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Abstract

Graph Similarity Computation (GSC) is essential to wide-ranging graph appli-
cations such as retrieval, plagiarism/anomaly detection, etc. The exact computation
of graph similarity, e.g., Graph Edit Distance (GED), is an NP-hard problem that
cannot be exactly solved within an adequate time given large graphs. Thanks
to the strong representation power of graph neural network (GNN), a variety of
GNN-based inexact methods emerged. To capture the subtle difference across
graphs, the key success is designing the dense interaction with features fusion at the
early stage, which, however, is a trade-off between speed and accuracy. For Slow
Learning of graph similarity, this paper proposes a novel early-fusion approach by
designing a co-attention-based feature fusion network on multilevel GNN features.
To further improve the speed without much accuracy drop, we introduce an efficient
GSC solution by distilling the knowledge from the slow early-fusion model to
the student one for Fast Inference. Such a student model also enables the offline
collection of individual graph embeddings, speeding up the inference time in
orders. To address the instability through knowledge transfer, we decompose
the dynamic joint embedding into the static pseudo individual ones for precise
teacher-student alignment. The experimental analysis on the real-world datasets
demonstrates the superiority of our approach over the state-of-the-art methods on
both accuracy and efficiency. Particularly, we speed up the prior art by more than
10x on the benchmark AIDS data.

1 Introduction

Measuring the similarity across graphs, i.e., Graph Similarity Computation (GSC), is one of the
core problems of graph data mining, centered around by multiple downstream tasks such as graph
retrieval [1, 2], plagiarism/anomaly detection [22, 41], graph clustering [39], etc. As shown in Fig. 1,
the graph similarity can be defined as distances between graphs, such as Graph Edit Distance (GED).
The conventional solutions towards GSC are the exact computation of these graph distances, which,
however, is an NP-hard problem. Therefore, such exact solutions are less favorable when handling
large-scale graphs due to the expensive computation cost. Computational time, especially run time
in inference stage, is particularly important in industrial scenarios. As a motivating example, in
graph-structured molecules or chemical compounds query for in-silico drug screening, fast identifying
similar compounds in a large database is a key process [25].

Leveraging the strong representational power of graph neural network (GNN) [21, 13, 43, 42], the
GNN-based approximate GSC solutions have gained increasing popularity. To adapt GNNs to the
GSC task, the target similarity score (e.g., GED) is normalized into the range of (0, 1]. In this way, the
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Figure 1: Illustration of graph edit distance (GED), which is defined as the number of edit operations
in the optimal path to transform the source graph to the target graph.

GSC can be regarded as a single-value regression problem that outputs a similarity score given two
graphs as inputs. A standard design can be summarized as a twin of GNNs bridged by a co-attention
with a Multi-layer Perceptron (MLP) stacked as the regression head. Such approaches can be trained
in a fully supervised way using the Mean Square Error (MSE) loss computed over the ground truth
similarity score. Many GNN-based GSC methods [1, 2, 22] followed such strategy, which, however,
suffers from the fusion issue.

The paper presents a novel solution to both effectively and efficiently address the task of approximate
GSC. Compared to the commonly used graph convolutional network as the backbone [1, 2], this paper
adopts a more robust network, i.e., Graph Isomorphism Network (GIN) [43]. Cross-graph fusion is
essential to the model. The multi-scale features within different GIN layers are fused with a new
design. We have adopted an attention layer stacked over the concatenated cross-graph features for
smooth feature fusion. To this end, similar features will be assigned with more weights to contribute
to the desired task. Moreover, to make the model easier to deploy, we take an MLP for feature
learning which is simple but effective to achieve cutting-edge performance.
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Figure 2: Illustration of knowledge distillation
to achieve a fast model (right side) given a
early-fusion-based slow model (left side).

Intuitively, speed and accuracy can be considered
as a trade-off. GSC naturally requires dense con-
nections/interactions between the two input graphs,
which will consequently cause increasing compu-
tations as the cost. This paper focuses on the effi-
ciency of inference speed which can be addressed
by either model compression or a faster data load-
ing pipeline. Especially in industrial scenarios, the
raw graph data are usually pre-processed as the em-
beddings off-line that can be easily applied to the
real-time downstream tasks, e.g., molecular graph
retrieval. However, as shown in Fig. 2, most of the
co-attention-based GSC solutions employ feature
fusion in the early stage, which only outputs the
joint embedding of pairing graphs. Inspired by [26],
we propose a lightweight model that removes all the early feature fusion modules in the encoder
for efficient GSC. In this way, as shown in Fig. 2, the individual embedding of each graph can be
collected by a Siamese GNN. Such pairing graph embeddings will be fused with an attention layer to
predict the final similarity score.

To overcome the accuracy drop of such a small network, we take a novel paradigm of Knowledge
Distillation (KD) specifically designed for our task. As shown in Fig. 3, we propose an early-feature
fusion network regarded as the teacher model, and the student model is a siamese network without
co-attention. It is found that the direct distillation of joint embeddings fails to work where the KD
loss disturbs largely during training. To solve this, we generate the pseudo individual embeddings
of the teacher model and use them for KD by minimizing their relational distances [29]. To ensure
pseudo individual embeddings fully cover the information of raw graphs, we further apply an MSE
loss on the reconstructed joint embeddings concatenated from pseudo individual ones. We have
verified that there is only a marginal accuracy drop compared with the original joint embeddings,
which justifies the claim above. To sum up, our contributions can be summarized in three folds:

• We introduce a new early-feature fusion model to achieve the competitive accuracy by
designing a strong co-attention network and taking the GIN as the backbone.

• For efficient inference and off-line embedding collection, we propose a novel Knowledge
Distillation method for GSC where the joint embeddings are decomposed to distill.
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• Extensive experiments on the popular GED benchmarks demonstrate the superiority of our
model over the state-of-the-art GSC methods on both accuracy and efficiency. Compared
with the co-attention models, there is a more than 10 times faster in inference speed
compared with the best competitor on AIDS dataset. †

2 Related Works

2.1 Graph Similarity Computation (GSC)

Graph similarity computation measures the similarity of two given graphs, where similarity metrics
can be defined as Graph Edit-Distance [6], Graph Isomorphism [8], and Maximum Common Subgraph
[7]. Exact computation of these metrics is generally an NP-complete problem [48]. To speed up
the computation, kernel-based methods have been extensively proposed to approximate the exact
solvers [44, 3, 28, 45]. Recently, inspired by the strong representation power of deep neural network,
a number of neural network based methods have been proposed and demonstrated a huge success
[47, 1, 2, 24, 22, 41, 40]. Among them, regression-based similarity learning has a great promise due
to the competitive performance in both efficiency and efficacy [1, 22, 2]. The intuition here is to
learn an embedding vector using a graph neural network (GNN), and then measure the similarity of
graph embeddings. While such a graph-level embedding encoded by GNN alone is not sufficient
to well distinguish the nuances of subgraph level structures. To integrate subgraph information for
final similarity computation, several methods are proposed recently, such as node-level pairwise
comparison [1], cross-graph attention-based matching [22], multi-scale neighbor aggregation [2], etc.
Despite the superior efficacy reported under various metrics (such as Accuracy, Mean Squared Error
(mse), Spearman’s Rank Correlation Coefficient), the complex subgraph matching/fusion components
(termed ‘early-fusion’ in Fig. 2) in different layers dramatically slow down the similarity measure.
Moreover, early-fusion prevents pre-computing the embeddings for all candidate graphs for further
reducing inference time in the graph retrieval scenario. Motivated by this, we propose a slow learning
and fast inference method by leveraging the knowledge distillation idea to transfer the fine-grained
but slowly learned early-fusion teach model to the fast-inference student model.

2.2 Knowledge Distillation (KD)

Knowledge distillation is a general neural network training method, where a (typically pretrained)
teacher network is introduced to guide the learning of a student network. Its idea was first pioneered
by Bucilua et al. [5] to compress large machine learning models, where they proposed to transfer
the knowledge of a model ensemble into a neural network by labeling unlabeled data as transfer
set. This idea was later refined by Hinton et al. [16], where they adopted softened probabilities
of the teacher as a target for the student to learn and coined the term “knowledge distillation”.
Ever since, many methods have been proposed revolving around the central question in KD: “what
is the definition of knowledge to be distilled”. Popular definitions include feature distance [34],
feature map attention [46], feature distribution [30], activation boundary [15], inter-sample distance
structure [29, 32, 23, 36], and mutual information [35]. See [38, 11] for a more comprehensive
survey. [26] is proposed to distill separate models from a co-attention one. Despite the progress,
they mainly focus on convolutional neural networks for vision tasks (mainly image recognition) or
recurrent neural networks for sequential data tasks (e.g., for natural language understanding [19]).

3 Approach
This section will introduce 1) the architecture of the early-fusion network (i.e., teacher model); 2) the
KD process and its interpretation. Before that, we start from the formalized problem definition.

3.1 Problem Formulation
Formally, a graph G is defined upon the node set V and edge set E as G = (V, E). In specific, the
edge linking a pair of nodes including u ∈ V and v ∈ V can be denoted as the (u, v) ∈ E . In our
setting, all the accessible graphs are undirected, i.e., (u, v) ∈ E ↔ (v, u) ∈ E . The quantity of
nodes is represented as N = |V| . A convenient way to represent the graphs is the adjacency matrix

†The code is uploaded on https://github.com/canqin001/Efficient_Graph_Similarity_
Computation
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Figure 3: Overview of early-feature fusion network (Teacher Net) which is composed of a feature
encoder and a regression head as the whole. Within the the feature encoder, there are multiple
components including GIN as the backbone, the Embedding Fusion Network (EFN) and graph
pooling. The regression head is a MLP which projects the joint embedding into the desired similarity.

A ∈ R|V|×|V|. We denote the presence of edges as A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0
otherwise. Mostly, graph attributes (e.g., node labels) are available. Such node-level features can be
denoted as a real-value matrix X ∈ R|V|×m with the m dimension and the order of feature matrix X
is consistent with the adjacency matrix [12].

In GSC task, we have the access to pairing graphs Gi and Gj ∈ D, whereD = {G0,G1, ...} is the graph
set. The similarity of such two graphs can be represented as Graph Edit Distance (GED) or Maximum
Common Subgraph (MCS). As shown in Fig. 1, the GED is defined as the number of edit operations
in the optimal trajectory to transform the source graph to the target. The MCS is the maximum
subgraph common to both two graphs. To well fit GNN, the standard GED value is normalized as
the nGED, i.e., nGED(Gi,Gj) =

GED(Gi,Gj)
(|G1|+|G2|)/2 . In the following, nGED should be transformed to the

value ranging (0, 1] as the ground truth similarity score sij , i.e., sij = exp(−nGED(Gi,Gj)) ∈ S,
where S ∈ R|D|×|D| indicates the similarity matrix among all the graphs [2] .

3.2 Early-fusion Network (Teacher Model)

As discussed above, the key success of GSC is to enrich the interaction between the pairs of graphs
through feature extraction. Therefore, our teacher model follows the conventional approaches [1, 2,
22] that fuse the cross-graph features in the early stage. The architecture of our proposed early-fusion
(teacher) model is shown in Fig. 3. Specifically, we take the Graph Isomorphism Network (GIN) [43]
as the backbone model for abstract feature extraction. The multi-level features are encoded within
different convolution layers. For smooth fusion, we take an attention layer to enrich the representation
ability of the embeddings and take an MLP for further feature learning. More details are given below.

3.2.1 Graph Isomorphism Network (GIN)
The isomorphism on graphs, i.e., Gi ' Gj , is defined as a bijection between Gi and Gj : f : V (Gi)→
V (Gj). Graph isomorphism is highly related to GSC where the graphs isomorphism also represents
that the GED is 0: Gi ' Gj ↔ GED(Gi,Gj) = 0. Therefore, the strong power of GIN in representing
the graph isomorphism will be beneficial to GSC. GNN involves multiple learning steps, including
message passing, node feature updating, and readout. Let A : G → h ∈ Rd denote a general GNN.
The iterative updating of node features from the (k − 1)-th to the k-th layer can be formulated as:

h(k)v = φ
(
h(k−1)v , f(

{
h(k−1)u : u ∈ N (v)

}
)
)
, (1)

where N (v) is the set of neighbouring nodes of node v and its embedding at layer k is denoted as
h
(k)
v . φ and f represent the different mapping functions. In GIN, it has been discussed that the MLP

can model the f and φ very well due to the universal approximation theory [18, 17]. Therefore, the
composition of f (k+1) ◦ φ(k) is replaced by an MLP. The node embedding of GIN is updated as:

h(k)v = MLP(k)
(

(1 + ε(k)) · h(k−1)v +
∑

u∈N (v)

h(k−1)u

)
, (2)
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where ε(k) can be either learnable or fix parameter. To readout the graph’s global embedding, multiple
order-invariant mapping functions, such as ‘mean’, ‘max’ or ‘sum’, are useful for information
aggregation. In GIN, it has been verified that ‘sum’ is the most powerful one to learn and model all
the labels without the constraints of node quantities. Therefore, GIN takes the ‘sum’ as the aggregator:

hG = CONCAT
(

(sum(
{
h(k)v |v ∈ G

}
)|k = 0, ...,K

)
, (3)

where the features in all the layers, i.e., from layer 0 to layer K, are concatenated as the global feature.
In this paper, we take K as 2 where there are 3 GIN layers in total for feature learning.

3.2.2 Embedding Fusion Network (EFN)

Feature fusion across graphs is crucial for GSC. In this paper, we have proposed a novel Embedding
Fusion Network (EFN) as part of the whole framework to address such a challenge. The inputs
fed into EFN are graph-level embeddings, similar to [1]. In specific, given the node-level feature
X ∈ R|V|×m where the n-th row, xn ∈ Rm representing the embedding of node n, we firstly obtain
the global context c ∈ Rm as c = tanh( 1

NW
∑N
n=1 xn), where W ∈ Rm×m is a learnable matrix.

Then, there is a node-wise attention to be aware of the similarity between node and global context:
h =

∑N
n=1 σ(xTn c)xn where σ(·) is the sigmoid function and h ∈ Rm is the graph-level embedding.

The concatenated feature of graph i and j is denoted as hij = CONCAT(hi, hj) ∈ R2m. Since
features hi, hj come from different graphs, it is necessary to weigh the importance of each for the
selection of useful ones. The attention mechanism can help to explore the element-wise dependence
among the features of two graphs for concatenating them smoothly in the feature space. Therefore,
we apply an attention layer on the concatenated feature hij to accomplish this goal as:

h∗ij = MLP(ϕ(WUδ(WDhij)) · hij + hij), (4)

where h∗ij ∈ Rd is regarded as the joint embedding of graph i and graph j, and ϕ(·) and δ(·) denote
the sigmoid gating and ReLU function respectively. WD is the weight set of a NN layer, which acts
as downscaling with reduction ratio r assigned as 4. After ReLU activation, the low-dimension signal
is then increased to hij with the ratio r by a upscaling layer, whose weight set is denoted as WU .

As shown in Fig. 3, there is an additional EFN between the feature encoder and regression head. Such
EFN is applied to fusing the multi-level joint embeddings across pairing graphs. Following the similar
strategy, we firstly achieve the concatenated multi-level features hallij = CONCAT(h

(1)
ij , h

(2)
ij , h

(3)
ij ) ∈

R3d. Then, an EFN is applied to take the concatenated embedding hallij for multi-level feature fusion
as Eq. (4): h∗ij = EFN(hallij ) ∈ RD, where D is assigned as 16.

The whole early-fusion network consists of two components: the encoder net and the regression
net parameterized by ΘE and ΘR. As shown in Fig. 3, the GIN and EFNs stated above can be
summarized as an encoder net as h∗ij = E(Gi,Gj ,ΘE). Then, an MLP-based regression net is
attached to project the joint embedding h∗ij into the desired similarity score sij optimized by the MSE
loss as:

Lreg =
1

|D|
∑
i,j∈D

(
R(E(Gi,Gj ,ΘE),ΘR)− sij

)2
, (5)

where R(·) denotes the regression network and D represents the set of all the training graphs.

3.3 Efficient Graph Similarity Computation

Although the proposed early-fusion network can achieve the competitive results with a similar time
cost as previous co-attention-based methods [1, 2, 22], there are two crucial limitations on the
efficiency of such methods: 1) the individual graph embeddings are unable to collect; 2) there is still
a room to improve inference speed. In the paper, we have further taken the Knowledge Distillation
(KD) and linear regularization for embedding decomposition to address such two challenges.

3.3.1 Embedding Decomposition
To decompose the joint embedding h∗ij into the separate individual embeddings h∗i and h∗j is a
necessary step for KD. The primary reason for embedding decomposition is that we hope to achieve
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Figure 4: Illustration of embedding decomposition and KD process between the teacher and student
models. The pseudo individual embeddings, which are applied for KD, are collected as the linear
subtraction between joint embedding and duplicate graph embedding. More details are in Sec. 3.3.

the individual embeddings for offline storage. The other reason involves the stability of the knowledge
transfer. We found that distilling the joint embeddings between the teacher and student models failed
to work. More details about this point will be provided in the ablation study of Sec. 4.3. Such a
phenomenon indicates the necessity to separate the individual ones from the joint embedding. Then,
the individual features will be aligned between the teacher and student models through the KD loss.

The detail of the proposed linear embedding decomposition is shown in Fig. 4. The basic assumption
of this design is that the joint embedding might be represented as the linear combination of individual
embeddings in the high-dimensional feature space. Specifically, given graph A and graph B, the
joint embedding can be easily achieved as h∗AB = E(GA,GB). Moreover, we also have access to
the h∗AA = E(GA,GA) and h∗BB = E(GB ,GB) given duplicate inputs. Under the assumption of
linear combination, the pseudo individual graph embedding will be computed as h∗aB = h∗AB − h∗AA
where h∗aB is supposed to cover all the knowledge of graph B and parts of graph A. And the pseudo
individual graph embedding of graph A is collected in the same way: h∗Ab = h∗AB − h∗BB . To
ensure the consistence with the desired task, we later concatenate the pairs of pseudo individual
graph embeddings as h∗AaBb = CONCAT(h∗aB , h

∗
Ab) that redundantly covers the knowledge of joint

embedding h∗AB . Another MLP-based regression network R′ is applied to project it into the desired
target score R′(h∗AaBb,Θ

′
R) ∈ R optimized by the MSE loss as Eq. ( 4):

L
′

reg =
1

|D|
∑
i,j∈D

(
R′([hi,j − hi,i;hi,j − hj,j ],ΘR′)− sij

)2
, (6)

where hi,j = E(Gi,Gj ,ΘE), hi,i = E(Gi,Gi,ΘE), hj,j = E(Gj ,Gj ,ΘE) and [ · ; · ] represents
the operator of two features concatenation. More details and the verification of the proposed linear
embedding decomposition are provided in the ablation study of Sec. 4.3.

3.3.2 Knowledge Distillation (KD)
To get a fast model from a slow one, there are multiple compression solutions such as pruning,
quantitation, etc. This paper adopts a more practical and effective method to handle this issue by using
the knowledge distillation [26, 16]. As shown in Fig. 4, with the linear embedding decomposition of
the joint feature hTAB , we could obtain pseudo individual embeddings hTaB and hTAb of the teacher
model. For the student model, we take a siamese GIN as the feature encoder, i.e., hSA = GIN(GA,ΘS

E)
and hSB = GIN(GB ,ΘS

E). Then, the next step is to fuse the individual embeddings to achieve the
joint embedding as hSAB = I(hSA, h

S
B ,Θ

S
I ), where I(·) is a standard EFN. The pseudo individual

embeddings, i.e., hSAb and hSaB , is computed following the same strategy of the teacher network.

To enforce the student model to inherit the teacher model’s knowledge, it is necessary to minimize
the discrepancy of the pseudo individual features. Here we apply both the first order and second order
distance [26] for distillation. Therefore, the knowledge distillation (KD) loss is formulated as:

LKD(GA,GB) = α
2 (
∥∥hTAb − hSAb∥∥1 +

∥∥hTaA − hSaB∥∥1) + (1− α)lδ(ψD(hTAb, h
T
aB), ψD(hSAb, h

S
aB)),
(7)

where ψD(hi, hj) = ‖hi − hj‖1 is distance-wise potential function measuring the first order distance
in the same domain, and lδ is the Huber loss [26]. The second order distance is used to maintain the
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Table 1: Quantitative GED results of baselines and our method over AIDS, LINUX, IMDB and ALKANE.

Methods AIDS LINUX

MSE ↓ ρ ↑ τ ↑ p@10 ↑ p@20 ↑ MSE ↓ ρ ↑ τ ↑ p@10 ↑ p@20 ↑
Beam 12.09 0.609 0.463 0.481 0.493 9.268 0.827 0.714 0.973 0.924

Hungarian 25.30 0.510 0.378 0.360 0.392 29.81 0.638 0.517 0.913 0.836
VJ 29.16 0.517 0.383 0.310 0.345 63.86 0.581 0.450 0.287 0.251

GENN-A* 0.635 0.959 - 0.871 - 0.324 0.991 - 0.962 -
SimGNN 1.189 0.843 0.690 0.421 0.514 1.509 0.939 0.830 0.942 0.933

E-SimGNN 2.096 0.869 0.699 0.534 0.641 0.469 0.982 0.892 0.971 0.968
GMN 1.886 0.751 - 0.401 - 1.027 0.933 - 0.833 -

GraphSim 0.787 0.874 - 0.534 - 0.058 0.981 - 0.992 -
EGSC-T 1.601 0.901 0.739 0.658 0.729 0.163 0.988 0.908 0.994 0.998
EGSC-S 1.546 0.898 0.736 0.649 0.724 0.293 0.984 0.898 0.978 0.983

Methods IMDB ALKANE

MSE ↓ ρ ↑ τ ↑ p@10 ↑ p@20 ↑ MSE ↓ ρ ↑ τ ↑ p@10 ↑ p@20 ↑
SimGNN 1.264 0.878 0.770 0.759 0.777 2.446 0.859 0.686 0.87 0.782

E-SimGNN 1.148 0.864 0.75 0.806 0.807 1.622 0.886 0.722 0.982 0.955
GMN 4.422 0.725 - 0.604 - - - - - -

GraphSim 0.743 0.926 - 0.828 - - - - - -
EGSC-T 0.553 0.938 0.829 0.872 0.878 0.533 0.930 0.787 0.998 0.991
EGSC-S 0.581 0.935 0.826 0.857 0.869 1.198 0.899 0.741 0.993 0.978

relational information. α is a trade-off parameter assigned as 0.5. On the top of the KD layer, an
MLP-based regression network will be attached over the joint embedding hSAB . Apart from the KD
loss, there is a supervision (i.e., MSE) loss LSreg on the student model to fulfill the object of the task.

4 Experiments

Although our proposed approach can be generalized to different graph distances, we pick the Graph
Edit Distance (GED) as the evaluation task, which follows the standard protocol [1].

4.1 Setup
We deploy the GIN [43] as the backbone of the encoder network. The regression network is a
two-layer MLP with randomly initialed weights. Our proposed method includes two versions: 1) the
teacher network and the 2) student network which are denoted as EGSC-T and EGSC-S, respectively.
To optimize the proposed model, we take the Adam [20] as the optimizer based on PyTorch Geometric
(PyG) [31, 10]. The learning rate is assigned as 0.001 with weight decay 0.0005. The batch size is
128, and the model will be trained over 6, 000 epochs. Our implementation depends on PyG-based
re-implementations of SimGNN ‡ and Extended-SimGNN §. All experiments are run on the machine
with Intel i7-5930K CPU@3.50GHz with 64GB memory.

4.1.1 Benchmarks

Our proposed method has been evaluated over four popular datasets: AIDS, LINUX, IMDB and
ALKANE. We have used the standard dataloader, i.e., ‘GEDDataset’, directly provided in the PyG ¶.

• AIDS (i.e., AIDS700nef) is composed of 700 chemical compound graphs which is split into
560/140 for training and test. Each graph has 10 or less nodes assigned with 29 types of labels.
• LINUX dataset consists of program dependence graphs generated from the Linux kernel. Each
graph represents a function, where a node represents a statement and an edge means the dependency.
There are 1000 graphs in total with equal or less than 10 nodes each. The nodes have no labels.
• IMDB dataset (i.e., “IMDB-MULTI”) has 1,500 unlabeled graphs representing ego-networks of
movie actors/actresses. There will be an edge if the two actors/actresses show in the same movie.

‡https://github.com/benedekrozemberczki/SimGNN
§https://github.com/gospodima/Extended-SimGNN
¶https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/

datasets/ged_dataset.html#GEDDataset
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Table 2: Ablation study results over the AIDS and IMDB datasets. KD represents the knowledge distillation.

Methods AIDS IMDB

KD MSE ↓ ρ ↑ τ ↑ p@10 ↑ p@20 ↑ MSE ↓ ρ ↑ τ ↑ p@10 ↑ p@20 ↑
w/o Attn % 1.762 0.899 0.737 0.651 0.724 0.752 0.933 0.823 0.856 0.868
w/o GIN % 2.158 0.863 0.691 0.535 0.637 0.594 0.926 0.803 0.862 0.866

Single Level % 1.824 0.875 0.706 0.576 0.658 0.690 0.930 0.815 0.850 0.865
Student % 1.770 0.882 0.717 0.601 0.683 0.763 0.928 0.813 0.829 0.851
Teacher % 1.601 0.901 0.739 0.658 0.729 0.553 0.938 0.829 0.872 0.878

Joint Feat ! 2.258 0.874 0.703 0.588 0.679 1.032 0.872 0.761 0.814 0.829
1st Order ! 1.604 0.894 0.731 0.614 0.715 0.548 0.934 0.824 0.856 0.865
2nd Order ! 1.647 0.893 0.731 0.631 0.715 0.692 0.929 0.814 0.847 0.866
w/o L

′
reg ! 1.711 0.890 0.726 0.612 0.710 0.694 0.926 0.811 0.842 0.860

Student ! 1.546 0.898 0.736 0.649 0.724 0.581 0.935 0.826 0.857 0.869

Table 3: Inference time to solve GED computation on AIDS. Student-R means the student model with raw
input graphs. Student-F denotes that the embeddings are stored offline, which can be online loaded for inference.

Model GENN-A* SimGNN E-SimGNN E-SimGNN-F Teacher Student-R Student-F
Time 290.1h 11.139s 9.672s 3.464s 11.139s 10.149s 0.148s

• ALKANE [4] is a purely structural dataset containing 120 chemical compound graphs. All the
graphs are acyclic (i.e., trees) without node labels. There is no split of training and testing in the PyG.

4.1.2 Evaluation Metric
Mean Squared Error (MSE) (in the format of 10−3) is the most popular matrix that measures the
average squared error between the predicted scores with the ground-truth similarities. Spearman’s
Rank Correlation Coefficient (ρ) and Kendall’s Rank Correlation Coefficient (τ ) evaluate the
correlation of ranking-wise computed results and ground-truth results. Precision at k (p@k) is the
intersection of top k predicted results with the ground-truth top k over the value k.

4.1.3 Baselines
Beam [27] is a variant of the A* algorithm [14] in sub-exponential time by beam search. Hungar-
ian [33] is the cubic-time algorithm based on the Hungarian Algorithm for bipartite graph matching,
and the VJ [9] algorithm is a variant of Hungarian method. SimGNN [1] is a co-attention-based
GSC method that directly predicts the GED score given two input graphs. Extended-SimGNN§ (i.e.,
E-SimGNN) is an improved version of SimGNN using GIN as the backbone. GraphSim [2] is a
multi-scale model which fuses the cross-graph features in multiple GNN layers. GMN [22] is another
GNN-based method. It manages to fuse the cross-graph information with the node-level message
passing. GENN-A* [40] is the more recent work which applies the GNN to accelerate the hard GED
solvers such as A*. Beam, Hungarian, VJ and GENN-A* are the GED solvers that require to output
edit path, which, however, are hard to generalize to other GSC metrics. Most of the baseline results
are copied from their published papers, and we run the Extended-SimGNN for results collection.

(a) (b) (c)
Figure 5: t-SNE Visualization of joint embeddings on IMDB. (a)-(c) SimGNN; Extended-SimGNN;
Our Teacher Model. The color of dots represent the similarity score decreasing from 1 to 0.

4.2 Quantitative Results
The quantitative results on GED are summarized in Tab. 1. The results of SimGNN on ALKANE are
run by us. It is easily observed that the proposed methods, including both the early-fusion model (i.e.,
teacher model) and student model, outperform the baselines on most of the scenarios. Although ours
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(a) (b) (c) (d)
Figure 6: The curve of losses through KD. (a)-(d): Training and validation MSE loss on AIDS;
Training and validation MSE loss on IMDB; KD loss on AIDS; KD loss on IMDB;

are beaten by GENN-A* in some cases, the proposed approaches have the superiority in extensibility
and scalability since there is no need to output the edit path step-by-step. On the IMDB and ALKANE
datasets, the teacher model obviously outperforms the baseline ones with a large margin. Comparing
the performance of teacher and student model, there is a slight superiority of the former one in most
of the cases. While the student model beats the teacher on the MSE metric of the AIDS dataset,
which means the reducing model redundancy can further improve the performance in some cases.

4.3 Ablation Study
To investigate the effects of each module, we introduce the ablation study on the AIDS and IMDB
datasets in Tab. 2 and provide some visualization results in the Subsection 4.5. As shown in Tab. 2,
the w/o KD setting has five different components including: without attention in EFN; taking GCN
as the backbone (i.e., w/o GIN) to analyze the effects of GIN; Single Level meaning only taking the
final-layer GIN feature for embedding fusion; Student and Teacher. It is reasonable to compare the
student models with or without KD. By comparing such two results, the with-KD model has a strong
superiority over the latter one. And we can easily find that the teacher model should be regarded
as the upper bound of the with-KD student model. Considering the process of KD, the embedding
decomposition proves to be useful since the joint feature KD (i.e., Joint Feat) is largely inferior to the
pseudo individual one. Although there is no much difference between the first-order and second-order
distances, the combination of such two distances is helpful to boost the overall performance.

4.4 Inference Time
The comparison on inference time on the whole testing set is shown in the Tab. 3 where the Hungarian
and GENN-A* are copied from [40] and others are run by our own. In the Tab. 2 of [40], whose
reported time is for one pair of graphs, we have transformed such a time into the whole testing set
time as: OnePairT ime × DataNumber, i.e., 290.1h = 29.915s × 78400. The student model
beats other methods in two orders in the case of embedding-based inference. Such results sufficiently
indicate the high efficiency of our siamese-based student model in the GSC task, which has the
potential for real-time setting.

4.5 Analysis and Visualization
Convergence Analysis. We evaluate the convergence of baseline methods as well as our proposed
methods on the ablation scenarios in Fig. 6. Comparing the sub-figures (a) and (b), we can clearly
see that the proposed method (i.e., ‘both’) reaches the lower MSE loss through iteration. And the
models turn to converge after 5,000 – 5,500 epochs which makes 6,000 a good choice. Moreover, the
Val-both loss is highly overlapped with the training loss (i.e., ‘Train-both’), which means that there is
no clear overfitting of our models. In the KD case, the second-order loss is harder to minimize.

Feature t-SNE Visualization. As illustrated in Fig. 5, we employ the t-SNE algorithm [37] to
visualize joint embeddings obtained by the encoder given a fixed query graph. The features learned
by our approach are more clustered and separable in comparison with (a) and (b).

Example Ranking Results. As shown in Fig. 7, there are no clear differences and errors in the top
5 ranking results. While, the baselines fail to rank the correct graphs in the later sequence, which
indicates the superiority of our teacher model in handling the more challenging cases.
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Figure 7: Ranking results of SimGNN, E-SimGNN and our teacher model on IMDB. ∆, i.e.,
∆ = |GEDpred −GEDgt|, represents the absolute difference between the ground truth GED and
the GED of predicted result.

5 Conclusion

This paper proposes a novel GSC approach for fast inference based on the slow learning. The
slow learning involves designing a co-attention-based feature fusion network on multilevel GNN
features that achieves cutting-edge accuracy. To further accelerate the inference speed without much
accuracy drop, we apply the knowledge distillation to compress the proposed co-attention network,
i.e., teacher model, to the student one. Moreover, such a student model also enables the offline
collection of individual graph embeddings, which is beneficial for online retrieval. We decompose
the joint embedding into the pseudo individual ones linearly for precise teacher-student alignment
to address the instability through knowledge transfer. The experiments on four real-world datasets
demonstrate our approach’s superiority over the previous methods on both accuracy and efficiency.

Acknowledgments. Thanks to the grant from Adobe Research to support this project.
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