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Abstract
Existing works have made great progress in im-
proving adversarial robustness, but typically test
their method only on data from the same distribu-
tion as the training data, i.e. in-distribution (ID)
testing. As a result, it is unclear how such robust-
ness generalizes under input distribution shifts, i.e.
out-of-distribution (OOD) testing. To address this
issue we propose a benchmark named OODRo-
bustBench to comprehensively assess OOD ad-
versarial robustness using 23 dataset-wise shifts
(i.e. naturalistic shifts in input distribution) and
6 threat-wise shifts (i.e., unforeseen adversarial
threat models). OODRobustBench is used to as-
sess 706 robust models using 60.7K adversar-
ial evaluations. This large-scale analysis shows
that: 1) adversarial robustness suffers from a se-
vere OOD generalization issue; 2) ID robustness
correlates strongly with OOD robustness in a
positive linear way. The latter enables the pre-
diction of OOD robustness from ID robustness.
We then predict and verify that existing meth-
ods are unlikely to achieve high OOD robustness.
Novel methods are therefore required to achieve
OOD robustness beyond our prediction. To fa-
cilitate the development of these methods, we
investigate a wide range of techniques and iden-
tify several promising directions. Code and mod-
els are available at: https://github.com/
OODRobustBench/OODRobustBench.

1. Introduction
Adversarial attack poses a serious threat to real-world ma-
chine learning models, and various approaches have been
developed to defend against such attacks. Previous work
(Athalye et al., 2018) has shown that adversarial evaluation
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is critical to the study of adversarial robustness since an un-
reliable evaluation can often give a false sense of robustness.
However, we believe that even state-of-the-art evaluation
benchmarks (like RobustBench Croce et al., 2021) suffer
from a severe limitation: they only consider ID generaliza-
tion where test data comes from the same distribution as
the training data. Since distribution shifts are inevitable in
the real world, it is crucial to assess how adversarial robust-
ness is affected when the test distribution differs from the
training one.

Although OOD generalization has been extensively studied
for clean accuracy (Hendrycks & Dietterich, 2019; Taori
et al., 2020; Miller et al., 2021; Baek et al., 2022; Zhao et al.,
2022; Yang et al., 2022), there is little known about the OOD
generalization of adversarial robustness. To fill this void,
this paper presents for the first time, a comprehensive bench-
mark, OODRobustBench, for assessing out-of-distribution
adversarial robustness. Furthermore, it reports results of
a large-scale analysis of existing robust models performed
using the new benchmark to answer the following questions:

1. How resilient are current adversarially robust models
to distribution shift?

2. Can we predict OOD robustness from ID robustness?

3. How can we achieve OOD robustness?

OODRobustBench is analogous and complementary to Ro-
bustBench which is used for assessing in-distribution adver-
sarial robustness. It includes two categories of distribution
shift: dataset shift and threat shift (see Figure 1). Dataset
shift denotes test data that has different characteristics from
the training data due to varying conditions under which
the samples are collected: for images, these include but
are not limited to corruptions, background, and viewpoint.
OODRobustBench contains 23 such dataset shifts and as-
sesses adversarial robustness to such data using the attack
seen by the model during training. Threat shift denotes a
variation between training and test adversarial threat models.
In other words, threat shift assesses a model’s robustness to
unseen adversarial attacks applied to ID test data. OODRo-
bustBench employs six different types of threat shifts. Ad-
versarial robustness is evaluated for each type of shift to
comprehensively assess OOD robustness.
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Figure 1. The construction of OODRobustBench (top) and the correlation between ID and OOD robustness under 4 types of
distribution shift for CIFAR10 ℓ∞ (bottom). Each marker represents a model and is annotated by its training set-up. The solid blue line
is the fitted linear correlation. The dashed gray line (y = x) represents perfect generalization where OOD robustness equals ID robustness.
Deviation from the dashed line indicates robustness degradation under the respective distribution shift.

With OODRobustBench, we analyze the OOD generaliza-
tion behavior of 706 well-trained robust models (a total
of 60.7K adversarial evaluations). This model zoo covers
a diversity of architectures, robust training methods, data
augmentation techniques and training set-ups to ensure the
conclusions drawn from this assessment are general and
comprehensive. This large-scale analysis reveals that:

• Adversarial robustness suffers from a severe OOD
generalization issue. Robustness degrades on aver-
age by 18%/31%/24% under distribution shifts for CI-
FAR10 ℓ∞, CIFAR10 ℓ2 and ImageNet ℓ∞ respec-
tively.

• ID and OOD accuracy/robustness have a strong
linear correlation under many shifts (visualized in
Figure 1). This enables the prediction of OOD perfor-
mance from ID performance.

The findings above are rigorously identified by a large-scale,
systematic, analysis for the first time. Furthermore, our
analysis also offer several novel insights into the OOD gen-
eralization behavior of adversarial robustness:

• The higher the ID robustness of the model, the more
robustness degrades under distribution shift. This
suggests that while great progress has been made on
improving ID robustness, we only gain diminishing
returns under distribution shift.

• An abnormal catastrophic drop in robustness un-
der noise shifts is observed in some methods. For
instance, under Gaussian noise shift, HAT (Rade &
Moosavi-Dezfooli, 2022) suffers from a severe drop of
robustness by 46% whereas the average drop is 9%.

• Adversarial training boosts the correlation between
ID and OOD performance under corruption shifts,
and thus, improves the fidelity of using ID performance
for model selection and OOD performance prediction.

• ℓp robustness correlates poorly with non-ℓp robust-
ness. This suggests that non-ℓp robustness cannot be
predicted from ℓp robustness, and enhancing ℓp robust-
ness does not necessarily result in improved non-ℓp
robustness.

Last, we investigate how to achieve OOD adversarial ro-
bustness. First, based on the discovered linear trend, we
predict the best available OOD performance for the exist-
ing ℓp-based robustness methodology and find that existing
methods are unlikely to achieve high OOD adversarial
robustness (e.g. the predicted upper bound of OOD robust-
ness under the dataset shifts is only 43% on ImageNet ℓ∞).
Next, we examine a wide range of techniques for achieving
OOD adversarial robustness beyond the above prediction.
Most of these techniques, including training with extra data,
data augmentation, advanced model architectures, scaling-
up models and unsupervised representation learning, have
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limited or no benefit. However, we do identify several adver-
sarial training methods (Dai et al., 2022; Pang et al., 2020;
Ding et al., 2020; Bai et al., 2023) that have the potential to
exceed the prediction and produce higher OOD adversarial
robustness.

Overall, this work reveals that most existing robust models
including the state-of-the-art ones are vulnerable to distribu-
tion shifts and demonstrates that the existing approaches to
improve ID robustness may be insufficient to achieve high
OOD robustness. To ensure safe deployment in the wild, we
advocate for the assessment of OOD robustness in future
models and for the development of new approaches that
can cope with distribution shifts better and achieve OOD
robustness beyond our prediction.

2. Related Works
Robustness under dataset shift. Early work (Sehwag
et al., 2019) studied the generalization of robustness to novel
classes that are unseen during training. On the other hand,
our setup only considers the input distribution shift and not
the unforeseen classes. Recently, Sun et al. (2022b) stud-
ied the OOD generalization of certified robustness under
corruption shifts for a few state-of-the-art methods. In con-
trast, we focus on empirical robustness instead of certified
robustness. Alhamoud et al. (2023) is the most relevant
work. They studied the generalization of robustness from
multiple source domains to an unseen domain. Different
from them, the models we examine are trained on only one
source domain, which is the most common set-up in the
existing works of adversarial training (Croce et al., 2021).
Moreover, we also cover much more diverse distribution
shifts, models and training methods than Sun et al. (2022b)
and Alhamoud et al. (2023) so that the conclusion drawn in
this work is more general and comprehensive.

Robustness against unforeseen adversarial threat mod-
els. It was observed that naive adversarial training (Madry
et al., 2018) with only one single ℓp threat model generalizes
poorly to unforeseen ℓp threat models, e.g., higher perturba-
tion bound (Stutz et al., 2020), different p-norm (Tramer &
Boneh, 2019; Maini et al., 2020; Croce & Hein, 2022),
or non-ℓp threat models including color transformation
ReColor (Laidlaw & Feizi, 2019), spatial transformation
StAdv (Xiao et al., 2018), LPIPS-bounded attacks PPGD
and LPA (Laidlaw et al., 2021) and many others (Kaufmann
et al., 2023). We complement the existing works by con-
ducting a large-scale analysis on the unforeseen robustness
of ℓp robust models trained by varied methods and training
set-ups. We are thus able to provide new insights into the
generalization of robustness to unforeseen threat models
and identify effective yet previously unknown approaches
to enhance unforeseen robustness.

More related works are discussed in Appendix A.

3. OOD Adversarial Robustness Benchmark
3.1. OODRobustBench

OODRobustBench is designed to simulate the possible data
distribution shifts that might occur in the wild and evalu-
ate adversarial robustness in the face of them. It focuses
on two types of distribution shifts: dataset shift and threat
shift. Dataset shift, OODd, denotes the distributional dif-
ference between training and test raw datasets. Threat shift,
OODt, denotes the difference between training and evalua-
tion threat models, a special type of distribution shift. The
original test set drawn from the same distribution as the
training set is considered ID. The variant dataset with the
same classes yet where the distribution of the inputs differs
is considered OOD.

Dataset shift. To represent diverse data distribution in the
wild, OODRobustBench includes multiple types of dataset
shifts from two sources: natural and corruption. For natural
shifts, we adopt four different variant datasets per source
dataset: CIFAR10.1 (Recht et al., 2018), CIFAR10.2 (Lu
et al., 2020), CINIC (Darlow et al., 2018), and CIFAR10-
R (Hendrycks et al., 2021a) for CIFAR10, and ImageNet-
v2 (Recht et al., 2019), ImageNet-A (Hendrycks et al.,
2021b), ImageNet-R (Hendrycks et al., 2021a), and Object-
Net (Barbu et al., 2019) for ImageNet. For corruption shifts,
we adopt, from the corruption benchmarks (Hendrycks &
Dietterich, 2019), 15 types of common corruption in four
categories: Noise (gaussian, impulse, shot), Blur (motion,
defocus, glass, zoom), Weather (fog, snow, frost) and Digital
(brightness, contrast, elastic, pixelate, JPEG). Each corrup-
tion has five levels of severity. Overall, the dataset-shift
testbed consists of 79 (4 + 15× 5) subsets. Appendix B.1
gives the details of the above datasets and data processing.

Accuracy and robustness are evaluated on the ID and OOD
dataset. To compute the overall performance of OODd, we
first average the result of natural and corruption shifts:

Rc(f) = Ei∈{corruptions},j∈{severity}Ri,j(f) (1)
Rn(f) = Ei∈{naturals}Ri(f) (2)

where R(·) returns accuracy or adversarial robustness and
f denotes the model to be assessed. Next, we average the
above two results to get the overall performance of the
dataset shift as

Rood(f) = (Rc(f) +Rn(f))/2 (3)

To evaluate a model, OODRobustBench performs 80 (79
for OODd and 1 for ID) runs of adversarial evaluation. This
makes computationally expensive attacks like AutoAttack
(Croce & Hein, 2020) impractical to use. To balance effi-
ciency and effectiveness, we use MM5 (Gao et al., 2022) for
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Table 1. Performance, evaluated with OODRobustBench, of state-of-the-art models trained on CIFAR10 to be robust to ℓ∞ attacks.
The top 3 results for each metric are highlighted in bold and/or underscore. Significant ranking discrepancies are indicated in red. The
”OOD” column presents the average of the robustness to OODd and OODt. The complete leaderboard, featuring a total of 396 models, is
available at https://oodrobustbench.github.io/.

Method Model Accuracy (%) Robustness (%) Ranking

ID OODd ID OODd OODt OOD ID OOD

BDM (Wang et al., 2023) WRN-70-16 93.2 76.0 70.7 44.4 35.8 40.1 1 2
AS (Bai et al., 2023) WRN-70-16 + ResNet-152 95.2 79.0 69.5 43.3 46.7 45.0 2 1
DKL (Cui et al., 2023) WRN-28-10 92.1 74.8 67.7 42.4 35.4 38.9 3 4
BDM (Wang et al., 2023) WRN-28-10 92.4 75.0 67.3 42.3 35.2 38.8 4 5
FDA (Rebuffi et al., 2021) WRN-70-16 92.2 74.8 66.7 42.6 33.6 38.1 5 9
DDPM (Gowal et al., 2021b) WRN-70-16 88.7 70.6 66.2 42.7 33.6 38.2 6 8
Uncovering (Gowal et al., 2021a) WRN-70-16 91.1 73.2 66.0 42.5 34.0 38.2 7 7
RobustResNet (Huang et al., 2023a) WRN-A4 91.5 73.8 65.8 41.7 33.3 37.5 8 12
FDA (Rebuffi et al., 2021) WRN-106-16 88.5 70.6 64.8 41.4 33.9 37.6 9 10
DyART (Xu et al., 2022) WRN-28-10 93.6 77.2 64.7 39.6 37.0 38.3 10 6
PORT (Sehwag et al., 2022) ResNet-152 87.2 69.2 62.7 40.7 32.3 36.5 17 15
HAT (Rade & Moosavi-Dezfooli, 2022) WRN-28-10 88.1 69.4 60.9 35.1 30.2 32.6 22 57
AWP (Wu et al., 2020) WRN-28-10 88.2 69.8 60.1 38.2 31.3 34.8 26 27
RST (Carmon et al., 2019) WRN-28-10 89.6 71.5 59.8 36.7 31.1 33.9 28 38
MART (Wang et al., 2020) WRN-28-10 87.5 70.2 56.7 35.5 32.6 34.0 52 35
HE (Pang et al., 2020) WRN-34-20 85.1 66.9 53.8 32.4 46.2 39.3 70 3
FAT (Zhang et al., 2020) WRN-34-10 84.5 65.9 53.6 32.9 31.8 32.4 71 59
Overfitting (Rice et al., 2020) WRN-34-20 85.3 66.4 53.5 32.0 27.8 29.9 72 89
TRADES (Zhang et al., 2019) WRN-34-10 84.9 66.5 52.6 31.6 26.5 29.1 76 99
FBF (Wong et al., 2020) PreActResNet-18 83.3 64.9 43.3 25.3 24.8 25.0 111 112

robustness evaluation. MM5 is approximately 32× faster
than AutoAttack (Gao et al., 2022) while achieving similar
results, as verified in Appendix B.2 alongside the results
of evaluations using alternative attacks. The perturbation
bound ϵ is 8/255 for CIFAR10 ℓ∞, 0.5 for CIFAR10 ℓ2 and
4/255 for ImageNet ℓ∞.

Threat shift. OODRobustBench adopts six unforeseen at-
tacks as in Laidlaw et al. (2021); Dai et al. (2022) to simulate
threat shifts. They are categorized into two groups, ℓp and
non-ℓp, according to whether they are bounded by the ℓp
norm or not. The ℓp shift group includes MM attacks with
the same p-norm but larger ϵ and with different p-norm. The
non-ℓp shift group includes the imperceptible, PPGD and
LPA, and perceptible, ReColor and StAdv, attacks. The
overall robustness under threat shift, OODt, is simply the
mean of these six unforeseen attacks. These attacks are se-
lected because they cover a wide range of different scenarios
of threat shift and each of them is representative of its corre-
sponding category (100+ cites). We are aware of alternative
non-ℓp attacks (Kaufmann et al., 2023) but do not include
them due to the constraint of computational resource.

We follow the same setting as Laidlaw et al. (2021); Dai et al.
(2022) to configure the above attacks since this has been well
tested to be effective. The ℓp attacks use ϵ = 12/255 and
ϵ = 0.5 for ℓ∞ and ℓ2 threats on CIFAR10 ℓ∞, ϵ = 8/255
and ϵ = 1 for ℓ∞ and ℓ2 threats on CIFAR10 ℓ2 and on
ImageNet ℓ∞. The perturbation bound is 0.5 for PPGD,
0.5 for LPA, 0.05 for StAdv and 0.06 for ReColor. The
number of iterations is 40 for PPGD and LPA regardless of
dataset, is 100 for StAdv and ReColor on CIFAR10 and 200
on ImageNet.

Criteria for robust models are described in Appendix C.1
and are the same as RobustBench (Croce et al., 2021).

3.2. OOD Performance and Ranking

The benchmark results for CIFAR10 ℓ∞, ℓ2 and ImageNet
ℓ∞ are in Tables 1, 4 and 5 respectively.

Robustness degrades significantly under distribution
shift. For models trained to be robust for CIFAR10 ℓ∞ (Fig-
ure 2), CIFAR10 ℓ2 (Figure 9) and ImageNet ℓ∞ (Figure 10),
the average drop in robustness (ID adversarial accuracy -
OOD adversarial accuracy) is 18%/20%/27% under dataset
shift and 18%/42%/22% under threat shift. Robustness
degradation is much severe for a subset of shifts: whereas
the average robustness degradation of OODd is 18% on CI-
FAR10 ℓ∞, some shifts like CIFAR10-R, fog and contrast
degrade by 38%, 30% and 32%, respectively.

The higher the ID robustness of the model, the more
robustness degrades under the shifts. For example, the
top method in Table 1 degrades by 30% of robustness, while
the bottom method degrades by only 18%. This suggests
that while the great progress has been made on improving
ID robustness, we only gain diminishing returns under the
distribution shifts. Besides, in Figure 2, the distribution of
robustness degradation for most shifts spreads over a wide
range, suggesting a large variation across individual models.

Robustness degradation under noise shifts can be ab-
normally catastrophic (the outliers under noise shifts in
Figure 2). This issue is most severe on (Rade & Moosavi-
Dezfooli, 2022) whose robustness falls by 43%/46%/38%
under impulse/Gaussian/shot noise, whereas the average
drop is 12%/9%/8% (discussed in Appendix E). A similar
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Figure 2. Degradation of accuracy and robustness under various distribution shifts for CIFAR10 ℓ∞.

yet milder drop is also observed on Debenedetti et al. (2023)
and models trained with some advanced data augmentations
like AutoAugment (Cubuk et al., 2019).

Higher ID robustness generally implies higher OOD
robustness but not always (see the last two columns of
Tables 1, 4 and 5). For example, in Table 1, the ranking of
Rade & Moosavi-Dezfooli (2022) drops from 22 to 57 due
to catastrophic degradation, while the ranking of Pang et al.
(2020) jumps from 70 to 3 due to its superior robustness
under threat shift (analyzed in Section 6.3).

4. Linear Trend and OOD Prediction
It was previously observed that OOD accuracy is strongly
correlated with ID accuracy under many dataset shifts for
Standardly-Trained (ST) models (Miller et al., 2021). This
property is important since it enables the model selection
and OOD performance prediction through ID performance.
Nevertheless, it is unclear if such correlation still holds
for adversarial robustness. This is particularly intriguing
because accuracy and robustness usually go in opposite
directions: i.e. there is a trade-off between accuracy and
robustness (Tsipras et al., 2019). Furthermore, the threat
shifts as a scenario of OOD are unique to adversarial evalu-
ation and were, thus, never explored in the previous studies
of accuracy trends. Surprisingly, we find that ID and OOD
robustness also have a linear correlation under many distri-
bution shifts. It is even more surprising that the correlation
for AT models is much stronger than that for ST models.

The following result is based on a large-scale analysis in-
cluding over 60K OOD evaluations of 706 models. 187
of these models were retrieved from RobustBench or other
published works so as to include current state-of-the-art
methods, and the remaining models were trained by our-
selves. These models are mainly trained in three set-ups:
CIFAR10 ℓ∞, CIFAR10 ℓ2 and ImageNet ℓ∞. They cover
a wide range of model architectures, model sizes, data aug-
mentation methods, training and regularization techniques.
More detail is given in Appendix C.2.

4.1. Linear Trend under Dataset Shift

This section studies how ID and OOD accuracy/robustness
correlate under dataset shifts. We fit a linear regression on
four pairs of metrics (Acc-Acc, Rob-Rob, Acc-Rob, and
Rob-Acc) for each dataset shift and each training setup
(CIFAR10 ℓ∞, CIFAR10 ℓ2 and ImageNet ℓ∞). Taking
Acc-Rob as an example, a linear model is fitted with ID
accuracy as the observed variable x and OOD adversarial
robustness as the target variable y. The result for each shift
is given in Appendix H. Below are the major findings.

ID accuracy (resp. robustness) strongly correlates with
OOD accuracy (resp. robustness) in a linear relation-
ship for most dataset shifts. In Figures 3, 11 and 12, the
regression of Acc-Acc and Rob-Rob for most shifts achieve
very high R2 (> 0.9), i.e., their relationship can be well
explained by a linear model. This suggests for these shifts
ID performance is a good indication of OOD performance,
and more importantly, OOD performance can be reliably
predicted by ID performance using the fitted linear model.

Nevertheless, under some shifts, ID and OOD perfor-
mance are only weakly correlated. Natural shifts like
CIFAR10-R and ImageNet-A and corruption shifts like
noise, fog and contrast are observed to have relatively low
R2 across varied training set-ups in Figures 3, 11 and 12.
It can be seen from Figures 16 and 17 that the correla-
tion for these shifts becomes even weaker, and the gap of
R2 between them and the others expands, as more inferior
(relatively worse accuracy and/or robustness) models are
excluded from the regression. This suggests that the models
violating the linear trend are mostly high-performance. Ap-
pendix F discusses how inferior models are identified and
how they influence the correlation.

AT models exhibit a stronger linear correlation between
ID and OOD accuracy under most corruption shifts on CI-
FAR10 in Figures 3 and 11. The improvement is dramatic
for particular shifts. For example, R2 surges from nearly 0
(no linear correlation) for ST models to around 0.8 (evident
linear correlation) for AT models with Gaussian and shot
noise data shifts. These results are contrary to the previ-
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Figure 3. R2 of regression between ID and OOD performance for Standardly-Trained (ST) and Adversarially-Trained (AT) models
under various dataset shifts for CIFAR10 ℓ∞. Higher R2 implies stronger linear correlation. The results for ST models were copied
from (Miller et al., 2021). Some results of ST are missing (blank cells) because they were not reported in (Miller et al., 2021).

Figure 4. R2 of regression between ID seen robustness and
OOD unforeseen robustness, i.e., threat shift.

ous finding on ST models (Miller et al., 2021). However,
note that we measure linear correlation for the raw data,
whereas (Miller et al., 2021) applies a nonlinear transfor-
mation to the data to promote linearity. Overall, adversarial
training boosts linear correlation for corruption shifts, and
hence, improves the faithfulness of using ID performance
for model selection and OOD performance prediction.

We attribute this to AT improving accuracy on the corrupted
data (Kireev et al., 2022). Intuitively, ST models have less
correlated corruption accuracy because corruption signifi-
cantly impairs accuracy and such effect varies a lot among
models. Compared to ST, AT effectively mitigates the effect
of corruption on accuracy, and hence, reduces the diver-
gence of corruption accuracy so that corruption accuracy is
more correlated to ID accuracy.

Last, we observe no evident correlation when ID and
OOD metrics misalign, i.e., Acc-Rob and Rob-Acc for
CIFAR10, but weak correlation for ImageNet ℓ∞ as shown
in Figure 13. This is due to the varied trade-off between
accuracy and robustness of different models (discussed in
details in Appendix F.1)

4.2. Linear Trend under Threat Shift

This section studies the relationship between seen and un-
foreseen robustness. Both seen and unforeseen robustness
are computed using only ID data yet with different attacks.
Linear regression is then conducted between seen robustness
(x) and unforeseen robustness (y). The result of regression
for each threat shift is given in Appendix I. The sensitivity
of the regression results to the composition of the model
zoo is discussed in Appendix F.

ℓp robustness correlates poorly with non-ℓp robustness.
R2 of the regression between ID ℓp robustness and PPGD,

LPA and StAdv robustness is low in Figure 4. Particularly,
R2 is close to 0 for ℓ∞-LPA and ℓ∞-StAdv on CIFAR10
ℓ∞ suggesting no correlation at all. As shown in Figures 28
to 30, the increase in ID ℓp robustness leads to only slight
or even no improvement on unforeseen robustness esp. for
LPA and StAdv. Interestingly, despite poor correlation with
PPGD, LPA and StAdv, ID ℓp robustness is well correlated
with ReColor unforeseen robustness.

ℓp robustness correlates strongly with ℓp robustness of
different ϵ and p-norm. R2 of their regression is higher
than 0.7 across all assessed set-ups in Figure 4 suggesting
a consistently strong linear correlation. The correlation
between different ϵ of the same p-norm is stronger than the
correlation between different p-norm.

4.3. Unsupervised OOD Robustness Prediction

The linear trends discovered above enable the prediction of
OOD performance only if labeled OOD data is available.
There is a line of works (Baek et al., 2022; Deng & Zheng,
2021; Garg et al., 2021) showing that OOD accuracy can
be predicted with only unlabeled OOD data. We study here
if OOD adversarial robustness can be predicted, similarly,
in an unsupervised manner. We run the experiments with
CIFAR-10 ℓ∞ models for CIFAR-10.1 (Figure 5) and Im-
pulse noise (Figure 14) shifts and find that a linear trend is
also observed in the agreement between the predictions of
any pair of two robust models: R2 is 0.99 for CIFAR-10.1
shift and 0.95 for Impulse noise shift. This suggests that the
unsupervised method (Baek et al., 2022) is also effective in
predicting OOD adversarial robustness.

5. Incompetence in OOD Generalization
Based on the precise linear trend observed above for existing
robust training methods, we can predict the OOD perfor-
mance of a model trained by such a method from its ID
performance using the fitted linear model. Furthermore, we
can extrapolate from current trends to predict the maximum
OOD robustness that can be expected from a hypothetical
future model that achieves perfect robustness on ID data
(assuming the linear trend continues).

slope × 100 + intercept. (4)
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Figure 5. Correlation between ID and OOD prediction agree-
ment on adversarial examples for CIFAR10 ℓ∞ AT models.
Each point represents the prediction agreement of two models.

This estimates the best OOD performance one can expect
by fully exploiting existing robust training techniques. Note
that a wide range of models and techniques (Appendix C.2)
are covered by our correlation analysis so their, as well as
their variants’, OOD performance should be (approximately)
bounded by the predicted upper limit. The accuracy of the
prediction depends on the R2 of the correlation.

We find that continuously improving ID ℓp robustness
following existing practice is unlikely to achieve high
OOD adversarial robustness. The upper limit of OOD
robustness under dataset shift, OODd, is 66%/71%/43%
for CIFAR10 ℓ∞ (Figure 6), CIFAR10 ℓ2 (Figure 15) and
ImageNet ℓ∞ (Figure 15) respectively, and under threat
shift OODt is 52%/35%/52% correspondingly. Hence, if
current trends continue, the resulting models are likely to be
very unreliable in real-world applications. The vulnerability
of models is most evident for ImageNet ℓ∞ under dataset
shift and for CIFAR10 ℓ2 under threat shift. The expected
upper limit of OOD robustness also varies greatly among
individual shifts ranging from nearly 0 to 100%.

One of the accounts for this issue is that the existing
methods have poor conversion rate to OOD robustness
from ID robustness as shown by the slope of the linear
trend in Figures 6 and 15. Taking an example of fog shift
on ImageNet, the slope is roughly 0.1 so improving 10%
ID robustness can only lead to 1% improvement on fog
robustness. Besides, the upper limit and conversion rate
of robustness are observed to be much lower than those
of accuracy in Figure 15, suggesting the OOD generaliza-
tion issue is more severe for robustness. Overall, this issue
calls for developing novel methods that can improve OOD
robustness beyond our prediction.

6. Improving OOD Adversarial Robustness
To inspire the design of methods that have OOD robustness
exceeding the above prediction, this section investigates
methods that have the potential to be effective for boosting
the OOD generalization of robustness. The effectiveness is

Figure 6. The estimated upper limit of OOD robustness, and
the slope, of OOD robustness from ID robustness under various
distribution shifts for CIFAR10 ℓ∞. The estimated upper limit
is capped by 100% as robustness can not surpass 100%.

quantified by two metrics: OOD performance and effective
performance. Effective performance measures the extra
resilience of a model under distribution shift when compared
to a group of models by adapting the metric of “Effective
Robustness” (Taori et al., 2020):

R′(f) = Rood(f)− β(Rid(f)) (5)

where β(·) is a linear mapping from ID to OOD metric fit-
ted on a group of models. We name this metric effective
robustness (adversarial effective robustness) when Rid and
Rood are accuracy (robustness). A positive adversarial effec-
tive robustness means that f achieves adversarial robustness
above what the linear trend predicts based on its ID per-
formance, i.e., f is advantageous over the fitted models on
OOD generalization. Note that higher adversarial effective
robustness is not equivalent to higher OOD robustness since
the model may have a lower ID robustness. The specific
set-ups and detailed results of the following experiments are
described in Appendix G.

6.1. Data

Training with extra data boosts both robustness and ad-
versarial effective robustness compared to training schemes
without extra data (see Figure 7a). There is no clear advan-
tage to training with extra real data (Carmon et al., 2019)
rather than synthetic data (Gowal et al., 2021b) except for
the adversarial effective robustness under threat shift which
is improved more by real data.

Advanced data augmentation improves robustness under
both types of shifts and adversarial effective robustness un-
der threat shift over the baseline augmentation RandomCrop
(see Figure 7b). Nevertheless, advanced data augmentation
methods other than TA (Müller & Hutter, 2021) degrade
adversarial effective robustness under dataset shift.

6.2. Model

Advanced model architecture greatly boosts robustness
and adversarial effective robustness under both types of
shift over the baseline ResNet (He et al., 2016) (Figure 7c).
Among all tested architectures, ViT (Dosovitskiy et al.,
2021) achieves the highest adversarial effective robustness.
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(a) Extra data (b) Data aug. (c) Model architecture (d) Model size

(e) VR (f) HE (g) MMA (h) AS

Figure 7. The robustness (Rob.) and adversarial effective robustness (AER) of various robust techniques.

Scaling model up improves robustness under both types of
shift and adversarial effective robustness under dataset shift,
but dramatically impairs adversarial effective robustness un-
der threat shift (Figure 7d). The latter is because increasing
model size greatly improves ID robustness but not OOD
robustness so that the real OOD robustness is much below
the OOD robustness predicted by linear correlation.

6.3. Adversarial Training

VR (Dai et al., 2022), the state-of-the-art defense against
unforeseen attacks, greatly boosts adversarial effective ro-
bustness under threat shifts in spite of inferior ID robustness.
Surprisingly, VR also clearly boosts adversarial effective
robustness under dataset shift even though not designed for
dealing with these shifts.

Training methods HS (Pang et al., 2020), MMA (Ding et al.,
2020) and AS (Bai et al., 2023) achieve an AER of 16.22%,
10.74% and 9.41%, respectively, under threat shift, which
are much higher than the models trained with PGD. Impor-
tantly, in contrast to VR, these methods also improve ID
robustness resulting in a further boost on OOD robustness.
This makes them a potentially promising defense against
multi-attack (Dai et al., 2023).

6.4. OOD Generalization Methods

Two leading methods, CARD-Deck (Diffenderfer et al.,
2021) (ranked 1st) and PLAT (Kireev et al., 2022), from the
common corruptions leaderboard of RobustBench are evalu-
ated using our benchmark in Table 2. Despite the expected

remarkable OOD clean generalization under OODd shifts,
they offer little or no adversarial robustness regardless of ID
or OOD setting. It suggests that OOD generalization meth-
ods alone do not help OOD adversarial robustness unless
combined with adversarial training.

To test the effect of combining adversarial training with
OOD generalization method, we evaluate a recent attempt
in this direction, MSD+REx (Ibrahim et al., 2023). This
approach trains using the multi-attack defense MSD with
various attacks and applies REx (Krueger et al., 2021) by
treating different attacks as separate domains. Surprisingly,
as shown in Table 2, this purpose-built solution impairs
OOD adversarial robustness under both dataset and threat
shifts and offers no evident improvement in AER when
compared to supervised ℓp adversarial training.

While these findings suggest that this specific implementa-
tion might be ineffective, the combination of AT and OOD
methods remains a promising direction. Future work should
focus on a more careful design for this integration. One
potential strategy could be to treat different groups of data,
rather than attacks, as different domains like Huang et al.
(2023b).

6.5. Unsupervised Representation Learning

Unsupervised learning has been observed to train models
that generalize to distribution shifts better than supervised
learning (Shi et al., 2023; Shen et al., 2021). However, it is
unclear whether or not unsupervised learning will benefit
OOD adversarial robustness. To test this we evaluated a
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Table 2. The performance of non-single-ℓp defense and OOD generalization methods under distribution shift on CIFAR10 ℓ∞. The
AER of StAdv AT, PLAT and CARD-Deck is invalid (“-”) because of their (nearly) 0 ID/ODD robustness.

Defense Method Model ID OODd OODt

Acc. Rob. Acc. Rob. ER AER non-ℓp ℓp Avg.

Supervised ℓp defense PGD ℓp AT ResNet18 83.4 49.4 64.6 30.2 -1.1 0.2 19.1 45.5 27.9

Self-supervised ℓp defense ACL ResNet18 82.3 49.4 64.2 30.1 -0.6 0.1 20.2 45.1 28.5

non-ℓp attack defense

ReColor AT ResNet50 93.4 8.5 78.0 3.4 2.8 2.6 16.4 18.1 17.0
StAdv AT ResNet50 86.2 0.1 66.8 0.0 -1.6 - 9.5 3.4 7.4
PAT-Alexnet ResNet50 71.6 28.6 57.1 16.8 2.3 1.6 48.4 33.1 43.3
PAT-Self ResNet50 82.4 30.4 66.3 16.8 1.4 0.3 32.1 36.6 33.6

Unforeseen attack defense VR ResNet18 72.9 48.9 56.4 31.4 0.5 1.7 24.8 43.3 31.0
PAT+VR ResNet50 72.5 29.4 56.8 17.4 1.3 1.7 55.0 33.6 47.8

Composite attack defense GAT-f ResNet50 82.3 38.7 66.2 22.2 1.4 -0.2 14.8 17.0 15.5
GAT-fs ResNet50 82.1 41.9 65.7 24.8 1.2 0.1 17.2 18.3 17.5

Multi-attack defense
MAAT-Average ResNet50 86.8 39.9 70.7 22.4 1.7 -0.8 25.0 41.7 30.5
MAAT-Max ResNet50 84.0 25.6 68.1 13.1 1.8 0.0 30.2 29.8 30.0
MAAT-Random ResNet50 85.2 22.1 67.7 10.5 0.2 0.0 12.7 31.0 18.8

OOD generalization method PLAT ResNet18 94.7 0.1 80.3 0.0 4.0 - 0.0 0.0 0.0
CARD-Deck WRN-18-2 96.5 1.0 83.5 0.5 5.4 - 0.0 0.0 0.0

Multi-attack + OOD defense MSD+REx ResNet18 78.0 43.3 59.9 26.2 -0.7 0.5 19.0 40.4 26.1

model trained by Adversarial Contrastive Learning (ACL)
(Jiang et al., 2020) which combines self-supervised con-
trastive learning with adversarial training. The effective
robustness under dataset shift is 0.1% (Table 2), suggesting
only marginal benefit in improving OOD robustness.

6.6. Non-single-ℓp Defenses

This section evaluates the OOD generalization capability
of various defenses beyond the supervised single-attack ℓp
defense. We compared several specific methods, includ-
ing AT with the color-based attack ReColor (Laidlaw et al.,
2021), the spatial attack StAdv (Laidlaw et al., 2021), and
the LPIPS-bound attack PAT-Alexnet/Self (Laidlaw et al.,
2021). Additionally, we examined composite attacks de-
fense (e.g., color plus ℓp) GAT-f/fs (Hsiung et al., 2023) and
multiple attacks adversarial training (MAAT) (Tramer &
Boneh, 2019; Maini et al., 2020) involving ℓ2, ℓ∞, StAdv,
and ReColor. MAAT has three variants: ”Average” opti-
mizes the average loss across all attacks, ”Max” optimizes
the maximum loss across all attacks, and ”Random” selects
a random attack at each training iteration.

Unfortunately, none of these defenses achieve high OODd

ER and AER in Table 2, indicating that they are not sig-
nificantly better than the supervised single-attack ℓp AT at
handling OOD dataset distribution shifts. This reinforces
our conclusion that achieving OOD adversarial robustness
is challenging with existing methods and underscores the
need to develop new approaches that effectively address
distribution shifts.

While MAAT and PAT show substantial improvements over
ℓp AT in terms of robustness against non-ℓp attacks, this is
partly because some of the non-ℓp attacks used were already

encountered during their training, making them no longer
unforeseen. This highlights the difficulty in benchmarking
unforeseen robustness across different types of defenses.

6.7. Summary

The evaluated techniques, except for some AT methods (Sec-
tion 6.3), achieve relatively limited or even no adversarial
effective robustness. This suggests that applying them is
unlikely to significantly change the linear trend in Section 4
and thus the predicted upper limit of OOD robustness (Sec-
tion 5). In contrast, the methods identified in Section 6.3
show the promise in achieving OOD performance beyond
our prediction. Another promising direction is to combine
OOD generalization methods with adversarial training.

7. Conclusions
This work proposes a new benchmark to assess OOD ad-
versarial robustness, provides many insights into the gener-
alization of existing robust models under distribution shift
and identifies several robust interventions beneficial to OOD
generalization. We have analyzed the OOD robustness of
hundreds of diverse models to ensure that we obtain gener-
ally applicable insights. As we focus on general trends, our
analysis does not provide a detailed investigation into indi-
vidual methods or explain the observed outliers such as the
catastrophic robustness degradation. However, OODRobust-
Bench provides a tool for performing such more detailed
investigations in the future. It also provides a means of
measuring progress towards models that are more robust in
real-world conditions and will, hopefully, spur the future
development of such models.
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A. Additional Related Works
Except for a few exceptions (Geirhos et al., 2020; Sun et al., 2022a; Rusak et al., 2020; Ford et al., 2019), previous work on
generalization to input distribution shifts has not considered adversarial robustness. Hence, work on robustness to OOD
data and adversarial attacks has generally happened in parallel, as exemplified by RobustBench (Croce et al., 2021) which
provides independent benchmarks for assessing performance on corrupt data and adversarial threats.

A line of works (Tramer & Boneh, 2019; Maini et al., 2020) defends against a union of ℓp threat models by training with
multiple ℓp threat models jointly, which makes these threat models no longer unforeseen. PAT (Laidlaw et al., 2021) replaces
ℓp bound with LPIPS (Zhang et al., 2018) in adversarial training and achieves high robustness against several unforeseen
attacks. Alternatively, (Dai et al., 2022) proposes variation regularization in addition to ℓp adversarial training and improves
unforeseen robustness.

Robustness benchmarks. There is a line of works on benchmarking adversarial robustness, including Dong et al. (2020),
RobustBench (Croce et al., 2021), RobustART (Tang et al., 2022), MultiRobustBench (Dai et al., 2023), UA (Kaufmann
et al., 2023), and Liu et al. (2023). RobustBench focuses on ID adversarial evaluation. Dong et al. (2020) evaluates
adversarial robustness under ℓp threat shifts in addition to ID adversarial evaluation. RobustART, compared to Dong et al.
(2020), also supports the evaluation of OOD clean accuracy under dataset shifts. MultiRobustBench and UA both extend the
evaluation set to include more unforeseen attacks, assessing adversarial robustness under threat shifts. Liu et al. (2023) is
similar to RobustART but supports a larger number of OOD datasets. Compared to these benchmarks, OODRobustBench
is unique in supporting the evaluation of OOD adversarial robustness under dataset shifts while also incorporating the
functionalities of the other benchmarks.

A.1. Comparison with Related Works

Is the linear trend of robustness really expected given the linear trend of accuracy?

No. There is a well-known trade-off between accuracy and robustness in the ID setting (Tsipras et al., 2019). We further
confirm this fact for the models we evaluate in Figure 13 in the appendix. This means that accuracy and robustness usually
go in opposite directions making the linear trend we discover in both particularly interesting. Furthermore, the threat shifts
as a scenario of OOD are unique to adversarial evaluation and were thus never explored in the previous studies of accuracy
trends.

How does the linear trends observed by us differ from the previously discovered ones?

Robust models exhibit a stronger linear correlation between ID and OOD accuracy for most corruption shifts (Figure 3).
Particularly, the boost on linearity is dramatic for shifts including Impulse, Shot and Gaussian noises, Glass blur, Pixelate,
and JPEG. For instance, R2 surges from 0 (no linear correlation) for non-robust models to 0.84 (evident linear correlation)
for robust models with Gaussian noise data shifts. This suggests that, for robust models, predicting OOD accuracy from ID
accuracy is more faithful and applicable to more shifts.

The linear trend of robustness is even stronger than that of accuracy for dataset shifts (Figure 3) but with a lower slope
(Section 5). The latter leads to a predicted upper limit of OOD robustness that is way lower than that of OOD accuracy
suggesting that the OOD generalization of robustness is much more challenging.

How does our analysis differ from the similar analysis in the prior works?

The scale of these previous works is rather small. For instance, RobustBench observes linear correlation only for three shifts
on CIFAR-10 based on 39 models with either ResNet or WideResNet architectures. In such a narrow setting, it is actually
neither surprising to see a linear trend nor reliable for predicting OOD performance. By contrast, our conclusion is derived
from much more shifts on CIFAR-10 and ImageNet based on 706 models. Importantly, our model zoo covers a diverse set
of architectures, robust training methods, data augmentation techniques, and training set-ups. This makes our conclusion
more generalizable and the observed (almost perfect) linear trend much more significant.

Similarly, the existing works only test a few models under threat shifts. Those methods are usually just the baseline AT
method plus different architectures or the relevant defenses, e.g., jointly trained with multiple threats. It is unclear how

15



OODRobustBench: a benchmark and large-scale analysis of adversarial robustness under distribution shift

the state-of-the-art robust models perform under threat shifts. By conducting a large-scale analysis, we find that those
SOTA models generalize poorly to other threats while also discovering several methods that have relatively inferior ID
performance but superior OOD robustness under threat shift. Our analysis therefore facilitates future works in this direction
by identifying what techniques are ineffective and what are promising.

How does you benchmark differ from RobustBench?

Our benchmark focuses on OOD adversarial robustness while RobustBench focuses on ID adversarial robustness. Specifi-
cally, our benchmark contrasts RobustBench in the datasets and the attacks. We use CIFAR-10.1, CIFAR-10.2, CINIC, and
CIFAR-10-R (ImageNet-V2, ImagetNet-A, ImageNet-R, ObjectNet) to simulate input data distribution shift for the source
datasets CIFAR-10 (ImageNet), while RobustBench only uses the latter source datasets. We use PPGD, LPA, ReColor,
StAdv, Linf-12/255, L2-0.5 (PPGD, LPA, ReColor, StAdv, Linf-8/255, L2-1) to simulate threat shift for the training threats
Linf-8/255 (L2-0.5), while RobustBench only evaluates the same threats as the training ones.

B. Benchmark Set-up
B.1. Datasets

This section introduces the OOD datasets of natural shifts. For ImageNet, we have:

• ImageNet-V2 is a reproduction of ImageNet using a completely new set of images. It has the same 1000 classes as
ImageNet and each class has 10 images so 10K images in total.

• ImageNet-A is an adversarially-selected reproduction of ImageNet. The images in this dataset were selected to be
those most misclassified by an ensemble of ResNet-50s. It has 200 ImageNet classes and 7.5K images.

• ImageNet-R contains various artistic renditions of objects from ImageNet, so there is a domain shift. It has 30K
images and 200 ImageNet classes.

• ObjectNet is a large real-world dataset for object recognition. It is constructed with controls to randomize background,
object rotation and viewpoint. It has 313 classes but only 104 classes compatible with ImageNet classes so we only use
this subset. The selected subset includes 17.2K images.

For CIFAR10, we have:

• CIFAR10.1 is a reproduction of CIFAR10 using a completely new set of images. It has 2K images sampled from the
same source as CIFAR10, i.e., 80M TinyImages (Torralba et al., 2008). It has the same number of classes as CIFAR10.

• CIFAR10.2 is another reproduction of CIFAR10. It has 12K (10k for training and 2k for test) images sampled from the
same source as CIFAR10, i.e., 80M TinyImages. It has the same number of classes as CIFAR10. We only use the test
set of CIFAR10.2.

• CINIC is a downscaled subset of ImageNet with the same image resolution and classes as CIFAR10. Its test set has
90K images in total, of which 20K images are from CIFAR10 and 70K images are from ImageNet. We use only the
ImageNet part.

• CIFAR10-R is a new dataset created by us. The images in CIFAR10-R and CIFAR10 have different styles so there
is a domain shift. We follow the same procedure as CINIC to downscale the images from ImageNet-R to the same
resolution as CIFAR10 and select images from the classes of ImageNet corresponding to CIFAR10 classes. We follow
the same class mapping between ImageNet and CIFAR10 as CINIC. Note that ImageNet-R does not have images
of the ImageNet classes corresponding to CIFAR10 classes of ”airplane” and ”horse”, so there are only 8 classes in
CIFAR10-R.

In practice, we evaluate models using a random sample of 5K images from each of the ImageNet variant datasets, and 10K
images from each of the CIFAR10 variant datasets, if those datasets contain more images than that number. This is done to
accelerate the evaluation and follows the practice used in RobustBench (Croce et al., 2021).
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Figure 8. Comparison of MM5 adversarial accuracy against AutoAttack adversarial accuracy. Each data point represents a model.

Table 3. The accuracy and adversarial robustness evaluated by various attacks of models on CIFAR10 and ImageNet for ℓ∞ threat
model. These models are sourced from RobustBench respective leaderboards and identified by their RobustBench identifiers. The results
for corruption shifts are reported for severity level 3 .

Dataset Model ID OODd

Acc. PGD CW AA MM5 Acc. PGD CW AA MM5

CIFAR10

Wong2020Fast 83.3 46.6 46.3 43.2 43.3 65.0 27.6 27.3 24.8 25.0
Engstrom2019Robustness 87.0 52.3 52.6 49.3 49.7 70.6 31.7 31.8 29.1 29.3
Huang2020Self 83.5 56.2 54.0 52.9 53.0 65.0 34.4 32.9 31.7 31.8
Sehwag2021Proxy R18 84.6 58.7 57.2 55.6 55.7 67.0 37.8 36.5 34.6 34.8
Wang2020Improving 87.5 62.6 58.7 56.3 56.8 70.5 40.3 37.1 34.7 35.1

ImageNet

Salman2020Do R18 52.9 29.8 27.3 25.3 25.5 21.4 9.5 8.5 7.5 7.7
Wong2020Fast 55.6 30.0 28.9 26.3 26.8 21.6 8.7 8.5 7.2 7.5
Engstrom2019Robustness 62.5 32.9 32.6 29.2 29.8 27.2 10.1 10.2 8.4 8.7
Salman2020Do R50 64.1 39.0 37.6 34.7 35.0 27.6 12.5 12.0 10.5 10.7
Singh2023Revisiting ViT-S-ConvStem 72.6 51.4 50.6 48.1 48.5 39.8 19.8 19.4 17.5 17.7

The OODRobustBench framework is designed for easy integration of alternative datasets representing input data distribution
shifts. We plan to maintain and update our code to continually incorporate new OOD datasets such as ImageNet-V (Dong
et al., 2022), Stylized-ImageNet (Geirhos et al., 2019), and ImageNet-Sketch (Wang et al., 2019). For the latest developments,
we invite readers to visit our GitHub repository: https://github.com/OODRobustBench/OODRobustBench.

B.2. Verification of the Effectiveness of the MM5 Attack

B.2.1. COMPARISON OF MM5 AGAINST AUTOATTACK

To verify the effectiveness of MM5, we compare its result with the result of AutoAttack on the ID dataset across all publicly
available models from RobustBench for CIFAR10 ℓ∞, CIFAR10 ℓ2 and ImageNet ℓ∞. As shown in Figure 8, almost all
models1 are approximately on the line of y = x (gray dashed line) suggesting that their MM5 adversarial accuracy is very
close to AA adversarial accuracy. Specifically, the mean gap between MM5 and AA adversarial accuracy is 0.16 and the
standard deviation is 0.32.

B.2.2. COMPARISON OF MM5 AGAINST DIVERSE ATTACKS

To test the effectiveness of MM5 against various attacks, we selected 10 models from RobustBench and evaluated their
robustness against PGD100, CW100, and AutoAttack. As shown in Table 3, MM5 achieved an adversarial accuracy
comparable to that of the strongest attack, AutoAttack, in both in-distribution (ID) and out-of-distribution (OOD) settings.
This suggests that the MM5 attack is a reliable method for adversarial evaluation, even under distribution shifts.

1Two models, Ding et al. (2020) and Xu et al. (2022), are observed to have a slightly higher adversarial accuracy compared to the
corresponding AutoAttack results. We use MM+ (Gao et al., 2022) attack to evaluate these two models for a more reliable evaluation and
the result of MM+ is close to AutoAttack.
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C. Model Zoo
C.1. Criteria for Robust Models

We follow the same criteria as the popular benchmarks (RobustBench (Croce et al., 2021), MultiRobustBench (Dai et al.,
2023), etc), which only include robust models that (1) have in general non-zero gradients w.r.t. the inputs, (2) have a fully
deterministic forward pass (i.e. no randomness) and (3) do not have an optimization loop. These criteria include most
AT models, while excluding most preprocessing methods because they rely on randomness like Guo et al. (2018) or inner
optimization loop like Samangouei et al. (2018) which leads to false security, i.e., high robustness to the non-adaptive attack
but vulnerable to the adaptive attack.

Meanwhile, we acknowledge that evaluating dynamic preprocessing-based defenses is still an active area of research. It is
tricky (Croce et al., 2022), and there has not been a consensus on how to evaluate them. So now, we exclude them for a
more reliable evaluation. We will keep maintaining this benchmark, and we would be happy to include them in the future if
the community has reached a consensus on that (e.g., if these models are merged into RobustBench).

C.2. Model Zoo

Our model zoo consists of 706 models, of which:

• 396 models are trained on CIFAR10 by ℓ∞ 8/255

• 239 models are trained on CIFAR10 by ℓ2 0.5

• 56 models are trained on ImageNet by ℓ∞ 4/255

• 10 models are trained on CIFAR10 for non-ℓp adversarial robustness

• 5 models are trained on CIFAR10 for common corruption robustness

Among the above models, 66 models of CIFAR10 ℓ∞, 19 models of CIFAR10 ℓ2 and 18 models of ImageNet ℓ∞ are
retrieved from RobustBench. 84 models are retrieved from the published works including (Li et al., 2023; Li & Spratling,
2023c;b;a; Liu et al., 2023; Singh et al., 2023; Dai et al., 2022; Hsiung et al., 2023; Mao et al., 2022). The remaining models
are trained by ourselves.

We locally train additional models with varying architectures and training parameters to complement the public mod-
els from RobustBench on CIFAR-10. We consider 20 model architectures: DenseNet-121 (Huang et al., 2017),
GoogLeNet (Szegedy et al., 2015), Inception-V3 (Szegedy et al., 2016), VGG-11/13/16/19 (Simonyan & Zisserman,
2015), ResNet-34/50/101/152 (He et al., 2016), EfficientNet-B0 (Tan & Le, 2019), MobileNet-V2 (Sandler et al., 2018),
DLA (Yu et al., 2018), ResNeXt-29 (2x64d/4x64d/32x4d/8x64d) (Xie et al., 2017), SeNet-18 (Hu et al., 2018), and
ConvMixer (Trockman & Kolter, 2023). For each architecture, we vary the training procedure to obtain 15 models
across four adversarial training methods: PGD (Madry et al., 2018), TRADES (Zhang et al., 2019), PGD-SCORE, and
TRADES-SCORE (Pang et al., 2022).

We train all models under both ℓ∞ and ℓ2 threat models with the following steps:

1. We use PGD adversarial training to train eight models with batch size ∈ {128, 512}, a learning rate ∈ {0.1, 0.05}, and
weight decay ∈ {10−4, 10−5}. We also save the overall best hyperparameter choice. For the ℓ2 threat model, we fix
the learning rate to 0.1 since we observe that with ℓ∞, 0.1 is strictly better than 0.05.

2. Using the best hyperparameter choice, we train one model with PGD-SCORE, three with TRADES, and three with
TRADES-SCORE. For TRADES and TRADES-SCORE, we take their β parameter from 0.1, 0.3, 1.0.

After training, we observe that some locally trained models exhibit inferior accuracy and/or robustness that is abnormally
lower than others. The influence of inferior models on the correlation analysis is discussed in Appendix F. Finally, we filter
out all models with an overall performance (accuracy + robustness) below 110. This threshold is determined to exclude only
those evidently inferior models so that the size of model zoo (557 after filtering) is still large enough to ensure the generality
and comprehensiveness of the conclusions drawn on it.
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D. Additional Results
D.1. OOD Performance and Ranking

Table 4. Performance, evaluated with OODRobustBench, of state-of-the-art models trained on CIFAR10 to be robust to ℓ2 attacks.
Top 3 results under each metric are highlighted by bold and/or underscore. The column “OOD” gives the overall OOD robustness which
is the mean of the robustness to OODd and OODt.

Method Model Accuracy Robustness Ranking (Rob.)

ID OODd ID OODd OODt OOD ID OOD

BDM (Wang et al., 2023) WRN-70-16 95.54 80.04 84.97 60.83 36.65 48.74 1 1
BDM (Wang et al., 2023) WRN-28-10 95.16 79.28 83.69 59.39 35.04 47.21 2 2
FDA (Rebuffi et al., 2021) WRN-70-16 (extra) 95.74 79.90 82.36 57.94 31.71 44.82 3 4
Uncovering (Gowal et al., 2021a) WRN-70-16 (extra) 94.74 78.78 80.56 56.18 30.48 43.33 4 6
FDA (Rebuffi et al., 2021) WRN-70-16 (DDPM) 92.41 75.95 80.42 56.82 34.58 45.70 5 3
RATIO (Augustin et al., 2020) WRN-34-10 (extra) 93.97 77.40 78.81 54.71 31.62 43.16 6 7
FDA (Rebuffi et al., 2021) WRN-28-10 91.79 75.26 78.79 55.63 33.32 44.48 7 5
PORT (Sehwag et al., 2022) WRN-34-10 90.93 74.00 77.29 54.33 29.44 41.88 8 8
RATIO (Augustin et al., 2020) WRN-34-10 92.23 76.43 76.27 52.83 29.25 41.04 9 11
HATE (Rade & Moosavi-Dezfooli, 2022) PreActResNet-18 90.57 73.55 76.14 53.35 29.69 41.52 10 9
FDA (Rebuffi et al., 2021) RreActResNet-18 90.33 72.96 75.87 52.21 30.06 41.14 11 10
Uncovering (Gowal et al., 2021a) WRN-70-16 90.89 74.71 74.51 52.20 25.76 38.98 12 15
PORT (Sehwag et al., 2022) ResNet-18 89.76 72.31 74.42 51.76 26.68 39.22 13 13
AWP (Wu et al., 2020) WRN-34-10 88.51 71.23 73.66 51.53 27.50 39.52 14 12
RATIO (Augustin et al., 2020) ResNet-50 91.07 74.24 72.99 49.32 28.72 39.02 15 14
PGD10 (Engstrom et al., 2019) ResNet-50 90.83 73.85 69.25 46.65 17.71 32.18 16 16
Overfitting (Rice et al., 2020) PreActResNet-18 88.67 71.27 67.69 44.76 18.58 31.67 17 17
DDN (Rony et al., 2019) WRN-38-10 89.04 71.77 66.46 44.54 18.31 31.42 18 18
MMA (Ding et al., 2020) WRN-28-4 88.00 72.32 66.09 43.79 16.52 30.15 19 20

Table 5. Performance, evaluated with OODRobustBench, of state-of-the-art models trained on ImageNet to be robust to ℓ∞ attacks.
Top 3 results under each metric are highlighted by bold and/or underscore. The column “OOD” gives the overall OOD robustness which
is the mean of the robustness to OODd and OODt.

Method Model Accuracy Robustness Ranking (Rob.)

ID OODd ID OODd OODt OOD ID OOD

Comprehensive (Liu et al., 2023) Swin-L 78.92 45.84 59.82 23.59 29.88 26.74 1 1
Comprehensive (Liu et al., 2023) ConvNeXt-L 78.02 44.74 58.76 23.35 30.10 26.72 2 2
Revisiting (Singh et al., 2023) ConvNeXt-L-ConvStem 77.00 44.05 57.82 23.09 27.98 25.53 3 3
Comprehensive (Liu et al., 2023) Swin-B 76.16 42.58 56.26 21.45 27.02 24.24 4 7
Revisiting (Singh et al., 2023) ConvNeXt-B-ConvStem 75.88 42.29 56.24 21.77 27.89 24.83 5 5
Comprehensive (Liu et al., 2023) ConvNeXt-B 76.70 43.06 56.02 21.74 26.97 24.36 6 6
Revisiting (Singh et al., 2023) ViT-B-ConvStem 76.30 44.67 54.90 21.76 28.98 25.37 7 4
Revisiting (Singh et al., 2023) ConvNeXt-S-ConvStem 74.08 39.55 52.66 19.35 26.87 23.11 8 9
Revisiting (Singh et al., 2023) ConvNeXt-B 75.08 40.68 52.44 20.09 26.06 23.07 9 10
Comprehensive (Liu et al., 2023) Swin-S 75.20 40.84 52.10 19.67 24.73 22.20 10 12
Comprehensive (Liu et al., 2023) ConvNeXt-S 75.64 40.91 51.66 19.40 25.00 22.20 11 11
Revisiting (Singh et al., 2023) ConvNeXt-T-ConvStem 72.70 38.15 49.46 17.97 25.32 21.65 12 14
Revisiting (Singh et al., 2023) ViT-S-ConvStem 72.58 39.24 48.46 17.83 25.43 21.63 13 15
Revisiting (Singh et al., 2023) ViT-B 72.98 42.38 48.34 20.43 26.26 23.34 14 8
Light (Debenedetti et al., 2023) XCiT-L12 73.78 38.10 47.88 15.84 23.22 19.53 15 18
Revisiting (Singh et al., 2023) ViT-M 71.78 39.88 47.34 18.95 25.25 22.10 16 13
Revisiting (Singh et al., 2023) ConvNeXt-T 71.88 37.70 46.98 17.13 21.36 19.25 17 19
Easy (Mao et al., 2022) Swin-B 74.14 38.45 46.54 15.36 22.19 18.78 18 20
Comprehensive (Liu et al., 2023) ViT-B 72.84 39.88 45.90 18.01 22.95 20.48 19 16
Light (Debenedetti et al., 2023) XCiT-M12 74.04 37.00 45.76 14.73 22.82 18.77 20 21
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D.2. Performance Degradation Distribution

Figure 9. Degradation of accuracy and robustness under various distribution shifts for CIFAR10 ℓ2.

Figure 10. Degradation of accuracy and robustness under various distribution shifts for ImageNet ℓ∞.

D.3. Correlation Between ID and OOD Performance under Dataset Shifts

Figure 11. R2 of regression between ID and OOD performance for Standardly-Trained (ST) and Adversarially-Trained (AT)
models under dataset shifts for CIFAR10 ℓ2. Higher R2 implies stronger linear correlation. The result of ST is copied from (Miller
et al., 2021).

Figure 12. R2 of regression between ID and OOD performance for Standardly-Trained (ST) and Adversarially-Trained (AT)
models under dataset shifts for ImageNet ℓ∞. Higher R2 implies stronger linear correlation. The result of ST is copied from (Miller
et al., 2021).
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Figure 13. R2 of regression between ID and OOD performance for Adversarially-Trained (AT) models under various dataset shifts.
”Acc-Rob” denotes the linear model between ID accuracy (x) and OOD robustness (y) and ”Rob-Acc” for ID robustness (x) and OOD
accuracy (y).

D.4. Unsupervised OOD Robustness Prediction

Figure 14. Correlation between ID and OOD prediction agreement on adversarial examples for CIFAR10 ℓ∞ AT models.
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D.5. Predicted Upper Limit of OOD Accuracy and Robustness

(a) CIFAR10 ℓ∞ Accuracy.

(b) CIFAR10 ℓ2 Accuracy.

(c) CIFAR10 ℓ2 Robustness.

(d) ImageNet ℓ∞ Accuracy.

(e) ImageNet ℓ∞ Robustness.

Figure 15. The estimated upper limit of OOD performance and the conversion rate, a.k.a. slope, to OOD performance from ID
performance under various distribution shifts.
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E. Catastrophic Degradation of Robustness
We observe this issue on only one implementation, using WideResNet28-10 with extra synthetic data (model id:
Rade2021Helper ddpm on RobustBench), from Rade & Moosavi-Dezfooli (2022) for CIFAR10 ℓ∞. There are three
other implementations of this method on RobustBench. None of them, including the one using ResNet18 with extra synthetic
data, is observed to suffer from this issue. It seems that catastrophic degradation in this case is specific to the implementation
or training dynamics.

On the other hand, catastrophic degradation consistently happens on the models trained with AutoAugment or IDBH but not
other tested data augmentations. It suggests the possibility that a certain image transformation operation exclusively used by
AutoAugment and IDBH cause this issue. Besides, catastrophic degradation also consistently happens on the models trained
using the receipt of (Debenedetti et al., 2023) under Gaussian and shot noise shifts. However, it employs a wide range of
training techniques, so further experiments are required to identify the specific cause.

F. How Inferior Models Affect the Correlation Analysis
This section studies the influence of the construction of model zoo on the result of correlation. We use the overall performance
(accuracy + robustness) to filter out inferior models. As we increasing the threshold of overall performance for filtering, the
average overall performance of the model zoo increases, the number of included models decreases and the weight of the
models from other published sources on the regression grows up. Our locally trained models are normally inferior to the
public models regarding the performance since the latter employs better optimized and more effective training methods and
settings. The training methods and settings of public models are also much more diverse.

The correlation for particular shifts varies considerably as more inferior models removed. R2 declines considerably under
CIFAR10-R, noise, fog, glass blur, frost and contrast for both Acc-Acc and Rob-Rob on CIFAR10 ℓ∞ (Figure 16) and ℓ2
(Figure 17). A similar trend is also observed for threat shifts, ReColor and different p-norm for CIFAR10 ℓ∞ as shown
in Figure 18. It suggests that the weak correlation under these shifts mainly results from those high-performance public
models, and is likely related to the fact that these models include much diverse training methods and settings. For example,
all observed catastrophic degradation under the noise shifts occur in the public models. Note that the locally trained models
have a large diversity in model architectures particularly within the family of CNNs, but it seems that this architectural
diversity does not effect the correlation as much as other factors.

In contrast, correlation is improved for most threat shifts for CIFAR10 ℓ2 as shown in Figure 18. As shown in Figure 29, the
locally trained (inferior) models and the public (high-performance) models have divergent linear trends (most evident in the
plot of PPGD). That’s why removing models from either group will enhance the correlation. Note that such divergence is
not evident in the figures of CIFAR10 ℓ∞ (Figure 28) and ImageNet ℓ∞ (Figure 30).

F.1. No Evident Correlation when ID and OOD Metrics Misalign

Inferior models also cause OOD robustness to not consistently increase with the ID accuracy, i.e., the poor correlation
between ID accuracy (robustness) and OOD robustness (accuracy) because they have high accuracy yet poor robustness.
These models are mainly produced by some of our custom training receipts and take a considerable proportion of our
CIFAR-10 model zoo, whereas the model zoo of ImageNet is dominated by ones from public sources.
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(a) R2 of Acc-Acc.

(b) R2 of Rob-Rob.

Figure 16. The change of R2 under various dataset shifts as the models with lower overall performance are removed from
regression for CIFAR10 ℓ∞. Each row, with the filtering threshold labeled at the lead, corresponds to a new filtered model zoo and the
regression conducted it. ”NC” refers to No Custom models, so all models are retrieved from either RobustBench or other published works.
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(a) R2 of Acc-Acc.

(b) R2 of Rob-Rob.

Figure 17. The change of R2 under various dataset shifts as the models with lower overall performance are removed from
regression for CIFAR10 ℓ2. Each row, with the filtering threshold labeled at the lead, corresponds to a new filtered model zoo and the
regression conducted it. ”NC” refers to No Custom models, so all models are retrieved from either RobustBench or other published works.
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(a) R2 of ID seen vs. unforeseen robustness for CIFAR10 ℓ∞. (b) R2 ID seen vs. unforeseen robustness for CIFAR10 ℓ2.

Figure 18. The change of R2 under various threat shifts as the models with lower overall performance are removed from regression.
Each row, with the filtering threshold labeled at the lead, corresponds to a new filtered model zoo and the regression conducted it. ”NC”
refers to No Custom models, so all models are retrieved from either RobustBench or other published works.
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G. Methods for Improving OOD Adversarial Robustness
All models used in this analysis are retrieved from RobustBench or other published works to ensure they are well-trained by
the techniques to be examined. The specific experiment setting for each model can be found in its original paper.

Table 6. The effect of training with extra data on the OOD generalization of accuracy and robustness.

Dataset Threat Training Model Extra ID OODd OODt

Model Architecture Data Acc. Rob. Acc. Rob. EAcc. ERob. Rob. ERob.

CIFAR10 Linf
(Gowal
et al.,
2021a)

WideResNet70-16
- 85.29 57.24 66.98 35.90 -0.56 0.30 29.39 -2.18

Synthetic 88.74 66.24 70.68 42.76 -0.08 0.74 33.65 -2.13
Real 91.10 66.03 73.24 42.58 0.26 0.71 34.00 -1.67

Table 7. The effect of data augmentation on the OOD generalization of accuracy and robustness. The results reported in Figure 7b
are the mean of the results on ViT and WideResNets.

Dataset Threat Training Model Data ID OODd OODt

Model Architecture Augmentation Acc. Rob. Acc. Rob. EAcc. ERob. Rob. ERob.

CIFAR10 Linf
(Li &
Spratling,
2023c)

ViT-B

RandomCrop 83.23 47.02 66.48 28.85 0.86 0.54 27.36 0.57
Cutout 84.22 49.57 67.23 30.68 0.69 0.56 29.74 1.75
CutMix 80.92 47.45 63.93 29.89 0.48 1.27 30.48 3.49
TrivialAugment 80.33 46.61 64.59 29.56 1.69 1.54 30.40 3.80
AutoAugment 82.75 48.11 65.89 29.78 0.73 0.69 30.90 3.60
IDBH 86.92 51.55 70.51 32.08 1.45 0.54 30.59 1.68

WideResNet34-10

RandomCrop 86.52 52.42 68.11 31.55 -0.58 -0.61 26.47 -2.84
Cutout 86.77 53.31 68.40 31.03 -0.53 -1.76 27.00 -2.74
CutMix 87.41 53.89 68.97 31.71 -0.55 -1.50 28.50 -1.50
TrivialAugment 86.98 54.18 69.85 32.94 0.73 -0.47 28.62 -1.52
AutoAugment 87.93 55.10 70.05 32.17 0.04 -1.90 29.06 -1.51
IDBH 88.62 55.56 70.96 32.99 0.30 -1.41 28.58 -2.21

Table 8. The effect of model architecture on the OOD generalization of accuracy and robustness.

Dataset Threat Training Model Model ID OODd OODt

Model Architecture Size (M) Acc. Rob. Acc. Rob. EAcc. ERob. Rob. ERob.

ImageNet ℓ∞ (Liu et al., 2023)

ResNet152 60.19 70.92 43.62 34.43 14.13 -1.71 -1.26 17.23 -3.47
ConvNeXt-B 88.59 76.70 56.02 43.06 21.74 1.03 0.33 26.97 -0.63
ViT-B 86.57 72.84 45.90 39.88 18.01 1.78 1.51 22.95 0.98
Swin-B 87.77 76.16 56.26 42.58 21.45 1.10 -0.07 27.02 -0.72
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Table 9. The effect of model size on the OOD generalization of accuracy and robustness. The results reported in Figure 7d are averaged
over three architectures at the corresponding relatively model size. For example, the result of ”small” is averaged over WideResNet28-10,
ResNet50 and ConvNeXt-S-ConvStem.

Dataset Threat Training Model Model ID OODd OODt

Model Architecture Size Acc. Rob. Acc. Rob. EAcc. ERob. Rob. ERob.

CIFAR10 ℓ∞

(Rebuffi
et al.,
2021)

WideResNet28-10 36.48 87.33 60.88 69.35 38.54 -0.10 0.35 33.63 0.36
WideResNet70-16 266.80 88.54 64.33 70.62 41.01 0.04 0.35 34.12 -0.76
WideResNet106-16 415.48 88.50 64.82 70.65 41.43 0.11 0.42 33.90 -1.22

ImageNet ℓ∞

(Liu
et al.,
2023)

ResNet50 25.56 65.02 32.02 28.43 9.23 -1.68 -0.53 13.71 -0.52
ResNet101 44.55 68.34 39.76 31.74 12.44 -1.76 -1.08 16.82 -1.72
ResNet152 60.19 70.92 43.62 34.43 14.13 -1.71 -1.26 17.23 -3.47

ImageNet ℓ∞

(Singh
et al.,
2023)

ConvNeXt-S-ConvStem 50.26 74.08 52.66 39.55 19.35 0.19 -0.42 26.87 1.14
ConvNeXt-B-ConvStem 88.75 75.88 56.24 42.29 21.77 1.10 0.26 27.89 0.16
ConvNeXt-L-ConvStem 198.13 77.00 57.82 44.05 23.09 1.71 0.80 27.98 -0.63

Table 10. The effect of different adversarial training methods on the OOD generalization of accuracy and robustness.

Dataset Threat Training ID OODd OODt

Acc. Rob. Acc. Rob. EAcc. ERob. Rob. ERob.

CIFAR10 ℓ∞

PGD (Li & Spratling, 2023c) 86.52 52.42 68.11 31.55 -0.58 -0.61 26.47 -2.84
VR-ℓ∞ (Dai et al., 2022) 72.72 49.92 56.12 31.84 0.34 1.47 34.70 6.55

PGD (Rice et al., 2020) 85.34 53.52 66.46 32.07 -1.12 -0.88 27.89 -1.94
HE (Pang et al., 2020) 85.14 53.84 66.96 32.45 -0.43 -0.72 46.20 16.22

PGD (locally-trained) 80.44 38.98 62.40 22.18 -0.60 -0.39 21.77 -1.27
MMA (Ding et al., 2020) 84.37 41.86 68.22 24.65 1.54 0.02 35.12 10.74

PGD Gowal et al. (2021a) 91.10 66.03 73.24 42.58 0.26 0.71 34.00 -1.67
AS (Bai et al., 2023) 95.23 69.50 79.09 43.32 2.25 -1.03 46.71 9.41
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H. Plots of ID-OOD Correlation per Dataset Shift

Figure 19. Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness and OOD robustness (even rows) for
CIFAR10 ℓ∞ AT models.
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Figure 20. Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness and OOD robustness (even rows) for
CIFAR10 ℓ∞ AT models.
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Figure 21. Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness and OOD robustness (even rows) for
CIFAR10 ℓ∞ AT models.
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Figure 22. Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness and OOD robustness (even rows) for
CIFAR10 ℓ2 AT models.
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Figure 23. Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness and OOD robustness (even rows) for
CIFAR10 ℓ2 AT models.
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Figure 24. Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness and OOD robustness (even rows) for
CIFAR10 ℓ2 AT models.
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Figure 25. Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness and OOD robustness (even rows) for
ImageNet ℓ∞ AT models.
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Figure 26. Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness and OOD robustness (even rows) for
ImageNet ℓ∞ AT models.
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Figure 27. Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness and OOD robustness (even rows) for
ImageNet ℓ∞ AT models.
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I. Plots of ID-OOD Correlation per Threat Shift

Figure 28. Correlation between seen and unforeseen robustness on ID data for CIFAR10 ℓ∞ AT models.
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Figure 29. Correlation between seen and unforeseen robustness on ID data for CIFAR10 ℓ2 AT models.
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Figure 30. Correlation between seen and unforeseen robustness on ID data for ImageNet ℓ∞ AT models.
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