
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENPLAN

Anonymous authors
Paper under double-blind review

ABSTRACT

We present GenPlan, a novel deep learning architecture for generating architectural
floor plans. GenPlan provides flexibility and precision in room placement, offering
architects and developers new avenues for creative exploration. We adapted an
autoencoder-like structure comprising of two encoders and four specialized de-
coders that predict the centers of different rooms. These predictions are converted
into graph along with the other constraints and used as inputs for a Transformer-
based graph neural network (GNN), which is responsible for delineating room
boundaries and refining the predicted room centers. The Graph Transformer Net-
work ensures that the generated floor plans are realistic and executable in real-life.
GenPlan’s methodological innovation provides heightened control during the de-
sign phase, serving as a valuable tool for automating and refining the architectural
design process.

(a) Detailed 2D Architectural Floor Plan
given only the shape on the land and the front

door position as inputs

(b) Automated Textured 3D Model of the Generated Floor
Plan using GenPlan

Figure 1: GenPlan generates floor plans as those shown in (a) which can then be rendered to a fully
automated 3D model as shown in (b).

1 INTRODUCTION

The generation of architectural floor plans is a foundational step in building design, directly impact-
ing not only aesthetics but also the functionality and sustainability of living spaces. Traditionally,
this process has been time-consuming and prone to human error, particularly as design complexity
increases. However, recent advancements in computational design, especially through deep learning,
have begun to transform this landscape. Research by Chaillou (2020), Hu et al. (2020), Sun et al.
(2022), Wang et al. (2023), Upadhyay et al. (2023), demonstrates the effectiveness of generative ad-
versarial networks (GANs) and deep learning models in automating and optimizing layout generation.
These advanced methods eliminate the need for brute-force strategies and traditional optimization
algorithms, which often struggle to find solutions in a reasonable timeframe. Moreover, traditional
approaches face challenges in achieving optimal metrics, such as golden ratios in spatial design.
This limitation further highlights the superiority of deep learning models in efficiently generating
optimized designs.

Moreover, most prior work has incorrectly classified balconies as part of the interior area. In fact,
balconies are exterior spaces and should not be included in the carpet area or floor area Chow (2002).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Considering the balcony as part of the floor area not only misrepresents the true use of space but also
limits the design process, as architects typically do not include balconies in the carpet area when
designing a floor plan.

Unlike previous methods that primarily focus on generating basic layouts, GenPlan integrates state-
of-the-art techniques from both convolutional neural networks (CNNs) and graph neural networks
(GNNs) in a sequential manner to ensure conflict-free designs.

GenPlan consists of two sequential modules: GenCenter and GenLayout. GenCenter utilizes shared
ResNet101 encoders and specialized decoders to predict the locations of various room types, including
bedrooms, restrooms, and kitchens, based on the given floor plan boundary. These predictions are
then converted into a graph structure that incorporates additional constraints, which serves as input
for GenLayout, our Transformer-based Graph Neural Network (GNN). This module is responsible
for delineating room boundaries and refining the predicted room centers.

The GenLayout module ensures that the generated floor plans are both realistic and executable in
real-world scenarios. By innovating this methodological approach, GenPlan enhances control during
the design phase, positioning itself as a valuable tool for automating and refining the architectural
design process.

To illustrate GenPlan’s functionality, consider an architect exploring specific design ideas. They
input various constraints, and GenPlan generates multiple layouts with different room counts and
configurations. Additionally, the architect can interact with the system during the process, modifying
aspects like room location or removing rooms entirely, offering a more flexible and adaptable
interactive design experience.

2 RELATED WORK

Researchers have extensively applied deep learning models, such as generative adversarial networks
(GANs) and variational autoencoders (VAEs) to generate floor plans based on the shape of the floor
and the position of the front door, as demonstrated by Sun et al. (2022), Chaillou (2020), Hu et al.
(2020), Nauata et al. (2021), Wang et al. (2023), Upadhyay et al. (2023), Chen (2022), Ślusarczyk
et al. (2023), Huang & Zheng (2018). However, these models often face challenges in adhering
to specific architectural standards or functional requirements. For instance, many previous works
incorrectly include balconies as part of the interior area, misclassifying them as floor or carpet areas.
This approach limits the design process, as architects typically do not consider balconies in the carpet
area when designing a floor plan.

This area of research faces several challenges, such as the need for extensive and diverse datasets to
train more robust models and the integration of user-specific preferences and constraints. Additionally,
the development of comprehensive evaluation metrics that effectively assess the usability and quality
of generated designs remains crucial.

3 METHODOLOGY

Once a room center is predicted, a Transformer-Convolutional GNN is employed to predict the
rectangular dimensions of the room. This is done using the boundary polygon, front door position,
and the predicted room centers from the first phase; the GNN processes this information and outputs
the appropriate dimensions for each room, ensuring they fit within the overall floor plan layout and
respect spatial relationships between adjacent rooms and boundaries.

After the room layout is generated, doors and windows are placed using a similar architecture to
the one used for generating room centers, but this time they are trained specifically to generate
the positions of doors and windows. Then, all elements—walls, rooms, doors, and windows—are
overlaid on top of each other. We apply geometric operations to adjust the layout, including cutting
out parts of the room rectangles that extend beyond the floor boundary. This process can result in
non-rectangular room shapes similar to those commonly seen in real-world floor plans.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3.1 DATA PREPARATION

In the development of GenPlan, we created the ResPlan dataset, which comprises 17,000 diverse
real-world floor plans sourced from various real estate websites. These floor plans are represented
as geometric shapes, which not only significantly reduce data size but also facilitate the seamless
conversion of floor plans into various formats, such as graphs and images. By addressing common
dataset challenges, such as overly simplistic floor plans and a lack of diversity—where most designs
in the RPlan dataset features only a single restroom, and it is rare to encounter a floor plan with
three restrooms or more than three bedrooms, as well as issues with incorrect room connections—the
ResPlan dataset not only enhances the training process for GenPlan but also establishes a standard
for comparison in this field.

For the convolutional neural network (CNN), the floor plan boundaries and front door positions are
converted into binary masks (see Figure 3). These inputs are critical as they define the minimum
constraints required to generate a floor plan. Other inputs, such as room counts, are encoded as
a one-hot encoded 8-channel image representing up to four bedrooms and four bathrooms, which
are the limits of our dataset and align with most residential floor plan requirements. The area is
encoded in a single channel as a solid binary square, where its length is linearly scaled from 0 to
255, corresponding to a range of 20 to 400 square meters. These inputs are concatenated into an
11-channel input for one of the two encoders used in the room center generation component.

For the graph input version, all elements are converted into a graph structure. The boundary is
represented using nodes for corners and edges for walls. The front door is added as a node that
intersects one of the wall edges, with each node encoded using one-hot encoding based on its type.
After generating the room centers, they are also included in the graph as nodes, with distinct one-
hot encodings corresponding to room types. Each room node is then connected to the five closest
boundary corner nodes with edges. Additionally, all room center nodes are interconnected to facilitate
learning about each other’s positions and to avoid conflicts in acquiring areas.

3.2 INITIAL ROOM COUNT PREDICTION

A preliminary convolutional neural network (CNN), specifically a pre-trained ResNet18, is utilized
to analyze the boundary, front door position, and the total area of the plot to estimate the required
number of bedrooms and restrooms. This model leverages historical data and trained parameters to
predict an optimal distribution of rooms based on spatial dimensions and entry points. The output
guides the spatial distribution within the floor plan:

Ncounts = RoomCounter(Boundary,Front Door Position,Area; θcounts) (1)

where Nrooms is the suggested number of bedrooms and restrooms that could fit in this floor area,
Boundary is the the floor plan boundary mask, Front Door Position is the designated entry point, and
Area is the encoded area of the floor plan boundary.

Moreover, while the model provides an automated estimate, users can override these suggestions
to exert greater control over the design. This feature is crucial for accommodating specific client
requests or adapting to unique architectural challenges, allowing designers to adjust the number of
Bedrooms and Restrooms, and hence providing greater diversity in design outcomes.

3.3 ROOM CENTER GENERATION (GENCENTER)

After the initial room count prediction (which can be skipped by inputting the desigred bedrooms and
restrooms number), the GenPlan architecture employs a shared ResNet101 encoder to process the
floor plan boundary front door and roos numbers encoded as one hot and extract essential features for
predicting the center coordinates of various room types. This shared encoder architecture significantly
reduces computational redundancy and enhances consistency across the output from the specialized
decoders. The use of a shared encoder ensures that the feature extraction process is uniform and only
needs to be executed once, thus speeding up the prediction process:

Fshared = LayoutEncoder(Boundary,Front Door,Room Count,Area, Frecurrent; θshared) (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where Frecurrent represents compressed features from previous predictions, encapsulating essential
spatial and structural information, and θshared are the parameters of the ResNet101 model.

3.4 TWO ENCODER FOR CONTEXTUAL FEATURE COMPRESSION

Following the decoding process, a recurrent encoder compresses the images depicting the detected
room centers into a compact feature representation. These images, illustrating centers as circles with
a 5-pixel radius, are transformed into feature maps of dimensions 8× 8× 512. This compression
is crucial for preparing the features for iterative decoding, allowing each subsequent decoder to be
informed by previously predicted centers:

Frecurrent = RecurrentEncoder(Centers,Boundary,Front Door,Area; θrecurrent) (3)

where Frecurrent represents the compressed feature vector derived from the detected room centers,
Centers represent 4 channel binary image containing the locations of the predicted room centers so
far, and θrecurrent are the parameters of the recurrent encoder, tasked with reducing the dimensionality
of the input while preserving essential spatial characteristics for further decoding processes. These
features are concatenated with the bottleneck features from the shared encoder (Fshared) and used as
inputs for the specialized decoders for subsequent room type predictions.

To generate the room centers, we employ four specialized decoders; each specialized decoder is
responsible for predicting the center coordinates for specific room types—bedrooms, restrooms,
kitchens, and balconies. This modular approach allows each decoder to be fine-tuned to recognize
distinct features relevant to each room type, such as size and location, increasing the relevancy of the
predictions.

Fshared = Concat(Flayout, Frecurrent) (4)

Ctype = Decodertype(Fshared;ϕtype) (5)

where Ctype denotes the predicted single-channel image containing suggestions for the centers of
target rooms, an example of which is shown in Figure 2, and ϕtype are the parameters of the decoder
specialized for that particular room type, Fshared is the concatenated features from the two encoders.

Initially, the ResNet101-based Layout Encoder was trained with a single general decoder to optimize
the extraction of universal features beneficial across all room types. Post this phase, the encoder
parameters, alongside those of the recurrent encoder, were frozen to ensure stability and consistency
in feature representation. Subsequently, multiple decoders were individually trained using these
stable, pre-extracted features. This method not only streamlines the training process but also ensures
each decoder is highly specialized for its designated task, although our current focus remains on the
essential floor plan elements.

3.5 BLOB DETECTION FOR CENTER SEGMENTATION

After obtaining the single-channel image outputs (Figure 2) from the specialized decoders, we apply
the Laplacian of Gaussian (LoG) blob detection technique to identify potential room centers. This
method effectively distinguishes multiple blobs in the output images, with each blob representing
a potential room center. While all detected blobs are valid candidates, we select the one with the
highest intensity as the predicted center. This selection is crucial because, although nearly all these
blobs could serve as valid room centers, they are not necessarily designed to coexist in the same
layout. Therefore, we choose only one blob to ensure clarity in the design.

Once we select a center, we feed it back into the prediction system along with the other generated
centers. This iterative process allows the model to determine the most suitable location for the next
center based on the context of the existing design. Moreover, by choosing a random center from
the produced blobs, we can generate numerous valid designs. Each of these variations remains
architecturally sound, as demonstrated in Figure 4.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: This is a sample output from GenCenter before and after the blob detection process. The
multiple blobs represent potential valid room locations, each with varying intensity levels. Selecting
any of these blobs would lead to a different sequence of predictions, and processing each one would
yield different room layouts. To optimize the design, we choose the blob with the highest intensity,
representing the most likely or optimal room location.

3.6 GRAPH-BASED ROOM BOUNDARY DETERMINATION (GENLAYOUT)

This crucial stage in the GenPlan system involves using GenLayout, a graph neural networks
(GNN) to precisely delineate and refine room boundaries. The method leverages a composite
representation of architectural elements, emphasizing the dynamic integration of spatial data and the
adaptability of GNNs to complex layouts. After generating the room centers (x, y) using 3.3, the
Graph Transformer Network is used to determine the actual room shape by predicting the diagonal
coordinates (x1, y1, x2, y2), which are then used to form a rectangle, representing the room’s shape.

The input graph 3.1 is processed using a GNN that incorporates Transformer Convolution layers.
The graph transformer operator used in this work follows the approach from Shi et al. (2020), and
implemented by Fey & Lenssen (2019):

x′
i = W1xi +

∑
j∈N (i)

αi,jW2xj , (6)

Where the attention coefficients αi,j are computed via multi-head dot product attention:

αi,j = softmax
(
(W3xi)

⊤(W4xj)√
d

)
, (7)

Where x′
i is the updated node feature, xi and xj are the input features of nodes i and j, N (i) denotes

the set of neighbors of node i, W1, W2, W3, and W4 are learnable weights, and d is the dimension
of the transformed feature space.

Graph Transformer Convolution is chosen for its advanced capabilities in handling spatial data, which
is particularly beneficial in the context of floor plan design. The reasons include:

a) Global Receptive Field: Graph Transformer Convolution layers utilize self-attention mechanisms
that allow for processing information on a global scale. This capability is crucial for understanding
the entire layout of complex floor plans, as it enables the model to consider how different parts of the
plan interact with each other.

b) Dynamic Weight Adjustment: These layers can dynamically adjust their weights based on the
context provided by the nodes within the graph. This adaptability is essential for accurately modeling
the intricate spatial relationships needed for precise delineation of room boundaries, thereby enhancing
the effectiveness of the floor plan design.

c) Multi-Head Attention: Although not explicitly shown in the equations, multi-head attention
typically involves computing multiple sets of attention coefficients and aggregating the results. This
allows the model to capture diverse aspects of the spatial relationships between nodes.

This detailed implementation of Graph Transformer Convolution in GenPlan illustrates its capability to
enhance spatial data processing, ensuring that the generated floor plans are optimized for functionality
and practicality.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Diagram of the GenPlan architecture, showing the flow of data. Inputs include boundary
and front door as binary masks, area, and room counts, which are processed through the CNN and
transformer-based GNN parts of GenPlan, generating the final room layout.

3.7 TRAINING

GenPlan was trained in two phases, employing Mean Squared Error (MSE) loss, as the task is
inherently regression-based. The Adam optimizer was utilized with a batch size of 20 and an initial
learning rate of 10−2, which decayed by a factor of 0.1 every 30 epochs, reaching a minimum learning
rate of 10−4.

In the first phase, we trained the GenCenter to simultaneously generate centers for all room types.
Random samples and tasks were input into the model, ensuring that each batch contained examples
from all tasks. This phase spanned a duration of 150 epochs.

In the second phase, we replicated the decoder four times, with each instance dedicated to a specific
room type: bedrooms, restrooms, kitchens, and balconies. After freezing the parameters of the two
encoders, each decoder was trained independently for 50 epochs on its corresponding task.

A similar architecture was employed for the placement of doors and windows, utilizing only two
specialized decoders. This distinction was crucial to ensure the precise positioning of doors and
windows, as their locations depend on the room boundaries established earlier. The door and window
model was trained using the same two-phase strategy as the primary architecture.

We trained GenLayout, a Transformer-based convolutional GNN, on the graph representation of
the input constraints, applying various augmentation methods to slightly shift the centers of rooms.
This enabled the model to learn to adjust the center of the generated rectangle if it deviates from the
optimal position. GenLayout was trained for 300 epochs, using the same learning rate and batch size
as GenCenter.

3.8 POST-PROCESSING

The final layout is assembled by integrating room boundaries within the plot. This process involves
aligning and refining boundaries to create clear partitions. Geometric buffering, a key technique
used here, extends or contracts room boundaries by a predefined wall width to model the physical
dimensions of walls, ensuring clear delineation and structural integrity.

The algorithm sets a predefined wall width and adjusts the floor plan layout to accommodate wall
thickness using geometric buffering. Rooms are sorted by size, and each is buffered to prevent
overlaps, maintaining clear boundaries. The main living area is adjusted similarly, optimizing space
usage. Leftover spaces are efficiently integrated back into the layout. Finally, room positions are
finalized, and visible wall lines are defined based on buffered placements, ensuring a precise and
functional architectural layout. This approach effectively combines advanced machine learning with
architectural principles, enhancing both the functional aspects of the design.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Front Door Living Area Restroom Bedroom Kitchen Balcony

Figure 5: Examples of generated floor plans using GenPlan

Input Constraint Design 1 Design 2 Design 3

Design 4 Design 5 Design 6 Design 7

Figure 4: Here we used the same input constraint for all designs. By randomly selecting a blob from
the predicted center channel in each case, we influenced the subsequent generation process, leading to
different floor plan layouts. Each blob corresponds to a potential room center, and since every choice
impacts the following steps, the model produces diverse designs. This demonstrates the flexibility of
the generation process, as seen in the seven unique layouts displayed.

4 RESULTS

Although we used our own dataset to train GenPlan, we utilized the RPLAN dataset to conduct all
experiments and comparisons to ensure a fair evaluation and demonstrate the generalizability of
GenPlan. All experiments were conducted using an Intel Core i7-12700K CPU with 32 GB of RAM
and an NVIDIA GTX 1050 GPU. For visualization tasks, we used Hunter (2007) and Garyfallidis
et al. (2021)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In
pu

ts
W

al
lP

la
n

G
en

Pl
an

(O
ur

s)

Front Door Living Area Restroom Bedroom Kitchen Balcony

Figure 6: Performance comparison of GenPlan vs. WallPlan. Note that WallPlan generates trapped
rooms (lacking entryways rooms annotated by the blue arrows) and places kitchens centrally (anno-
tated by the black dot) without windows. Sun et al. (2022)

Metric WallPlan GenPlan Improvement
Trapped Rooms 25 2 92%
Restrooms Without Outer Wall 7 0 100%
Kitchen Without Outer Wall 4 0 100%
Average Generation Time (s) 9.75 3.35 65.6%

Table 1: This table compares WallPlan and GenPlan across key metrics. GenPlan shows significant
improvement, reducing trapped rooms from 25 to just 2 and entirely eliminating restrooms and
kitchens without outer walls, unlike WallPlan. Additionally, GenPlan generates floor plans much
faster, cutting the average time from 9.75 seconds to 3.35 seconds, a 65.6% speed improvement.
These results highlight GenPlan’s ability to create more functional and efficient designs with fewer
structural issues.

Bedrooms WallPlan (%) GenPlan (%)

No Bedrooms 0.4% 0.0%
1 Bedroom 5.8% 13.4%
2 Bedrooms 68.8% 34.8%
3 Bedrooms 23.4% 42.4%
4 Bedrooms 1.6% 9.4%

Restrooms WallPlan (%) GenPlan (%)

No Restrooms 0.0% 0.0%
1 Restroom 90.0% 28.8%
2 Restrooms 9.8% 40.8%
3 Restrooms 0.0% 23.6%
4 Restrooms 0.0% 6.8%

Table 2: The two tables present a comparison between GenPlan and WallPlan, highlighting the diver-
sity in the number of Bedrooms and Restrooms in the generated floor plans. This test demonstrates
the variations in room counts across the two methods, with GenPlan showing greater flexibility, as it
is not limited to a specific room count and can adapt to different design requirements

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

In
pu

ts
G

ra
ph

2P
la

n
G

en
Pl

an
(O

ur
s)

Front Door Living Area Restroom Bedroom Kitchen Balcony

Figure 7: Performance comparison of GenPlan vs. Graph2Plan Hu et al. (2020). Note that Graph2Plan
also generates trapped rooms (trapped bedrooms are annotated by the blue arrows). Additionally,
some rooms do not share any outer walls, which our method never allows.

Tables 1 and 2 compare the WallPlan method with GenPlan (our method) across several metrics.
Table 1, based on 100 floor plans, shows that GenPlan significantly reduces the number of trapped
rooms from 25 to 4 (92% improvement) and eliminates windowless restrooms and kitchens (100%
improvement for both), compared to 7 and 4 in WallPlan, respectively. Additionally, GenPlan is
more efficient, with an average generation time of 3.35 seconds compared to WallPlan’s 9.75 seconds,
marking a 65.6% improvement. Table 2 provides a comparison of the predicted counts of bedrooms
and restrooms between WallPlan and GenPlan across 500 floor plans. GenPlan demonstrates a more
diverse generation of floor plans, with a more balanced distribution across different bedroom and
restroom counts. While WallPlan predominantly generates floor plans with 2 bedrooms (68.8%) and
1 restroom (90.0%), GenPlan shows a higher percentage of floor plans with 3 bedrooms (42.4%)
and 2 restrooms (40.8%). This diversity can lead to more functional and adaptable living spaces and
simulation environments.

4.1 DISCUSSION

The GenPlan architecture significantly advances the field of automated architectural design by
integrating convolutional and graph neural networks to enhance the generation and delineation of
floor plans. This methodology not only accelerates the design process but also introduces precision in
handling complex spatial relationships through the use of Transformer Convolution within the GNNs.
This system offers a notable improvement over other published methods so far.

GenPlan has broad implications beyond architectural design. In urban planning, it can enhance
the accuracy and efficiency of safety simulations and city layouts. Robotics applications could
benefit from more precise environment mapping for better navigation and task performance. In the
gaming industry, GenPlan can add realism and variety to game environments, improving player
immersion. The film industry could use it to design set layouts and virtual environments more
efficiently, potentially reducing production costs and time. These applications demonstrate GenPlan’s
potential to transform various industries by providing advanced design and simulation capabilities.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

As future work, we plan to introduce additional dimensional constraints to make the system more
capable of addressing real-life situations. This includes considering the orientation of the floor
boundary and the geographical location to better utilize natural elements, such as sunlight for
illumination and wind for cooling. We aim to achieve this by reverse engineering the ResPlan dataset
to determine the optimal wind direction for each floor plan. The same applies to neighboring walls,
as many complex floor plans arise from fitting multiple layouts within a single story, resulting in
shared walls that cannot accommodate windows or doors. While ResPlan already contains initial data
on neighboring walls, we are still in the process of refining this feature, so it has not been included in
the current version.

4.2 CONCLUSION

In this work, we introduce GenPlan, a deep learning framework for the generation of realistic floor
plans, tailored for use by architects, game designers, and developers. GenPlan harnesses the power
of Transformer-based Graph Neural Networks (GNN) to enhance the precision of design outputs.
The system is architected in a modular fashion, allowing for mid-process interaction to ensure the
validity of the floor plan at each step prior to further progression. Moreover, GenPlan offers the ability
to generate multiple valid designs for the same set of input constraints, representing a significant
advancement in floor plan generation.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Stanislas Chaillou. Archigan: Artificial intelligence x architecture. In Architectural Intelligence, pp.
117–127. Springer, 2020. doi: 10.1007/978-981-15-6568-7_8. URL https://doi.org/10.
1007/978-981-15-6568-7_8.

Anton Chen. Generation of layouts for living spaces using conditional generative adversarial networks:
Designing floor plans that respect both a boundary and high-level requirements, 2022.

Renee Chow. Suburban space: the fabric of dwelling. Univ of California Press, 2002.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Eleftherios Garyfallidis, Serge Koudoro, Javier Guaje, Marc-Alex Côté, Soham Biswas, David
Reagan, Nasim Anousheh, Filipi Silva, Geoffrey Fox, and FURY Contributors. Fury: Advanced
scientific visualization, 2021. URL https://doi.org/10.21105/joss.03384. Journal
of Open Source Software.

Ruizhen Hu, Ling Xie, LiYi Liu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. Graph2plan:
Learning floorplan generation from layout graphs. ACM Transactions on Graphics (TOG), 39(4):
118:1–118:14, 2020. doi: 10.1145/3386569.3392391. URL https://doi.org/10.1145/
3386569.3392391.

Weixin Huang and Hao Zheng. Architectural drawings recognition and generation through machine
learning. In Proceedings of the 38th Annual Conference of the Association for Computer Aided
Design in Architecture, Mexico City, Mexico, pp. 18–20, 2018.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):
90–95, 2007. doi: 10.1109/MCSE.2007.55.

Naoki Nauata, Seyed Hamid Hosseini, Kai-Hung Chang, Hang Chu, Chieh-Yi Cheng, and Yasutaka
Furukawa. House-gan++: Generative adversarial layout refinement network towards intelligent
computational agent for professional architects. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 13627–13636, 2021. doi: 10.1109/
CVPR46437.2021.01342.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020. URL https://doi.org/10.48550/arXiv.2009.03509. Ac-
cepted by IJCAI 2021.

Jiahui Sun, Wenming Wu, Ligang Liu, Wenjie Min, Gaofeng Zhang, and Liping Zheng. Wallplan:
Synthesizing floorplans by learning to generate wall graphs. ACM Transactions on Graphics, 41(4):
1–14, 2022. doi: 10.1145/3528223.3530135. URL https://doi.org/10.1145/3528223.
3530135.

Abhinav Upadhyay, Alpana Dubey, Suma Mani Kuriakose, and Shaurya Agarawal. Floorgan:
Generative network for automated floor layout generation. In Proceedings of the 6th Joint
International Conference on Data Science Management of Data (10th ACM IKDD CODS and
28th COMAD), CODS-COMAD ’23’, pp. 140–148, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9781450397971. doi: 10.1145/3570991.3571057. URL
https://doi.org/10.1145/3570991.3571057.

Shidong Wang, Wei Zeng, Xi Chen, Yu Ye, Yu Qiao, and Chi-Wing Fu. Actfloor-gan: Activity-guided
adversarial networks for human-centric floorplan design. IEEE Transactions on Visualization and
Computer Graphics, 29(3):1610–1624, 2023. doi: 10.1109/TVCG.2021.3126478.

G. Ślusarczyk et al. Semantic-driven graph transformations in floor plan design. Computer Aided
Design, 142:103057, 2023.

https://doi.org/10.1007/978-981-15-6568-7_8
https://doi.org/10.1007/978-981-15-6568-7_8
https://doi.org/10.21105/joss.03384
https://doi.org/10.1145/3386569.3392391
https://doi.org/10.1145/3386569.3392391
https://doi.org/10.48550/arXiv.2009.03509
https://doi.org/10.1145/3528223.3530135
https://doi.org/10.1145/3528223.3530135
https://doi.org/10.1145/3570991.3571057

	Introduction
	Related Work
	Methodology
	Data Preparation
	Initial Room Count Prediction
	Room Center Generation (GenCenter)
	Two encoder for Contextual Feature Compression
	Blob Detection for Center Segmentation
	Graph-Based Room Boundary Determination (GenLayout)
	Training
	Post-processing

	Results
	Discussion
	Conclusion


