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ABSTRACT

We present GenPlan, a novel deep learning architecture for generating architectural
floor plans. GenPlan provides flexibility and precision in room placement, offering
architects and developers new avenues for creative exploration. We adapted an
autoencoder-like structure comprising of two encoders and four specialized de-
coders that predict the centers of different rooms. These predictions are converted
into graph along with the other constraints and used as inputs for a Transformer-
based graph neural network (GNN), which is responsible for delineating room
boundaries and refining the predicted room centers. The Graph Transformer Net-
work ensures that the generated floor plans are realistic and executable in real-life.
GenPlan’s methodological innovation provides heightened control during the de-
sign phase, serving as a valuable tool for automating and refining the architectural
design process.

(a) Detailed 2D Architectural Floor Plan (b) Automated Textured 3D Model of the Generated Floor
given only the shape on the land and the front Plan using GenPlan

door position as inputs

Figure 1: GenPlan generates floor plans as those shown in (a) which can then be rendered to a fully
automated 3D model as shown in (b).

1 INTRODUCTION

The generation of architectural floor plans is a foundational step in building design, directly impact-
ing not only aesthetics but also the functionality and sustainability of living spaces. Traditionally,
this process has been time-consuming and prone to human error, particularly as design complexity
increases. However, recent advancements in computational design, especially through deep learning,

have begun to transform this landscape. Research by [Chaillou (2020), [Hu et al.| (2020)), [Sun et al.
(2022), [Wang et al.|(2023)), [Upadhyay et al.| (2023)), demonstrates the effectiveness of generative ad-

versarial networks (GANs) and deep learning models in automating and optimizing layout generation.
These advanced methods eliminate the need for brute-force strategies and traditional optimization
algorithms, which often struggle to find solutions in a reasonable timeframe. Moreover, traditional
approaches face challenges in achieving optimal metrics, such as golden ratios in spatial design.
This limitation further highlights the superiority of deep learning models in efficiently generating
optimized designs.

Moreover, most prior work has incorrectly classified balconies as part of the interior area. In fact,
balconies are exterior spaces and should not be included in the carpet area or floor area|Chow|(2002).
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Considering the balcony as part of the floor area not only misrepresents the true use of space but also
limits the design process, as architects typically do not include balconies in the carpet area when
designing a floor plan.

Unlike previous methods that primarily focus on generating basic layouts, GenPlan integrates state-
of-the-art techniques from both convolutional neural networks (CNNs) and graph neural networks
(GNNj5) in a sequential manner to ensure conflict-free designs.

GenPlan consists of two sequential modules: GenCenter and GenLayout. GenCenter utilizes shared
ResNet101 encoders and specialized decoders to predict the locations of various room types, including
bedrooms, restrooms, and kitchens, based on the given floor plan boundary. These predictions are
then converted into a graph structure that incorporates additional constraints, which serves as input
for GenLayout, our Transformer-based Graph Neural Network (GNN). This module is responsible
for delineating room boundaries and refining the predicted room centers.

The GenLayout module ensures that the generated floor plans are both realistic and executable in
real-world scenarios. By innovating this methodological approach, GenPlan enhances control during
the design phase, positioning itself as a valuable tool for automating and refining the architectural
design process.

To illustrate GenPlan’s functionality, consider an architect exploring specific design ideas. They
input various constraints, and GenPlan generates multiple layouts with different room counts and
configurations. Additionally, the architect can interact with the system during the process, modifying
aspects like room location or removing rooms entirely, offering a more flexible and adaptable
interactive design experience.

2 RELATED WORK

Researchers have extensively applied deep learning models, such as generative adversarial networks
(GANSs) and variational autoencoders (VAEs) to generate floor plans based on the shape of the floor
and the position of the front door, as demonstrated by |Sun et al.| (2022)), (Chaillou| (2020), |Hu et al.
(2020), Nauata et al.|(2021)), Wang et al.|(2023), Upadhyay et al.|(2023)), Chen| (2022]), §lusarczyk
et al.| (2023), Huang & Zheng| (2018). However, these models often face challenges in adhering
to specific architectural standards or functional requirements. For instance, many previous works
incorrectly include balconies as part of the interior area, misclassifying them as floor or carpet areas.
This approach limits the design process, as architects typically do not consider balconies in the carpet
area when designing a floor plan.

This area of research faces several challenges, such as the need for extensive and diverse datasets to
train more robust models and the integration of user-specific preferences and constraints. Additionally,
the development of comprehensive evaluation metrics that effectively assess the usability and quality
of generated designs remains crucial.

3 METHODOLOGY

Once a room center is predicted, a Transformer-Convolutional GNN is employed to predict the
rectangular dimensions of the room. This is done using the boundary polygon, front door position,
and the predicted room centers from the first phase; the GNN processes this information and outputs
the appropriate dimensions for each room, ensuring they fit within the overall floor plan layout and
respect spatial relationships between adjacent rooms and boundaries.

After the room layout is generated, doors and windows are placed using a similar architecture to
the one used for generating room centers, but this time they are trained specifically to generate
the positions of doors and windows. Then, all elements—walls, rooms, doors, and windows—are
overlaid on top of each other. We apply geometric operations to adjust the layout, including cutting
out parts of the room rectangles that extend beyond the floor boundary. This process can result in
non-rectangular room shapes similar to those commonly seen in real-world floor plans.
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3.1 DATA PREPARATION

In the development of GenPlan, we created the ResPlan dataset, which comprises 17,000 diverse
real-world floor plans sourced from various real estate websites. These floor plans are represented
as geometric shapes, which not only significantly reduce data size but also facilitate the seamless
conversion of floor plans into various formats, such as graphs and images. By addressing common
dataset challenges, such as overly simplistic floor plans and a lack of diversity—where most designs
in the RPlan dataset features only a single restroom, and it is rare to encounter a floor plan with
three restrooms or more than three bedrooms, as well as issues with incorrect room connections—the
ResPlan dataset not only enhances the training process for GenPlan but also establishes a standard
for comparison in this field.

For the convolutional neural network (CNN), the floor plan boundaries and front door positions are
converted into binary masks (see Figure [3)). These inputs are critical as they define the minimum
constraints required to generate a floor plan. Other inputs, such as room counts, are encoded as
a one-hot encoded 8-channel image representing up to four bedrooms and four bathrooms, which
are the limits of our dataset and align with most residential floor plan requirements. The area is
encoded in a single channel as a solid binary square, where its length is linearly scaled from O to
255, corresponding to a range of 20 to 400 square meters. These inputs are concatenated into an
11-channel input for one of the two encoders used in the room center generation component.

For the graph input version, all elements are converted into a graph structure. The boundary is
represented using nodes for corners and edges for walls. The front door is added as a node that
intersects one of the wall edges, with each node encoded using one-hot encoding based on its type.
After generating the room centers, they are also included in the graph as nodes, with distinct one-
hot encodings corresponding to room types. Each room node is then connected to the five closest
boundary corner nodes with edges. Additionally, all room center nodes are interconnected to facilitate
learning about each other’s positions and to avoid conflicts in acquiring areas.

3.2 INITIAL ROOM COUNT PREDICTION

A preliminary convolutional neural network (CNN), specifically a pre-trained ResNet18, is utilized
to analyze the boundary, front door position, and the total area of the plot to estimate the required
number of bedrooms and restrooms. This model leverages historical data and trained parameters to
predict an optimal distribution of rooms based on spatial dimensions and entry points. The output
guides the spatial distribution within the floor plan:

Neounts = RoomCounter(Boundary, Front Door Position, Area; Ocounts) D

where Niooms 1S the suggested number of bedrooms and restrooms that could fit in this floor area,
Boundary is the the floor plan boundary mask, Front Door Position is the designated entry point, and
Area is the encoded area of the floor plan boundary.

Moreover, while the model provides an automated estimate, users can override these suggestions
to exert greater control over the design. This feature is crucial for accommodating specific client
requests or adapting to unique architectural challenges, allowing designers to adjust the number of
Bedrooms and Restrooms, and hence providing greater diversity in design outcomes.

3.3 RoOOM CENTER GENERATION (GENCENTER)

After the initial room count prediction (which can be skipped by inputting the desigred bedrooms and
restrooms number), the GenPlan architecture employs a shared ResNet101 encoder to process the
floor plan boundary front door and roos numbers encoded as one hot and extract essential features for
predicting the center coordinates of various room types. This shared encoder architecture significantly
reduces computational redundancy and enhances consistency across the output from the specialized
decoders. The use of a shared encoder ensures that the feature extraction process is uniform and only
needs to be executed once, thus speeding up the prediction process:

Fiyarea = LayoutEncoder(Boundary, Front Door, Room Count, Area, Fiecurrent; Oshared ) 2)
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where Flecurrent Tepresents compressed features from previous predictions, encapsulating essential
spatial and structural information, and gp,eq are the parameters of the ResNet101 model.

3.4 TwO ENCODER FOR CONTEXTUAL FEATURE COMPRESSION

Following the decoding process, a recurrent encoder compresses the images depicting the detected
room centers into a compact feature representation. These images, illustrating centers as circles with
a 5-pixel radius, are transformed into feature maps of dimensions 8 x 8 x 512. This compression
is crucial for preparing the features for iterative decoding, allowing each subsequent decoder to be
informed by previously predicted centers:

Flecurrent = RecurrentEncoder(Centers, Boundary, Front Door, Area; 6recurrent) 3)

where Fiecurent represents the compressed feature vector derived from the detected room centers,
Centers represent 4 channel binary image containing the locations of the predicted room centers so
far, and Oyecyrrent are the parameters of the recurrent encoder, tasked with reducing the dimensionality
of the input while preserving essential spatial characteristics for further decoding processes. These
features are concatenated with the bottleneck features from the shared encoder (Fypaeq) and used as
inputs for the specialized decoders for subsequent room type predictions.

To generate the room centers, we employ four specialized decoders; each specialized decoder is
responsible for predicting the center coordinates for specific room types—bedrooms, restrooms,
kitchens, and balconies. This modular approach allows each decoder to be fine-tuned to recognize
distinct features relevant to each room type, such as size and location, increasing the relevancy of the
predictions.

F shared — Concat(ﬂayouu Eecurrent) (4)

Ctype = DeCOdertype (Rhared; ¢type) (5)

where Ciype denotes the predicted single-channel image containing suggestions for the centers of
target rooms, an example of which is shown in[Figure[2} and ¢y are the parameters of the decoder
specialized for that particular room type, Fipareq 1S the concatenated features from the two encoders.

Initially, the ResNet101-based Layout Encoder was trained with a single general decoder to optimize
the extraction of universal features beneficial across all room types. Post this phase, the encoder
parameters, alongside those of the recurrent encoder, were frozen to ensure stability and consistency
in feature representation. Subsequently, multiple decoders were individually trained using these
stable, pre-extracted features. This method not only streamlines the training process but also ensures
each decoder is highly specialized for its designated task, although our current focus remains on the
essential floor plan elements.

3.5 BLOB DETECTION FOR CENTER SEGMENTATION

After obtaining the single-channel image outputs from the specialized decoders, we apply
the Laplacian of Gaussian (LoG) blob detection technique to identify potential room centers. This
method effectively distinguishes multiple blobs in the output images, with each blob representing
a potential room center. While all detected blobs are valid candidates, we select the one with the
highest intensity as the predicted center. This selection is crucial because, although nearly all these
blobs could serve as valid room centers, they are not necessarily designed to coexist in the same
layout. Therefore, we choose only one blob to ensure clarity in the design.

Once we select a center, we feed it back into the prediction system along with the other generated
centers. This iterative process allows the model to determine the most suitable location for the next
center based on the context of the existing design. Moreover, by choosing a random center from
the produced blobs, we can generate numerous valid designs. Each of these variations remains
architecturally sound, as demonstrated in [Figure 4]
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Figure 2: This is a sample output from GenCenter before and after the blob detection process. The
multiple blobs represent potential valid room locations, each with varying intensity levels. Selecting
any of these blobs would lead to a different sequence of predictions, and processing each one would
yield different room layouts. To optimize the design, we choose the blob with the highest intensity,
representing the most likely or optimal room location.

3.6 GRAPH-BASED ROOM BOUNDARY DETERMINATION (GENLAYOUT)

This crucial stage in the GenPlan system involves using GenLayout, a graph neural networks
(GNN) to precisely delineate and refine room boundaries. The method leverages a composite
representation of architectural elements, emphasizing the dynamic integration of spatial data and the
adaptability of GNNs to complex layouts. After generating the room centers (z,y) using the
Graph Transformer Network is used to determine the actual room shape by predicting the diagonal
coordinates (1, y1, T2, y2 ), which are then used to form a rectangle, representing the room’s shape.

The input graph [3.1]is processed using a GNN that incorporates Transformer Convolution layers.
The graph transformer operator used in this work follows the approach from Shi et al.|(2020), and
implemented by Fey & Lenssen|(2019):

X; =W;x; + Z Oéi,jVVng7 6)
JEN(9)

Where the attention coefficients c; ; are computed via multi-head dot product attention:

AT )
o ; = softmax ((W3X1)\/E(ZW4XJ)) , -

Where xg is the updated node feature, x; and x; are the input features of nodes ¢ and j, N (i) denotes
the set of neighbors of node i, W1, W5, W3, and W, are learnable weights, and d is the dimension
of the transformed feature space.

Graph Transformer Convolution is chosen for its advanced capabilities in handling spatial data, which
is particularly beneficial in the context of floor plan design. The reasons include:

a) Global Receptive Field: Graph Transformer Convolution layers utilize self-attention mechanisms
that allow for processing information on a global scale. This capability is crucial for understanding
the entire layout of complex floor plans, as it enables the model to consider how different parts of the
plan interact with each other.

b) Dynamic Weight Adjustment: These layers can dynamically adjust their weights based on the
context provided by the nodes within the graph. This adaptability is essential for accurately modeling
the intricate spatial relationships needed for precise delineation of room boundaries, thereby enhancing
the effectiveness of the floor plan design.

c) Multi-Head Attention: Although not explicitly shown in the equations, multi-head attention
typically involves computing multiple sets of attention coefficients and aggregating the results. This
allows the model to capture diverse aspects of the spatial relationships between nodes.

This detailed implementation of Graph Transformer Convolution in GenPlan illustrates its capability to
enhance spatial data processing, ensuring that the generated floor plans are optimized for functionality
and practicality.
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Figure 3: Diagram of the GenPlan architecture, showing the flow of data. Inputs include boundary
and front door as binary masks, area, and room counts, which are processed through the CNN and
transformer-based GNN parts of GenPlan, generating the final room layout.

3.7 TRAINING

GenPlan was trained in two phases, employing Mean Squared Error (MSE) loss, as the task is
inherently regression-based. The Adam optimizer was utilized with a batch size of 20 and an initial
learning rate of 10~2, which decayed by a factor of 0.1 every 30 epochs, reaching a minimum learning
rate of 1074,

In the first phase, we trained the GenCenter to simultaneously generate centers for all room types.
Random samples and tasks were input into the model, ensuring that each batch contained examples
from all tasks. This phase spanned a duration of 150 epochs.

In the second phase, we replicated the decoder four times, with each instance dedicated to a specific
room type: bedrooms, restrooms, kitchens, and balconies. After freezing the parameters of the two
encoders, each decoder was trained independently for 50 epochs on its corresponding task.

A similar architecture was employed for the placement of doors and windows, utilizing only two
specialized decoders. This distinction was crucial to ensure the precise positioning of doors and
windows, as their locations depend on the room boundaries established earlier. The door and window
model was trained using the same two-phase strategy as the primary architecture.

We trained GenLayout, a Transformer-based convolutional GNN, on the graph representation of
the input constraints, applying various augmentation methods to slightly shift the centers of rooms.
This enabled the model to learn to adjust the center of the generated rectangle if it deviates from the
optimal position. GenLayout was trained for 300 epochs, using the same learning rate and batch size
as GenCenter.

3.8 POST-PROCESSING

The final layout is assembled by integrating room boundaries within the plot. This process involves
aligning and refining boundaries to create clear partitions. Geometric buffering, a key technique
used here, extends or contracts room boundaries by a predefined wall width to model the physical
dimensions of walls, ensuring clear delineation and structural integrity.

The algorithm sets a predefined wall width and adjusts the floor plan layout to accommodate wall
thickness using geometric buffering. Rooms are sorted by size, and each is buffered to prevent
overlaps, maintaining clear boundaries. The main living area is adjusted similarly, optimizing space
usage. Leftover spaces are efficiently integrated back into the layout. Finally, room positions are
finalized, and visible wall lines are defined based on buffered placements, ensuring a precise and
functional architectural layout. This approach effectively combines advanced machine learning with
architectural principles, enhancing both the functional aspects of the design.
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Front Door  Living Area Restroom Bedroom Kitchen Balcony

Figure 5: Examples of generated floor plans using GenPlan

e

Input Constraint Design 1 Design 2 Design 3
Design 4 Design 5 Design 6 Design 7

Figure 4: Here we used the same input constraint for all designs. By randomly selecting a blob from
the predicted center channel in each case, we influenced the subsequent generation process, leading to
different floor plan layouts. Each blob corresponds to a potential room center, and since every choice
impacts the following steps, the model produces diverse designs. This demonstrates the flexibility of
the generation process, as seen in the seven unique layouts displayed.

4 RESULTS

Although we used our own dataset to train GenPlan, we utilized the RPLAN dataset to conduct all
experiments and comparisons to ensure a fair evaluation and demonstrate the generalizability of
GenPlan. All experiments were conducted using an Intel Core i7-12700K CPU with 32 GB of RAM
and an NVIDIA GTX 1050 GPU. For visualization tasks, we used [Hunter| (2007) and Garyfallidis

2021)
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Figure 6: Performance comparison of GenPlan vs. WallPlan. Note that WallPlan generates trapped
rooms (lacking entryways rooms annotated by the blue arrows) and places kitchens centrally (anno-

tated by the black dot) without windows. (2022)

Metric WallPlan GenPlan Improvement
Trapped Rooms 25 2 92%
Restrooms Without Outer Wall 7 0 100%
Kitchen Without Outer Wall 4 0 100%
Average Generation Time (s) 9.75 3.35 65.6%

Table 1: This table compares WallPlan and GenPlan across key metrics. GenPlan shows significant
improvement, reducing trapped rooms from 25 to just 2 and entirely eliminating restrooms and
kitchens without outer walls, unlike WallPlan. Additionally, GenPlan generates floor plans much
faster, cutting the average time from 9.75 seconds to 3.35 seconds, a 65.6% speed improvement.
These results highlight GenPlan’s ability to create more functional and efficient designs with fewer

structural issues.

Bedrooms WallPlan (%) GenPlan (%) Restrooms WallPlan (%) GenPlan (%)
No Bedrooms 0.4% 0.0% No Restrooms 0.0% 0.0%
1 Bedroom 5.8% 13.4% 1 Restroom 90.0% 28.8%
2 Bedrooms 68.8% 34.8% 2 Restrooms 9.8% 40.8%
3 Bedrooms 23.4% 42.4% 3 Restrooms 0.0% 23.6%
4 Bedrooms 1.6% 9.4% 4 Restrooms 0.0% 6.8%

Table 2: The two tables present a comparison between GenPlan and WallPlan, highlighting the diver-
sity in the number of Bedrooms and Restrooms in the generated floor plans. This test demonstrates
the variations in room counts across the two methods, with GenPlan showing greater flexibility, as it

is not limited to a specific room count and can adapt to different design requirements
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Figure 7: Performance comparison of GenPlan vs. Graph2PlanHu et al/(2020). Note that Graph2Plan
also generates trapped rooms (trapped bedrooms are annotated by the blue arrows). Additionally,
some rooms do not share any outer walls, which our method never allows.

TableEE] and |Z| compare the WallPlan method with GenPlan (our method) across several metrics.
Table[I] based on 100 floor plans, shows that GenPlan significantly reduces the number of trapped
rooms from 25 to 4 (92% improvement) and eliminates windowless restrooms and kitchens (100%
improvement for both), compared to 7 and 4 in WallPlan, respectively. Additionally, GenPlan is
more efficient, with an average generation time of 3.35 seconds compared to WallPlan’s 9.75 seconds,
marking a 65.6% improvement. Table 2] provides a comparison of the predicted counts of bedrooms
and restrooms between WallPlan and GenPlan across 500 floor plans. GenPlan demonstrates a more
diverse generation of floor plans, with a more balanced distribution across different bedroom and
restroom counts. While WallPlan predominantly generates floor plans with 2 bedrooms (68.8%) and
1 restroom (90.0%), GenPlan shows a higher percentage of floor plans with 3 bedrooms (42.4%)
and 2 restrooms (40.8%). This diversity can lead to more functional and adaptable living spaces and
simulation environments.

4.1 DISCUSSION

The GenPlan architecture significantly advances the field of automated architectural design by
integrating convolutional and graph neural networks to enhance the generation and delineation of
floor plans. This methodology not only accelerates the design process but also introduces precision in
handling complex spatial relationships through the use of Transformer Convolution within the GNNS.
This system offers a notable improvement over other published methods so far.

GenPlan has broad implications beyond architectural design. In urban planning, it can enhance
the accuracy and efficiency of safety simulations and city layouts. Robotics applications could
benefit from more precise environment mapping for better navigation and task performance. In the
gaming industry, GenPlan can add realism and variety to game environments, improving player
immersion. The film industry could use it to design set layouts and virtual environments more
efficiently, potentially reducing production costs and time. These applications demonstrate GenPlan’s
potential to transform various industries by providing advanced design and simulation capabilities.
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As future work, we plan to introduce additional dimensional constraints to make the system more
capable of addressing real-life situations. This includes considering the orientation of the floor
boundary and the geographical location to better utilize natural elements, such as sunlight for
illumination and wind for cooling. We aim to achieve this by reverse engineering the ResPlan dataset
to determine the optimal wind direction for each floor plan. The same applies to neighboring walls,
as many complex floor plans arise from fitting multiple layouts within a single story, resulting in
shared walls that cannot accommodate windows or doors. While ResPlan already contains initial data
on neighboring walls, we are still in the process of refining this feature, so it has not been included in
the current version.

4.2 CONCLUSION

In this work, we introduce GenPlan, a deep learning framework for the generation of realistic floor
plans, tailored for use by architects, game designers, and developers. GenPlan harnesses the power
of Transformer-based Graph Neural Networks (GNN) to enhance the precision of design outputs.
The system is architected in a modular fashion, allowing for mid-process interaction to ensure the
validity of the floor plan at each step prior to further progression. Moreover, GenPlan offers the ability
to generate multiple valid designs for the same set of input constraints, representing a significant
advancement in floor plan generation.

10
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