grow from 1

2 to 1 − 𝜀𝐷 . The proof of the
following is deferred to Appendix D.5.
Lemma D.9. Let (𝑋𝑡 )𝑡 ≥ 0 satisfy

𝑋𝑡+1 ≤ (1 − 𝛼)𝑋𝑡 + 𝜉𝑡+1 + 𝑍𝑡+1, 𝑋0 = 𝑥0

where (𝜉𝑡 )𝑡 is an adapted process and (𝑍𝑡 )𝑡 is a martingale difference sequence, and with probability
1 − 𝛿P, 𝜉 we have |𝜉𝑡+1 | ≤ Ξ and E[𝑍𝑡+1 | F𝑡 ] ≤ 𝜎2

𝑍
when 𝑋𝑡 ≤ 1.5𝑥0. Then, if

Ξ ≤ 𝜀𝛼

4
, 𝜎2

𝑍 ≤ 𝜀2𝛼𝛿P
16

we have with probability 1 − 𝑇𝛿P, 𝜉 − 𝛿P.
𝑋𝑡 ≤ (1 − 𝛼)𝑡𝑥0 + 𝜀/2 ≤ 1.5𝑥0

for all 𝑡 ≤ 𝑇 .
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Lemma D.10 (Strong Recovery). Let us assume that Lemma D.8 holds, i.e for some time 𝑇1/3,
𝑣̄2
𝑝,𝜋 (𝑝) (𝑇1/3) ≥ 1

3 . Let the target accuracy 𝜀𝐷 satisfy the same condition as in Lemma C.5. Choose
𝜂 so that

𝜂 ≪
𝑎𝜋 (𝑝) 𝐼𝜎̂

2
2𝐼3

−𝐼 ∥a∥−2
1 𝛿P

log𝑄̃
(
𝑚𝑑
𝛿P, 𝜉

) min(𝑑−1𝜀𝐷 , 𝜀
2
𝐷)

Then with probability 1 − 𝑇𝛿P, 𝜉 − 𝛿P, we have

𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) ≥ 1 − 𝜀𝐷 , ∀ 3𝐼

𝐼𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝)

log(2/𝜀𝐷) ≤ 𝑡 ≤ 𝑇.

Proof. By Lemma D.1 and Lemma C.5, when 𝑣̄2
𝑝,𝜋 (𝑝) (𝑡) ≥

1
3 we have

𝑣̄2
𝑝,𝜋 (𝑝) (𝑡 + 1) ≥ 𝑣̄2

𝑝,𝜋 (𝑝) (𝑡) + 3−𝐼 𝐼𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝) (1 − 𝑣̄2

𝑝,𝜋 (𝑝) (𝑡)) + 𝜉𝑡+1 + 𝑍𝑡+1

where

|𝜉𝑡+1 | ≲ 𝜂2 ∥a∥2
1 𝑑 log𝑄̃

(
𝑚𝑑

𝛿P, 𝜉

)
, E[𝑍2

𝑡+1 | F𝑡 ] ≲ 𝜂2 ∥a∥2
1 .

We would like to apply Lemma D.9, with 𝛼 = 3−𝐼 𝐼𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝) and 𝑋𝑡 = 1− 𝑣̄2

𝑝,𝜋 (𝑝) (𝑇1/2 + 𝑡), 𝜀 = 𝜀𝐷 .
We first require Ξ ≤ 𝜀𝛼

4 , which is satisfied by taking

𝜂2 ∥a∥2
1 𝑑 log𝑄̃

(
𝑚𝑑

𝛿P, 𝜉

)
≲ 3−𝐼 𝐼𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑝)𝜀

⇐= 𝜂 ≪
𝑎𝜋 (𝑝) 𝐼𝜎̂

2
2𝐼3

−𝐼𝑑−1 ∥a∥−2
1 𝜀

log𝑄̃
(
𝑚𝑑
𝛿P, 𝜉

) .

Next, we require 𝜎2
𝑍
≤ 𝜀2𝛼𝛿P/16, which is obtained by taking

𝜂2 ∥a∥2
1 ≲ 𝜀23−𝐼 𝐼𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑝)𝛿P ⇐= 𝜂 ≲ 𝑎𝜋 (𝑝) 𝐼𝜎̂
2
2𝐼3

−𝐼 ∥a∥−2
1 𝜀2𝛿P.

Altogether, with high probability,

1 − 𝑣̄2
𝑝,𝜋 (𝑝) (𝑇1/2 + 𝑡) ≤ (1 − 𝛼)𝑡 · 1

2
+ 𝜀/2 ≤ 𝜀

for 𝑡 ≥ 𝛼−1 log(2/𝜀) = 3𝐼
𝐼 𝜎̂2

2𝐼 𝜂𝑎𝜋 (𝑝)
log(2/𝜀). □

Proof of Theorem D.2. This follows directly from combining Lemma D.5, Lemma D.8, and Lemma
D.10, and noting that

3𝐼

𝐼𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝)

≤ Δ/16
4𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

.

□

D.2.2 Radial Dynamics

In this subsection, we analyze the dynamics of


v𝑝

2, when 𝑣̄2

𝑝,𝜋 (𝑝) (𝑡) ≥ 1 − 𝜀. In this regime, the
update on the norm is given by the following.
Lemma D.11. Assume that 𝑣̄2

𝑝,𝜋 (𝑝) (𝑡) ≥ 1 − 𝜀. Then

v𝑝 (𝑡 + 1)


2

=


v𝑝 (𝑡)

2 + 4𝜂



v𝑝 (𝑡)

2
(
𝑎𝜋 (𝑝) −



v𝑝 (𝑡)

2
)
+ 𝑍𝑡+1 + 𝜉𝑡+1

where with probability 1 − 𝛿P, 𝜉

E[𝑍2
𝑡+1 | F𝑡 ] ≲ 𝜂2 ∥a∥2

1


v𝑝 (𝑡)

4

|𝜉𝑡+1 | ≲
(
𝜂2𝑑 ∥a∥2

1 log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 ) + 𝜂(𝐶2
𝜎𝑎𝜋 (𝑝)𝜀 + ∥a∥1 22𝐼𝜀𝐼0 + 𝑚𝜎

2
1 )

) 

v𝑝 (𝑡)

2
.

56



Proof. This follows directly from Lemma C.7 and Lemma D.1. □

We would like to prove that Inductive Hypothesis D.1(b) holds, assuming that D.1(a) holds. This is
given by the following result.
Lemma D.12. Assume that Inductive Hypothesis C.2 and Inductive Hypothesis D.1(a) hold. Let
𝑇1− 𝜀̄ ≤ 1+Δ/8

4𝐼 (𝐼−1) 𝜎̂2
2𝐼 𝜂𝑎𝜋 (𝑝) 𝑣

2𝐼−2
𝑝,𝜋 (𝑝) (0)

be some time at which 𝑣̄2
𝑝,𝜋 (𝑝) ≥ 1 − 𝜀. Let the learning rate 𝜂 and

target accuracy 𝜀𝑅 satisfy

𝜂 ≲
∥a∥−2

1

log(2𝑎𝑘/𝜎2
0 )

min

(
𝑎min∗𝑑

−1𝜀𝑅

log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 )
, 𝜀2
𝑅𝛿P

)
, 𝜀𝑅 ≳ log(2𝑎𝑘/𝜎2

0 )
(
𝐶2
𝜎𝑎𝜋 (𝑝)𝜀 + ∥a∥1 22𝐼𝜀𝐼0 + 𝑚𝜎

2
1

)
,

Then, with probability 1 − 𝑇𝑚𝑎𝑥𝛿P, 𝜉 − 𝛿P,���

v𝑝 (𝑡)

2 − 𝑎𝑘
��� ≤ 𝜀𝑅, ∀ 𝑇1− 𝜀̄ +

Δ/8
4𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

≤ 𝑡 ≤ 𝑇1− 𝜀̄ + 𝑇𝑚𝑎𝑥 .

To prove this lemma, we first lower bound the time it takes for


v𝑝 (𝑡)

2 to reach 𝛿𝑎𝜋 (𝑝) for some

small quantity 𝛿𝑎𝑝. We start by proving the following helper lemma, which resembles Lemma F.6
from [RL24] and whose proof is deferred to Appendix D.5.
Lemma D.13. Let (𝑋𝑡 )𝑡 satisfy

𝑋𝑡+1 = (1 + 𝛼)𝑋𝑡 + 𝜉𝑡+1 + 𝑍𝑡+1, 𝑋0 = 𝑥0 > 0,
where (𝜉𝑡 )𝑡 is an adapted process and (𝑍𝑡 )𝑡 is a martingale difference sequence. Define 𝑥𝑡 = (1+𝛼)𝑡𝑥0.
Suppose that if 𝑋𝑡 = (1±0.5)𝑥𝑡 , then |𝜉𝑡+1 | ≤ 𝑥𝑡Ξ with probability 1− 𝛿P, 𝜉 and E[𝑍2

𝑡+1 | F𝑡 ] ≤ 𝑥2
𝑡 𝜎

2
𝑍

.
Then, if

Ξ ≤ 1
4𝑇
, 𝜎2

𝑍 ≤ 𝛿P

16𝑇
.

then we have with probability 1 − 𝑇𝛿P, 𝜉 − 𝛿P that 𝑋𝑡 = (1 ± 0.5)𝑥𝑡 for all 𝑡 ≤ 𝑇 .

The following lemma then lower bounds the escape time.

Lemma D.14. Let 𝛿 = 1
𝐶 log(2𝑎𝜋 (𝑝) /𝜎2

0 )
, for sufficiently large constant𝐶. Define𝑇 =

log(2𝛿𝑎𝜋 (𝑝) /𝜎2
0 )

4𝜂𝑎𝜋 (𝑝)
≤

𝛿−1

4𝐶𝜂𝑎𝜋 (𝑝)
. Let the learning rate satisfy 𝜂 ≲

𝑎𝜋 (𝑝) 𝑑
−1 ∥a∥−2

1 𝛿P 𝛿

log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 )
. With probability 1 − 𝛿P, 𝜉 − 𝑇𝛿P, we

have sup𝑡≤𝑇


v𝑝 (𝑇1− 𝜀̄ + 𝑡)



2 ≥ 𝛿𝑎𝜋 (𝑝) .

Proof. When


v𝑝 (𝑡)

2 ≤ 𝛿𝑎𝜋 (𝑝) , we can bound

v𝑝 (𝑡 + 1)



2
=



v𝑝 (𝑡)

2 + 4𝜂𝑎𝜋 (𝑝)


v𝑝 (𝑡)

2 + 𝑍𝑡+1 + 𝜉𝑡+1,

where
|𝜉𝑡+1 | ≲ 𝜂𝛿𝑎𝜋 (𝑝)



v𝑝 (𝑡)

2
, E[𝑍2

𝑡+1 | F𝑡 ] ≲ 𝜂2 ∥a∥2
1


v𝑝 (𝑡)

4

,

provided that

𝛿 ≳ 𝑎−1
min∗

(
𝜂𝑑 ∥a∥2

1 log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 ) + 𝐶2
𝜎𝑎𝜋 (𝑝)𝜀 + ∥a∥1 22𝐼𝜀𝐼0 + 𝑚𝜎

2
1

)
⇐= 𝜂 ≲

𝑎min∗𝑑
−1𝛿 ∥a∥−2

1

log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 )
, 𝛿−1

(
𝐶2
𝜎𝑎𝜋 (𝑝)𝜀 + ∥a∥1 22𝐼𝜀𝐼0 + 𝑚𝜎

2
1

)
≲ 1.

Define the process 𝑋𝑡 =


v𝑝 (𝑇1− 𝜀̄ + 𝑡)



2, where 𝑥0 =


v𝑝 (𝑇1− 𝜀̄)



2 and 𝛼 = 4𝜂𝑎𝜋 (𝑝) . Assume that
sup𝑡≤𝑇 𝑋𝑡 < 𝛿𝑎𝜋 (𝑝) . We can thus apply Lemma D.13, since the conditions on 𝜎2

𝑍
,Ξ are indeed met:

𝜎2
𝑍 ≤ 𝛿P

16𝑇
⇐= 𝜂 ≪ 𝑎𝜋 (𝑝) ∥a∥−2

1 𝛿P𝛿

Ξ ≤ 1
4𝑇

⇐= 1 ≪ 𝐶.

But recall that for the process 𝑥𝑡 = (1 + 𝛼)𝑡𝑥0, for 𝑇 = 𝛼−1 log(2𝛿𝑎𝜋 (𝑝)/𝑥0) we have 𝑥𝑇 ≥ 2𝛿𝑎𝜋 (𝑝)
and thus 𝑋𝑇 > 𝛿𝑎𝜋 (𝑝) , a contradiction. Therefore there exists 𝑡 ≤ 𝑇 such that 𝑋𝑡 ≥ 𝛿𝑎𝜋 (𝑝) , as
desired. □
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We next introduce the following helper lemma, with proof deferred to Appendix D.5.
Lemma D.15. Let (𝑋𝑡 )𝑡 satisfy

𝑋𝑡+1 = (1 − 𝛼(𝑋𝑡 ))𝑋𝑡 + 𝜉𝑡+1 + 𝑍𝑡+1,

where (𝜉𝑡 )𝑡 is an adapted process and (𝑍𝑡 )𝑡 is a martingale difference sequence, and with probability
1 − 𝛿P, 𝜉 we have 𝛼(𝑋𝑡 ) ∈ [𝛼− , 𝛼+], |𝜉𝑡+1 | ≤ Ξ and E[𝑍2

𝑡+1 | F𝑡 ] ≤ 𝜎2
𝑍

when 𝑋𝑡 ∈ [−𝜀/2, 𝑥0 + 𝜀/2].
Then, if for some 𝜀 ∈ (0, 𝑥0)

Ξ ≤ 𝜀𝛼−
4
, 𝜎2

𝑍 ≤ 𝜀2𝛼−𝛿P
16

,

we have with probability 1 − 𝑇𝛿P, 𝜉 − 𝛿P that
(1 − 𝛼+)𝑡𝑥0 − 𝜀/2 ≤ 𝑋𝑡 ≤ (1 − 𝛼−)𝑡𝑥0 + 𝜀/2

for all 𝑡 ≤ 𝑇 .

The following lemma bounds the time it takes for the norm to grow from 𝛿𝑎𝜋 (𝑘 ) to approximately
𝑎𝜋 (𝑘 ) , and furthermore establishes that it stays close to 𝑎𝜋 (𝑘 )
Lemma D.16. Inductively assume that Induction Hypothesis C.2 and Induction Hypothesis D.1(a)
are true. Pick 𝛿 > 0, and let 𝑇∗ be some time at which ∥v𝑘 (𝑇∗)∥2 ∈ [𝛿𝑎𝑘 , 𝑎𝑘/2]. Let 𝜀𝑅 > 0 be the
target accuracy. If

𝜂 ≲ 𝜀2
𝑅 ∥a∥−2

1 𝛿P𝛿 ∧
𝜀𝑅𝑑

−1 ∥a∥−2
1 𝛿

log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 )
, 𝜀𝑅 ≳ 𝛿−1

(
𝐶2
𝜎𝑎𝜋 (𝑝)𝜀 + ∥a∥1 22𝐼𝜀𝐼0 + 𝑚𝜎

2
1

)
,

then we have with probability 1 − 𝑇𝑚𝑎𝑥𝛿P, 𝜉 − 𝛿P that

v𝑝 (𝑡)

2 ∈ [𝑎𝜋 (𝑝) − 𝜀𝑅, 𝑎𝜋 (𝑝) + 𝜀𝑅] ∀ 𝑇∗ +
2 log(𝑎𝜋 (𝑝)/𝜀𝑅)

𝛿𝜂𝑎𝜋 (𝑝)
≤ 𝑡 ≤ 𝑇∗ + 𝑇𝑚𝑎𝑥 .

Proof. Assume that the inductive hypothesis holds at time 𝑡. By Lemma D.11, we have that

v𝑝 (𝑡 + 1)


2

=


v𝑝 (𝑡)

2 + 4𝜂



v𝑝 (𝑡)

2 (𝑎𝜋 (𝑝) −


v𝑝 (𝑡)

2) + 𝑍𝑡+1 + 𝜉𝑡+1

for E[𝑍2
𝑡+1 | F𝑡 ] ≲ 𝜂2 ∥a∥2

1


v𝑝 (𝑡)

4

≲ 𝜂2 ∥a∥2
1 𝑎

2
𝜋 (𝑝) and

|𝜉𝑡+1 | ≲
(
𝜂2𝑑 ∥a∥2

1 log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 ) + 𝜂(𝐶2
𝜎𝑎𝜋 (𝑝)𝜀 + ∥a∥1 22𝐼𝜀𝐼0 + 𝑚𝜎

2
1 )

)
𝑎𝜋 (𝑝) .

Therefore
𝑎𝜋 (𝑝) −



v𝑝 (𝑡 + 1)


2

=

(
1 − 4𝜂



v𝑝 (𝑡)

2
) (
𝑎𝜋 (𝑝) −



v𝑝 (𝑡)

2
)
+ 𝑍𝑡+1 + 𝜉𝑡+1.

We thus would like to apply Lemma D.15 to the process 𝑋𝑡 = 𝑎𝜋 (𝑝) −


v𝑝 (𝑡 + 𝑇∗)



2, with 𝜀 = 𝜀𝑅.
We see that 𝑥0 ∈ [𝑎𝜋 (𝑝)/2, (1 − 𝛿)𝑎𝜋 (𝑝) ], so for 𝑋𝑡 ∈ [−𝜀𝑅/2, (1 − 𝛿/2)𝑎𝜋 (𝑝) ] we can bound

𝛿𝑎𝜋 (𝑝)
2

≤


v𝑝 (𝑡)

2 ≤ 2𝑎𝜋 (𝑝) .

Therefore the conditions of Lemma D.15 are indeed satisfied. It thus suffices to take
Ξ ≤ 𝜀𝛼−

4
⇐=

(
𝜂2𝑑 ∥a∥2

1 log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 ) + 𝜂(𝐶2
𝜎𝑎𝜋 (𝑝)𝜀 + ∥a∥1 22𝐼𝜀𝐼0 + 𝑚𝜎

2
1 )

)
𝑎𝜋 (𝑝) ≲ 𝜂𝛿𝑎𝜋 (𝑝)𝜀𝑅

⇐= 𝜂 ≲
𝜀𝑅𝑑

−1 ∥a∥−2
1 𝛿

log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 )
, 𝜀𝑅 ≳ 𝛿−1

(
𝐶2
𝜎𝑎𝜋 (𝑝)𝜀 + ∥a∥1 22𝐼𝜀𝐼0 + 𝑚𝜎

2
1

)
.

as well as

𝜎2
𝑍 ≤

𝜀2
𝑅
𝛼−𝛿P

16
⇐= 𝜂2 ∥a∥2

1 𝑎
2
𝜋 (𝑝) ≲ 𝜀2

𝑅𝜂𝑎𝜋 (𝑝)𝛿𝛿P

⇐= 𝜂 ≲
𝜀2
𝑅
∥a∥−2

1 𝛿P𝛿

𝑎𝜋 (𝑝)
.

Altogether, by Lemma D.15 with high probability we have
(1 − 𝛼+)𝑡𝑥0 − 𝜀𝑅/2 ≤ 𝑋𝑡 ≤ (1 − 𝛼−)𝑡𝑥0 + 𝜀𝑅/2

Naively, we have the bound 𝑋𝑡 ≥ −𝜀𝑅/2, which implies


v𝑝 (𝑡)

2 ≤ 𝑎𝜋 (𝑝) + 𝜀𝑅/2. Moreover, for

𝑡 ≥ 2 log(𝑎𝑝/𝜀𝑅 )
𝛿𝜂𝑎𝜋 (𝑝)

≥ 𝛼−1
− log(2𝑥0/𝜀𝑅), we have 𝑋𝑡 ≤ 𝜀𝑅. □

58



Putting everything together, we can prove Lemma D.12.

Proof of Lemma D.12. We apply Lemma D.14 and Lemma D.16 with 𝛿 = 1
𝐶 log(2𝑎𝑘/𝛿2

0 )
. The

conditions on 𝜂, 𝜀 are indeed satisfied, and moreover


v𝑝 (𝑡)

2 reaches the interval [𝑎𝜋 (𝑝) −

𝜀𝑅, 𝑎𝜋 (𝑝) + 𝜀𝑅] within a time of

log(2𝛿𝑎𝜋 (𝑝)/𝜎2
0 )

4𝜂𝑎𝜋 (𝑝)
+

2 log(𝑎𝜋 (𝑝)/𝜀𝑅)
𝛿𝜂𝑎𝜋 (𝑝)

≤
log(𝑎𝜋 (𝑝)/𝜎2

0 ) + 2𝐶 log(2𝑎𝜋 (𝑝)/𝜎2
0 ) log(𝑎𝑘/𝜀𝑅)

𝜂𝑎𝜋 (𝑝)

≪ Δ/8
4𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑝) 𝑣̄
2𝐼−2
𝑝,𝜋 (𝑝) (0)

.

□

D.3 Maintaining the Induction Hypotheses

D.3.1 Upper Bounds on the Irrelevant Coordinates

We first track the growth of a failed coordinate 𝑣̄𝑘, 𝜋 (𝑞) for (𝑘, 𝜋(𝑞)) ∉ {(𝑝, 𝜋(𝑝)}𝑝∈[𝑃∗ ] . The update
on 𝑣̄𝑘, 𝜋 (𝑞) (𝑡) is given by the following.
Lemma D.17. Assume that Induction Hypothesis C.2 holds at time 𝑡. Then

𝑣̄2
𝑘, 𝜋 (𝑞) (𝑡 + 1) ≤ 𝑣̄2

𝑘, 𝜋 (𝑞) (𝑡) + 4𝐼𝜎̂2
2𝐼𝜂𝑣̄

2𝐼
𝑘, 𝜋 (𝑞)

���𝑎𝜋 (𝑞) − 1(𝑞 ∈ [𝑚], 𝑞 ∈ 𝐿)


v𝑞

2

��� + 𝑍 (𝑡 + 1) + 𝜉 (𝑡 + 1),

where E[𝑍 (𝑡 + 1) | F𝑡 ] ≲ 𝜂2 ∥a∥2
1 𝑣̄

2
𝑘, 𝜋 (𝑞) (𝑡), and

|𝜉 (𝑡 + 1) | ≲ 𝜂2 (1 + 𝑣̄2
𝑘, 𝜋 (𝑞) (𝑡)𝑑) ∥a∥

2
1 log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 ) + 𝐶2

𝜎𝜂𝑎𝜋 (𝑞) 𝑣̄
2𝐼
𝑘, 𝜋 (𝑞)𝜀0 + 𝜂

��𝑣̄𝑘, 𝜋 (𝑞) (𝑡)��𝛿error,

where

𝛿error := 𝐼23𝐼+6𝐶2
𝜎

(
𝑎𝜋 (𝑞)𝜀

1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0

)
Proof. From the proof of Lemma C.10, we have that

𝑑

𝑑𝑡
𝑣̄2
𝑘, 𝜋 (𝑞) ≤ 4𝐼𝜎̂2

2𝐼𝑎𝜋 (𝑞) 𝑣̄
2𝐼
𝑘, 𝜋 (𝑞) + 2𝐶2

𝜎𝑎𝜋 (𝑞) 𝑣̄
2𝐼
𝑘, 𝜋 (𝑞)𝜀0 +

��𝑣̄𝑘, 𝜋 (𝑞) ��𝛿error,

and so the desired result follows directly from combining the above with Lemma D.1. □

We will next require the following stochastic induction helper lemma, with proof deferred to Appendix
D.5.
Lemma D.18. Suppose that (𝑋𝑡 )𝑡 ≥ 0 satisfies

𝑋𝑡+1 ≤ 𝑋𝑡 + 𝛼𝑋 𝐼𝑡 + 𝜉𝑡+1 + 𝑍𝑡+1, 𝑋0 ≤ 𝑥0, (9)

where (𝜉𝑡 )𝑡 is an adapted process and (𝑍𝑡 )𝑡 is a martingale difference sequence. Let 𝑥𝑡 be a solution
to the recurrence

𝑥𝑡+1 = 𝑥𝑡 + 𝛼𝑥𝐼𝑡 , 𝑥0 = (1 + 𝜖)𝑥0

Suppose that when 𝑋𝑡 ≤ 𝑥𝑡 , we have |𝜉𝑡+1 | ≤ 𝑋
1/2
𝑡 Ξ1 + 𝑋𝑡Ξ2 + 𝑋 𝐼𝑡 Ξ3 + Ξ4 with probability 1 − 𝛿P, 𝜉

and E[𝑍 (𝑡 + 1) | F𝑡 ] ≤ 𝑋𝑡𝜎
2
𝑍

. Then if

Ξ1 ≤ 𝜖𝑥0

8
∑𝑇−1
𝑡=0 𝑥

1/2
𝑡

, Ξ2 ≤ 𝜖𝑥0

8
∑𝑇−1
𝑡=0 𝑥𝑡

, Ξ3 ≤ 𝜖𝑥0

8
∑𝑇−1
𝑡=0 𝑥

𝐼
𝑡

, Ξ4 ≤ 𝜖𝑥0
8𝑇

, and 𝜎2
𝑍 ≤

𝑥2
0𝜖

2𝛿P

4
∑𝑇−1
𝑡=0 𝑥𝑡

,(10)

we have 𝑋𝑡 ≤ 𝑥𝑡 for all 𝑡 ≤ 𝑇 with probability 1 − 𝑇𝛿P, 𝜉 − 𝛿P.
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We can now control the growth of 𝑣̄𝑘, 𝜋 (𝑞) by applying Lemma D.18 with 𝑋𝑡 = 𝑣̄2
𝑘, 𝜋 (𝑞) (𝑡). For

(𝑘, 𝜋(𝑞)) ∉ {(𝑝, 𝜋(𝑝))}𝑝∈[𝑃∗ ] , define the time 𝑇(𝑘, 𝜋 (𝑞) ) by

𝑇(𝑘, 𝜋 (𝑞) ) :=

𝑇𝑘 𝑘 < 𝑞, 𝑘 ∈ [𝑃∗]
𝑇𝑞 𝑞 < 𝑘, 𝑞 ∈ [𝑃∗]
𝑇𝑃∗ 𝑘, 𝑞 > 𝑃∗

.

By Assumption C.1(d), we have that

𝑇(𝑘, 𝜋 (𝑞) ) ≤
(1 + Δ/4)𝑑𝐼−1

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎min∗

.

Lemma D.19 (Total growth of failed coordinates). Let (𝑘, 𝜋(𝑞)) ∉ {(𝑝, 𝜋(𝑝))}𝑝∈[𝑃∗ ] . Assume that
the learning rate 𝜂 satisfies

𝜂 ≤
𝑎min∗ 𝐼𝜎̂

2
2𝐼𝑑

−𝐼 ∥a∥−2
1 Δ2𝛿P

𝐼 log(4/Δ) log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 )

for some sufficiently large constant 𝐶. Furthermore, suppose that

𝜀1/2𝜀𝐼−1
0 ∨𝑚𝜎2

1∨∥a∥1 𝜀
𝐼
0 ≪

𝑎min∗ 𝜎̂
2
2𝐼𝑑

−𝐼+1/2Δ

𝐼23𝐼+6𝐶2
𝜎

, 𝜀𝑅 ≲
𝑎min∗

1.5𝐼𝑑𝛾 (𝐼−1) ,
𝑑

log2/𝛾 𝑑
≥ 21/𝛾 (4/Δ)

1
𝛾 (𝐼−1) .

Then, with probability 1 −𝑇𝑃∗𝛿P, 𝜉 − 2𝛿P, we have that 𝑣̄2
𝑘, 𝜋 (𝑞) ≤ 𝜀0 (and hence Induction Hypothesis

C.2(b) is true) for all 𝑡 ≤ 𝑇𝑃∗ .

Proof. First, we will show that 𝑣̄2
𝑘, 𝜋 (𝑞) (𝑡) ≤ 𝜀0/2 up to time 𝑇(𝑘, 𝜋 (𝑞) ) . Next, we will show that

𝑣2
𝑘, 𝜋 (𝑞) (𝑡) does not grow too much more in the interval [𝑇(𝑘, 𝜋 (𝑞) ) , 𝑇𝑃∗ ].

Part 1 (𝑡 ≤ 𝑇(𝑘, 𝜋 (𝑞) ) ). Our goal will be to apply Lemma D.18 up to time 𝑇 = 𝑇(𝑘, 𝜋 (𝑞) ) , to the
process 𝑋𝑡 = 𝑣̄2

𝑘, 𝜋 (𝑞) (𝑡), with 𝛼 = 4𝐼𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑞) , 𝜀 = Δ

4𝐼 , and 𝑥0 = max( 1
2𝑑 , 𝑣̄

2
𝑘, 𝜋 (𝑞) ).

We first aim to bound the quantity 𝛼(𝐼 − 1)𝑥𝐼−1
0 𝑇 . We begin by considering the upper triangular

entries, i.e those where 𝑘 < 𝑞 and 𝑘 ∈ [𝑃∗], in which case 𝑇(𝑘, 𝜋 (𝑞) ) = 𝑇𝑘 . We have that

𝛼(𝐼 − 1)𝑥𝐼−1
0 𝑇 = 4𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑞) · (1 + 𝜀)𝐼−1 max
(

1
2𝑑
, 𝑣̄2
𝑘, 𝜋 (𝑞)

) 𝐼−1
· 1 + Δ/4

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑘 ) 𝑣̄

2𝐼−2
𝑘, 𝜋 (𝑘 ) (0)

≤ (1 + 𝜀)𝐼−1 (1 + Δ/4)
𝑎𝜋 (𝑞) max

((
1

2𝑑

) 𝐼−1
, 𝑣̄2𝐼−2
𝑘, 𝜋 (𝑞)

)
𝑎𝜋 (𝑘 ) 𝑣̄

2𝐼−2
𝑘, 𝜋 (𝑘 ) (0)

.

By the bound on the row gap in Assumption C.1(a), we have that
𝑎𝜋 (𝑞) 𝑣

2𝐼−2
𝑘,𝜋 (𝑞)

𝑎𝜋 (𝑘) 𝑣̄
2𝐼−2
𝑘,𝜋 (𝑘) (0)

≤ 1
1+Δ . Moreover, by the

definition of the greedy maximum selection process along with Assumption C.1(d), 𝑎𝜋 (𝑘 ) 𝑣̄2𝐼−2
𝑘, 𝜋 (𝑘 ) (0) ≥

𝑎𝜋 (𝑞) max 𝑗>𝑘 𝑣̄2𝐼−2
𝑗 , 𝜋 (𝑞) (0) ≥ 𝑎𝜋 (𝑞)/𝑑

𝐼−1, and thus 𝑎𝜋 (𝑞) ·1/(2𝑑) 𝐼−1

𝑎𝜋 (𝑘) 𝑣̄
2
𝑘,𝜋 (𝑘) (0)

≤ 1
2𝐼−1 ≤ 1

1+Δ . Altogether,

𝛼(𝐼 − 1)𝑥𝐼−1
0 𝑇 ≤ (1 + 𝜀)𝐼−1 (1 + Δ/4)

1 + Δ
≤ exp(Δ/2)

1 + Δ
≤ 1 − Δ/4,

since 𝜀 = Δ
4𝐼 and Δ ≤ 1/2.

Next, consider the lower triangular entries, with 𝑞 < 𝑘, 𝑞 ∈ [𝑃∗]. We have that 𝑇(𝑘, 𝜋 (𝑞) ) = 𝑇𝑞 , and
thus

𝛼(𝐼 − 1)𝑥𝐼−1
0 𝑇 = (1 + 𝜀)𝐼−1 (1 + Δ/4)

max
(

1
2𝑑 , 𝑣̄

2
𝑘, 𝜋 (𝑞) (0)

) 𝐼−1

𝑣̄2𝐼−2
𝑞,𝜋 (𝑞) (0)

.
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By the bound on the column gap in Assumption C.1(b), we have
𝑣̄2𝐼−2
𝑘,𝜋 (𝑞) (0)
𝑣̄2𝐼−2
𝑞,𝜋 (𝑞) (0)

≤ 1
1+Δ . Moreover, by

Assumption C.1(d), we have 1/(2𝑑)
𝑣̄2
𝑞,𝜋 (𝑞) (0)

≤ 1
2 ≤ 1

1+Δ . Therefore 𝛼(𝐼 − 1)𝑥𝐼−1
0 𝑇 ≤ (1+𝜀) 𝐼−1 (1+Δ/4)

1+Δ ≤
1 − Δ/4 as well.
Finally, we consider the lower right block, with 𝑘, 𝑞 > 𝑃∗, in which case 𝑇(𝑘, 𝑝) = 𝑇𝑃∗ . We see that

𝛼(𝐼 − 1)𝑥𝐼−1
0 𝑇 = (1 + 𝜀) (1 + Δ/4)

𝑎𝜋 (𝑞) max( 1
2𝑑 , 𝑣̄

2
𝑘, 𝜋 (𝑞) (0))

𝑎𝜋 (𝑃∗ ) 𝑣̄
2
𝑃∗ , 𝜋 (𝑃∗ ) (0)

.

By the bound on the threshold gap in C.1(c), we have
𝑣̄2𝐼−2
𝑘,𝜋 (𝑞) (0)

𝑣̄2𝐼−2
𝑃∗ , 𝜋 (𝑃∗ ) (0)

≤ 1
1+Δ . Moreover, by the

definition of the greedy maximum selection process along with Assumption C.1(d), we have that
𝑎𝜋 (𝑃∗ ) 𝑣̄

2
𝑃∗ , 𝜋 (𝑃∗ ) (0) ≥ 𝑎𝜋 (𝑞) max 𝑗>𝑃∗ 𝑣̄2

𝑗 , 𝜋 (𝑞) (0) ≥ 𝑎𝜋 (𝑞)/𝑑, and thus 𝑎𝜋 (𝑞) ·1/(2𝑑) 𝐼−1

𝑎𝜋 (𝑃∗ ) 𝑣̄
2𝐼−2
𝑃∗ , 𝜋 (𝑃∗ ) (0)

≤ 1
2𝐼−1 ≤ 1

1+Δ .

Altogether, 𝛼(𝐼 − 1)𝑥𝐼−1
0 𝑇 ≤ (1+𝜀) (𝐼−1) (1+Δ/4)

1+Δ ≤ 1 − Δ/4.

In all cases, we have 𝛼(𝐼 − 1)𝑥𝐼−1
0 𝑇 ≤ 1 − Δ/4. Thus by Lemma D.23, we can bound 𝑥𝑇 by

𝑥𝑇 ≤ 𝑥0(
1 − 𝛼(𝐼 − 1)𝑥𝐼−1

0 𝑇

) 1
𝐼−1

≤ 𝑥0 (Δ/4)− 1
𝐼−1 ≤ 𝑑−1+𝛾/2 =: 𝜀0/2,

provided that 𝑑

log2/𝛾 𝑑
≥ 21/𝛾 (4/Δ)

1
𝛾 (𝐼−1) .

Therefore by Lemma D.17, the update for 𝑣̄2
𝑘, 𝜋 (𝑞) (𝑡) is

𝑣̄2
𝑘, 𝜋 (𝑞) (𝑡 + 1) ≤ 𝑣̄2

𝑘, 𝜋 (𝑞) (𝑡) + 4𝐼𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑞) 𝑣̄

2𝐼
𝑘, 𝜋 (𝑞) + 𝑍 (𝑡 + 1) + 𝜉 (𝑡 + 1),

which is indeed of the form (9) for 𝜎2
𝑍

≲ 𝜂2 ∥a∥2
1 and Ξ1 ≲ 𝜂𝛿error,Ξ2 ≲

𝜂2𝑑 ∥a∥2
1 log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 ),Ξ3 ≲ 𝐶2

𝜎𝜂𝑎𝜋 (𝑞)𝜀0,Ξ4 ≲ 𝜂2 ∥a∥2
1 log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 ).

Next, we verify that the conditions on Ξ, 𝜎2
𝑍

, in (10) hold. We first bound the quantity
∑𝑇−1
𝑡=0 𝑥𝑡 .

𝑇−1∑︁
𝑡=0

𝑥𝑡 ≤
∫ 𝑇

0

𝑥0(
1 − 𝛼(𝐼 − 1) (𝑥0)𝐼−1 𝑡

) 1
𝐼−1
𝑑𝑡

≤

𝛼−1 log

(
1

1−𝛼𝑥̂0𝑇

)
𝐼 = 2

1
(𝐼−2)𝛼( 𝑥̂0 ) 𝐼−2

[
1 − (1 − 𝛼(𝐼 − 1)𝑥𝐼−1

0 𝑇+) 𝐼−2
𝐼−1

]
𝐼 > 2

≤
{
𝛼−1 log(4/Δ) 𝐼 = 2
(𝐼 − 2)−1𝛼−1𝑥2−𝐼

0 𝐼 > 2 .

Therefore
𝑇−1∑︁
𝑡=0

𝑥𝑡 ≤ 𝛼−1𝑥2−𝐼
0 min((𝐼 − 2)−1, log(4/Δ)) (11)

Next, we can bound the quantity
∑𝑇−1
𝑡=0 𝑥

1/2
𝑡 :

𝑇−1∑︁
𝑡=0

𝑥
1/2
𝑡 ≤

∫ 𝑇

0

𝑥
1/2
0(

1 − 𝛼(𝐼 − 1) (𝑥0)𝐼−1 𝑡
) 1

2(𝐼−1)
𝑑𝑡

=
2𝑥1/2

0

𝛼(2𝐼 − 3)𝑥𝐼−1
0

(
1 −

(
1 − 𝛼(𝐼 − 1)𝑥𝐼−1

0 𝑇

) 2𝐼−3
2(𝐼−1)

)
≤ 2𝑥1/2

0 𝑇
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Finally, we can bound the quantity
∑𝑇−1
𝑡=0 𝑥

𝐼
𝑡

𝑇−1∑︁
𝑡=0

𝑥𝐼𝑡 ≤
∫ 𝑇

0

𝑥𝐼𝑡(
1 − 𝛼(𝐼 − 1)𝑥𝐼−1

𝑡 𝑡
) 𝐼
𝐼−1
𝑑𝑡

= 𝑥𝑡𝛼
−1 ©­« 1(

1 − 𝛼(𝐼 − 1)𝑥𝐼−1
𝑡 𝑇

) 1
𝐼−1

− 1ª®¬
≤ 𝑥+0𝛼

−1 (Δ/4)− 1
𝐼−1 .

Let us consider the 𝜎2
𝑍

condition. Plugging in (11), it suffices to take

𝜎2
𝑍 ≤

𝑥𝐼0𝜀
2𝛿P𝛼

log(4/Δ) =
𝑥𝐼0𝜀

2𝛿P · 4𝐼𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑞)

log(4/Δ)

Plugging in 𝜎2
𝑍
≲ 𝜂2 ∥a∥2

1, and noting 𝑥0 ≥ 1
2𝑑 , this is satisfied if we take

𝜂 ≲
𝑎min∗ 𝜎̂

2
2𝐼𝑑

−𝐼Δ2 ∥a∥−2
1 𝛿P

𝐼 log(4/Δ) .

Next, for the Ξ1 constraint, we require

Ξ1 ≤ 𝜀𝑥0

8
∑𝑇−1
𝑡=0 𝑥

1/2
𝑡

⇐= 𝜂𝛿error ≲
𝜀𝑥0

𝑇𝑥
1/2
0

⇐= 𝜂𝛿error ≲ 𝑎min∗ 𝜎̂
2
2𝐼𝜂𝑑

−(𝐼−1)Δ𝑥1/2
0

⇐= 𝛿error ≲ 𝑎min∗ 𝜎̂
2
2𝐼𝑑

−𝐼+1/2Δ

For Ξ2, plugging in (11) we require

Ξ2 ≤
𝜀𝑥𝐼−1

0 𝛼

8 log(4/Δ) =
𝜀𝑥𝐼−1

0 · 𝐼𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑞)

2 log(4/Δ)

⇐= 𝜂2𝑑 ∥a∥2
1 log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 ) ≪

𝜀𝑥𝐼−1
0 · 𝐼𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑞)

2 log(4/Δ)

⇐= 𝜂 ≪
𝑎min∗ 𝜎̂

2
2𝐼𝑑

−𝐼 ∥a∥−2
1 Δ

log(4/Δ) log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 )

For Ξ3, we require

Ξ3 ≤ 𝜀𝑥0

8
∑𝑇−1
𝑡=0 𝑥

𝐼
𝑡

⇐= 𝐶2
𝜎𝜂𝑎𝜋 (𝑞)𝜀0 ≲ (Δ/𝐼) 𝐼

𝐼−1𝛼

⇐= 𝐶2
𝜎𝜂𝑎𝜋 (𝑞)𝜀0 ≲ Δ

𝐼
𝐼−1 𝐼−

1
𝐼−1 𝜎̂2

2𝐼𝜂𝑎𝜋 (𝑞)

⇐= 𝜀0 ≲ 𝐶−2
𝜎 Δ

𝐼
𝐼−1 𝜎̂2

2𝐼 ,

which is indeed true since 𝜀0 ≤ 𝑑−1/2 ≪ 𝐶−2
𝜎 Δ

𝐼
𝐼−1 𝜎̂2

2𝐼 . Finally, for Ξ4, we require

Ξ4 ≤ 𝜖𝑥0
8𝑇

⇐= 𝜂2 ∥a∥2
1 log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 ) ≪ Δ𝑑−1 · 𝜂𝑎min∗ (𝐼 − 1)𝜎̂2

2𝐼𝑑
−(𝐼−1)

⇐= 𝜂 ≪
𝑎min∗ (𝐼 − 1)𝜎̂2

2𝐼𝑑
−𝐼 ∥a∥−2

1 Δ

log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 )
.

Therefore the conditions of Lemma D.18 are satisfied, and so with probability 1 − 𝑇𝛿P, 𝜉 − 𝛿P we
have 𝑋𝑡 ≤ 𝑥𝑡 ≤ 𝜀0/2 for all 𝑡 ≤ 𝑇 .

Part 2 (𝑇(𝑘, 𝜋 (𝑞) ) ≤ 𝑡 ≤ 𝑇𝑃∗ ) We now show that 𝑣̄2
𝑘, 𝜋 (𝑞) doesn’t increase too much in the time

interval [𝑇(𝑘, 𝜋 (𝑞) ) , 𝑇𝑃∗ ]. The case where 𝑘, 𝑞 > 𝑃∗ is trivially true.
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Consider the case when 𝑞 < 𝑘, 𝑞 ∈ [𝑃∗], so that 𝑇 = 𝑇𝑞 . By Induction Hypothesis D.1(b), when
𝑡 ≥ 𝑇𝑞 , we have that



v𝑞 (𝑡)

2
= 𝑎𝜋 (𝑞) ± 𝜀𝑅. When 𝑣̄2

𝑘, 𝜋 (𝑞) (𝑡) ≤ 𝜀0, we have that

𝑣̄2
𝑘, 𝜋 (𝑞) (𝑡 + 1) ≤ 𝑣̄2

𝑘, 𝜋 (𝑞) (𝑡) + 4𝐼𝜎̂2
2𝐼𝜂𝜀𝑅 𝑣̄

2𝐼
𝑘, 𝜋 (𝑞) + 𝑍 (𝑡 + 1) + 𝜉 (𝑡 + 1),

where E[𝑍 (𝑡 + 1) | F𝑡 ] ≲ 𝜂2 ∥a∥2
1 𝑣

2
𝑘, 𝜋 (𝑞) (𝑡), and

|𝜉 (𝑡 + 1) | ≲ 𝜂2 ∥a∥2
1 𝜀0𝑑 log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 ) + 𝐶2

𝜎𝜂𝑎𝜋 (𝑞)𝜀
𝐼+1
0 + 𝜂𝜀1/2

0 𝛿error.

We would like to apply Lemma D.18 to the process 𝑋𝑡 = 𝑣̄2
𝑘, 𝜋 (𝑞) (𝑡 + 𝑇𝑞) up to time 𝑇𝑃∗ , with

𝛼 = 4𝐼𝜎̂2
2𝐼𝜂𝜀𝑅, 𝜀 = 0.5. We see that 𝑋0 ≤ 𝜀0

2 := 𝑥0, and so setting 𝑥0 = 1.5𝑥0, we have that

𝑡 ≤ 𝑇𝑃∗ ≤
𝑑𝐼−1

2𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎min∗

,

and thus as long as 𝜀𝑅 ≲ 𝑎min∗
8·1.5𝐼−1𝑑𝛾 (𝐼−1) , we have

𝛼(𝐼 − 1)𝑥𝐼−1
0 𝑡 ≤ 2 · 1.5𝐼−1𝜀𝐼−1

0 𝑑𝐼−1𝜀𝑅𝑎
−1
min∗ = 2 · 1.5𝐼−1𝑑𝛾 (𝐼−1)𝜀𝑅𝑎

−1
min∗ ≤ 1/4 ≤ 1 − (3/4)𝐼−1

=⇒ 𝑥𝑡 ≤
𝑥0(

1 − 𝛼(𝐼 − 1)𝑥𝐼−1
0 𝑡

) 1
𝐼−1

=
1.5𝑥0(

1 − 𝛼(𝐼 − 1)𝑥𝐼−1
0 𝑡

) 1
𝐼−1

≤ 2𝑥0 = 𝜀0

We next verify that the conditions of Lemma D.18 hold . We first require

Ξ4 ≤ 𝑥0
16𝑇

⇐= 𝜂2 ∥a∥2
1 𝜀0𝑑 log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 ) + 𝐶2

𝜎𝜂𝑎𝜋 (𝑞)𝜀
𝐼+1
0 + 𝜂𝜀1/2

0 𝛿error ≲ 𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎min∗𝑑

−(𝐼−1)𝜀0

⇐= 𝜂 ≲
𝑎min∗𝑑

−𝐼 𝐼 (𝐼 − 1)𝜎̂2
2𝐼 ∥a∥

−2
1

log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 )
, 𝜀𝐼0 ≪ 𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝑎min∗𝑑
−(𝐼−1) ,

and 𝛿error ≪
𝑎min∗ 𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝜀
1/2
0

𝑑𝐼−1 .

Clearly the condition on 𝜂 is satisfied. Next, plugging in 𝜀0 = 𝑑−(1−𝛾) , we require

𝑑 ≫
(
𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝑎min∗

)− 1
1−𝐼𝛾

.

Finally, the condition on 𝛿error is indeed satisfied, since we already have

𝛿error ≲ 𝑎min∗ 𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑑

−𝐼+1/2Δ ≪ 𝑎min∗ 𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑑

−𝐼+1𝜀
1/2
0

Additionally, since we can bound
∑𝑇
𝑡=1 𝑥𝑡 ≤ 𝑇𝜀0, we require

𝜎2
𝑍 ≲

𝑥2
0𝛿P

𝑇𝜀0
⇐= 𝜂2 ∥a∥2

1 ≲ 𝜀0𝛿P𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎min∗𝑑

−(𝐼−1)

⇐= 𝜂 ≲ 𝑎min∗𝜀0𝑑
−(𝐼−1) 𝐼 (𝐼 − 1)𝜎̂2

2𝐼 ∥a∥
−2
1 𝛿P,

which is again satisfied by our choice of 𝜂. Altogether, we have 𝑋𝑡 ≤ 𝑥𝑡 ≤ 𝜀0 for all 𝑡 ≤ 𝑇𝑃∗ .
Finally, consider the case when 𝑘 < 𝑞, 𝑘 ∈ [𝑃∗], so that 𝑇 = 𝑇𝑘 . By Induction Hypothesis D.1(a),
when 𝑡 ≥ 𝑇𝑘 , we have that 𝑣̄𝑘, 𝜋 (𝑘 ) (𝑡)2 ≥ 1 − 𝜀, and thus 𝑣̄2

𝑘, 𝜋 (𝑞) (𝑡) ≤ 𝜀 ≤ 𝜀0, as desired. □

D.3.2 Upper Bounds on the Norm Growth

We start with an upper bound on the norm of the unused neurons, i.e., v𝑘 with 𝑘 > 𝑃∗.
Lemma D.20 (Bound on the unused neurons). Inductively assume that Induction Hypothesis C.2(b)
is true. Suppose that we choose

𝜂 ≲
𝑎min∗𝑑

−𝐼 𝐼 (𝐼 − 1)𝜎̂2
2𝐼 ∥a∥

−2 𝛿P

log𝑄̃ (𝑇𝑚𝑑/𝛿P)
.

Then, for any 𝑘 ∈ [𝑚] with 𝑘 > 𝑃∗, with probability at least 1 − 𝛿P we have ∥v𝑘 ∥2 ≤ 𝑂 (𝜎2
0 ) ≪ 𝜎2

1
throughout training.
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Proof. By the proof of Lemma C.14 along with Lemma D.1, we have

∥v𝑘 (𝑡 + 1)∥2 ≤
(
1 + 4𝜂𝜀𝐼0 ∥a∥1

)
∥v𝑘 ∥2 − 2𝜂 ⟨v𝑘 ,H𝑘 (𝑡 + 1)⟩ + 𝜉𝑘,𝑅 (𝑡 + 1)

The total running time of SGD is 𝑇 =
1+Δ/4

4𝐼 (𝐼−1) 𝜎̂2
2𝐼 𝜂𝑎min∗ 𝑣̄

2𝐼−2
𝑃∗ , 𝜋 (𝑃∗ ) (0)

≲ 𝑑𝐼−1

4𝐼 (𝐼−1) 𝜎̂2
2𝐼𝑎min∗ 𝜂

. Therefore

4𝜂𝜀𝐼0 ∥a∥1 · 𝑇 ≲
𝜀𝐼0 ∥a∥1 𝑑

𝐼−1

𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎min∗

=
𝑑−(1−𝛾𝐼 ) ∥a∥1

𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎min∗

≪ 1,

since 𝑑 ≳
(

∥a∥1
𝐼 (𝐼−1) 𝜎̂2

2𝐼𝑎min∗

) 1
1−𝛾𝐼 . Thus

(
1 + 4𝜂𝜀𝐼0 ∥a∥1

)𝑇 ≲ 1. In addition, by Lemma B.1, we have

Var (2𝜂 ∥v𝑘 ∥ ⟨v̄𝑘 ,H𝑘 (𝑡 + 1)⟩) ≲ 𝜂2 ∥a∥2
1 ∥v𝑘 ∥

4 .

Hence, using the language of Lemma F.6 of [RL24], we have

𝛼 = Θ

(
𝜂𝜀𝐼0 ∥a∥1

)
, 𝜎2

𝑍 = 𝑂

(
𝜂2 ∥a∥2

1 𝜎
4
0

)
Ξ = 𝑂

(
𝜂2𝑑 ∥a∥2

1 log𝑄̃
(
𝑇𝑚𝑑

𝛿P

)
𝜎2

0

)
, 𝑇 = 𝑂

(
𝑑𝐼−1

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎min∗𝜂

)
.

To satisfy the condition of that lemma, it suffices to choose

𝜎2
𝑍 ≲ 𝛼𝛿P𝜎

4
0 ⇐ 𝜂 ≲ 𝜀−𝐼0 ∥a∥−1 𝛿P

Ξ ≲
𝜎2

0
𝑇

⇐ 𝜂 ≲
𝑎min∗𝑑

−𝐼 𝐼 (𝐼 − 1)𝜎̂2
2𝐼 ∥a∥

−2

log𝑄̃ (𝑇𝑚𝑑/𝛿P)
.

□

Then, we consider 𝑘 = 𝑝 ≤ 𝑃∗. Unlike those unused neurons, since v𝑝 will eventually converge
to e𝜋 (𝑝) , its norm cannot stay small. Our strategy here will be coupling its norm growth with the
tangent movement. We will use the following extension to Lemma F.11 of [RL24]. The proof of this
lemma can be found in Section D.5.
Lemma D.21. Suppose that (𝑋𝑡 )𝑡 satisfies

𝑋𝑡+1 = 𝑋𝑡 + 𝛼𝑡 (𝑋𝑡 )𝑋𝑡 + 𝜉𝑡+1 + 𝑍𝑡+1, 𝑋0 = 𝑥0 > 0,

where 𝛼𝑡 : R → R≥0 is an F𝑡 -measurable non-decreasing function, (𝜉𝑡 )𝑡 is an adapted process, and
(𝑍𝑡 )𝑡 is a martingale difference sequence. Let 𝜀 > 0 be given and define the process

𝑋̂𝑡+1 = 𝑋̂𝑡 + 𝛼𝑡 ( 𝑋̂𝑡 ), 𝑋̂0 = (1 + 𝜀)𝑥0.

Fix 𝑇 > 0, 𝛿P ∈ (0, 1). Suppose that there exists Ξ, 𝜎𝑍 > 0 and 𝛿P, 𝜉 ∈ (0, 1) such that when 𝑋𝑡 ≤ 𝑋̂𝑡 ,
we have |𝜉𝑡+1 | ≤ Ξ with probability at least 1 − 𝛿P, 𝜉 , and E[𝑍𝑡+1 | F𝑡 ] ≤ 𝜎2

𝑍
. Then, if

Ξ ≤ 𝜀0𝑥0/(2𝑇) and 𝜎2
𝑍 ≤ 𝜀2𝑥2

0𝛿P/(4𝑇),

we have 𝑋𝑡 ≤ 𝑋̂𝑡 for all 𝑡 ≤ 𝑇 .

The following lemma verifies Induction Hypothesis C.2(a) for 𝜎1 = 𝑂 (𝜎0𝜀
−𝐶/2) for some constant 𝐶.

Lemma D.22 (Bound on


v𝑝

2). Suppose that 𝑑 ≫

(
∥a∥1

𝐼 (𝐼−1) 𝜎̂2
2𝐼𝑎min∗

) 1
1−𝐼𝛾 and 𝜂 ≲

𝑎min∗ 𝐼 (𝐼−1) 𝜎̂2
2𝐼𝑑

−𝐼 ∥a∥−2
1

log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 )
. Then there exists a constant 𝐶exp such that



v𝑝

2 ≤ 𝑂
(
𝜎2

0 𝜀
−𝐶exp

)
as

long as 𝑣̄2
𝑝,𝜋 (𝑝) has not reached 1 − 𝜀.

Proof. By the proof of Lemma C.15, when Induction Hypothesis C.2(b) holds we have

v𝑝 (𝑡 + 1)


2 ≤



v𝑝

2 + 4𝜂(𝑎𝜋 (𝑝) 𝑣̄2𝐼
𝑝, 𝜋 (𝑝) + ∥a∥1 𝜀

𝐼
0)



v𝑝

2 − 𝑍𝑝,𝑅 (𝑡 + 1) + 𝜉𝑝,𝑅 (𝑡 + 1),
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where, by Lemma B.1 and Lemma D.1, the conditional variance of 𝑍𝑝,𝑅 is bounded by
𝑂

(
𝜂2 ∥a∥2

1


v𝑝

4

)
and we have

|𝜉𝑝,𝑅 (𝑡 + 1) | ≲ 𝜂2𝑑 ∥a∥2
1 log𝑄̃

(
𝑚𝑑

𝛿P

) 

v𝑝

2 with probability at least 1 − 𝛿P.

First, consider the situation where 𝑣̄2
𝑝,𝜋 (𝑝) ≤ 0.9. We prove by stochastic induction that



v𝑝

2 ≤
𝑂 (𝜎2

0 ). Under this induction hypothesis, using the language of Lemma D.21 with 𝜀 = 0.5, we have

𝜎2
𝑍 = 𝑂 (𝜂2 ∥a∥2

1 𝜎
4
0 ), Ξ = 𝑂

(
𝜂2𝑑 ∥a∥2

1 log𝑄̃
(
𝑚𝑑

𝛿P

)
𝜎2

0

)
, 𝑇 = 𝑂

(
𝑑𝐼−1

𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎min∗𝜂

)
.

Hence, to meet the condition of Lemma D.21, it suffices to choose

𝜎2
𝑍 ≲

𝜎4
0 𝛿P

𝑇
⇐ 𝜂 ≲ 𝑎min∗𝑑

−(𝐼−1) 𝐼 (𝐼 − 1)𝜎̂2
2𝐼 ∥a∥

−2 𝛿P,

Ξ ≲
𝜎2

0
𝑇

⇐ 𝜂 ≤
𝑎min∗𝑑

−(𝐼−1) 𝐼 (𝐼 − 1)𝜎̂2
2𝐼 ∥a∥

−2

log𝑄̃
(
𝑚𝑑
𝛿P

) .

When these hold, then we have with probability at least 1 −𝑂 (𝛿P) that


v𝑝 (𝑡)

2

= (1 ± 0.5)𝑁2 (𝑡) for
any 𝑡 ≤ 𝑇 , where 𝑁2 is defined via

𝑁2 (𝑡 + 1) := 𝑁2 (𝑡) + 4𝜂
(
𝑎𝜋 (𝑝) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑝) (𝑡) + ∥a∥1 𝜀

𝐼
0

)
𝑁2 (𝑡), 𝑁2 (0) = 1.5



v𝑝 (0)

2
.

Now, we analyze the process 𝑁2. First, note that

𝑁2 (𝑡) ≤ 𝑁2 (0)
𝑡−1∏
𝑠=0

(
1 + 4𝜂

(
𝑎𝜋 (𝑝) 𝑣̄

2𝐼
𝑝, 𝜋 (𝑝) (𝑠) + ∥a∥1 𝜀

𝐼
0

))
≤ 1.5𝜎2

0 exp
(
4𝜂𝑇 ∥a∥1 𝜀

𝐼
0

)
exp

(
4𝜂𝑎𝜋 (𝑝)

𝑡∑︁
𝑠=0

𝑣̄2𝐼
𝑝, 𝜋 (𝑝) (𝑠)

)
.

First, we see that

4𝜂𝑇 ∥a∥1 𝜀
𝐼
0 ≤

𝑑𝐼−1 ∥a∥1 𝜀
𝐼
0

𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎min∗

=
𝑑𝐼𝛾−1 ∥a∥1

𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎min∗

≪ 1,

since 𝑑 ≫
(

∥a∥1
𝐼 (𝐼−1) 𝜎̂2

2𝐼𝑎min∗

) 1
1−𝐼𝛾 .

Next, By the proof of Lemma D.7, when 𝑣̄2
𝑝,𝜋 (𝑝) ≤ 0.9, we have

𝑣̄2
𝑝,𝜋 (𝑝) (𝑡 + 1) ≥ 𝑣̄2

𝑝,𝜋 (𝑝) (𝑡) + 2𝜂𝑎𝜋 (𝑝) 𝐼𝜎̂2
2𝐼 𝑣̄

2𝐼
𝑝, 𝜋 (𝑝) (𝑡) + 𝑍𝑡+1 + 𝜉𝑡+1,

where with probability 1 − 𝛿P, 𝜉 we have |𝜉𝑡+1 | ≲ 𝜂2𝑑 ∥a∥2
1 log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 ), and the martingale term

𝑍𝑡+1 satisfies E[𝑍2
𝑡+1 | F𝑡 ] ≲ 𝜂2 ∥a∥2

1. Therefore

𝑣̄2
𝑝,𝜋 (𝑝) (𝑡 + 1) ≥ 𝑣̄2

𝑝,𝜋 (𝑝) (0) + 2𝜂𝑎𝜋 (𝑝) 𝐼𝜎̂2
2𝐼

𝑡∑︁
𝑠=0

𝑣̄2𝐼
𝑝, 𝜋 (𝑝) (𝑠) +

𝑡∑︁
𝑠=0

𝜉𝑠+1 +
𝑡∑︁
𝑠=0

𝑍𝑠+1.

We first have ����� 𝑡∑︁
𝑠=0

𝜉𝑠+1

����� ≲ 𝑇𝜂2𝑑 ∥a∥2
1 log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 ).

Since 𝜂𝑇 ≤ 𝑂 ( 𝑑𝐼−1

𝐼 (𝐼−1) 𝜎̂2
2𝐼𝑎min∗

), we thus have
��∑𝑡
𝑠=0 𝜉𝑠+1

�� ≤ 1 whenever 𝜂 ≲
𝑎min∗ 𝐼 (𝐼−1) 𝜎̂2

2𝐼𝑑
−𝐼 ∥a∥−2

1

log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 )
.

Next, by Doob’s submartingale inequality, we have

P

[
sup
𝑟≤𝑡

����� 𝑟∑︁
𝑠=1

𝑍𝑠

����� ≥ 1

]
≲ 𝑇𝜂2 ∥a∥2

1 ≲ 𝜂 ·
𝑑𝐼−1 ∥a∥2

1

𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝑎min∗
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and thus if 𝜂 ≲
𝑎min∗ 𝐼 (𝐼−1) 𝜎̂2

2𝐼 ∥a∥−2
1 𝛿𝑃

𝑑𝐼−1 we have that sup𝑟≤𝑡
��∑𝑟
𝑠=1 𝑍𝑠

�� ≤ 1 with probability 1 − 𝛿P.
Altogether, on these events we have that

𝜂𝑎𝜋 (𝑝) 𝐼𝜎̂
2
2𝐼

𝑡∑︁
𝑠=0

𝑣̄2𝐼
𝑝, 𝜋 (𝑝) (𝑠) ≤ 1.5

As a result,

𝑁2 (𝑡) ≤ 1.5𝜎2
0 exp

(
4𝜂𝑇 ∥a∥1 𝜀

𝐼
0

)
exp

(
6
𝐼𝜎̂2

2𝐼

)
= 𝑂 (𝜎2

0 ),

In other words, we have


v𝑝

2

= 𝑂 (𝜎2
0 ) when 𝑣̄2

𝑝,𝜋 (𝑝) ≤ 0.9.

Now, consider the situation where 𝑣̄2
𝑝,𝜋 (𝑝) ∈ [0.9, 1 − 𝜀]. By the proof of Lemma D.10, it takes at

most 3𝐼 log(2/ 𝜀̄)
𝐼 𝜎̂2

2𝐼 𝜂𝑎𝜋 (𝑝)
iterations for 𝑣̄2

𝑝,𝜋 (𝑝) to grow from 0.9 to 1 − 𝜀. In this stage, we have

v𝑝 (𝑡 + 1)


2 ≤



v𝑝

2 + 4.1𝜂𝑎𝜋 (𝑝)


v𝑝

2 − 𝑍𝑝,𝑅 (𝑡 + 1) + 𝜉𝑝,𝑅 (𝑡 + 1).

Let the corresponding deterministic process be 𝑀2 (𝑡 + 1) = 𝑀2 (𝑡) + 4.1𝜂𝑎𝜋 (𝑝)𝑀2 (𝑡) with 𝑀2 (𝑇0) =
𝑂 (𝜎2

0 ) where 𝑇0 is the time 𝑣̄2
𝑝,𝜋 (𝑝) reaches 0.9. Using the language of Lemma F.6 of [RL24], we

have
𝛼 = 4.1𝜂𝑎𝜋 (𝑝) , 𝜎2

𝑍 = 𝑂 (𝜂2 ∥a∥2
1 𝜎

4
0 ), Ξ = 𝑂

(
𝜂2𝑑 ∥a∥2

1 log𝑄̃
(
𝑚𝑑

𝛿P

)
𝜎2

0

)
.

Therefore, to meet the condition of Lemma F.6 of [RL24], it suffices to require

Ξ ≲
𝑥0
𝑇

⇐ 𝜂 ≲
𝑎𝜋 (𝑝) 𝐼𝜎̂

2
2𝐼 ∥a∥

−2
1

𝑑3𝐼 log𝑄̃
(
𝑚𝑑
𝛿P

)
log(2/𝜀)

,

𝜎2
𝑍 ≲ 𝛿P𝛼𝑥

2
0 ⇐ 𝜂 ≲ 𝑎𝜋 (𝑝)𝛿P ∥a∥−2

1 .

Meanwhile, we have

𝑀2 (𝑇1) ≤ 𝑀2 (𝑇0) exp
(
(𝑇1 − 𝑇0) · 4.1𝜂𝑎𝜋 (𝑝)

)
≤ 𝑂

(
𝜎2

0 𝜀
−𝐶exp

)
,

for 𝐶exp = 4.1·3𝐼
𝐼 𝜎̂2

2𝐼
. □

D.4 Proof of Theorem 2.1

Proof. First, by Lemma B.2, with probability 1 − 𝛿P∗/2, Assumption C.1 holds at initialization, with
Δ := min(𝛿𝑟 , 𝛿𝑐, 𝛿𝑡 ) = 𝑂 ( 𝛿P∗

𝑚𝑃max(𝑚,𝑃) ).

Define𝑇max = max𝑝∈[𝑃∗ ] (1+Δ/4)𝑇𝑝 ≲ 𝑑𝐼−1

𝐼 (𝐼−1) 𝜎̂2
2𝐼 𝜂𝑎min∗

. We will show that, with probability 1−𝛿∗P/2,
that Induction Hypotheses C.2 and D.1 hold for all 𝑡 ≤ 𝑇max with choice of parameters
We do so by union bounding over the consequence of the following lemmas:

• (Directional convergence) Lemma D.2 for all 𝑝 ∈ [𝑃∗], with 𝛿P =
𝛿∗P

16𝑃∗ log log 𝑑 , 𝛿P, 𝜉 =

𝛿∗P
16𝑇max𝑃∗

. This implies the first half of part (b).

• (Convergence of norm) Lemma D.12 for all 𝑝 ∈ [𝑃∗], with 𝛿P =
𝛿∗P

16𝑃∗ , 𝛿P, 𝜉 =
𝛿∗P

16𝑇max𝑃∗
. This

implies the second half of part (b).

• (Bound on the failed coordinates) Lemma D.19 for all (𝑘, 𝜋(𝑞)) ∉ {(𝑝, 𝜋(𝑝))}𝑝∈[𝑃∗ ] ,
with 𝛿P =

𝛿∗P
16𝑚𝑃 , 𝛿P, 𝜉 =

𝛿∗P
16𝑇max𝑚𝑃

. This verifies that Induction Hypothesis C.2(b) holds
throughout training.

• (Bound on unused neurons) Lemma D.20 for all 𝑘 ∈ [𝑚] \ [𝑃∗] with 𝛿P =
𝛿∗P

16𝑚 . This implies
part (a).
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• (Upper bound on norm growth) Lemma D.22 for all 𝑝 ∈ [𝑃∗], with 𝛿P =
𝛿∗P

16𝑃∗ . This implies
part (c).

Next, we verify that our choice of 𝜀0, 𝜀, 𝜎0, 𝜎1 indeed satisfy the conditions of the lemmas. First,
Lemma D.2 requires the conditions on C.3 to hold. Recall that we have chosen 𝛿𝑇 = Δ2

𝐶𝐼2 for
sufficiently large constant 𝐶, and we will select 𝛾 ≤ 1

4𝐼 . We thus require

𝑑−1/2 ≤
𝛿𝑇 𝐼𝜎̂

2
2𝐼

𝐶2
𝜎

⇐= 𝑑 ≳
𝐶4
𝜎 𝐼

2

𝜎̂4
2𝐼Δ

4
,

𝑑

log4 𝑑
≳ 𝐼2Δ−2

𝑚𝜎2
1 ≲

Δ2𝜎̂2
2𝐼𝑎min∗

𝐼223𝐼𝐶2
𝜎𝑑

𝐼−1/2

𝜀 ≲

(
Δ2𝜎̂2

2𝐼

𝐼223𝐼+4𝐶2
𝜎

)2

· 1
𝑑1+2𝛾 (𝐼−1)

𝑑 ≳

(
𝜎̂2

2𝐼𝑎min∗Δ
2

𝐼223𝐼𝐶2
𝜎 ∥a∥1

)− 2
1−2𝛾𝐼

𝜀𝐷 ≥ 23𝐼+73𝐼𝐶2
𝜎

𝜎̂2
2𝐼

{
𝜀1/2𝜀𝐼−1

0 ∨
𝑚𝜎2

1
𝑎min∗

∨ ∥a∥1
𝑎min∗

𝜀𝐼0

}
⇐=


𝜀 ≤ ( 𝜎̂2

2𝐼
23𝐼+73𝐼𝐶2

𝜎
)2𝜀2

𝐷
𝑑2(1−𝛾) (𝐼−1)

𝑚𝜎2
1 ≤ 𝜎̂2

2𝐼𝑎min∗ 𝜀𝐷
23𝐼+73𝐼𝐶2

𝜎

𝜀𝐷 ≥ 23𝐼+73𝐼𝐶2
𝜎 ∥a∥1

𝜎̂2
2𝐼𝑎min∗

𝑑−𝐼 (1−𝛾)

𝜂 ≤
𝑎𝜋 (𝑝) 𝜎̂

2
2𝐼 ∥a∥

−2
1 𝛿P

𝐶 log(512𝐼/Δ) log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 )
min(𝑑−𝐼Δ2, 3−𝐼𝜀2

𝐷).

Next, Lemma D.12 requires

𝜂 ≲
∥a∥−2

1

log(2𝑎𝑘/𝜎2
0 )

min

(
𝑎min∗𝑑

−1𝜀𝑅

log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 )
, 𝜀2
𝑅𝛿P

)
𝜀𝑅 ≳ log(2𝑎𝑘/𝜎2

0 )
(
𝐶2
𝜎𝑎𝜋 (𝑝)𝜀 + ∥a∥1 22𝐼𝜀𝐼0 + 𝑚𝜎

2
1

)
Next, Lemma D.19 requires the conditions on Lemma C.9 and Lemma C.10 to hold, which are

𝜀𝐷 ≥ 23𝐼+73𝐼𝐶2
𝜎

𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝑑 (1−𝛾) 𝐼

, 𝜀𝑅 ≥ 12 ∥a∥1 22𝐼𝑑−(1−𝛾) 𝐼 , Δ2 ≥ 𝐶𝐼223𝐼+4𝐶2
𝜎

𝜎̂2
2𝐼

∥a∥1
𝑎min∗

1
𝑑1/2−𝛾𝐼 ,

𝑚𝜎2
1 ≤

𝜎̂2
2𝐼𝑎min∗

23𝐼+7𝐶2
𝜎

(
3−𝐼𝜀𝐷 ∧ Δ2

𝐶𝐼2𝑑𝐼−1/2

)
∧ 𝜀𝑅

12
,

𝜀 ≤
(

𝜎̂2
2𝐼

23𝐼+73𝐼𝐶2
𝜎

)2

𝜀2
𝐷𝑑

2(1−𝛾) (𝐼−1) ∧
(

Δ2𝜎̂2
2𝐼

𝐶𝐼223𝐼+4𝐶2
𝜎

)2
1

𝑑1+2𝛾 (𝐼−1) ∧
𝜀𝑅

12𝐶2
𝜎𝑎𝜋 (𝑝)

.

and

𝜀 ≤
(

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

Δ

24

)2
1

𝑑1+2𝛾 (𝐼−1) , 𝑚𝜎2
1 ≤

𝜎̂2
2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
2(log 𝑑)2𝐼−2𝑑𝐼−1/2

Δ

24
,

𝑑

(log2 𝑑)1/𝛾
≥

(
Δ

4

)− 1
𝛾 (𝐼−1)

,
𝑑

(log2 𝑑)
𝐼−1

1/2−𝛾𝐼
≥

(
𝜎̂2

2𝐼

23𝐼+4𝐶2
𝜎

𝑎min∗
∥a∥1 22𝐼−2

Δ

24

)− 1
1/2−𝛾𝐼

,
Δ2

𝐶𝐼2 ≤ Δ

240
.

Moreover D.19 additionally requires

𝜀1/2𝜀𝐼−1
0 ∨ 𝑚𝜎2

1 ∨ ∥a∥1 𝜀
𝐼
0 ≪

𝑎min∗ 𝜎̂
2
2𝐼𝑑

−𝐼+1/2Δ

𝐼23𝐼+6𝐶2
𝜎

⇐=


𝜀 ≲

(
𝑎min∗ 𝜎̂

2
2𝐼Δ

𝐼23𝐼+6𝐶2
𝜎

)2
1

𝑑1+2𝛾 (𝐼−1)

𝑚𝜎2
1 ≲

𝑎min∗ 𝜎̂
2
2𝐼𝑑

−𝐼+1/2Δ

𝐼23𝐼+6𝐶2
𝜎

𝑑 ≳
(

𝑎min∗ 𝜎̂
2
2𝐼Δ

𝐼23𝐼+6𝐶2
𝜎 ∥a∥1

)− 2
1−2𝐼𝛾
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𝜀𝑅 ≲
𝑎min∗

1.5𝐼𝑑𝛾 (𝐼−1)

𝑑

log2/𝛾 𝑑
≥ 21/𝛾 (4/Δ)

1
𝛾 (𝐼−1)

Finally, Lemma D.22 requires

𝑑 ≫
(

∥a∥1

𝜎̂2
2𝐼𝑎min∗

) 1
1−𝐼𝛾

𝜂 ≲
𝑎min∗ 𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝑑
−𝐼 ∥a∥−2

1

log𝑄̃ (𝑚𝑑/𝛿P, 𝜉 )
𝜎2

1 ≳ 𝜎2
0 𝜀

−𝐶exp .

Assume that 𝑑

log8𝐼 𝑑
≥ 24𝐼 (4/Δ) 4𝐼

𝐼−1 . Then by choosing 𝛾 to be the solution to 𝑑

log2/𝛾 = 21/𝛾 (4/Δ)
1

𝛾 (𝐼−1) ,
we know that 𝛾 ≤ 1

4𝐼 . The constraints on 𝑑 then become:

𝑑 ≳𝜎 Δ−4 ∨ log4 𝑑Δ−2 ∨
(
∥a∥1 Δ

−2𝑎−1
min∗

)4
∨ log8(𝐼−1) (𝑑)

(
∥a∥1 Δ

−1𝑎−1
min∗

)4

⇐=
𝑑

log8𝐼 𝑑
≳𝜎 ∥a∥4

1 Δ
−8𝑎−4

min∗ .

The conditions on the target accuracies 𝜀𝑅, 𝜀𝐷 become

𝜀𝐷 ≳𝜎
∥a∥1
𝑎min∗

1
𝑑𝐼−1/4

𝜀𝑅 ≳𝜎
∥a∥1
𝑑𝐼−1/4

𝜀𝑅 ≲𝜎
𝑎min∗
𝑑𝛾 (𝐼−1) =𝜎

𝑎min∗Δ

log2(𝐼−1) 𝑑

Next, the constraints on 𝜀 become (substituting 𝑑𝛾 = 2 log2 𝑑 (4/Δ) 1
𝐼−1 ):

𝜀 ≲𝜎
Δ6

𝑑 log4(𝐼−1) 𝑑
∧
𝜀2
𝐷
𝑑2(𝐼−1)

log4(𝐼−1) 𝑑
Δ2 ∧ 𝜀𝑅

log(1/𝜎2
0 )
,

where we note we must also have 𝜀 ≥ 𝜀𝐷 . We can therefore choose 𝜀 = 𝜀𝐷 , and observe that the
conditions become

Δ6

𝑑 log4(𝐼−1) 𝑑
≳𝜎 𝜀𝐷 ≳𝜎

∥a∥1
𝑎min∗𝑑

𝐼−1/4

𝑎min∗Δ

log2(𝐼−1)𝑑 ≳𝜎 𝜀𝑅 ≳𝜎 𝜀𝐷 log(1/𝜎2
0 ) ∨

∥a∥1
𝑑𝐼−1/4

The condition on 𝑚𝜎2
1 becomes

𝑚𝜎2
1 ≲𝜎

𝑎min∗Δ
2

𝑑𝐼−1/2 ∧ 𝑎min∗𝜀𝐷 ∧ 𝜀𝑅

log(1/𝜎2
0 )

∧
𝑎min∗Δ

𝑑𝐼−1/2 log2𝐼−2 𝑑
.

We additionally require 𝜎2
0 ≲𝜎 𝜎2

1 𝜀
𝐶exp
𝐷

. Therefore it suffices to pick 𝜎0 = 𝑑−𝐶 , 𝜎1 = 𝑑−𝐶
′ , where

𝐶 > 𝐶′ > 0 are sufficiently large constants depending only on 𝐼, 𝜎.
Next, we choose the learning rate 𝜂. It suffices to set 𝜂 as

𝜂 ≲𝜎
𝑎min∗ ∥a∥−2

1 𝑚−1𝑃−1𝛿∗P

log(512𝐼/Δ) log𝑄̃
(
𝑚𝑑
𝛿P, 𝜉

) min(Δ2𝑑−𝐼 , 𝜀2
𝐷).
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Finally, we prove part (d), and bound the population loss L at time 𝑡. Recall that L =
∑
𝑖≥𝐼 𝜎̂

2
2𝑖L𝑖 ,

where

L𝑖 :=
1
2
∥a∥2 −

𝑃∑︁
𝑝=1

𝑚∑︁
𝑘=1

𝑎𝑝 ∥v𝑘 ∥2 𝑣̄2𝑖
𝑘, 𝑝 +

1
2

𝑚∑︁
𝑘,𝑙=1

∥v𝑘 ∥2 ∥v𝑙 ∥2 ⟨v̄𝑘 , v̄𝑙⟩2𝑖 .

Recall that 𝐿 := {𝑝 ∈ [𝑃] :


v𝑝

 ≥ 𝜎1}. By parts (b) and (c), we must have 𝐿 = [𝑘∗] for some

integer 𝑘∗, and 𝑣̄2
𝑝,𝜋 (𝑝) ≥ 1 − 𝜀 for v𝑝 ∈ 𝐿. We can decompose the loss as follows:

L𝑖 =
1
2
∥a∥2 −

∑︁
𝑘∈𝐿

∑︁
𝑝∈[𝑃 ]

𝑎𝑝 ∥v𝑘 ∥2 𝑣̄2𝑖
𝑘, 𝑝 +

1
2

∑︁
𝑘∈𝐿

∥v𝑘 ∥4

+
∑︁

𝑘, 𝑗∈𝐿,𝑘≠ 𝑗
∥v𝑘 ∥2 

v 𝑗

2 ⟨v̄𝑘 , v̄ 𝑗⟩2𝑖 −

∑︁
𝑘∉𝐿

∑︁
𝑝∈[𝑃 ]

𝑎𝑝 ∥v𝑘 ∥2 𝑣̄2𝑖
𝑘, 𝑝 +

1
2

∑︁
𝑘∉𝐿

𝑚∑︁
𝑗=1

∥v𝑘 ∥2 

v 𝑗

2 ⟨v̄𝑘 , v̄ 𝑗⟩2𝑖

The terms with 𝑘 ∉ 𝐿 are straightforward to bound, as∑︁
𝑘∉𝐿

∑︁
𝑝∈[𝑃 ]

𝑎𝑝 ∥v𝑘 ∥2 𝑣̄2𝑖
𝑘, 𝑝 ≤ 𝑚𝜎2

1 ∥a∥1

1
2

∑︁
𝑘∉𝐿

𝑚∑︁
𝑗=1

∥v𝑘 ∥2 

v 𝑗

2 ⟨v̄𝑘 , v̄ 𝑗⟩2𝑖 ≤ 1
2
𝑚𝜎2

1

𝑚∑︁
𝑗=1



v 𝑗

2 ≤ 𝑚𝜎2
1 ∥a∥1 .

Next, for 𝑘 ≠ 𝑗 ∈ 𝐿, ⟨v̄𝑘 , v̄ 𝑗⟩2𝑖 ≤ 𝜀𝑖 , and thus∑︁
𝑘, 𝑗∈𝐿,𝑘≠ 𝑗

∥v𝑘 ∥2 

v 𝑗

2 ⟨v̄𝑘 , v̄ 𝑗⟩2𝑖 ≤ 𝜀𝑖 (
∑︁
𝑘∈[𝑚]

∥v𝑘 ∥2)2 ≤ 4 ∥a∥2
1 𝜀

𝑖 .

Finally, we track the dominant loss term. We have
1
2
∥a∥2 −

∑︁
𝑘∈𝐿

∑︁
𝑝∈[𝑃 ]

𝑎𝑝 ∥v𝑘 ∥2 𝑣̄2𝑖
𝑘, 𝑝 +

1
2

∑︁
𝑘∈𝐿

∥v𝑘 ∥4

=
1
2

∑︁
𝑘∉𝐿

𝑎2
𝜋 (𝑘 ) +

1
2

∑︁
𝑘∈𝐿

(
𝑎2
𝜋 (𝑘 ) − ∥v𝑘 ∥2

∑︁
𝑝∈𝑃

𝑎𝑝 𝑣̄
2𝑖
𝑘, 𝑝 + ∥v𝑘 ∥4

)
We can bound

∥v𝑘 ∥2
∑︁

𝑝≠𝜋 (𝑘 )
𝑎𝑝 𝑣̄

2𝑖
𝑘, 𝑝 ≤ ∥v𝑘 ∥2

∑︁
𝑝≠𝜋 (𝑘 )

𝑎𝑝𝜀
𝑖 ≤ 𝜀𝑖 ∥v𝑘 ∥2 ∥a∥1 .

Moreover, 1 − 𝑣̄2𝑖
𝑘, 𝑝

≤ 2𝑖𝜀. Altogether,

L𝑖 =
1
2

∑︁
𝑘∉𝐿

𝑎2
𝜋 (𝑘 ) +

1
2

∑︁
𝑘∈𝐿

(
𝑎𝜋 (𝑘 ) − ∥v𝑘 ∥2

)2
±𝑂 (𝜀),

and since
∑
𝑙 𝜎̂

2
2𝑙 = 1, we have

L =
1
2

∑︁
𝑘∉𝐿

𝑎2
𝜋 (𝑘 ) +

1
2

∑︁
𝑘∈𝐿

(
𝑎𝜋 (𝑘 ) − ∥v𝑘 ∥2

)2
±𝑂 (𝜀)

as well. Next, if 𝑡 ≤ (1 − Δ/4)𝑇𝑝 , then 𝑝 ∉ 𝐿, and thus

L ≥ 1
2

∑︁
𝑘∉𝐿

𝑎2
𝜋 (𝑘 ) −𝑂 (𝜀) ≥ 1

2
− 1

2

∑︁
𝑝∈𝑃∗

𝑎2
𝜋 (𝑝) · 1

(
𝑡 ≥ (1 − Δ/4)𝑇𝑝

)
−𝑂 (𝜀).

On the other hand, if 𝑡 ≥ (1 + Δ/4)𝑇𝑝 , then 𝑝 ∈ 𝐿 and
��𝑎𝜋 (𝑝) − 

v2

𝑝



�� ≤ 𝜀𝑅, and thus

L ≤ 1
2
− 1

2

∑︁
𝑝∈𝑃∗

𝑎2
𝜋 (𝑝) · 1

(
𝑡 ≥ (1 + Δ/4)𝑇𝑝

)
+𝑂 (𝑃∗𝜀2

𝑅 + 𝜀),

where the desired claim follows by additionally choosing 𝜀2
𝑅
≤ 𝑃−1

∗ 𝜀𝐷 . □
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D.5 Deferred Proofs

Proof of Lemma D.4. Assume WLOG that the bounds on 𝑋𝑡 always hold. Inductively unroll the
recursion as

𝑋𝑡 = 𝑋0𝑃0,𝑡 +
𝑡∑︁
𝑠=1

𝑃𝑠,𝑡𝜉𝑠 +
𝑡∑︁
𝑠=1

𝑃𝑠,𝑡𝑍𝑠 ,

where 𝑃𝑠,𝑡 :=
∏𝑡−1
𝑟=𝑠 (1 + 𝛼𝑋 𝐼−1

𝑟 ) ≥ 1. As such,

𝑃−1
0,𝑡𝑋𝑡 = 𝑋0 +

𝑡∑︁
𝑠=1

𝑃−1
0,𝑠𝜉𝑠 +

𝑡∑︁
𝑠=1

𝑃−1
0,𝑠𝑍𝑠 .

The error term gets bounded as����� 𝑡∑︁
𝑠=1

𝑃−1
0,𝑠𝜉𝑠

����� ≤ 𝑡∑︁
𝑠=1

|𝜉𝑠 | ≤ Ξ1

𝑇−1∑︁
𝑡=0

(
𝑥+𝑡

) 𝐼 + Ξ2

𝑇−1∑︁
𝑡=0

𝑥+𝑡 + 𝑇Ξ3

with high probability for all 𝑡. We can bound each term by 𝑥0𝜀/6. The martingale term can be
controlled by Doob’s inequality,

P

[
sup
𝑟≤𝑡

����� 𝑡∑︁
𝑠=1

𝑃−1
0,𝑠𝑍𝑠

����� ≥ 𝑀

]
≤ 𝑀−2

𝑡∑︁
𝑠=1

E[𝑍2
𝑠 ] ≤ 𝑀−2𝜎2

𝑍

𝑇−1∑︁
𝑡=0

𝑥+𝑡 ≤ 𝛿P,

when we take 𝑀 = 𝑥0𝜀/2. Altogether, we have that 𝑃−1
0,𝑡𝑋𝑡 ≥ 𝑋0 − 𝑥0𝜀, and thus

𝑋𝑡 ≥ 𝑃0,𝑡 (1 − 𝜀)𝑥0 =

𝑡−1∏
𝑠=1

(1 + 𝛼𝑋 𝐼−1
𝑟 )𝑥−0 ≥

𝑡−1∏
𝑠=1

(
1 + 𝛼

(
𝑥−𝑟

) 𝐼−1
)
𝑥−0 = 𝑥−𝑡 .

Similarly, we have 𝑃−1
0,𝑡𝑋𝑡 ≥ 𝑋0 + 𝑥0𝜀, and thus

𝑋𝑡 ≤ 𝑃0,𝑡 (1 + 𝜖)𝑥0 =

𝑡−1∏
𝑠=1

(1 + 𝛼𝑋 𝐼−1
𝑟 )𝑥+0 ≤

𝑡−1∏
𝑠=1

(
1 + 𝛼

(
𝑥+𝑟

) 𝐼−1
)
𝑥+0 = 𝑥+𝑡 ,

as desired. □

Proof of Lemma D.6. Assume that the bounds on 𝑋𝑡 always hold. If sup𝑠≤𝑡 𝑋𝑠 > 𝛿 then we are done;
otherwise, unroll the recursion as

𝑋𝑡 = 𝑋0𝑃0,𝑡 +
𝑡∑︁
𝑠=1

𝑃𝑠,𝑡𝑍𝑠 +
𝑡∑︁
𝑠=1

𝑃𝑠,𝑡𝜉𝑠 ,

where 𝑃𝑠,𝑡 :=
∏𝑡−1
𝑟=𝑠 (1 + 𝛼𝑋 𝐼−1

𝑟 ) ≥ 1. As such,

𝑃−1
0,𝑡𝑋𝑡 = 𝑋0 +

𝑡∑︁
𝑠=1

𝑃−1
0,𝑠𝜉𝑠 +

𝑡∑︁
𝑠=1

𝑃−1
0,𝑠𝑍𝑠 .

The error term is bounded as ����� 𝑡∑︁
𝑠=1

𝑃−1
0,𝑠𝜉𝑠

����� ≤ 𝑡∑︁
𝑠=1

|𝜉𝑠 | ≤ Ξ𝑇 ≤ 𝑥0
4

for high probability for all 𝑡 ≤ 𝑇 . Next, we bound the martingale term by Doob’s inequality:

P

[
sup
𝑟≤𝑡

����� 𝑡∑︁
𝑠=1

𝑃−1
0,𝑠𝑍𝑠

����� ≥ 𝑀

]
≤ 𝑀−2

𝑡∑︁
𝑠=1

E[𝑍2
𝑠 ] ≤ 𝑀−2𝜎2

𝑍𝑇 ≤ 𝛿P,

when we take 𝑀 = 𝑥0/4. Altogether,
𝑋𝑡 ≥ 𝑃0,𝑡𝑥0/2 ≥ 𝑥𝑡 ,

as desired. □
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Proof of Lemma D.9. Expanding the recursion,

𝑋𝑡 ≤ (1 − 𝛼)𝑡𝑋0 +
𝑡−1∑︁
𝑠=0

(1 − 𝛼)𝑠𝜉𝑡−𝑠 +
𝑡−1∑︁
𝑠=0

(1 − 𝛼)𝑠𝑍𝑡−𝑠 .

We can bound the error term by����� 𝑡−1∑︁
𝑠=0

(1 − 𝛼)𝑠𝜉𝑡−𝑠

����� ≤ Ξ

𝑡−1∑︁
𝑠=0

(1 − 𝛼)𝑠 ≤ Ξ𝛼−1 ≤ 𝜀

4

and by Doob’s inequality bound the martingale by

P

[
sup
𝑟≤𝑡

����� 𝑡−1∑︁
𝑠=0

(1 − 𝛼)𝑠𝑍𝑡−𝑠

����� ≥ 𝑀

]
≤ 𝑀−2

𝑡−1∑︁
𝑠=0

(1 − 𝛼)−2𝑠 E[𝑍2
𝑡−𝑠] ≤ 𝑀−2𝜎2

𝑍𝛼
−1 ≤ 𝛿P,

since we take 𝑀 = 𝜀/4. Therefore
𝑋𝑡 ≤ (1 − 𝛼)𝑡𝑋0 + 𝜀/2 ≤ (1 − 𝛼)𝑡𝑥0 + 𝜀/2.

□

Proof of Lemma D.13. Expanding the recursion,

𝑋𝑡 = (1 + 𝛼)𝑡𝑋0 +
𝑡−1∑︁
𝑠=0

(1 + 𝛼)𝑠𝜉𝑡−𝑠 +
𝑡−1∑︁
𝑠=0

(1 + 𝛼)𝑠𝑍𝑡−𝑠

=⇒ (1 + 𝛼)−𝑡𝑋𝑡 = 𝑋0 +
𝑡∑︁
𝑠=1

(1 + 𝛼)−𝑠𝜉𝑠 +
𝑡∑︁
𝑠=1

(1 + 𝛼)−𝑠𝑍𝑠 .

We can bound the error term by����� 𝑡∑︁
𝑠=1

(1 + 𝛼)−𝑠𝜉𝑠

����� ≤ Ξ

𝑡∑︁
𝑠=1

(1 + 𝛼)−𝑠 · (1 + 𝛼)𝑠𝑥0 = Ξ𝑇𝑥0 ≤ 𝑥0
4
.

By Doob’s inequality, we can bound the martingale term by

P

[
sup
𝑡≤𝑇

����� 𝑡−1∑︁
𝑠=0

(1 + 𝛼)−𝑠𝑍𝑠

����� ≥ 𝑀

]
≤ 𝑀−2𝜎2

𝑍

𝑡−1∑︁
𝑠=0

(1 + 𝛼)−2𝑠 · (1 + 𝛼)2𝑠𝑥2
0 = 𝑀−2𝜎2

𝑍𝑇𝑥
2
0 ≤ 𝛿P,

since we chose 𝑀 = 𝑥0/4. Altogether,
(1 + 𝛼)−𝑡𝑋𝑡 = 𝑥0 ± 0.5𝑥0 =⇒ 𝑋𝑡 = (1 ± 0.5)𝑥𝑡 ,

as desired. □

Proof of Lemma D.15. Define 𝑃𝑠,𝑡 :=
∏𝑡−1
𝑟=𝑠 (1 + 𝛼(𝑋𝑟 )). Expanding the recursion,

𝑋𝑡 = 𝑃0,𝑡𝑋0 +
𝑡−1∑︁
𝑠=0

𝑃𝑡−𝑠,𝑡𝜉𝑡−𝑠 +
𝑡−1∑︁
𝑠=0

𝑃𝑡−𝑠,𝑡𝑍𝑡−𝑠 .

We can bound the error term by����� 𝑡−1∑︁
𝑠=0

𝑃𝑡−𝑠,𝑡𝜉𝑡−𝑠

����� ≤ Ξ

𝑡−1∑︁
𝑠=0

(1 − 𝛼−)𝑠 ≤ Ξ𝛼−1
− ≤ 𝜀/4.

By Doob’s inequality, we can bound the martingale term by

P

[
sup
𝑡≤𝑇

����� 𝑡−1∑︁
𝑠=0

𝑃𝑡−𝑠,𝑡𝑍𝑡−𝑠

����� ≥ 𝑀

]
≤ 𝑀−2𝜎2

𝑍

𝑡−1∑︁
𝑠=0

(1 − 𝛼−)2𝑠 ≤ 𝑀−2𝜎2
𝑍𝛼− ≤ 𝛿P,

since we chose 𝑀 = 𝜀/4. Therefore
𝑋𝑡 ≤ 𝑃0,𝑡𝑋0 + 𝜀/2 ≤ (1 − 𝛼−)𝑡𝑥0 + 𝜀/2
𝑋𝑡 ≥ 𝑃0,𝑡𝑋0 − 𝜀/2 ≥ (1 − 𝛼+)𝑡𝑥0 − 𝜀/2,

as desired. □
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Proof of Lemma D.18. Assume WLOG that the bounds on 𝑋𝑡 always hold. (𝑋𝑡 )𝑡 is stochastically
dominated by the process where 𝑋𝑡+1 = 𝑋𝑡 + 𝛼𝑋 𝐼𝑡 + 𝜉𝑡+1 + 𝑍𝑡+1, so we can WLOG track this latter
process. Expanding out the recursion, we get that

𝑋𝑡 = 𝑋0𝑃0,𝑡 +
𝑡∑︁
𝑠=1

𝑃𝑠,𝑡 (𝜉𝑠 + 𝑍𝑠),

where 𝑃𝑠,𝑡 :=
∏𝑡−1
𝑟=𝑠 (1 + 𝛼𝑋 𝐼−1

𝑟 ). Since 𝑋𝑟 ≥ 0, 𝑃0,𝑠 ≥ 1 and thus

𝑃−1
0,𝑡𝑋𝑡 = 𝑋0 +

𝑡∑︁
𝑠=1

𝑃−1
0,𝑠𝜉𝑠 +

𝑡∑︁
𝑠=1

𝑃−1
0,𝑠𝑍𝑠 .

The error term gets bounded as����� 𝑡∑︁
𝑠=1

𝑃−1
0,𝑠𝜉𝑠

����� ≤ 𝑡∑︁
𝑠=1

|𝜉𝑠 | ≤ Ξ1

𝑇−1∑︁
𝑡=0

𝑥
1/2
𝑡 + Ξ2

𝑇−1∑︁
𝑡=0

𝑥𝑡 + Ξ3

𝑇−1∑︁
𝑡=0

𝑥𝐼𝑡 + 𝑇Ξ4

with high probability for all 𝑡. We can bound each term by 𝑥0𝜀/8. The martingale term can be
controlled by Doob’s inequality:

P

[
sup
𝑟≤𝑡

����� 𝑡∑︁
𝑠=1

𝑃−1
0,𝑠𝑍𝑠

����� ≥ 𝑀

]
≤ 𝑀−2

𝑇∑︁
𝑠=1

E[𝑍2
𝑠 ] ≤ 𝑀−2𝜎2

𝑍

𝑇−1∑︁
𝑡=0

𝑥𝑡 ≤ 𝛿P,

when we take 𝑀 = 𝑥0𝜖/2. Altogether, we get
𝑋𝑡 ≤ 𝑃0,𝑡𝑥0 (1 + 𝜖) = 𝑃0,𝑡𝑥0 ≤ 𝑥𝑡 ,

as desired. □

Proof of Lemma D.21. We may assume w.l.o.g. that the bounds on 𝜉𝑡 and the conditional variance of
𝑍𝑡+1 always hold. Define

𝑃𝑠,𝑡 (𝑋) :=
{∏𝑡−1

𝑟=𝑠 (1 + 𝛼𝑟 (𝑋𝑟 )), 𝑡 > 𝑠,

1, 𝑡 = 𝑠.

Note that since 𝛼𝑟 > 0, we have 𝑃𝑠,𝑡 ≥ 1. Then, we can unroll the recurrence relationship as

𝑋𝑡 = 𝑋0𝑃0 (𝑋) +
𝑡∑︁
𝑠=1

𝑃𝑠,𝑡 (𝑋) (𝜉𝑠−1 + 𝑍𝑠−1) .

Divide both sides with 𝑃0,𝑡 , and we obtain

𝑃−1
0,𝑡 (𝑋)𝑋0 = 𝑋0 +

𝑡∑︁
𝑠=1

𝑃−1
0,𝑠 (𝑋)𝜉𝑠−1 +

𝑡∑︁
𝑠=1

𝑃−1
0,𝑠 (𝑋)𝑍𝑠−1.

For the second term, we have ����� 𝑡∑︁
𝑠=1

𝑃−1
0,𝑠 (𝑋)𝜉𝑠−1

����� ≤ 𝑡∑︁
𝑠=1

|𝜉𝑠−1 | ≤ 𝑇Ξ,

for all 𝑡 ≤ 𝑇 with probability at least 1 − 𝑇𝛿P, 𝜉 . For the RHS to be bounded by 𝜀𝑥0/2, it suffices to
choose Ξ ≤ 𝜀0𝑥0/(2𝑇). Meanwhile, by Doob’s submartingale inequality, for any 𝑀 > 0, we have

P

[
sup
𝑟≤𝑡

����� 𝑡∑︁
𝑠=1

𝑃−1
0,𝑠𝑍𝑠−1

����� ≥ 𝑀

]
≤ 𝑀−2

𝑡∑︁
𝑠=1

E
[
𝑃−2

0,𝑠𝑍
2
𝑠−1

]
≤
𝜎2
𝑍
𝑇

𝑀2 .

Choose 𝑀 = 𝜀𝑥0/2. Then, the RHS becomes 4𝜎2
𝑍
𝑇

𝜀2𝑥0
. For it to be bounded by 𝛿P, we need

𝜎2
𝑍
≤ 𝜀2𝑥2

0𝛿P/(4𝑇). The above two results imply that with the conditions on 𝜉 and 𝑍 stated in the
lemma, we have, with probability at least 1 − 𝛿P − 𝑇𝛿P, 𝜉 , that

𝑋𝑡 = 𝑃0,𝑡 (𝑋) (1 ± 𝜀)𝑥0 ≤ 𝑃0,𝑡 (𝑋) 𝑋̂0 ≤ 𝑃0,𝑡 ( 𝑋̂) 𝑋̂0 ≤ 𝑋̂𝑡 ,

where the second inequality comes from the monotonicity of 𝑥 ↦→ 𝛼𝑡 (𝑥). □
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Lemma D.23. Let (𝑥𝑡 )𝑡 ∈ [0, 1] follow the update

𝑥𝑡+1 = 𝑥𝑡 + 𝛼𝑥𝐼𝑡 .

Then

𝑥𝑡 ≤
𝑥0(

1 − 𝛼(𝐼 − 1)𝑥𝐼−1
0 𝑡

) 1
𝐼−1
.

Proof. Define the continuous time process 𝑥(𝑡) be the ODE ¤𝑥(𝑡) = 𝛼𝑥(𝑡)𝐼 with initial condition
𝑥0 = 𝑥(0). We prove by induction that 𝑥𝑡 ≤ 𝑥(𝑡). Observe that both processes are monotonically
increasing. Therefore

𝑥𝑡+1 = 𝑥𝑡 + 𝛼𝑥𝐼𝑡 ≤ 𝑥(𝑡) + 𝛼𝑥(𝑡)𝐼 ≤ 𝑥(𝑡) +
∫ 𝑡+1

𝑡

𝛼𝑥(𝑠)𝐼𝑑𝑠 = 𝑥(𝑡 + 1).

The desired result is obtained by solving the ODE for 𝑥(𝑡) with initial condition 𝑥(0) = 𝑥0. □

Lemma D.24. Let (𝑥𝑡 )𝑡 ∈ [0, 1] follow the update

𝑥𝑡+1 = 𝑥𝑡 + 𝛼𝑥𝐼𝑡 .

Then

𝑥𝑡 ≥
𝑥0(

1 − 𝛼(𝐼 − 1) exp(−𝛼𝐼)𝑥𝐼−1
0 𝑡

) 1
𝐼−1
.

Proof. We have that

𝛼 =
𝑥𝑡 − 𝑥𝑡−1

(𝑥𝑡−1)𝐼

=
(𝑥𝑡 )𝐼
(𝑥𝑡−1)𝐼

· 𝑥𝑡 − 𝑥𝑡−1

(𝑥𝑡 )2

≤ (𝑥𝑡 )𝐼
(𝑥𝑡−1)𝐼

∫ 𝑥𝑡

𝑥𝑡−1

1
𝑥𝐼
𝑑𝑥

=
(𝑥𝑡 )𝐼

(𝐼 − 1) (𝑥𝑡−1)𝐼

(
1
𝑥𝐼−1
𝑡−1

− 1
𝑥𝐼−1
𝑡

)
= (𝐼 − 1)−1 (1 + 𝛼𝑥 (𝐼−1)

𝑡−1 )𝐼
(

1
𝑥𝐼−1
𝑡−1

− 1
𝑥𝐼−1
𝑡

)
≤ (𝐼 − 1)−1 exp(𝛼𝐼)

(
1
𝑥𝐼−1
𝑡−1

− 1
𝑥𝐼−1
𝑡

)
.

Therefore
1
𝑥𝐼−1
𝑡

≤ 1
𝑥𝐼−1
𝑡−1

− 𝛼(𝐼 − 1) exp(−𝛼𝐼),

so summing and solving for 𝑥𝑡 yields

𝑥𝑡 ≥
𝑥0(

1 − 𝛼(𝐼 − 1) exp(−𝛼𝐼)𝑥𝐼−1
0 𝑡

) 1
𝐼−1
.

□
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E Scaling Law Derivations

We have shown that direction e𝜋 (𝑝) will be learned at time (1 ± 𝑜(1))𝑇𝑝 where 𝑇𝑝 is defined by

𝑇𝑝 :=
(
4𝐼 (𝐼 − 1)𝜎̂2

2𝐼𝑎𝜋 (𝑝)𝜂𝑣̄
2
𝑝,𝜋 (𝑝) (0)

)−1
.

Suppose that the signal follows the power law 𝑎𝑝 = 𝑝−𝛽/𝑍 where 𝛽 > 1/2 and 𝑍 =
∑𝑃
𝑝=1 𝑝

𝛽 is the
normalizing constant. In Section 3.1, we informally derive the scaling law L(𝑡) ∝ 𝑡−(2𝛽−1)/𝛽 . In this
section, we prove that this is true up to a multiplicative constant (cf. Corollary 2.2).
To this end, it suffices to (1) argue that teacher neurons 𝑝 with large signal strength 𝑎𝑝 are likely to
lie in the set of learned neurons {𝜋(𝑝) : 𝑝 ∈ [𝑃∗]}, and (2) bound the fluctuations of 𝑣̄2

𝑝,𝜋 (𝑝) (0). A
lower bound on the fluctuations is given in Lemma B.2(d). The following lemma shows that neurons
with large signal strength do indeed get learned.
Lemma E.1. Assume that 𝑎𝑝 ∝ 𝑝−𝛽 for 𝛽 > 1/2. Let 𝛿P = 1/poly(𝑚) be the target failure probability.
Then there exists a universal constant 𝐶 so that, with probability 1 − 𝛿P, all teacher neurons 𝑞
satisfying 𝑎𝑞 ≥ 𝐶𝑎𝑃∗ lie in the set of learned neurons, i.e 𝑞 ∈ {𝜋(𝑝) : 𝑝 ∈ [𝑃∗]}.

Proof. Let z1, . . . , z𝑚 be independent N(0, I𝑑) variables. We remark that {v̄𝑖}𝑖∈[𝑚] is equal in
distribution to {z𝑖/∥z𝑖 ∥}𝑖∈[𝑚] . First, with probability 1 − 2𝑚 exp(−𝐶𝑑), we have that ∥z𝑖 ∥2 =

(1 ± 0.5)𝑑 for all 𝑖 ∈ [𝑚]. Moreover, P(max𝑘∈[𝑚], 𝑝∈[𝑃∗ ]
��𝑧𝑘, 𝑝 �� ≥ 𝑧) ≤ 2𝑚𝑃∗𝑒−𝑧

2/2, and therefore
max𝑘∈[𝑚], 𝑝∈[𝑃∗ ] 𝑧

2
𝑘, 𝑝

≤ 2 log(2𝑚𝑃∗/𝛿P) with probability 1 − 𝛿P. Let us condition on these two
events.
Let 𝛾 ≥ 1 be some threshold. We begin by computing P(max𝑘∈[𝑚], 𝑝>𝑃∗ 𝑎𝑝𝑍

2
𝑘, 𝑝

≥ 𝑎𝑃∗𝛾). By
standard Gaussian tail bounds and a union bound, we have that

P
(

max
𝑘∈[𝑚], 𝑝>𝑃∗

𝑎𝑝𝑍
2
𝑘, 𝑝 ≥ 𝑎𝑃∗𝛾

)
≤

∑︁
𝑝>𝑃∗

2𝑚 exp
(
−
𝑎𝑃∗𝛾

2𝑎𝑝

)
Substituting 𝑎𝑝 = 𝑝−𝛽/𝑍 for 𝛽 > 1

2 , we get that∑︁
𝑝>𝑃∗

exp
(
−
𝑎𝑃∗𝛾

2𝑎𝑝

)
=

∑︁
𝑝>𝑃∗

exp
(
−𝛾

2
( 𝑝
𝑃∗

)𝛽
)
≤

∫ ∞

𝑃∗

exp
(
−𝛾

2
( 𝑝
𝑃∗

)1/2
)
𝑑𝑝

=
4
√
𝑃∗
𝛾

exp(−𝛾/2)
√︁
𝑃∗ +

8𝑃∗
𝛾2 exp(−𝛾/2) ≤ 12𝑃∗ exp(−𝛾/2).

Therefore

P
(

max
𝑘∈[𝑚], 𝑝>𝑃∗

𝑎𝑝𝑍
2
𝑘, 𝑝 ≥ 𝑎𝑃∗𝛾

)
≤ 24𝑃∗𝑚 exp(−𝛾/2) ≤ 𝛿P

for 𝛾 = 2 log(24𝑚𝑃∗/𝛿P).
Next, we aim to upper bound the quantity 𝑎𝜋 (𝑃∗ ) 𝑣̄2

𝑃∗ , 𝜋 (𝑃∗ ) . The first case is when {𝜋(𝑝) : 𝑝 ∈
[𝑃∗]} = [𝑃∗]. Since max𝑘∈[𝑚], 𝑝∈[𝑃∗ ] 𝑧

2
𝑘, 𝑝

≤ 2 log(2𝑚𝑃∗/𝛿P), it is clear that 𝑎𝜋 (𝑃∗ ) 𝑣̄2
𝑃∗ , 𝜋 (𝑃∗ ) ≤

4𝑎𝑃∗ log(2𝑚𝑃∗/𝛿P)/𝑑. Otherwise, there exists some 𝑞 ∈ [𝑃∗] such that 𝜋(𝑞) > 𝑃∗. We then have
that 𝑎𝜋 (𝑃∗ ) 𝑣̄2

𝑃∗ , 𝜋 (𝑃∗ ) ≤ 𝑎𝜋 (𝑞) 𝑣̄
2
𝑞,𝜋 (𝑞) ≤ 2𝑎𝑃∗𝛾/𝑑 = 4𝑎𝑃∗ log(24𝑚𝑃∗/𝛿P)/𝑑.

Let e𝑞 be some teacher neuron which was not selected by the greedy maximum selection process, i.e
𝑞 ∉ {𝜋(𝑝) : 𝑝 ∈ [𝑃∗]}. Then we must have 𝑎𝑞 𝑣̄2

𝑝,𝑞 ≤ 𝑎𝜋 (𝑃∗ ) 𝑣̄2
𝑃∗ , 𝜋 (𝑃∗ ) for all 𝑝 > 𝑃∗. Therefore

P(𝑞 ∉ {𝜋(𝑝) : 𝑝 ∈ [𝑃∗]}) ≤ P
(
∪𝑝>𝑃∗𝑎𝑞 𝑣̄2

𝑝,𝑞 ≤ 𝑎𝜋 (𝑃∗ ) 𝑣̄2
𝑃∗ , 𝜋 (𝑃∗ )

)
≤ P

(
∪𝑝>𝑃∗ 𝑧2

𝑝,𝑞 ≤
6𝑎𝑃∗
𝑎𝑞

log(24𝑚𝑃∗/𝛿P)
)
.

For 𝛾 > 1, one can bound P(𝑍𝑖 ≥ 𝛾) ≥ 1√
2𝜋

𝑧

1+𝑧2 𝑒
−𝑧2/2 ≥ 1√

2𝜋
𝑒−3𝑧2/2. Therefore

P(𝑞 ∉ {𝜋(𝑝) : 𝑝 ∈ [𝑃∗]}) ≤
(
1 − 1

√
2𝜋

exp
(
−

9𝑎𝑃∗
𝑎𝑞

log(24𝑚𝑃∗/𝛿P)
))𝑚−𝑃∗
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≤ ©­«1 − 1
√

2𝜋

(
24𝑚𝑃∗
𝛿P

)− 9𝑎𝑃∗
𝑎𝑞 ª®¬

𝑚/2

≤ exp ©­«− 𝑚

2
√

2𝜋

(
24𝑚𝑃∗
𝛿P

)− 9𝑎𝑃∗
𝑎𝑞 ª®¬ .

If 𝑎𝑞 satisfies

𝑎𝑞 ≥ 𝑎𝑃∗ ·
9 log(24𝑚𝑃∗/𝛿P)

log( 𝑚

2
√

2𝜋
) − log log(𝑃/𝛿P)

,

then plugging in we obtain P(𝑞 ∉ {𝜋(𝑝) : 𝑝 ∈ [𝑃∗]}) ≤ 𝛿P/𝑃. Finally, since 𝑃∗ ≤ 𝑚, for
𝛿P = 1/poly(𝑚) we can upper bound 9 log(24𝑚𝑃∗/𝛿P )

log( 𝑚

2
√

2𝜋
)−log log(𝑃/𝛿P ) ≤ 𝐶 for some universal constant𝐶. Union

bounding over all 𝑞 yields the desired result. □

Now, we are ready to prove our main theorem on the scaling law.

Proof of Proposition 2.2. By Theorem 2.1, we know that with probability at least 1 − 𝑜(1), we have

1 −
∑︁
𝑝∈[𝑃∗ ]

𝑎2
𝜋 (𝑝)1

(
𝑡 ≥ (1 − Δ/4)𝑇𝑝

)
−𝑂 (𝜀𝐷) ≤ L(𝑡) ≤ 1 −

∑︁
𝑝∈[𝑃∗ ]

𝑎2
𝜋 (𝑝)1

(
𝑡 ≥ (1 + Δ/4)𝑇𝑝

)
+𝑂 (𝜀𝐷).

It suffices to estimate the LHS and RHS. For the RHS, by Lemma E.1 we have that {𝑞 : 𝑎𝑞 ≥ 𝐶𝑎𝑃∗ } ⊂
{𝜋(𝑝) : 𝑝 ∈ [𝑃∗]}, and by Lemma B.2 we have min𝑝∈𝑃∗ 𝑣̄2

𝑝,𝜋 (𝑝) ≥ (log 𝑃∗)/𝑑, and thus∑︁
𝑝∈[𝑃∗ ]

𝑎2
𝜋 (𝑝)1

(
𝑡 ≥ 1 + 𝑜(1)

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝) 𝑣̄

2𝐼−2
𝑝,𝜋 (𝑝) (0)

)
≥

∑︁
𝑝∈[𝑃∗ ]

𝑎2
𝜋 (𝑝)1

(
𝑡 ≥ 𝐶̃𝑑𝐼−1

𝜂𝑎𝜋 (𝑝) log2𝐼−2 𝑃∗

)

≥
𝑃∗𝐶−1/𝛽∑︁
𝑝=1

𝑎2
𝑝1

(
𝑡 ≥ 𝐶̃𝑑𝐼−1

𝜂𝑎𝑝 log2𝐼−2 𝑃∗

)
.

Therefore, letting 𝐾 = 𝜂𝑍−1𝐶̃−1 log2𝐼−2 𝑃∗, we have

RHS(𝑡) ≤ 1 + 𝑜(1)
2𝑍2

𝑃∑︁
𝑝=1

𝑝−2𝛽
1

{
𝑡 ≥ 𝑑𝐼−1

𝐾𝑝−𝛽
∨ 𝑝 ≥ 𝑃∗𝐶

−1/𝛽
}
+𝑂 (𝜀𝐷)

≤ 1 + 𝑜(1)
2𝑍2

𝑃∑︁
𝑝=1

𝑝−2𝛽
1

{
𝑝 ≥

(
𝐾𝑡/𝑑𝐼−1

)1/𝛽
∧ 𝑃∗𝐶−1/𝛽

}
+𝑂 (𝜀𝐷)

≤ 1 + 𝑜(1)
2𝑍2

[(
𝐾𝑡

𝑑𝐼−1

)−2
+ 𝑃−2𝛽

∗ 𝐶2

]
+ 1 + 𝑜(1)

2𝑍2

∫ ∞

(𝐾𝑡/𝑑𝐼−1)1/𝛽∧𝑃∗𝐶−1/𝛽
𝑞−2𝛽 d𝑞 +𝑂 (𝜀𝐷)

≤ 1 + 𝑜(1)
2𝑍2

[(
𝐾𝑡

𝑑𝐼−1

)−2
+ 𝑃−2𝛽

∗ 𝐶2

]
+ 1 + 𝑜(1)

2𝑍2
1

2𝛽 − 1

[(
𝐾𝑡

𝑑𝐼−1

)−(2𝛽−1)/𝛽
∨ 𝑃−(2𝛽−1)

∗ 𝐶
2𝛽−1
𝛽

]
+𝑂 (𝜀𝐷).

When 𝛽 > 1/2, we have 0 < 2𝛽 − 1 ≤ 2𝛽. Hence, when 𝑡 ≥ 𝑑𝐼−1/𝐾, 𝑃∗ ≥ 𝐶1/𝛽 the first term can be
merged into the first term. Therefore,

RHS(𝑡) ≤ 𝐶𝛽

[(
𝐾𝑡

𝑑𝐼−1

)−(2𝛽−1)/𝛽
∨ 𝑃−(2𝛽−1)

∗

]
+𝑂 (𝜀𝐷).

We next consider the LHS. In Lemma E.1, we proved that 𝑎𝜋 (𝑃∗ ) 𝑣̄2
𝑃∗ , 𝜋 (𝑃∗ ) ≤ 4𝑎𝑃∗ log(24𝑚𝑃∗/𝛿P)/𝑑

with probability 1− 𝛿P. Repeating the argument for all 𝑝 ∈ [𝑃∗] and union bounding, with probability
1 − 𝛿P we have that 𝑎𝜋 (𝑝) 𝑣̄2

𝑝,𝜋 (𝑝) ≤ 4𝑎𝑝 log(24𝑚𝑃2
∗/𝛿P)/𝑑 for 𝑝 ∈ [𝑃∗]. We can therefore upper

bound the LHS as∑︁
𝑝∈[𝑃∗ ]

𝑎2
𝜋 (𝑝)1

(
𝑡 ≥ 1 − 𝑜(1)

4𝐼 (𝐼 − 1)𝜎̂2
2𝐼𝜂𝑎𝜋 (𝑝) 𝑣̄

2𝐼−1
𝑝,𝜋 (𝑝) (0)

)
≤

∑︁
𝑝∈[𝑃∗ ]

𝑎2
𝜋 (𝑝)1

(
𝑡 ≥ 𝑐𝑑𝐼−1

𝜂𝑎𝑝 log2𝐼−2 𝑚

)
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≤
∑︁
𝑝∈[𝑃∗ ]

𝑎2
𝑝1

(
𝑡 ≥ 𝑐𝑑𝐼−1

𝜂𝑎𝑝 log2𝐼−2 𝑚

)
.

Letting 𝑘 = 𝜂𝑍−1𝑐−1 log2𝐼−2 𝑚, we can similarly write

LHS(𝑡) ≥ 1
2𝑍2

𝑃∑︁
𝑝=1

𝑝−2𝛽
1

{
𝑡 ≤ 𝑑𝐼−1

𝑘 𝑝−𝛽
∨ 𝑝 ≥ 𝑃∗

}
−𝑂 (𝜀𝐷)

≥ 1
2𝑍2

𝑃∑︁
𝑝=1

𝑝−2𝛽
1

{
𝑝 ≥ (𝑘𝑡/𝑑𝐼−1)1/𝛽 ∧ 𝑃∗

}
−𝑂 (𝜀𝐷)

≥ 1
2𝑍2

∫ 𝑃

(𝑘𝑡/𝑑𝐼−1 )1/𝛽∧𝑃∗
𝑞−2𝛽 d𝑞 −𝑂 (𝜀𝐷)

≥ 1
2𝑍2

1
2𝛽 − 1

((
𝑘𝑡

𝑑𝐼−1

)−(2𝛽−1)/𝛽
∨ 𝑃−(2𝛽−1)

∗ − 𝑃1−2𝛽

)
−𝑂 (𝜀𝐷).

When 𝑡 ≤ 2−𝛽/(2𝛽−1)𝑃𝛽𝑑𝐼−1/𝑘 , the last term can be merged into the second last term. This gives the
lower bound

LHS(𝑡) ≥ 𝑐𝛽

[(
𝑘𝑡

𝑑

)−(2𝛽−1)/𝛽
∨ 𝑃−(2𝛽−1)

∗

]
−𝑂 (𝜀𝐷).

Altogether, the desired claim in part (b) follows from choosing 𝑃∗ = Θ( 𝑚
log𝑚 ).

Finally, we observe that Lemma E.1 implies that all directions e𝑝 with 𝑝 ≤ 𝑃∗𝐶−1/𝛽 = Θ̃( 𝑚
log𝑚 ) are

learned, and Theorem 2.1 implies that this learning happens at time Θ̃(𝑝𝛽𝑑𝐼−1𝜂−1). The conclusion
in part (a) directly follows. □
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• If this information is not available online, the authors are encouraged to reach out to the
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