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Abstract

Despite remarkable advances in Large Lan-
guage Models (LLMs), a persistent challenge
remains: the potential for these models to ac-
quire erroneous or outdated information from
their training data. Direct fine-tuning with data
containing new knowledge can be ineffective
due to conflicts between old and new knowl-
edge. This paper proposes a novel fine-tuning
paradigm called Delicate Fine-Tuning (DFT
) that leverages parametric arithmetic to pin-
point the location of knowledge and update
only the minimal set of relevant parameters.
Experimental results on two publicly available
datasets demonstrate that our proposed DFT
significantly improves the knowledge updating
performance of full fine-tuning, consistently
outperforming existing baselines in most cases.

1 Introduction

With the expanding applications of large language
models (LLMs) across diverse domains (Achiam
et al., 2023; Reid et al., 2024; Chowdhery et al.,
2023; Touvron et al., 2023; Zeng et al., 2022), their
ability to adapt to dynamic changes in data, tasks,
and user preferences has become increasingly criti-
cal. Conventional training paradigms, which rely
on static datasets for model development, are prov-
ing insufficient to address the rapidly evolving and
dynamic nature of real-world information (Zhang
et al., 2023b).

For instance, in 2020, the query "Who is the Pres-
ident of the United States?" would have yielded
"Donald Trump" as the answer. However, the cur-
rent answer is "Joe Biden." This exemplifies the
ongoing challenge faced by LLMs: the need for
continuous updating to ensure they reflect accurate
and up-to-date knowledge.

Current approaches to model editing and knowl-
edge updating typically involve augmenting the net-
work architecture (Dong et al., 2022; Huang et al.,

2022; Raunak and Menezes, 2022), introducing ad-
ditional model parameters (Dai et al., 2023; Dong
et al., 2022; Huang et al., 2022), or integrating
external knowledge bases (Dai et al., 2023; Dong
et al., 2022; Huang et al., 2022). These methods
often necessitate more complex procedures than
straightforward fine-tuning with new knowledge
(Zhang et al., 2022; Li and Liang, 2021; Hu et al.,
2021).

At present, direct fine-tuning of the model re-
mains the predominant method for incorporating
new knowledge.

During human cognitive development, individ-
uals often encounter situations where new knowl-
edge conflicts with their existing understanding.
They usually remember both the new knowledge
and the old knowledge simultaneously, and then
often get confused, leading to contradictions that
make it difficult to learn the new knowledge. If we
directly modify the memory of old knowledge and
original cognition, then the new knowledge to be
learned will not conflict with the original cognition
and knowledge, which makes it better to learn and
absorb the new knowledge. For example, if people
have been educated to believe that "the Earth is flat"
since childhood, it would be challenging for them
to accept the conflicting knowledge that "the Earth
is round" when they become adults. Conversely, if
they could directly modify their memory of the er-
roneous knowledge "the Earth is flat" to the correct
knowledge "the Earth is round," it would be much
simpler.

So how do we locate the position of old knowl-
edge and then update it accurately? Our research
has shown that when fine-tuning large language
models, they tend to learn sentence structure, gram-
mar, and style first, with knowledge being acquired
last. Therefore, we control the variables to pre-
vent the model from learning sentence structure
and stylistic information.

Inspired by the above empirical observations and



(Ilharco et al., 2022)’s task arithmetic, we propose a
novel paradigm of knowledge updating called DFT
(Delicate Fine-Tuning ). Specifically, DFT begins
by using the large language model to predict and
generate an answer, resulting in a data point. Next,
DFT modifies only the key knowledge within the
sentence, keeping the sentence structure and style
intact, creating a new data point. We then fine-
tune the model separately with both data points,
recording the parameter changes. By comparing
these parameter changes, we identify sections that
exhibit similar changes in direction. These sections,
representing aspects that are not relevant to the
knowledge update, are discarded entirely.

We retain only the parameters exhibiting con-
trasting change directions, then compare their dif-
ferences, rank those differences, and identify the
top T % with the largest differences .Then update
the top T % of parameters , where T is a predefined
threshold ratio. The whole process is repeated it-
eratively until the model’s knowledge update is
complete.

This paper makes the following contributions:

* We propose a novel fine-tuning paradigm
“DFT (Delicate Fine-Tuning )” for knowledge
updating in large language models.

e Our experimental results show that DFT
(Delicate Fine-Tuning ) improves the knowl-
edge updating performance across various
fine-tuning methods and surpasses existing
baselines in most cases.

2 Related Work

The knowledge update of large language models
generally encompasses five approaches: model
editing, meta-learning, fine-tuning, retrieval-
augmented learning, and the addition of supple-
mentary parameters(Yao et al., 2023; Zhang et al.,
2024; Shi et al., 2024) .

Many necessitate the introduction of additional
knowledge bases, neural network modules, or
model parameters. This often leads to practical
challenges, including increased model complexity
and inference costs. Fine-tuning methods, even
when updating a single piece of knowledge, can
trigger a ripple effect, potentially affecting other
knowledge and leading to catastrophic forgetting.
A new model editing method is proposed in this pa-
per, which eliminates a large number of irrelevant
parameters by comparing old and new knowledge,

and then identifies the most relevant parameters. By
updating only the minimum number of parameters,
this approach significantly reduces catastrophic for-
getting.

Model editing

Model editing targets the internal mechanisms of
LLMs, aiming to modify specific parameters and
neurons to correct outputs based on knowledge-
driven interventions (Meng et al., 2022a; Dai et al.,
2022; Meng et al., 2022c; Santurkar et al., 2021;
Geva et al., 2022). (Geva et al., 2021) discovered
that the feed-forward network layers within trans-
formers store key-value pairs associated with spe-
cific knowledge. (Meng et al., 2022a) employed
a causal reasoning method to identify key neuron
activations and update factual associations by mod-
ifying feed-forward weights. To facilitate large-
scale knowledge editing, they introduced (Meng
et al., 2022c), a method that directly updates thou-
sands of memories within LLMs. (Gupta et al.,
2023) enhanced knowledge updating by optimiz-
ing edit token selection and layer selection during
the editing process. (Yu et al., 2023) utilized parti-
tioned gradients to identify significant weights for
unlearning biases in the model.

Hiyouga (hiyouga, 2023) developed the faste-
dit software framework, which enables convenient
editing of models using causal reasoning. Zhang
et al. (Zhang et al., 2024; Wang et al., 2023; Yao
et al., 2023; Cheng et al., 2023; Mao et al., 2023;
Zhang et al., 2023a) developed the EasyEdit soft-
ware framework, which makes it easy to use a vari-
ety of methods for editing models.

Meta-learning

Meta-learning approaches aim to update knowl-
edge within LLMs by adjusting their parameters
based on predictions from a well-trained hyper-
network. This technique, investigated by (Sinitsin
et al., 2019; Mitchell et al., 2021; De Cao et al.,
2021), enables efficient knowledge updates with-
out retraining the entire model. (Mitchell et al.,
2021) introduced an auxiliary network with gradi-
ent decomposition, enabling efficient edits to LLMs
based on a single input-output pair.(De Cao et al.,
2021) proposed updating specific weights within
a subset of modules using a hypernetwork with
constrained optimization.



Fine-tuning

Fine-tuning has become a ubiquitous technique in
NLP research, owing to the widespread adoption
of pre-trained models for downstream tasks. Its
intuitive nature and effectiveness in imparting new
knowledge make it a valuable tool for model edit-
ing (Zhu et al., 2020; Zhang et al., 2022; Yao et al.,
2023). Recent advancements in parameter-efficient
fine-tuning methods, such as Prefix-Tuning (Li and
Liang, 2021) and LoRA ((Hu et al., 2021)), have
further enhanced its applicability to knowledge edit-
ing. (Zhang et al., 2022) proposed an adaptive
fine-tuning strategy that dynamically adjusts the
magnitude of parameter updates based on the im-
portance of the weight matrix, thereby improving
efficiency and adaptability. (Zhu et al., 2020) intro-
duced a loss constraint that minimizes the impact
on irrelevant knowledge during fine-tuning, pre-
serving the integrity of the base model. Similarly,
(Lee et al., 2022) explored large-scale continual
learning for knowledge updating through regular-
ized fine-tuning.

F-Learning (Ni et al., 2023) introduces a “forget-
ting before learning” paradigm to achieve forget-
ting of old knowledge and learning of new knowl-
edge based on parametric arithmetic.

The addition of supplementary parameters

This approach involves injecting a small number
of trainable parameters, representing new knowl-
edge, into the LLM while keeping its original pa-
rameters frozen . This technique, explored by
(Dong et al., 2022; Huang et al., 2022; Raunak
and Menezes, 2022; Dai et al., 2023), allows for
efficient knowledge injection without retraining
the entire model. (Dong et al., 2022) proposed
a lightweight feed-forward network that incorpo-
rates additional parameters specifically tailored to
factual contexts, enabling knowledge generaliza-
tion.(Huang et al., 2022) developed a model edi-
tor named Transformer-Patcher, which sequentially
corrects errors in LLM outputs by adding and train-
ing a limited number of neurons within the trans-
former architecture.

Retrieve augmentation

These methods rely on an external knowledge base
containing new or corrected information, aiming
to amend the output of LLMs by incorporating
retrieved knowledge relevant to the given prompt
or question. This approach, explored by (Murty

et al., 2022; Mitchell et al., 2022b; Li et al., 2022;
Madaan et al., 2022), facilitates the integration of
new knowledge into the model’s responses.

(Mitchell et al., 2022b) propose a memory mod-
ule that stores manual edits, enabling a classifier to
retrieve and apply the relevant knowledge.(Madaan
et al., 2022) leverage the memory of user feedback
to generate prompts that guide LLMs toward more
accurate responses. Alternatively, (Zheng et al.,
2023) utilize in-context learning to revise LLM
outputs by extracting demonstrations from a cor-
pus based on similarity, eliminating the need for
gradient calculations.

3 Task Definition

Here, we draw on certain concepts and formu-
las from (Ni et al., 2023).This paper addresses
the task of knowledge updating in large lan-
guage models (LLMs). Given a pre-trained model
fo and a set of input-output knowledge pairs
Koa = (z1,31), (®2,92), ..., (x4, y;), the objec-
tive is to modify the model parameters 6 to ob-
tain a new model fy« that generates a correspond-
ing set of updated input-output pairs Kyey =
(1, Y1), (x2, y5"), ..., (@i, yI*"). Here, i rep-
resents the number of knowledge pairs to be up-
dated.

Following the definition in (Yao et al., 2023), we
can formally express this process and its objective
as:

fo(z;) if z; € other

where N (x;) represents z; itself and its equivalent
neighbourhood.

The knowledge update task aims to modify the
model’s responses only for z; and its equivalent
domain N (x;), where N (x;) represents the neigh-
borhood of x; encompassing semantically equiva-
lent instances. The goal is to update the answers
associated with x; and its equivalent domain with-
out affecting the responses to other out-of-scope
knowledge.

The effectiveness of knowledge updating is eval-
uated based on the following three metrics:

a. Reliability

Measured as the average accuracy of the updated
model fy- on the new knowledge. This metric as-
sesses the effectiveness of the update process itself.



For example, the answer to the question "Who is
the President of the US?" should be updated from
"Donald Trump" to "Joe Biden" after knowledge
updating.

b. Generalization

Evaluated by the average accuracy of fy« on exam-
ples drawn uniformly from the equivalence neigh-
borhood N (x;). This metric assesses the ability of
the model to generalize the update to semantically
equivalent inputs. For example, the answer to the
question "Who holds the position of the President
of the US?" should also be updated from "Donald
Trump" to "Joe Biden".

¢. Locality

Assessed by the proportion of predictions from the
updated model fy« that remain unchanged com-
pared to the pre-update model fy on irrelevant ex-
amples. This metric evaluates the ability of the
model to preserve the original knowledge base
while updating specific knowledge. For example,
the answer to the question "’ You’re fired!” is the
catchphrase of which celebrity?" should remain
unchanged as "Donald Trump" after the update.

4 Proposed method: DFT

This section details our proposed approach for
knowledge updating in LLMs. Departing from
methods that rely on external knowledge bases or
additional parameters, our method leverages a full
fine-tuning strategy. The process is structured in
two distinct stages:

4.1 Locate the parameters associated with
the old knowledge

Supervised fine-tuning (SFT) on a designated
dataset enables us to identify the direction of param-
eter alignment with the desired knowledge. This
alignment is reflected in the variations observed in
the model’s parameters during the training process.
Within this framework, we define incremental pa-
rameters, denoted as 6, as knowledge parameters
for a given large language model fy and its parame-
ters 6. These knowledge parameters are computed
as follows:

Or = FT{0,K} — 0 )

where F'T is the operation of supervised fine-
tuning, while K, 0 refer to the dataset of knowl-
edge and the parameters of the original model fy,
respectively.

Analogously, we initially fine-tune the model
fo on a dataset comprising the model’s original
knowledge. Subsequently, we subtract the origi-
nal model parameters 6 from the parameters ob-
tained after fine-tuning to derive the knowledge
parameters #%¢, representing the learned original
knowledge. This calculation is expressed as:

0% = FT{0,Koiq} — 0 (3)

where K4 refers to a dataset composed of the
model’s original knowledge. The related work in
(Ilharco et al., 2022) considers that subtracting the
parameters HOAld from 6 can assist the model fy to
forget this part of old knowledge:

0 =6 — \6R" 4)

where A is a hyper-parameter to control the rate
of forgetting. This process yields a new model,
fo, with parameters #’, which exhibits reduced
retention of the original knowledge compared to
the initial model fy. The forgetting operation may
have a destructive effect on the normal knowledge
of the model.

Howeyver, we believe that GOAld also contains other
information such as sentence structure, grammar,
and style, which requires further processing to ac-
curately pinpoint the old knowledge.

Then, we re-fine-tune the model fy on a dataset
containing new knowledge, and then subtract the
parameters 6 of the original model fy from model’s
parameters after fine-tuning to obtain the knowl-
edge parameters OA° indicating the new knowl-
edge, as follows:

O = FT{0, Kpew} — 0 5)

where K., refers to a dataset composed of new
knowledge .

Then, we compare GOAld and 0°", discarding
all elements with the same sign. Then, we select
the top T % of elements in 0,°" with the largest
difference from HoAld. T is a predefined threshold
ratio.The discarded parts are not subject to parame-
ter updates,and only the final retained parts will be
used for parameter updates,as follows:

0% = £{OR°™, 094, T} (©6)

OX"¢ represents the retained key parameters,
which are used for parameter updates.All other pa-
rameters remain unchanged.



4.2 Learning new knowledge by updating only
the most relevant parameters

We define the process of learning new knowledge
as follows:

0" =0+ A0 ()

where A is a hyper-parameter to control the rate of
learning. We repeat the processes outlined in equa-
tions (3), (5), (6), and (7) until the model’s output
reflects the new knowledge. Now we gain a new
model fy~ with its parameters 6*, which has for-
gotten the old knowledge compared to fy. It learns
only the new knowledge, avoiding any other infor-
mation, preventing catastrophic forgetting caused
by style changes and the like.

5 Experiments

5.1 Datasets

Our experiments employ one widely used datasets:
(Levy et al., 2017). ZsRE is a Question Answer-
ing (QA) dataset that leverages question rephras-
ings generated via back-translation to represent the
equivalence neighborhood. Following the exper-
imental setup outlined in (Yao et al., 2023), we
utilize the evaluation (eval) and edit sets of these
datasets, comprising 19,085 data points. To facili-
tate knowledge update, we partition both datasets
into sets of old knowledge and new knowledge.
For instance, in ZsRE, a typical knowledge update
scenario involves modifying the answer from "Los
Angeles" to "New Orleans", as illustrated in the
following example:

The old knowledge:

{"instruction'": "What city did Marl Young live
when he died?", "input'': "", "output'': "Los An-
geles" }

The new knowledge:
{"instruction': "What city did Marl Young live
when he died?", "input": "", "output': "New

Orleans" }

5.2 Baselines

We compare DFT against direct fine-tuning FT-L
with an additional KL divergence loss (Meng et al.,
2022a). We also compare DFT to other model edi-
tors, including GPT-style editors based on causal
tracing: ROME (Meng et al., 2022a), MEMIT
(Meng et al., 2022¢).ROME ((Meng et al., 2022a))
is a method that updates specific factual associa-
tions through causal intervention. MEMIT ((Meng

et al., 2022c)) is a method known for its effec-
tiveness in directly updating large-scale memories
within LLMs.

5.3 Completion details

For our experiments, we employ QWEN1.5-7B and
Mistral-7B as the base models. The primary focus
of our evaluation is the ability to update old knowl-
edge with new knowledge. To maintain output con-
sistency, we utilize the greedy decoding strategy
during testing. Our experiments were conducted
on a hardware platform comprising 8 x A800-80G
GPUs.

5.4 Experimental results

Table 1 presents the experimental results, our DFT
method consistently outperforms other baselines
in most cases. FT-L performs the worst, possibly
due to the impact of the KL divergence loss on the
model’s update. As our original model has already
acquired a substantial amount of old knowledge,
learning new knowledge poses greater challenges.
ROME employs causal analysis to identify knowl-
edge embedded within specific MLP layers and
modifies the entire matrix using least squares ap-
proximation. It operates under the assumption that
the MLP serves as the primary module for knowl-
edge storage , and at each iteration, it injects a
single piece of knowledge into the MLP through a
Lagrangian remainder.In the experiments, ROME
achieved relatively good results. Similarly, MEMIT
based on the assumption that the FFN functions
as a key-value store for knowledge, directly ma-
nipulates the parameters of specific layers using
least squares approximation. In contrast to ROME,
which updates a single layer, MEMIT is a multi-
layer update algorithm that supports the simultane-
ous update of hundreds or thousands of facts. In
the experiments, the difference between MEMIT
and ROME was minimal. F-Learning outperforms
MEMIT and ROME to some extent, while the DFT
method demonstrates superior performance com-
pared to F-Learning.

5.5 Ablation study

Table 1 shows that DFT method outperforms F-
Learning (Ni et al., 2023). We analyze that this may
be because F-Learning first uses the old data for
fine-tuning in an attempt to forget old knowledge.
However, the data contains a large amount of infor-
mation, and what is forgotten may not necessarily



Dataset Editor Mistral-7B QWENI1.5-7B
Reliability Generality Locality Reliability Generality Locality
ZsRE FT-L 58.19 51.48 80.43 56.45 50.72 81.19
ROME 84.21 79.98 78.12 84.37 79.31 78.37
MEMIT 79.36 78.82 86.78 83.25 80.39 87.24
F-Learningpr 84.85 80.15 85.07 85.64 81.85 88.93
DFTpr 85.41 83.87 91.27 89.78 86.26 92.19

Table 1: Results on three metrics of the one datasets based on QWEN1.5-7B and Mistral-7B.

be the old knowledge. It could be sentence struc-
ture, grammar, style, or other information, meaning
it might not truly forget the old knowledge. Our
method has an advantage in this regard, as it com-
pares the new and old knowledge and highlights
the key differences.

5.6 Updating with LoRA

Within this experimental framework, our approach
involves simultaneous knowledge updating via full
fine-tuning (or LoRA) in a single training process.
We formally define this LoRA integrated approach
as follows:

024 = LoRA{0, Koiq} — 0, (8)
07" = LoRA{0, Kpew} — 0 9)
OR"" = £{Ox™, 03"} (10)

0 = 0 + NI (11)

where LoR A represents the operation of supervised
fine-tuning utilizing the LoRA technique . 6* is
noted as the parameters of the edited model fy«
which has completed the knowledge updating.

As presented in Table 1, the experimental results
indicate that knowledge updating using LoRA out-
performs full fine-tuning in certain instances. This
improvement can be attributed to the parameter-
efficient nature of LoRA-based knowledge forget-
ting, enabling more efficient learning and adapta-
tion.

Empirical evidence from our experiments sug-
gests that updating the model parameters through
LoRA adaptation effectively approximates the per-
formance achieved by full fine-tuning.

We hypothesize that this observation stems
from the distributed nature of knowledge encoding
across multiple model parameters. LoRA modi-
fies the patterns and relationships associated with
the old knowledge embedded within the attention
structure, which represents an implicit knowledge
representation.

Table 2: Results on three metrics of the zsRE dataset
based on BLOOM-7B.

Editor Metric

Reliability  Generality Locality
Original model 28.02 27.95 /
LoRA 29.32 29.31 77.32
F-Learningy,or A 29.28 29.07 77.44
DFTiorA 30.38 31.02 79.64
Full-FT 44.32 43.72 63.94
F-Learningpr 44 .87 43.95 69.53
DFTpt 45.83 44.64 72.15

5.7 Adaptability testing

To further assess the adaptability of our proposed
method, we conducted experiments on the zsRE
dataset using BLOOM-7B as the base model. We
maintained the same experimental settings as pre-
viously described. The results, presented in Table
2, demonstrate the continued effectiveness of DFT.

5.8 Time testing

To evaluate the efficiency of our proposed DFT
method, we compared the editing time of various
knowledge updating and model editing methods
for different edit sizes. Employing LLAMA?2-7B
as our base model, we present the results in Table
3.

Analysis of the results in Table 3 reveals that
fine-tuning-based methods consistently exhibit sig-
nificantly lower editing times compared to locate-
based methods. This disparity can be attributed
to the increased complexity and time requirements
associated with locating specific neurons and pa-
rameters in locate-based methods. Furthermore,
ROME’s limitation to single-datapoint edits, in con-
trast to the batch editing capabilities of other meth-
ods, further diminishes its efficiency. Among fine-
tuning-based methods, FT-c demonstrates faster
optimization due to its norm constraint.



Editor 1 edit 10 edits 100 edits

zsRE COUNTERFACT zsRE COUNTERFACT zsRE COUNTERFACT
FT-L 0.61(s) 0.57(s) 5.98(s) 5.73(s) 58.28(s) 57.08(s)
ROME  2.76(s) 2.46(s) 27.9(s) 24.32(s) 285.23(s) 242.21(s)
MEMIT  612(s) 606(s) 6231(s) 6193(s) 61831(s) 61631(s)
Full-FT  0.78(s) 0.74(s) 7.92(s) 7.43(s) 76.72(s) 75.11(s)
DFTpr  1.49(s) 1.42(s) 11.98(s) 11.21(s) 120.92(s) 118.87(s)

Table 3: Editing time for 1 edit, 10 edits, 100 edits of the two dataset based on LLAMA2-7B.Run ROME with

FastEdit.Run MEMIT with EasyEdit

DFT method, while requiring multiple backward
passes and comparisons as a multi-stage knowl-
edge updating approach, necessitates updating only
a limited set of parameters. Consequently, DFT ex-
hibits an editing time approximately twice that of
Full-FT, yet remains notably fast and convenient.

Further acceleration of supervised fine-tuning
can be achieved through the utilization of deep-
speed or other analogous optimization techniques.

5.9 Parametric analysis of updating
knowledge

DFT knowledge updating method hinges on the
precise identification of knowledge-related param-
eters within the model. From an interpretability
perspective, this approach allows us to pinpoint
specific parameters containing the desired knowl-
edge, enabling targeted updates. Furthermore, we
conducted an in-depth analysis of the parameter
distribution and its modifications within the LLMs.

Analysis reveals that parameter modifications in
the MLP layers are more pronounced than those ob-
served in the attention layers. This observation sug-
gests that knowledge is primarily encoded within
the MLP layers of the model.

6 Conclusion

This paper introduces a novel paradigm for
knowledge updating during supervised fine-tuning,
termed DFT (Differential Fine-Tuning). DFT lever-
ages parametric arithmetic to pinpoint the location
of existing knowledge and facilitates the acquisi-
tion of new knowledge, effectively resolving poten-
tial contradictions between old and new informa-
tion.

Experimental evaluations conducted on the zsRE
dataset demonstrate the superior performance of
our proposed method compared to other baselines
in most scenarios.

7 Limitations

While the proposed DFT paradigm enhances the
efficacy of fine-tuning methods for updating knowl-
edge in large language models, it incurs an increase
in computational overhead due to the incorporation
of multiple backward passes.
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