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Abstract001

Despite remarkable advances in Large Lan-002
guage Models (LLMs), a persistent challenge003
remains: the potential for these models to ac-004
quire erroneous or outdated information from005
their training data. Direct fine-tuning with data006
containing new knowledge can be ineffective007
due to conflicts between old and new knowl-008
edge. This paper proposes a novel fine-tuning009
paradigm called Delicate Fine-Tuning (DFT010
) that leverages parametric arithmetic to pin-011
point the location of knowledge and update012
only the minimal set of relevant parameters.013
Experimental results on two publicly available014
datasets demonstrate that our proposed DFT015
significantly improves the knowledge updating016
performance of full fine-tuning, consistently017
outperforming existing baselines in most cases.018

1 Introduction019

With the expanding applications of large language020

models (LLMs) across diverse domains (Achiam021

et al., 2023; Reid et al., 2024; Chowdhery et al.,022

2023; Touvron et al., 2023; Zeng et al., 2022), their023

ability to adapt to dynamic changes in data, tasks,024

and user preferences has become increasingly criti-025

cal. Conventional training paradigms, which rely026

on static datasets for model development, are prov-027

ing insufficient to address the rapidly evolving and028

dynamic nature of real-world information (Zhang029

et al., 2023b).030

For instance, in 2020, the query "Who is the Pres-031

ident of the United States?" would have yielded032

"Donald Trump" as the answer. However, the cur-033

rent answer is "Joe Biden." This exemplifies the034

ongoing challenge faced by LLMs: the need for035

continuous updating to ensure they reflect accurate036

and up-to-date knowledge.037

Current approaches to model editing and knowl-038

edge updating typically involve augmenting the net-039

work architecture (Dong et al., 2022; Huang et al.,040

2022; Raunak and Menezes, 2022), introducing ad- 041

ditional model parameters (Dai et al., 2023; Dong 042

et al., 2022; Huang et al., 2022), or integrating 043

external knowledge bases (Dai et al., 2023; Dong 044

et al., 2022; Huang et al., 2022). These methods 045

often necessitate more complex procedures than 046

straightforward fine-tuning with new knowledge 047

(Zhang et al., 2022; Li and Liang, 2021; Hu et al., 048

2021). 049

At present, direct fine-tuning of the model re- 050

mains the predominant method for incorporating 051

new knowledge. 052

During human cognitive development, individ- 053

uals often encounter situations where new knowl- 054

edge conflicts with their existing understanding. 055

They usually remember both the new knowledge 056

and the old knowledge simultaneously, and then 057

often get confused, leading to contradictions that 058

make it difficult to learn the new knowledge. If we 059

directly modify the memory of old knowledge and 060

original cognition, then the new knowledge to be 061

learned will not conflict with the original cognition 062

and knowledge, which makes it better to learn and 063

absorb the new knowledge. For example, if people 064

have been educated to believe that "the Earth is flat" 065

since childhood, it would be challenging for them 066

to accept the conflicting knowledge that "the Earth 067

is round" when they become adults. Conversely, if 068

they could directly modify their memory of the er- 069

roneous knowledge "the Earth is flat" to the correct 070

knowledge "the Earth is round," it would be much 071

simpler. 072

So how do we locate the position of old knowl- 073

edge and then update it accurately? Our research 074

has shown that when fine-tuning large language 075

models, they tend to learn sentence structure, gram- 076

mar, and style first, with knowledge being acquired 077

last. Therefore, we control the variables to pre- 078

vent the model from learning sentence structure 079

and stylistic information. 080

Inspired by the above empirical observations and 081
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(Ilharco et al., 2022)’s task arithmetic, we propose a082

novel paradigm of knowledge updating called DFT083

(Delicate Fine-Tuning ). Specifically, DFT begins084

by using the large language model to predict and085

generate an answer, resulting in a data point. Next,086

DFT modifies only the key knowledge within the087

sentence, keeping the sentence structure and style088

intact, creating a new data point. We then fine-089

tune the model separately with both data points,090

recording the parameter changes. By comparing091

these parameter changes, we identify sections that092

exhibit similar changes in direction. These sections,093

representing aspects that are not relevant to the094

knowledge update, are discarded entirely.095

We retain only the parameters exhibiting con-096

trasting change directions, then compare their dif-097

ferences, rank those differences, and identify the098

top T % with the largest differences .Then update099

the top T % of parameters , where T is a predefined100

threshold ratio. The whole process is repeated it-101

eratively until the model’s knowledge update is102

complete.103

This paper makes the following contributions:104

• We propose a novel fine-tuning paradigm105

“DFT (Delicate Fine-Tuning )” for knowledge106

updating in large language models.107

• Our experimental results show that DFT108

(Delicate Fine-Tuning ) improves the knowl-109

edge updating performance across various110

fine-tuning methods and surpasses existing111

baselines in most cases.112

2 Related Work113

The knowledge update of large language models114

generally encompasses five approaches: model115

editing, meta-learning, fine-tuning, retrieval-116

augmented learning, and the addition of supple-117

mentary parameters(Yao et al., 2023; Zhang et al.,118

2024; Shi et al., 2024) .119

Many necessitate the introduction of additional120

knowledge bases, neural network modules, or121

model parameters. This often leads to practical122

challenges, including increased model complexity123

and inference costs. Fine-tuning methods, even124

when updating a single piece of knowledge, can125

trigger a ripple effect, potentially affecting other126

knowledge and leading to catastrophic forgetting.127

A new model editing method is proposed in this pa-128

per, which eliminates a large number of irrelevant129

parameters by comparing old and new knowledge,130

and then identifies the most relevant parameters. By 131

updating only the minimum number of parameters, 132

this approach significantly reduces catastrophic for- 133

getting. 134

Model editing 135

Model editing targets the internal mechanisms of 136

LLMs, aiming to modify specific parameters and 137

neurons to correct outputs based on knowledge- 138

driven interventions (Meng et al., 2022a; Dai et al., 139

2022; Meng et al., 2022c; Santurkar et al., 2021; 140

Geva et al., 2022). (Geva et al., 2021) discovered 141

that the feed-forward network layers within trans- 142

formers store key-value pairs associated with spe- 143

cific knowledge. (Meng et al., 2022a) employed 144

a causal reasoning method to identify key neuron 145

activations and update factual associations by mod- 146

ifying feed-forward weights. To facilitate large- 147

scale knowledge editing, they introduced (Meng 148

et al., 2022c), a method that directly updates thou- 149

sands of memories within LLMs. (Gupta et al., 150

2023) enhanced knowledge updating by optimiz- 151

ing edit token selection and layer selection during 152

the editing process. (Yu et al., 2023) utilized parti- 153

tioned gradients to identify significant weights for 154

unlearning biases in the model. 155

Hiyouga (hiyouga, 2023) developed the faste- 156

dit software framework, which enables convenient 157

editing of models using causal reasoning. Zhang 158

et al. (Zhang et al., 2024; Wang et al., 2023; Yao 159

et al., 2023; Cheng et al., 2023; Mao et al., 2023; 160

Zhang et al., 2023a) developed the EasyEdit soft- 161

ware framework, which makes it easy to use a vari- 162

ety of methods for editing models. 163

Meta-learning 164

Meta-learning approaches aim to update knowl- 165

edge within LLMs by adjusting their parameters 166

based on predictions from a well-trained hyper- 167

network. This technique, investigated by (Sinitsin 168

et al., 2019; Mitchell et al., 2021; De Cao et al., 169

2021), enables efficient knowledge updates with- 170

out retraining the entire model. (Mitchell et al., 171

2021) introduced an auxiliary network with gradi- 172

ent decomposition, enabling efficient edits to LLMs 173

based on a single input-output pair.(De Cao et al., 174

2021) proposed updating specific weights within 175

a subset of modules using a hypernetwork with 176

constrained optimization. 177
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Fine-tuning178

Fine-tuning has become a ubiquitous technique in179

NLP research, owing to the widespread adoption180

of pre-trained models for downstream tasks. Its181

intuitive nature and effectiveness in imparting new182

knowledge make it a valuable tool for model edit-183

ing (Zhu et al., 2020; Zhang et al., 2022; Yao et al.,184

2023). Recent advancements in parameter-efficient185

fine-tuning methods, such as Prefix-Tuning (Li and186

Liang, 2021) and LoRA ((Hu et al., 2021)), have187

further enhanced its applicability to knowledge edit-188

ing. (Zhang et al., 2022) proposed an adaptive189

fine-tuning strategy that dynamically adjusts the190

magnitude of parameter updates based on the im-191

portance of the weight matrix, thereby improving192

efficiency and adaptability. (Zhu et al., 2020) intro-193

duced a loss constraint that minimizes the impact194

on irrelevant knowledge during fine-tuning, pre-195

serving the integrity of the base model. Similarly,196

(Lee et al., 2022) explored large-scale continual197

learning for knowledge updating through regular-198

ized fine-tuning.199

F-Learning (Ni et al., 2023) introduces a “forget-200

ting before learning” paradigm to achieve forget-201

ting of old knowledge and learning of new knowl-202

edge based on parametric arithmetic.203

The addition of supplementary parameters204

This approach involves injecting a small number205

of trainable parameters, representing new knowl-206

edge, into the LLM while keeping its original pa-207

rameters frozen . This technique, explored by208

(Dong et al., 2022; Huang et al., 2022; Raunak209

and Menezes, 2022; Dai et al., 2023), allows for210

efficient knowledge injection without retraining211

the entire model. (Dong et al., 2022) proposed212

a lightweight feed-forward network that incorpo-213

rates additional parameters specifically tailored to214

factual contexts, enabling knowledge generaliza-215

tion.(Huang et al., 2022) developed a model edi-216

tor named Transformer-Patcher, which sequentially217

corrects errors in LLM outputs by adding and train-218

ing a limited number of neurons within the trans-219

former architecture.220

Retrieve augmentation221

These methods rely on an external knowledge base222

containing new or corrected information, aiming223

to amend the output of LLMs by incorporating224

retrieved knowledge relevant to the given prompt225

or question. This approach, explored by (Murty226

et al., 2022; Mitchell et al., 2022b; Li et al., 2022; 227

Madaan et al., 2022), facilitates the integration of 228

new knowledge into the model’s responses. 229

(Mitchell et al., 2022b) propose a memory mod- 230

ule that stores manual edits, enabling a classifier to 231

retrieve and apply the relevant knowledge.(Madaan 232

et al., 2022) leverage the memory of user feedback 233

to generate prompts that guide LLMs toward more 234

accurate responses. Alternatively, (Zheng et al., 235

2023) utilize in-context learning to revise LLM 236

outputs by extracting demonstrations from a cor- 237

pus based on similarity, eliminating the need for 238

gradient calculations. 239

3 Task Definition 240

Here, we draw on certain concepts and formu- 241

las from (Ni et al., 2023).This paper addresses 242

the task of knowledge updating in large lan- 243

guage models (LLMs). Given a pre-trained model 244

fθ and a set of input-output knowledge pairs 245

Kold = (x1, y1), (x2, y2), ..., (xi, yi), the objec- 246

tive is to modify the model parameters θ to ob- 247

tain a new model fθ∗ that generates a correspond- 248

ing set of updated input-output pairs Knew = 249

(x1, y
new
1 ), (x2, y

new
2 ), ..., (xi, y

new
i ). Here, i rep- 250

resents the number of knowledge pairs to be up- 251

dated. 252

Following the definition in (Yao et al., 2023), we 253

can formally express this process and its objective 254

as: 255

fθ∗(xi) =

{
ynewi if xi ∈ N(xi)

fθ(xi) if xi ∈ other
(1) 256

where N(xi) represents xi itself and its equivalent 257

neighbourhood. 258

The knowledge update task aims to modify the 259

model’s responses only for xi and its equivalent 260

domain N(xi), where N(xi) represents the neigh- 261

borhood of xi encompassing semantically equiva- 262

lent instances. The goal is to update the answers 263

associated with xi and its equivalent domain with- 264

out affecting the responses to other out-of-scope 265

knowledge. 266

The effectiveness of knowledge updating is eval- 267

uated based on the following three metrics: 268

a. Reliability 269

Measured as the average accuracy of the updated 270

model fθ∗ on the new knowledge. This metric as- 271

sesses the effectiveness of the update process itself. 272
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For example, the answer to the question "Who is273

the President of the US?" should be updated from274

"Donald Trump" to "Joe Biden" after knowledge275

updating.276

b. Generalization277

Evaluated by the average accuracy of fθ∗ on exam-278

ples drawn uniformly from the equivalence neigh-279

borhood N(xi). This metric assesses the ability of280

the model to generalize the update to semantically281

equivalent inputs. For example, the answer to the282

question "Who holds the position of the President283

of the US?" should also be updated from "Donald284

Trump" to "Joe Biden".285

c. Locality286

Assessed by the proportion of predictions from the287

updated model fθ∗ that remain unchanged com-288

pared to the pre-update model fθ on irrelevant ex-289

amples. This metric evaluates the ability of the290

model to preserve the original knowledge base291

while updating specific knowledge. For example,292

the answer to the question "’You’re fired!’ is the293

catchphrase of which celebrity?" should remain294

unchanged as "Donald Trump" after the update.295

4 Proposed method: DFT296

This section details our proposed approach for297

knowledge updating in LLMs. Departing from298

methods that rely on external knowledge bases or299

additional parameters, our method leverages a full300

fine-tuning strategy. The process is structured in301

two distinct stages:302

4.1 Locate the parameters associated with303

the old knowledge304

Supervised fine-tuning (SFT) on a designated305

dataset enables us to identify the direction of param-306

eter alignment with the desired knowledge. This307

alignment is reflected in the variations observed in308

the model’s parameters during the training process.309

Within this framework, we define incremental pa-310

rameters, denoted as θ∆, as knowledge parameters311

for a given large language model fθ and its parame-312

ters θ. These knowledge parameters are computed313

as follows:314

θ∆ = FT{θ,K} − θ (2)315

where FT is the operation of supervised fine-316

tuning, while K, θ refer to the dataset of knowl-317

edge and the parameters of the original model fθ,318

respectively.319

Analogously, we initially fine-tune the model 320

fθ on a dataset comprising the model’s original 321

knowledge. Subsequently, we subtract the origi- 322

nal model parameters θ from the parameters ob- 323

tained after fine-tuning to derive the knowledge 324

parameters θold∆ , representing the learned original 325

knowledge. This calculation is expressed as: 326

θold∆ = FT{θ,Kold} − θ (3) 327

where Kold refers to a dataset composed of the 328

model’s original knowledge. The related work in 329

(Ilharco et al., 2022) considers that subtracting the 330

parameters θold∆ from θ can assist the model fθ to 331

forget this part of old knowledge: 332

θ′ = θ − λθold∆ (4) 333

where λ is a hyper-parameter to control the rate 334

of forgetting. This process yields a new model, 335

fθ′ , with parameters θ′, which exhibits reduced 336

retention of the original knowledge compared to 337

the initial model fθ. The forgetting operation may 338

have a destructive effect on the normal knowledge 339

of the model. 340

However, we believe that θold∆ also contains other 341

information such as sentence structure, grammar, 342

and style, which requires further processing to ac- 343

curately pinpoint the old knowledge. 344

Then, we re-fine-tune the model fθ on a dataset 345

containing new knowledge, and then subtract the 346

parameters θ of the original model fθ from model’s 347

parameters after fine-tuning to obtain the knowl- 348

edge parameters θnew∆ indicating the new knowl- 349

edge, as follows: 350

θnew∆ = FT{θ,Knew} − θ (5) 351

where Knew refers to a dataset composed of new 352

knowledge . 353

Then, we compare θold∆ and θnew∆ , discarding 354

all elements with the same sign. Then, we select 355

the top T % of elements in θnew∆ with the largest 356

difference from θold∆ . T is a predefined threshold 357

ratio.The discarded parts are not subject to parame- 358

ter updates,and only the final retained parts will be 359

used for parameter updates,as follows: 360

θcore∆ = f{θnew∆ , θold∆ ,T} (6) 361

θcore∆ represents the retained key parameters, 362

which are used for parameter updates.All other pa- 363

rameters remain unchanged. 364
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4.2 Learning new knowledge by updating only365

the most relevant parameters366

We define the process of learning new knowledge367

as follows:368

θ∗ = θ + λθcore∆ (7)369

where λ is a hyper-parameter to control the rate of370

learning. We repeat the processes outlined in equa-371

tions (3), (5), (6), and (7) until the model’s output372

reflects the new knowledge. Now we gain a new373

model fθ∗ with its parameters θ∗, which has for-374

gotten the old knowledge compared to fθ. It learns375

only the new knowledge, avoiding any other infor-376

mation, preventing catastrophic forgetting caused377

by style changes and the like.378

5 Experiments379

5.1 Datasets380

Our experiments employ one widely used datasets:381

(Levy et al., 2017). ZsRE is a Question Answer-382

ing (QA) dataset that leverages question rephras-383

ings generated via back-translation to represent the384

equivalence neighborhood. Following the exper-385

imental setup outlined in (Yao et al., 2023), we386

utilize the evaluation (eval) and edit sets of these387

datasets, comprising 19,085 data points. To facili-388

tate knowledge update, we partition both datasets389

into sets of old knowledge and new knowledge.390

For instance, in ZsRE, a typical knowledge update391

scenario involves modifying the answer from "Los392

Angeles" to "New Orleans", as illustrated in the393

following example:394

The old knowledge:395

{"instruction": "What city did Marl Young live396

when he died?", "input": "", "output": "Los An-397

geles" }398

The new knowledge:399

{"instruction": "What city did Marl Young live400

when he died?", "input": "", "output": "New401

Orleans" }402

5.2 Baselines403

We compare DFT against direct fine-tuning FT-L404

with an additional KL divergence loss (Meng et al.,405

2022a). We also compare DFT to other model edi-406

tors, including GPT-style editors based on causal407

tracing: ROME (Meng et al., 2022a), MEMIT408

(Meng et al., 2022c).ROME ((Meng et al., 2022a))409

is a method that updates specific factual associa-410

tions through causal intervention. MEMIT ((Meng411

et al., 2022c)) is a method known for its effec- 412

tiveness in directly updating large-scale memories 413

within LLMs. 414

5.3 Completion details 415

For our experiments, we employ QWEN1.5-7B and 416

Mistral-7B as the base models. The primary focus 417

of our evaluation is the ability to update old knowl- 418

edge with new knowledge. To maintain output con- 419

sistency, we utilize the greedy decoding strategy 420

during testing. Our experiments were conducted 421

on a hardware platform comprising 8 x A800-80G 422

GPUs. 423

5.4 Experimental results 424

Table 1 presents the experimental results, our DFT 425

method consistently outperforms other baselines 426

in most cases. FT-L performs the worst, possibly 427

due to the impact of the KL divergence loss on the 428

model’s update. As our original model has already 429

acquired a substantial amount of old knowledge, 430

learning new knowledge poses greater challenges. 431

ROME employs causal analysis to identify knowl- 432

edge embedded within specific MLP layers and 433

modifies the entire matrix using least squares ap- 434

proximation. It operates under the assumption that 435

the MLP serves as the primary module for knowl- 436

edge storage , and at each iteration, it injects a 437

single piece of knowledge into the MLP through a 438

Lagrangian remainder.In the experiments, ROME 439

achieved relatively good results. Similarly, MEMIT 440

based on the assumption that the FFN functions 441

as a key-value store for knowledge, directly ma- 442

nipulates the parameters of specific layers using 443

least squares approximation. In contrast to ROME, 444

which updates a single layer, MEMIT is a multi- 445

layer update algorithm that supports the simultane- 446

ous update of hundreds or thousands of facts. In 447

the experiments, the difference between MEMIT 448

and ROME was minimal. F-Learning outperforms 449

MEMIT and ROME to some extent, while the DFT 450

method demonstrates superior performance com- 451

pared to F-Learning. 452

5.5 Ablation study 453

Table 1 shows that DFT method outperforms F- 454

Learning (Ni et al., 2023). We analyze that this may 455

be because F-Learning first uses the old data for 456

fine-tuning in an attempt to forget old knowledge. 457

However, the data contains a large amount of infor- 458

mation, and what is forgotten may not necessarily 459
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Dataset Editor Mistral-7B QWEN1.5-7B
Reliability Generality Locality Reliability Generality Locality

ZsRE FT-L 58.19 51.48 80.43 56.45 50.72 81.19
ROME 84.21 79.98 78.12 84.37 79.31 78.37
MEMIT 79.36 78.82 86.78 83.25 80.39 87.24
F-LearningFT 84.85 80.15 85.07 85.64 81.85 88.93
DFTFT 85.41 83.87 91.27 89.78 86.26 92.19

Table 1: Results on three metrics of the one datasets based on QWEN1.5-7B and Mistral-7B.

be the old knowledge. It could be sentence struc-460

ture, grammar, style, or other information, meaning461

it might not truly forget the old knowledge. Our462

method has an advantage in this regard, as it com-463

pares the new and old knowledge and highlights464

the key differences.465

5.6 Updating with LoRA466

Within this experimental framework, our approach467

involves simultaneous knowledge updating via full468

fine-tuning (or LoRA) in a single training process.469

We formally define this LoRA integrated approach470

as follows:471

θold∆ = LoRA{θ,Kold} − θ, (8)472
473

θnew∆ = LoRA{θ,Knew} − θ (9)474
475

θcore∆ = f{θnew∆ , θold∆ } (10)476
477

θ∗ = θ + λθcore∆ (11)478

where LoRA represents the operation of supervised479

fine-tuning utilizing the LoRA technique . θ∗ is480

noted as the parameters of the edited model fθ∗481

which has completed the knowledge updating.482

As presented in Table 1, the experimental results483

indicate that knowledge updating using LoRA out-484

performs full fine-tuning in certain instances. This485

improvement can be attributed to the parameter-486

efficient nature of LoRA-based knowledge forget-487

ting, enabling more efficient learning and adapta-488

tion.489

Empirical evidence from our experiments sug-490

gests that updating the model parameters through491

LoRA adaptation effectively approximates the per-492

formance achieved by full fine-tuning.493

We hypothesize that this observation stems494

from the distributed nature of knowledge encoding495

across multiple model parameters. LoRA modi-496

fies the patterns and relationships associated with497

the old knowledge embedded within the attention498

structure, which represents an implicit knowledge499

representation.500

Table 2: Results on three metrics of the zsRE dataset
based on BLOOM-7B.

Editor Metric
Reliability Generality Locality

Original model 28.02 27.95 /
LoRA 29.32 29.31 77.32
F-LearningLoRA 29.28 29.07 77.44
DFTLoRA 30.38 31.02 79.64
Full-FT 44.32 43.72 63.94
F-LearningFT 44.87 43.95 69.53
DFTFT 45.83 44.64 72.15

5.7 Adaptability testing 501

To further assess the adaptability of our proposed 502

method, we conducted experiments on the zsRE 503

dataset using BLOOM-7B as the base model. We 504

maintained the same experimental settings as pre- 505

viously described. The results, presented in Table 506

2, demonstrate the continued effectiveness of DFT. 507

5.8 Time testing 508

To evaluate the efficiency of our proposed DFT 509

method, we compared the editing time of various 510

knowledge updating and model editing methods 511

for different edit sizes. Employing LLAMA2-7B 512

as our base model, we present the results in Table 513

3. 514

Analysis of the results in Table 3 reveals that 515

fine-tuning-based methods consistently exhibit sig- 516

nificantly lower editing times compared to locate- 517

based methods. This disparity can be attributed 518

to the increased complexity and time requirements 519

associated with locating specific neurons and pa- 520

rameters in locate-based methods. Furthermore, 521

ROME’s limitation to single-datapoint edits, in con- 522

trast to the batch editing capabilities of other meth- 523

ods, further diminishes its efficiency. Among fine- 524

tuning-based methods, FT-c demonstrates faster 525

optimization due to its norm constraint. 526
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Editor 1 edit 10 edits 100 edits
zsRE COUNTERFACT zsRE COUNTERFACT zsRE COUNTERFACT

FT-L 0.61(s) 0.57(s) 5.98(s) 5.73(s) 58.28(s) 57.08(s)
ROME 2.76(s) 2.46(s) 27.9(s) 24.32(s) 285.23(s) 242.21(s)
MEMIT 612(s) 606(s) 6231(s) 6193(s) 61831(s) 61631(s)
Full-FT 0.78(s) 0.74(s) 7.92(s) 7.43(s) 76.72(s) 75.11(s)
DFTFT 1.49(s) 1.42(s) 11.98(s) 11.21(s) 120.92(s) 118.87(s)

Table 3: Editing time for 1 edit, 10 edits, 100 edits of the two dataset based on LLAMA2-7B.Run ROME with
FastEdit.Run MEMIT with EasyEdit

DFT method, while requiring multiple backward527

passes and comparisons as a multi-stage knowl-528

edge updating approach, necessitates updating only529

a limited set of parameters. Consequently, DFT ex-530

hibits an editing time approximately twice that of531

Full-FT, yet remains notably fast and convenient.532

Further acceleration of supervised fine-tuning533

can be achieved through the utilization of deep-534

speed or other analogous optimization techniques.535

5.9 Parametric analysis of updating536

knowledge537

DFT knowledge updating method hinges on the538

precise identification of knowledge-related param-539

eters within the model. From an interpretability540

perspective, this approach allows us to pinpoint541

specific parameters containing the desired knowl-542

edge, enabling targeted updates. Furthermore, we543

conducted an in-depth analysis of the parameter544

distribution and its modifications within the LLMs.545

Analysis reveals that parameter modifications in546

the MLP layers are more pronounced than those ob-547

served in the attention layers. This observation sug-548

gests that knowledge is primarily encoded within549

the MLP layers of the model.550

6 Conclusion551

This paper introduces a novel paradigm for552

knowledge updating during supervised fine-tuning,553

termed DFT (Differential Fine-Tuning). DFT lever-554

ages parametric arithmetic to pinpoint the location555

of existing knowledge and facilitates the acquisi-556

tion of new knowledge, effectively resolving poten-557

tial contradictions between old and new informa-558

tion.559

Experimental evaluations conducted on the zsRE560

dataset demonstrate the superior performance of561

our proposed method compared to other baselines562

in most scenarios.563

7 Limitations 564

While the proposed DFT paradigm enhances the 565

efficacy of fine-tuning methods for updating knowl- 566

edge in large language models, it incurs an increase 567

in computational overhead due to the incorporation 568

of multiple backward passes. 569
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