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ABSTRACT

We focus on the problem of imitation learning from visual observations, where
the learning agent has access to videos of experts as its sole learning source. The
challenges of this framework include the absence of expert actions and the partial
observability of the environment, as the ground-truth states can only be inferred
from pixels. To tackle this problem, we first conduct a theoretical analysis of imita-
tion learning in partially observable environments. We establish upper bounds on
the suboptimality of the learning agent with respect to the divergence between the
expert and the agent latent state-transition distributions. Motivated by this analysis,
we introduce an algorithm called Latent Adversarial Imitation from Observations,
which combines off-policy adversarial imitation techniques with a learned latent
representation of the agent’s state from sequences of observations. In experiments
on high-dimensional continuous robotic tasks, we show that our algorithm matches
state-of-the-art performance while providing significant computational advantages.
Additionally, we show how our method can be used to improve the efficiency
of reinforcement learning from pixels by leveraging expert videos. To ensure
reproducibility, we provide free access to our code.

1 INTRODUCTION

Learning from videos represents a compelling opportunity for the future, as it offers a cost-effective
and efficient way to teach autonomous agents new skills and behaviors. Compared to other meth-
ods, video recording is a faster and more flexible alternative for gathering data. Moreover, with
the abundance of high-quality videos available on the internet, learning from videos has become
increasingly accessible in recent years. However, despite the potential benefits, this approach remains
challenging as it involves several technical problems that must be addressed simultaneously in order
to succeed. These problems include representation learning, significant computational demands due
to high-dimensional observation space, the partial observability of the decision process, and lack of
expert actions. Our objective is to establish algorithms capable of overcoming all of these challenges,
enabling the learning of complex robotics tasks directly from videos of experts.

Formally, our focus is on the problem of Visual Imitation from Observations (V-IfO). In V-IfO,
the learning agent does not have access to a pre-specified reward function, and instead has to
learn by imitating an expert’s behavior. Additionally, in V-IfO, expert actions are not accessible
during the learning process, and the pixel-based observations we obtain from video frames result in
partial observability. The absence of expert actions and the partial observability of the environment
distinguish V-IfO from other types of imitation from experts. Specifically, we identify three other
frameworks previously addressed in the literature: Imitation Learning (IL) [1, 2, 3, 4, 5] where
states are fully observable and expert state-action pairs are accessible, Visual Imitation Learning
(V-IL) [6] which explores the idea of imitating directly from pixels but still assumes that expert
actions are provided to the learning agent, and Imitation from Observations (IfO) [7, 8] which retains
full observability but considers only the availability of expert states. Table 1 summarizes these
frameworks.

In order to address the V-IfO problem, this paper introduces both theoretical and algorithmic contribu-
tions. First, we provide a theoretical analysis of the problem and demonstrate that the suboptimality
of the learning agent can be upper bounded by the divergence between the expert and the agent
latent state-transition distributions. Our analysis motivates the reduction of the V-IfO problem to

1

https://anonymous.4open.science/r/AIL_from_visual_obs-2C3C/README.md


Under review as a conference paper at ICLR 2024

Table 1: A summary of imitation from experts: Imitation Learning (IL), Imitation from Observations
(IfO), Visual Imitation Learning (V-IL), and Visual Imitation from Observations (V-IfO).

IL IfO V-IL V-IfO

Fully observable environment ✓ ✓ ✗ ✗
Access to expert actions ✓ ✗ ✓ ✗

two subproblems: (i) estimating a proper latent representation from sequences of observations
and (ii) efficiently minimizing the divergence between expert and agent distributions in this latent
space. Next, we propose practical solutions to these subproblems. By doing so, we formalize a
novel algorithm called Latent Adversarial Imitation from Observations (LAIfO), which tackles the
divergence minimization step using off-policy adversarial imitation techniques [9] and recovers
a latent representation of the ground-truth state by means of observations stacking [10, 11] and
data augmentation [12, 13, 14]. We evaluate our algorithm on the DeepMind Control Suite [15],
demonstrating that we can match state-of-the-art performance while significantly reducing wall-clock
time due to our model-free approach in latent space. We conclude by showing how LAIfO can be
used on challenging environments, such as the humanoid from pixels [15], to improve Reinforcement
Learning (RL) efficiency by leveraging expert videos.

The remainder of the paper is organized as follows: Section 2 provides a summary of the most related
works to this paper. Section 3 introduces notation and background on RL and IL. Section 4 provides
a theoretical analysis of the V-IfO problem. Section 5 introduces our algorithm, LAIfO, and outlines
how it can leverage expert videos to improve data efficiency of RL from pixels. Finally, Section 6
presents our experimental results and Section 7 concludes the paper providing a general discussion
on our findings.

2 RELATED WORK

In recent years, several studies have focused on the IL problem [1, 2, 3, 4, 5] and, in particular,
on the generative adversarial IL framework [16] which has emerged as one of the most promising
approaches for IL. Adversarial IL builds upon a vast body of work on inverse RL [2, 17, 18, 19, 20,
21]. The primary goal of inverse RL is to identify a reward function that enables expert trajectories
(i.e., state-action pairs) to be optimal. The reward function obtained from the inverse RL step is then
used to train agents in order to match the expert’s expected reward. In the fully observable setting,
adversarial IL was originally formalized in [16, 22] and extended to the observation only setting
in [7]. Furthermore, the adversarial IfO problem has been theoretically analyzed in [23, 24]. Note
that all of these studies are built upon on-policy RL [25], which provides good learning stability but
is known for poor sample efficiency. In recent works, this efficiency issue has been addressed by
using off-policy RL algorithms in the adversarial optimization step [26, 27]. These include DAC
[28], SAM [29], and ValueDICE [30] for the adversarial IL problem, and OPOLO [31] and MobILE
[32] for the adversarial IfO problem. Another line of research has tackled IfO by directly estimating
expert actions and subsequently deploying IL techniques on the estimated state-action pairs [8, 33,
34, 35, 36, 37, 38]. Finally, recent studies have investigated offline alternatives to the adversarial IL
framework [39].

All of the aforementioned works consider fully observable environments modeled as Markov Decision
Processes (MDPs). However, when dealing with pixels, individual observations alone are insufficient
for determining optimal actions. As a result, recent works [6, 40] have treated the V-IL problem
as a Partially Observable Markov Decision Process (POMDP) [41]. In particular, the work in [6]
addressed the V-IL problem by proposing a model-based extension [42, 43] of generative adversarial
IL called VMAIL. The work in [44] also considered IL in a POMDP in order to handle missing
information in the agent state, but did not directly focus on learning from pixels. The more difficult
V-IfO problem, on the other hand, has received less attention in the literature. To the best of our
knowledge, this problem has only been considered by the recent algorithm PatchAIL [45], where
off-policy adversarial IL is performed directly on the pixel space. Different from [45], we first study
V-IfO from a theoretical perspective, which motivates an algorithm that performs imitation on a
latent representation of the agent state rather than directly on the pixel space as in PatchAIL. This
difference is crucial to ensure improved computational efficiency.
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Our work is also related to the RL from pixels literature which tackles the challenge of maximizing
an agent’s expected return end-to-end, from pixels to actions. This approach has proven successful in
playing Atari games [10, 11]. Recently, RL from pixels has also been extended to tackle continuous
action space tasks, such as robot locomotion, by leveraging either data augmentation techniques [12,
13, 14, 46, 47, 48] or variational inference [42, 43, 47, 49].

Finally, another line of research has focused on the visual imitation problem in the presence of domain
mismatch, also known as third-person imitation learning [50, 51, 52]. This paradigm relaxes the
assumption that the agent and the expert are defined on the same decision process and represents a
generalization of the imitation from experts frameworks introduced in Table 1.

3 PRELIMINARIES

Unless indicated otherwise, we use uppercase letters (e.g., St) for random variables, lowercase letters
(e.g., st) for values of random variables, script letters (e.g., S) for sets, and bold lowercase letters
(e.g., θ) for vectors. Let [t1 : t2] be the set of integers t such that t1 ≤ t ≤ t2; we write St such that
t1 ≤ t ≤ t2 as St1:t2 . We denote with E[·] expectation, with P(·) probability, and with Df (·, ·) an
f -divergence between two distributions of which the total variation (TV) distance, DTV(·, ·), and the
Jensen-Shannon divergence, DJS(·||·), are special cases.

We model the decision process as an infinite-horizon discounted POMDP described by the tuple
(S,A,X , T ,U ,R, ρ0, γ), where S is the set of states, A is the set of actions, and X is the set of
observations. T : S × A → P (S) is the transition probability function where P (S) denotes the
space of probability distributions over S , U : S → P (X ) is the observation probability function, and
R : S ×A → R is the reward function which maps state-action pairs to scalar rewards. Alternatively,
the reward function can also be expressed as R : S × S → R mapping state-transition pairs to
scalar rewards rather than state-action pairs. Finally, ρ0 ∈ P (S) is the initial state distribution and
γ ∈ [0, 1) the discount factor. The true environment state s ∈ S is unobserved by the agent. Given
an action a ∈ A, the next state is sampled such that s′ ∼ T (·|s, a), an observation is generated as
x′ ∼ U(·|s′), and a rewardR(s, a) orR(s, s′) is computed. Note that an MDP is a special case of a
POMDP where the underlying state s is directly observed.

Reinforcement learning Given an MDP and a stationary policy π : S → P (A), the RL objective
is to maximize the expected total discounted return J(π) = Eτ [

∑∞
t=0 γ

tR(st, at)] where τ =
(s0, a0, s1, a1, . . . ). A stationary policy π induces a normalized discounted state visitation distribution
defined as dπ(s) = (1−γ)

∑∞
t=0 γ

tP(st = s|ρ0, π, T ), and we define the corresponding normalized
discounted state-action visitation distribution as ρπ(s, a) = dπ(s)π(a|s). Finally, we denote the state
value function of π as V π(s) = Eτ [

∑∞
t=0 γ

tR(st, at)|S0 = s] and the state-action value function
as Qπ(s, a) = Eτ [

∑∞
t=0 γ

tR(st, at)|S0 = s,A0 = a]. When a function is parameterized with
parameters θ ∈ Θ ⊂ Rk we write πθ.

Generative adversarial imitation learning Assume we have a set of expert demonstrations
τE = (s0:T , a0:T ) generated by the expert policy πE , a set of trajectories τθ generated by the policy
πθ , and a discriminator network Dχ : S ×A → [0, 1] parameterized by χ. Generative adversarial IL
[16] optimizes the min-max objective

min
θ

max
χ

EτE [log(Dχ(s, a))] + Eτθ [log(1−Dχ(s, a))]. (1)

Maximizing (1) with respect to χ is effectively an inverse RL step where a reward function, in the
form of the discriminator Dχ, is inferred by leveraging τE and τθ . On the other hand, minimizing (1)
with respect to θ can be interpreted as a RL step, where the agent aims to minimize its expected cost.
It has been demonstrated that optimizing the min-max objective in (1) is equivalent to minimizing
DJS(ρπθ

(s, a)||ρπE
(s, a)), so we are recovering the expert state-action visitation distribution [9].

Latent representation in POMDP When dealing with a POMDP, a policy πθ(xt) that selects an
action at based on a single observation xt ∈ X is likely to perform poorly since xt lacks enough
information about the actual state st. It is therefore beneficial to estimate a distribution of the true state
from prior experience. To do so, a latent variable zt ∈ Z is introduced such that zt = ϕ(x≤t, a<t),
where ϕ maps the history of observations and actions to Z . Alternatively, when actions are not
observable, we have zt = ϕ(x≤t). If zt is learned such that P(st|x≤t, a<t) ≈ P(st|zt), meaning that
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zt effectively represents a sufficient statistic of the history, it can be used as a latent representation of
st and the agent can be effectively trained on zt.

4 THEORETICAL ANALYSIS

Recall that we consider the V-IfO problem where expert actions are not available and the ground-truth
states s ∈ S are not observable (see Table 1). As a result, a latent representation z ∈ Z is inferred
from the history of observations and used by the learning agent to make decisions.

Throughout the paper we make the following assumptions: (i) the expert and the agent act on the
same POMDP and (ii) the latent variable z can be estimated from the history of observations as
zt = ϕ(x≤t) such that P(st|zt, at) = P(st|zt) = P(st|x≤t, a<t). Assumption (i) is instrumental for
both our derivations and experiments. Relaxing this assumption would lead to dynamics mismatch
[53] and visual domain adaptation problems [54], which represent interesting extensions for future
work. On the other hand, assumption (ii) explicitly states the characteristics required by the latent
variable z; i.e., zt can be successfully estimated from the history of observations x≤t in order to
approximate a sufficient statistic of the history. Note that this is a common assumption in the IL
literature for POMDPs [6, 44], and estimating such a variable is a non-trivial problem that we
address in the next section. We further discuss the importance of this assumption from a theoretical
perspective in Appendix B (Remark 1).

On the latent space Z , we can define the normalized discounted latent state visitation distribution as
dπθ

(z) = (1− γ)
∑∞

t=0 γ
tP(zt = z|ρ0, πθ, T ,U) and the normalized discounted latent state-action

visitation distribution as ρπθ
(z, a) = dπθ

(z)πθ(a|z). Further, we define the latent state-transition
visitation distribution as ρπθ

(z, z′) = dπθ
(z)

∫
A P(z′|z, ā)πθ(ā|z)dā and the normalized discounted

joint distribution as ρπθ
(z, a, z′) = ρπθ

(z, a)P(z′|z, a), where

P(z′|z, a) =
∫
S

∫
S

∫
X
P(z′|x′, a, z)U(x′|s′)T (s′|s, a)P(s|z)dx′ds′ds. (2)

Finally, we obtain Pπθ
(a|z, z′) as

Pπθ
(a|z, z′) = P(z′|z, a)πθ(a|z)∫

A P(z′|z, ā)πθ(ā|z)dā
.

Note that we write Pπθ
, with πθ as subscript, in order to explicitly denote the dependency on the

policy and omit the subscript, as in (2), when such probability depends only on the environment.

We start by considering the case in whichR : S ×A → R and J(π) = Eτ [
∑∞

t=0 γ
tR(st, at)]. The

following Theorem shows how the suboptimality of πθ can be upper bounded by the TV distance
between latent state-transition visitation distributions, reducing the V-IfO problem to a divergence
minimization problem in Z .
Theorem 1. Consider a POMDP, and letR : S ×A → R and zt = ϕ(x≤t) such that P(st|zt, at) =
P(st|zt) = P(st|x≤t, a<t). Then, the following inequality holds:∣∣J(πE)− J(πθ)

∣∣ ≤2Rmax

1− γ
DTV

(
ρπθ

(z, z′), ρπE
(z, z′)

)
+ C,

where Rmax = max(s,a)∈S×A |R(s, a)| and

C =
2Rmax

1− γ
Eρπθ

(z,z′)

[
DTV

(
Pπθ

(a|z, z′),PπE
(a|z, z′)

)]
. (3)

Proof. Using the definition of J(πθ), we first upper bound the performance difference be-
tween expert and agent by DTV

(
ρπθ

(s, a), ρπE
(s, a)

)
. Next, we bound the latter divergence by

DTV
(
ρπθ

(z, a), ρπE
(z, a)

)
using the assumption P(st|zt, at) = P(st|zt) and noticing that P(st|zt)

is policy independent. Finally, we bound this last divergence in terms of DTV
(
ρπθ

(z, z′), ρπE
(z, z′)

)
(Lemma 3 in Appendix B). We provide the full derivations in Appendix C.

Theorem 1 addresses the challenge of considering rewards that depend on actions without the ability
to observe expert actions. Consequently, in our setting, we cannot compute C in (3). Similar to the
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MDP case [23], a sufficient condition for C = 0 is the injectivity of P(z′|z, a) in (2) with respect
to a, indicating that there is only one action corresponding to a given latent state transition. This
property ensures that P(a|z, z′) remains unaffected by different executed policies, ultimately reducing
C to zero. For the sake of completeness, we formally state this result in Appendix C. However,
in our setting, it is difficult to guarantee the injectivity of P(z′|z, a) due to its dependence on both
the environment through U(x′|s′) and T (s′|s, a), and the latent variable estimation method through
P(z′|x′, a, z) and P(s|z). Instead, we demonstrate in Theorem 2 how redefining the reward function
asR : S × S → R, which is commonly observed in robotics learning, allows us to reformulate the
result in Theorem 1 without the additive term C in (3).
Theorem 2. Consider a POMDP, and letR : S × S → R and zt = ϕ(x≤t) such that P(st|zt, at) =
P(st|zt) = P(st|x≤t, a<t). Then, the following inequality holds:∣∣J(πE)− J(πθ)

∣∣ ≤2Rmax

1− γ
DTV

(
ρπθ

(z, z′), ρπE
(z, z′)

)
,

where Rmax = max(s,s′)∈S×S |R(s, s′)|.

Proof. The proof proceeds similarly to the one for Theorem 1, by using that P(s, s′|z, z′) is not
characterized by the policy but only by the environment. We show the full proof in Appendix C.

In summary, Theorems 1 and 2 provide theoretical motivation for the two main ingredients of our
algorithm: a method for estimating z such that it can effectively approximate a sufficient statistic
of the history, and an efficient algorithm to minimize DTV

(
ρπθ

(z, z′), ρπE
(z, z′)

)
. We introduce

practical solutions to both of these problems in the next section.

5 LATENT ADVERSARIAL IMITATION FROM OBSERVATIONS

In the following, we introduce the main components of our algorithm LAIfO. First, we outline our
adversarial imitation pipeline in the latent space Z . We leverage off-policy adversarial imitation from
observations, as originally introduced in [28, 29, 31], in order to minimize the divergence between
the latent state-transition visitation distributions of the agent and expert. Then, we describe a simple
and effective approach for estimating the latent state z that makes use of observations stacking [10,
11] and data augmentation [12, 13, 14]. Finally, we show how LAIfO can leverage expert videos to
enhance the efficiency of RL from pixels in a number of highly challenging tasks.

Off-policy adversarial imitation from observations Based on the results in Section 4, given a
latent variable z that captures a sufficient statistic of the history, we can minimize the suboptimality
of the policy πθ by solving the minimization problem

min
θ

DTV
(
ρπθ

(z, z′), ρπE
(z, z′)

)
. (4)

We propose to optimize the objective in (4) using off-policy adversarial IfO. We initialize two replay
buffers BE and B to respectively store the sequences of observations generated by the expert and the
agent policies, from which we infer the latent state-transitions (z, z′). Note that we write (z, z′) ∼ B
to streamline the notation. Then, given a discriminator Dχ : Z × Z → [0, 1], we write

max
χ

E(z,z′)∼BE
[log(Dχ(z, z

′))] + E(z,z′)∼B[log(1−Dχ(z, z
′))] + g

(
∇χDχ

)
, (5)

rχ(z, z
′) = Dχ

(
z, z′

)
. (6)

As mentioned, alternating the maximization of the loss in (5) with a RL step using the reward function
defined in (6) leads to the minimization of DJS

(
ρπθ

(z, z′)||ρπE
(z, z′)

)
[55]. Since DJS(·||·) can be

used to upper bound DTV(·, ·) (cf. Lemma 1 in Appendix B), this approach effectively minimizes
the loss in (4). In order to stabilize the adversarial training process, it is important to ensure local
Lipschitz-continuity of the learned reward function [56]. Therefore, as proposed in [57], we include
in (5) the gradient penalty term

g
(
∇χDχ

)
= λE(ẑ,ẑ′)∼P(ẑ,ẑ′)

[(||∇χDχ(ẑ, ẑ′)||2 − 1)2], (7)

where λ is a hyperparameter, and P(ẑ,ẑ′) is defined such that (ẑ, ẑ′) are sampled uniformly along
straight lines between pairs of transitions respectively sampled from BE and B. See [57] for additional
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details about this choice of gradient penalty term. Finally, from a theoretical standpoint, note that we
should perform importance sampling correction in order to account for the effect of off-policy data
when sampling from B [58, 59]. However, neglecting off-policy correction works well in practice
and does not compromise the stability of the algorithm [28].

Latent variable estimation from observations Note that the problem in (4) is defined on the latent
space Z . Therefore, we now present a simple and effective method to estimate the latent variable z
from sequences of observations. Inspired by the model-free RL from pixels literature, we propose to
combine the successful approaches of observations stacking [10, 11] and data augmentation [12, 13,
14]. We stack together the most recent d ∈ N observations, and provide this stack as an input to a
feature extractor which is trained during the RL step. More specifically, we define a feature extractor
ϕδ : X d → Z such that z = ϕδ(xt−:t) where t− t− + 1 = d. When learning from pixels, we also
apply data augmentation to the observations stack to improve the quality of the extracted features as
in [13]. We write aug(xt−:t) to define the augmented stack of observations. The latent representations
z and z′ are then computed respectively as z = ϕδ(aug(xt−:t)) and z′ = ϕδ(aug(xt−+1:t+1)). We
train the feature extractor ϕδ with the critic networks Qψk

(k = 1, 2) in order to minimize the loss
function

Lδ,ψk
(B) = E(z,a,z′)∼B[(Qψk

(z, a)− y)2],

y = rχ(z, z
′) + γ min

k=1,2
Qψ̄k

(z′, a′).
(8)

In (8), a is an action stored in B used by the agent to interact with the environment, while a′ =
πθ(z

′) + ϵ where ϵ ∼ clip(N (0, σ2),−c, c) is a clipped exploration noise with c the clipping
parameter and N (0, σ2) a univariate normal distribution with zero mean and σ standard deviation.
The reward function rχ(z, z

′) is defined as in (6), and ψ̄1 and ψ̄2 are the slow moving weights for
the target Q networks. We provide more implementation details and the complete pseudo-code for
our algorithm in Appendix D.

Note that the feature extractor ϕδ is shared by both the critics Qψk
, the policy πθ , and the discriminator

Dχ. However, we stop the backpropagation of the gradient from πθ and Dχ into ϕδ . The logic of
this choice involves obtaining a latent variable z that is not biased towards any of the players in the
adversarial IfO game in (5), but only provides the information necessary to determine the expert and
agent expected performance.

Improving RL from pixels using expert videos We have so far considered the pure imitation
setting where a reward function can only be estimated from expert data. However, for many real-world
tasks a simple objective can often be provided to the learning agent. Assuming that videos of experts
are also available, we show how we can use LAIfO to accelerate the RL learning process.

We combine the standard RL objective with our V-IfO objective in (4), leading to the combined
problem

max
θ

Eτθ

[ ∞∑
t=0

γtR(st, at)

]
− DTV

(
ρπθ

(z, z′), ρπE
(z, z′)

)
. (9)

Using the adversarial IfO pipeline presented in (5), we can rewrite (9) as

max
θ

Eτθ

[ ∞∑
t=0

γt
(
R(st, at) + rχ

(
zt, zt+1

))]
, (10)

with rχ in (6). By learning rχ with LAIfO and optimizing the problem in (10) throughout training,
we will show that we are able to significantly improve sample efficiency on challenging humanoid
from pixels tasks [15] compared to state-of-the-art RL from pixels algorithms [14, 49].

6 EXPERIMENTS

In this section, we conduct experiments that aim to answer the following questions:

(1) For the V-IfO problem, how does LAIfO compare to PatchAIL [45], a state-of-the-art
approach for V-IfO, in terms of asymptotic performance and computational efficiency?
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Table 2: Experimental results for V-IfO (i.e., imitation from experts with partial observability and
without access to expert actions). We use DDPG to train experts in a fully observable setting and
collect 100 episodes of expert data. All of the expert policies can be downloaded by following the
instructions in our code repository. We train all algorithms for 106 frames in walker-walk, walker-
stand, and hopper-stand, and 3× 106 frames for the other tasks. We evaluate the learned policy using
average performance over 10 episodes. We run each experiment for 6 seeds. In the top two rows, we
report mean and standard deviation of final performance over seeds. In the bottom row, we report
the ratio of wall-clock times between the two algorithms to achieve 75% of expert performance. For
each task, we highlight the highest asymptotic performance.

walker hopper cheetah

walk stand run stand hop run

Expert 960 980 640 920 217 900

PatchAIL-W [45] 955 ± 7.02 971 ± 10.5 569 ± 53.2 867 ± 33.9 191 ± 13.0 695 ± 312
LAIfO (our) 960 ± 2.2 961 ± 20.0 618 ± 4.6 800 ± 46.7 206 ± 8.5 773 ± 41.2

Wall-clock time ratio
to 75% expert performance
(LAIfO (our) / PatchAIL-W)
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Figure 1: Learning curves for the results in Table 2. Plots show the average return per episode as a
function of wall-clock time (top row) and as a function of training steps (bottom row). Our algorithm
LAIfO achieves state-of-the-art asymptotic performance, and significantly reduces computation time
compared to PatchAIL.

(2) How does the V-IL version of LAIfO with access to expert actions, named Latent Adversarial
Imitation Learning (LAIL), compare to VMAIL [6], a state-of-the-art approach for V-IL?

(3) What is the impact on performance due to partial observability and the absence of expert
actions?

(4) Can LAIfO leverage expert videos to improve the efficiency of RL from pixels in high-
dimensional continuous robotic tasks?

For more details about the hardware used to carry out these experiments, all the learning curves, and
other implementation details, refer to Appendix E and to our code.

Visual Imitation from Observations In order to address question (1), we evaluate LAIfO and
PatchAIL [45], in its weight regularized version denoted by PatchAIL-W, on 6 different locomotion
tasks from the DeepMind Control Suite [15]. The results are summarized in Table 2 and Figure 1.
Table 2 includes the asymptotic performance of each algorithm, as well as the ratio of wall-clock
times between the two algorithms to achieve 75% of expert performance. Figure 1 depicts the
average return per episode throughout training as a function of wall-clock time (top row) and as a
function of training steps (bottom row). These results demonstrate that LAIfO can successfully solve
the V-IfO problem, achieving asymptotic performance comparable to the state-of-the-art baseline
PatchAIL. Importantly, LAIfO is significantly more computationally efficient than PatchAIL. This is
well highlighted both in Table 2 and in the top row of Figure 1, where we show that LAIfO converges
at least twice as fast as PatchAIL in terms of wall-clock time. This improved computational efficiency
is the result of performing imitation on the latent space Z , instead of directly on the high-dimensional
observation space O (i.e., pixel space) as in PatchAIL.
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Table 3: Experimental results for V-IL (i.e., imitation from experts with partial observability and
access to expert actions). The experiments are conducted as in Table 2. In the top rows, we report
mean and standard deviation of final performance over seeds. In the bottom row, we report the ratio
of wall-clock times between the two algorithms to achieve 75% of expert performance. For each task,
we highlight the highest asymptotic performance.

walker hopper cheetah

walk stand run stand hop run

Expert 960 980 640 920 217 900

VMAIL [6] 939 ± 9.8 805 ± 309 516 ± 224 567 ± 285 72.3 ± 73.0 539 ± 367
LAIL (our) 946 ± 8.5 893 ± 106 625 ± 5.1 764 ± 111 208 ± 3.1 811 ± 67.9

Wall-clock time ratio
to 75% expert performance

(LAIL (our) / VMAIL)
0.4 0.82 0.58 0.12 0.23 0.83

0 10 20
Hours

0

500

1000

Ep
iso

de
 R

et
ur

n Walker Walk

0 10 20 30
Hours

500

1000

Walker Stand

0 20 40 60
Hours

0

250

500

750
Walker Run

0 5 10 15
Hours

0

500

1000
Hopper Stand

0 10 20 30 40
Hours

0

100

200
Hopper Hop

0 10 20 30
Hours

0

500

1000
Cheetah Run

0.00 0.25 0.50 0.75 1.00
Steps (×106)

0

500

1000

Ep
iso

de
 R

et
ur

n

0.00 0.25 0.50 0.75 1.00
Steps (×106)

500

1000

0 1 2 3
Steps (×106)

0

250

500

750

0.00 0.25 0.50 0.75 1.00
Steps (×106)

0

500

1000

0 1 2 3
Steps (×106)

0

100

200

0 1 2 3
Steps (×106)

0

500

1000

LAIL (our) VMAIL expert

Figure 2: Learning curves for the results in Table 3. Plots show the average return per episode as
a function of wall-clock time (top row) and as a function of training steps (bottom row). LAIL
outperforms VMAIL in terms of both asymptotic performance and computational efficiency.

Visual Imitation Learning To answer question (2), we test LAIL, the V-IL version of LAIfO, and
VMAIL [6] using the same experimental setup that we considered in the V-IfO setting. Note that
VMAIL stands for Variational Model Adversarial Imitation Learning, and represents a model-based
version of generative adversarial IL built upon the variational models presented in [42, 43, 49]. The
results for these experiments are summarized in Table 3 and Figure 2. Compared to VMAIL, we see
that LAIL achieves better asymptotic performance and better computational efficiency. While both
algorithms perform imitation on a latent space Z , LAIL is a model-free algorithm that requires a
lower number of learnable parameters compared to the model-based VMAIL. VMAIL must learn an
accurate world model during training, which can be a challenging and computationally demanding
task. The model learning process contributes to higher wall-clock times, and can also lead to
instability in the training process for some environments (cf. the bottom row of Figure 2). On the
other hand, the model-free approach of LAIL results in stable training that yields faster convergence
and better efficiency.

Ablation study In order to answer question (3), we compare performance for each type of imitation
from experts in Table 1. For the partially observable setting, we consider our algorithms LAIL and
LAIfO. For the fully observable setting, we consider DAC [28] and our implementation of DAC from
Observations (DACfO). We provide the full learning curves for DAC and DACfO in Appendix E (cf.
Table 5 and Figure 5). The results are summarized in Figure 3, which shows the average normalized
return obtained by each algorithm throughout the different tasks in Table 2. These experiments
highlight how our algorithms can successfully address the absence of expert actions and partial
observability, suffering only marginal performance degradation due to these additional challenges.
As explained in our theoretical analysis in Section 4, partial observability is addressed by estimating
a latent state representation that successfully approximates a sufficient statistic of the history. On the
other hand, marginal degradation due to the absence of expert actions occurs either because we are
in the context described by Theorem 2, where the environment reward function does not depend on
actions, or because C in Theorem 1 becomes negligible.
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Imitation 
 with expert actions 

 and partial observability 
 (V-IL)
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 and full observability 

 (IfO)
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Figure 3: Normalized returns obtained by each type of imitation from experts over the tasks in
Table 2. For each run, we normalize the agent’s return with respect to expert performance. For each
type of imitation from experts, we plot mean and standard deviation over the full set of runs. The
performance of our algorithms in the partially observable setting are comparable to the performance
in the fully observable setting, and the absence of expert actions and partial observability leads only
to marginal performance degradation.

Improving RL using expert videos We answer question (4) by applying LAIfO to the problem
in (9) for the humanoid from pixels environment. We consider the state-of-the-art RL from pixels
algorithms DrQV2 [14] and DreamerV2 [49] as baselines. The results are illustrated in Figure 4. By
leveraging expert videos, we see that our algorithm significantly outperforms the baselines.
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Figure 4: Performance using the multi-objective RL framework in (9) on the humanoid environment.
The experiments are designed as in Table 2. We report mean and standard error over seeds.

7 CONCLUSION

In this work, we formally analyzed the V-IfO problem and introduced our algorithm LAIfO as
an effective solution. We experimentally showed that our approach matches the performance of
state-of-the-art V-IL and V-IfO methods, while requiring significantly less computational effort due
to our model-free approach in latent space. Furthermore, we showed how LAIfO can be used to
improve the efficiency and asymptotic performance of RL methods by leveraging expert videos.

Limitations and future work Despite the advancement in addressing the V-IfO problem, it is
important to understand the limitations of our approach. The primary limitation arises from the
assumption that the expert and the agent act within the same POMDP. In realistic scenarios, such
alignment rarely occurs, emphasizing the need for methods that can handle dynamics mismatch
and visual domain adaptation. This is a crucial next step towards enabling successful learning from
expert videos. Furthermore, throughout this work we have used adversarial learning for divergence
minimization between distributions. Adversarial learning can introduce optimization challenges
and stability issues. While we propose practical solutions to mitigate these problems, exploring
alternatives to this framework offers another interesting avenue for future research. Additionally,
from an experimental standpoint, our emphasis has been on robotics locomotion tasks. In the future,
we plan to address navigation tasks, considering not only third-view perspectives but also egocentric
camera viewpoints.
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