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Abstract
Spiking Neural Networks (SNNs) emulate the
integrated-fire-leak mechanism found in biolog-
ical neurons, offering a compelling combination
of biological realism and energy efficiency. In
recent years, they have gained considerable re-
search interest. However, existing SNNs predom-
inantly rely on the Leaky Integrate-and-Fire (LIF)
model and are primarily suited for simple, static
tasks. They lack the ability to effectively model
long-term temporal dependencies and facilitate
spatial information interaction, which is crucial
for tackling complex, dynamic spatio-temporal
prediction tasks. To tackle these challenges, this
paper draws inspiration from the concept of au-
taptic synapses in biology and proposes a novel
Spatio-Temporal Circuit (STC) model. The STC
model integrates two learnable adaptive pathways,
enhancing the spiking neurons’ temporal memory
and spatial coordination. We conduct a theoret-
ical analysis of the dynamic parameters in the
STC model, highlighting their contribution in es-
tablishing long-term memory and mitigating the
issue of gradient vanishing. Through extensive ex-
periments on multiple spatio-temporal prediction
datasets, we demonstrate that our model outper-
forms other adaptive models. Furthermore, our
model is compatible with existing spiking neuron
models, thereby augmenting their dynamic rep-
resentations. In essence, our work enriches the
specificity and topological complexity of SNNs.

1. Introduction
Spiking Neural Networks (SNNs) (Maass, 1997) have
emerged as a promising paradigm for brain-inspired com-
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putation, garnering considerable attention due to their bi-
ological plausibility and energy efficiency in comparison
to Artificial Neural Networks (ANNs). Similar to real bi-
ological neurons, the fundamental computational units in
SNNs, known as spiking neurons, exhibit diverse dynamics
and possess the ability to process both temporal and spa-
tial information concurrently. Information is encoded and
transmitted between spiking neurons through binary spike
signals. These spike signals are sparse and event-driven,
endowing SNNs deployed on neuromorphic hardware with
significant advantages in terms of computational efficiency
and energy consumption (Roy et al., 2019; Pei et al., 2019;
Shi et al., 2024). Moreover, SNNs offer greater flexibility in
integrating relevant biological mechanisms and leveraging
insights from neuroscience to address persistent challenges
encountered in ANN models, such as catastrophic forget-
ting (Zhang et al., 2023b) and robustness (Chen et al., 2022).

Due to the non-differentiable nature of the spiking process,
training SNNs directly through backpropagation has been
a challenging task. However, the development of surrogate
gradient approaches (Wu et al., 2018; Neftci et al., 2019) has
significantly advanced the training of SNNs. Presently, it is
feasible to train SNNs with hundreds of layers (Fang et al.,
2021a), achieving performance comparable to state-of-the-
art ANNs in tasks like image and speech classification (Deng
et al., 2022; Guo et al., 2022; Yin et al., 2021). Nonetheless,
these tasks primarily focus on static feature recognition. It
has been observed that the widely adopted LIF model (Ger-
stner & Kistler, 2002), which serves as a standard spiking
neuron model, exhibits limitations in capturing deep spatio-
temporal information features and modeling spatio-temporal
dependencies. As a result, SNNs face notable constraints
when dealing with spatio-temporal prediction tasks.

In contrast, all organisms live in a dynamically changing
world where we frequently encounter complex, dynamic,
and uncertain tasks. The brain is highly specialized (Koch
& Laurent, 1999), comprising numerous distinct types of
neurons that exhibit diverse dynamic behaviors and charac-
teristics (Harris & Shepherd, 2015; Yao et al., 2021), along
with a variety of connectivity patterns (De Wit & Ghosh,
2016; Sanes & Zipursky, 2020). This intricate and complex
topology has been demonstrated to allow the brain to re-
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spond differently to various stimuli and tasks (Golomb &
Rinzel, 1993; Rich et al., 2022). The crucial factor enabling
the brain to excel in addressing dynamic problems lies in
its capacity to integrate and analyze information at different
levels and scales (Hutt et al., 2023; Gast et al., 2024).

In this paper, we propose the Spatio-Temporal Circuit
Leaky Integrate-and-Fire (STC-LIF) model, a novel spatio-
temporal self-connection model, inspired by biological au-
taptic synapses to enhance the specificity and topological
complexity of SNNs, thereby improving their performance
on spatio-temporal tasks. The STC-LIF model incorpo-
rates the axon-dendrite circuit and axon-soma circuit, which
dynamically regulate the input current and historical infor-
mation through proportional control. By leveraging this
self-connection circuit, our model effectively promotes the
interaction of spiking neurons in both spatial and temporal
dimensions. The main contribution can be summarized as:

• We conduct a comprehensive analysis of LIF and its
variants in spatio-temporal predictive learning, and
identify the limitations of modeling long-term depen-
dency and representing spatio-temporal information.

• We propose the STC-LIF model, which is inspired
by biological autaptic synapses, to enhance the ability
to extract spatio-temporal features and model spatio-
temporal dependencies.

• Experimental results demonstrate the effectiveness of
the spatio-temporal self-connected circuit in improving
the learning of SNNs. Our method achieves remarkable
improvements in various spatio-temporal prediction
datasets, surpassing other adaptive neuron models.

• The concept of spatio-temporal self-connection can be
easily transferred and scaled. We extend the applica-
tion of this method to Parametric Leaky Integrate-and-
Fire (PLIF) and Learnable Multi-Hierarchica (LM-H)
models, achieving significant performance improve-
ments in spatio-temporal prediction tasks.

2. Related Work
2.1. Learning of Spiking Neural Networks

The learning algorithms for SNNs can be divided into three
main approaches: unsupervised learning, ANN-to-SNN con-
version, and supervised learning. Unsupervised learning
approaches primarily utilize bio-plausible learning rules,
such as Hebbian learning (Hebb, 2005) and Spike-Timing-
Dependent Plasticity (Bi & Poo, 1998). These optimization
methods enable local plasticity learning based on the precise
timing of spikes, aligning with the inherent characteristics
of SNNs. However, they are typically limited to shallow
networks (Diehl & Cook, 2015; Lee et al., 2018; Liu & Yue,
2018). When applied to deep networks, unsupervised learn-
ing methods necessitate combination with other techniques

like clustering algorithms (Lu & Sengupta, 2023).

The second approach involves converting pre-trained ANNs
into SNNs without the need for additional training. Early
works (Diehl et al., 2015; Rueckauer et al., 2017) focused
on approximating the ReLU function using the firing rate
of spiking neurons. While these methods achieved lossless
accuracy, they required long simulation time steps. More
recent research focuses on reducing conversion error to en-
hance performance at low latency. These techniques include
initial potential compensation (Bu et al., 2022a), revised
activation function (Bu et al., 2022b; Deng & Gu, 2021),
and spike calibrating (Hao et al., 2023a).

The supervised learning approach based on Backpropaga-
tion Through Time (BPTT) draws inspiration from the
learning of recurrent neural networks. Due to the non-
differentiability of the step function, a surrogate function
is often used to approximate the gradient (Wu et al., 2018;
Neftci et al., 2019). This method enhances the stability and
effectiveness of SNN training, serving as a fundamental
technique in SNN research (Zenke & Vogels, 2021; Stewart
& Neftci, 2022; Lee et al., 2020). To further enhance the per-
formance of SNN, Wang et al. (2023) and Deng et al. (2023)
introduced adaptive gradient error computation to address
the gradient mismatch between the surrogate and the origi-
nal functions. Additionally, developing new normalization
techniques (Wu et al., 2019; Zheng et al., 2021; Duan et al.,
2022; Kim & Panda, 2021) and residual connections (Fang
et al., 2021a) can significantly enhance the convergence
speed and stability of deep SNNs. Xiao et al. (2022) and
Zhu et al. (2024) implemented online training for SNNs,
largely reducing the memory cost for GPU training.

2.2. Adaptive Spiking Neural Models

The fixed-parameter spiking neuron models commonly used
for training and inference impose limitations on the rep-
resentational capacity of SNNs. Bellec (2018) associated
the firing threshold range with the spiking activity of the
network during training, improving the dynamics of spiking
neurons. To further enhance the adaptability of spiking neu-
rons, researchers introduced learnable membrane leakage
parameters and threshold parameters (Rathi & Roy, 2021;
Fang et al., 2021b; Wu et al., 2021). GLIF (Yao et al., 2022)
utilized gating factors to control the neuronal dynamical
patterns, simulating different biological characteristics to
expand the representation space and improve heterogene-
ity. To mitigate the issues of gradient vanishing and di-
vergence, TC-LIF (Zhang et al., 2023a) and LM-H (Hao
et al., 2023b) introduced dual membrane potentials and
corresponding learnable parameters. These modifications
significantly enhanced the adaptability of SNNs. However,
despite enriching the representation space and adaptability,
the model parameters of these approaches remained fixed
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during the inference stage. This limitation evidently reduced
the generalization capability of SNNs when confronted with
dynamically changing data.

3. Preliminaries
3.1. Vanilla LIF Model

The vanilla Leaky Integrate-and-Fire (LIF) model is cur-
rently the most commonly used spiking neuron model in
SNNs. The neural dynamics of the LIF model incorporate
three processes of biological neurons (Gerstner et al., 2014),
including integration, firing, and leakage. These processes
can be described by the following equations (Figure 1(b)):

xl[t] = W lsl−1[t] (1)

ml[t] = αlvl[t− 1] + (1− αl)xl[t] (2)

sl[t] = H(ml[t]− vth) (3)

vl[t] = ml[t]− vths
l[t] (4)

Here, xl[t] represents the synaptic current input to layer l at
time-step t from presynaptic neurons, and sl[t] represents
the spike firing of the neurons in layer l at time-step t, the
element of which equals 1 if the corresponding neuron fires
and 0 otherwise. The parameter W l denotes the synaptic
weight between layer l and the previous layer, l − 1. ml[t]
and vl[t] represent the membrane potential of neurons in
layer l before and after firing, respectively. αlis the mem-
brane constant that controls the decay ratio of input and
historical information, and it ranges from 0 to 1. When
Eq. (2) changes to ml[t] = vl[t − 1] + (1 − αl)xl[t], the
vanilla LIF model degenerates to simple Integrate-and-Fire
(IF) model. H(·) represents the Heaviside step function.
Note that this paper employs a soft reset mechanism to keep
more information, as suggested by (Rueckauer et al., 2017;
Han et al., 2020). Specifically, when a spike is fired, the
final membrane potential value is reduced by a threshold.

3.2. Autapses

An autapse (Van Der Loos & Glaser, 1972) is a unique
synaptic structure that refers to a synaptic connection
formed between a neuron’s axon and its own dendrites or
soma (Figure 1(a)). Initially observed in laboratory-cultured
neurons, autapses were regarded as erroneous or redundant
synaptic connectivity patterns. However, subsequent studies
have revealed the presence of autapses in various types of
neurons within the central nervous system, including those
in the striatum (Park et al., 1980; Preston et al., 1980; Shi
& Rayport, 1994), neocortex (Lübke et al., 1996), and hip-
pocampal regions (Thomson et al., 1996; Tamas et al., 1997;
Cobb et al., 1997). In terms of functionality, inhibitory acti-
vation of autapses can suppress the generation of subsequent
action potentials (Bacci et al., 2003), thereby regulating the

precision of neuronal discharge (Bacci & Huguenard, 2006).
Conversely, excitatory activation of autapses can enhance
neuronal firing, influence neuronal responses, and facilitate
coincidence detection (Yin et al., 2018). These findings
highlight the significant regulatory role of autapses in neu-
ronal discharge and emphasize their status as functional
structures within the cortical circuits of the brain.

3.3. Spatio-temporal Predictive Learning

Spatio-temporal predictive learning aims to learn future
frames based on historical frames. Given a video sequence
Xt,T = {yi}tt−T+1 from time t to the past T frames, our
objective is to predict the subsequent T ′ frames Yt+1,T ′

= {yi}t+T ′

t+1 , where yi ∈ RC×H×W represents an image
with channel number C, height H , and width W . The
model with learnable parameters Θ learns a mapping FΘ :
Xt,T 7−→ Yt+1,T ′ , and the optimization objective is:

Θ∗ = argmin
Θ

L(FΘ(Xt,T ), Yt+1,T ′) (5)

Here L is the loss function. In our experiments, we con-
sistently adopt the widely used mean squared error (MSE)
function as the loss function.

4. Methodology
In this section, we systematically analyze three primary
limitations inherent in the vanilla LIF model when applied
to spatio-temporal prediction tasks. To overcome these
challenges, we propose a spatio-temporal self-connection
circuit model inspired by biological autaptic structures. We
elucidate the design principles of the model and provide a
comprehensive analysis of its dynamic characteristics.

4.1. Limitations of the Vanilla LIF Model in
Spatio-temporal Prediction Tasks

(a): Limited capacity to model long-term dependencies.
Spatio-temporal prediction tasks involve capturing tempo-
ral features and dependencies to predict future states. The
vanilla LIF model employs leakage and discharge processes
to regulate historical information, thereby exhibiting certain
sequential modeling capabilities. However, its discharge
process follows a fixed linear decay, while the leakage pro-
cess exhibits a fixed exponential decay. To be more specific,
according to Eqs. (1)-(4), the membrane potential of the
vanilla LIF model at time-step t+T , derived from vl[t], can
be obtained after T iterations and is represented as follows:

vl[t+ T ] = (αl)Tvl[t] +

T∑
i=1

(αl)T−i(1− αl)xl[t+ i]

− vth

T∑
i=1

(αl)T−isl[t+ i] (6)

3



Autaptic Synaptic Circuit Enhances Spatio-temporal Predictive Learning of Spiking Neural Networks

Dendrites

Soma

Axon

Autapses

(a) (b) (c) (d)

Figure 1. (a) The structure of Autapses in neuroscience, which includes axon-soma and axon-dendrite circuits. (b) The structure of the
vanilla LIF model. (c) The structure of the STC-LIF model. (d) The structure of dynamic spatio-temporal circuit module σ in Figure 1(c).

The detailed derivation is provided in the Appendix. Ac-
cording to Eq. (6), we observe an inevitable decay in the
historical membrane potential information vl

t. Specifically,
vl
t at time-step t undergoes T steps of exponential decay

and
∑T

i=1 s
l[t+ i] steps of linear decay after T iterations.

As αl approaches 0, the decay of membrane potential in-
formation becomes more pronounced. Conversely, as αl

approaches 1, it leads to a weaker input current. Due to
the presence of leakage, maintaining membrane potential
balance and outputting spike information heavily relies on
the current input at the current moment. This monotonic
leakage mechanism poses challenges for the vanilla LIF
model in capturing long-term dependencies. Moreover, pre-
vious studies (Zhang et al., 2023a) have highlighted the
issue of gradient vanishing when employing BPTT to opti-
mize SNNs with LIF neurons for long-term modeling tasks,
further restricting the model’s optimization capabilities.

(b): Limited capacity to represent spatio-temporal infor-
mation. Spatio-temporal prediction necessitates the deep
interactions and joint learning of temporal and spatial infor-
mation, which poses a challenge for LIF model. To see this,
we rewrite the output of the vanilla LIF model at time t as:

sl[t] = f(xl[t],vl[t− 1]) = f(W lsl−1[t],vl[t− 1]) (7)

Here, function f(·) denotes the dynamics of the LIF neuron
(Eqs. (2)-(3)). For the LIF model, the spiking neurons in
the l-th layer only receive inputs from the spike outputs of
neurons in previous layer, sl−1[t], while the incorporation
of historical information is solely based on the neuron’s own
input at the previous time-step. Additionally, the network’s
learnable parameters primarily focus on extracting spatial
information, lacking effective parameter training for feature
extraction in the temporal domain. This simple connectivity
pattern and topology restrict the network’s capacity to attain
a profound representation of spatial-temporal information.

(c): Weak adaptability to different datasets. Spatio-
temporal prediction requires modeling dynamic spatio-
temporal data. However, the parameters of the LIF model
remain unchanged, whether during training or inference.
Although some variants of the LIF model optimize parame-
ters like membrane time constants and thresholds in train-
ing (Fang et al., 2021b; Yao et al., 2022), these parameters
remain fixed in inference. The distribution and correlation
of spatio-temporal data can change over time and space, and
fixed parameters are insufficient to capture these variations,
resulting in reduced generalization ability in prediction.

4.2. Spatio-Temporal Circuit Leaky Integrate-and-Fire
(STC-LIF) Model

To overcome the challenges associated with spatio-temporal
data learning in vanilla LIF and its variant models, we pro-
pose a novel spatio-temporal self-connection circuit model
called the STC-LIF model, which can be described as:

xl[t] = W lsl−1[t] (8)

βl[t] = Tanh(W l
gts

l[t− 1]) (9)

γl[t] = Tanh(W l
gss

l[t− 1]) (10)

ml[t] = vl[t− 1]⊙ (1 + βl[t]) + xl[t]⊙ (1 + γl[t])
(11)

sl[t] = H(ml[t]− vth) (12)

vl[t] = ml[t]− vths
l[t] (13)

Here, ⊙ denotes the Hadamard product. Compared to the
vanilla LIF model presented in Eqs. (1)-(4), the STC-LIF
model retains the integration, spiking, and leakage processes
while introducing axon-dendrite and axon-soma circuits in-
spired by biological autaptic synapses to dynamically regu-
late the input current and historical information (Figure 1(c)).
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It replaces the fixed leakage mechanism with two dynamic
regulatory factors, βl[t] and γl[t]. W l

gt and W l
gs represent

the synaptic weights of the temporal and the spatial circuits.

We further elaborate on the design principles of STC-LIF.
Previous experiments (Bacci et al., 2003; Bacci & Hugue-
nard, 2006; Yin et al., 2018) have demonstrated that autaptic
synapses can regulate the precision and stability of action po-
tential firing by forming delayed feedback that either inhibits
or enhances subsequent action potential generation. There-
fore, we introduce the regulatory factors, βl[t] and γl[t], to
simulate the axon-soma and axon-dendrite circuits found in
autaptic structures. These factors are within the range of [-1,
1] and determined by the spike output of the previous time
step, sl[t− 1]. In the axon-dendrite circuit, if γl[t] > 0, it
indicates the dominance of excitatory synapses, resulting
in an enhancement of the input current to the pre-synaptic
neuron and promoting spiking. Conversely, if γl[t] < 0, it
signifies the dominance of inhibitory synapses, leading to an
attenuation of the input current to the pre-synaptic neuron
and suppressing spiking. Similarly, in the axon-soma circuit,
if βl[t] > 0, it amplifies the membrane potential, thereby
preserving significant historical information. Conversely, if
βl[t] < 0, it weakens the membrane potential, facilitating
the forgetting of irrelevant historical information.

The spatio-temporal circuit enables spiking neurons to regu-
late the current input and membrane potential at the current
time step based on their spike output from the previous time
step, aligning with the functionality of autaptic synaptic
in biology. However, relying solely on self-spike output
for regulation has limitations and inflexibility, potentially
constraining the expressive power of SNNs. To address
this, we extend the concept of self-connection beyond in-
dividual neurons to include connections within the layer
of neighboring cells. We use group convolution operation
to characterize the influence of the spike output from the
neuron itself as well as its adjacent neurons on a spiking
neuron. This approach is not only computationally efficient
but also more biologically plausible, as it aligns with the
sparse connectivity observed in biological networks, where
neurons primarily engage in local information exchange
rather than global interactions (Guo et al., 2017).

4.3. Dynamic Analysis of STC-LIF Model

Relate STC-LIF model to LIF and IF models. The STC-
LIF model is a natural extension of the vanilla LIF model.
Here we establish the relationship between STC-LIF and
the LIF and IF models. According to Eqs. (8)-(13), when
γl[t] is less than zero and βl[t] + γl[t] equals −1, the STC-
LIF model is equivalent to the LIF model. When βl[t] =
γl[t] = 0, the STC-LIF model is equivalent to the IF model.

We further analyze the advantages of the STC-LIF model
compared to the LIF and IF models. The derivation process

follows a similar approach to that of Eq. (6). According
to Eqs. (8)-(13), the membrane potential of the STC-LIF
model at time-step t+T , derived from vl[t], can be obtained
after T iterations and is represented as follows:

vl[t+ T ] = vl[t]

T∏
j=1

(1 + βl[t+ j])

+

T∑
i=1

(1 + γl[t+ i])xl[t+ i]

T−i∏
j=1

(1 + βl[t+ i+ j])

− vth

T∑
i=1

sl[t+ i]

T−i∏
j=1

(1 + βl[t+ i+ j]) (14)

The detailed derivation is provided in the Appendix. From
Eq. (14), the STC-LIF model has the following advantages:

(a): STC-LIF model can capture long-term dependency.
From Eq. (14), it is evident that the historical membrane
potential information is determined by the dynamic modu-
lation factors βl[t] and γl[t]. For the membrane potential
vl[t] at time-step t, we can effectively transmit it to the
membrane potential vl[t + T ] at T steps later by employ-
ing appropriate dynamic modulation. The factor γl[t] also
plays a vital role in regulating the current input at the current
time-step, thereby ensuring a relative balance between the
input and the historical membrane potential. Moreover, the
spatio-temporal circuit plays a critical role in preserving the
propagation of gradient errors, which is fundamental for
optimizing SNNs using the BPTT method. The temporal
flow of gradient information in the STC-LIF model can be
represented by the following recursive form:

∂vl[t+ T ]

∂vl[t]
=

T∏
i=1

∂vl[t+ i]

∂ml[t+ i]

∂ml[t+ i]

∂vl[t+ i− 1]
(15)

=

T∏
i=1

(1− vthH
′(ml[t+ i]− vth))(1 + βl[t+ i])

The derivative H ′(·) is often approximated by the deriva-
tive of a continuous surrogate function. As T increases, it
is possible that

∏T
i=1 (1− vthH

′(ml[t+ i]− vth)) → 0

or
∏T

i=1 (1− vthH
′(ml[t+ i]− vth)) → ∞, which may

lead to gradient vanishing and exploding issues. However,
by appropriately assigning the values of βl[t], we can effec-
tively alleviate the problems, thereby preserving the propa-
gation of gradient flow information.

(b): STC-LIF model enhances spatio-temporal represen-
tation capability. The spike output of the STC-LIF model
for layer l can be represented as follows:

sl[t] = f(W lsl−1[t],W l
gs,gts

l[t− 1],vl[t− 1]) (16)

Here, the function f(·) represents the dynamics of the STC-
LIF neuron, as depicted in Eqs. (9)-(12). The spike output
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Figure 2. Comparison of parameter changes of different models.

of the STC-LIF model is influenced by both asynchronous
signals within the layer and synchronous signals between
layers. The spatio-temporal circuit forms new synaptic
connections, thereby enhancing the interaction of spatio-
temporal information. The learnable synaptic weights W l

gs

and W l
gt strengthen the capability to extract spatial and tem-

poral features, consequently advancing the representational
capacity of spiking neurons.

(c): STC-LIF model has dynamic parameters. As shown
in Figure 2, the parameters of the STC-LIF model undergo
dynamic changes during both training and inference. The
current parameters of the neuron are influenced by the feed-
back modulation from its output in the previous time step.
In essence, the parameters of the STC-LIF model are adap-
tive and evolve with the input sequence. This enables the
generation of diverse dynamics parameters, catering to dif-
ferent input sequences and thereby enhancing the network’s
adaptability to various tasks and scenarios. Consequently,
the model exhibits improved self-adaptiveness.

5. Experiments
In this section, we conducted experiments on multiple spatio-
temporal prediction benchmark tasks to validate the ef-
fectiveness of our proposed method. These tasks include
the Moving MNIST (Srivastava et al., 2015) dataset, the
TaxiBJ (Zhang et al., 2017) traffic flow dataset, and the
KTH (Schuldt et al., 2004) human action dataset. We com-
pare our method with the Vanilla LIF model, and adaptive
spiking neural models, including PLIF (Fang et al., 2021b),
GLIF (Yao et al., 2022), TC-LIF (Zhang et al., 2023a) and
LM-H (Hao et al., 2023b).

Datasets. Moving MNIST is a video sequence dataset gener-
ated from the MNIST dataset, each frame of which contains
two randomly moving digits. The objective of this dataset
is to input the first 10 frames and predict the positions and
shapes of the digits in the subsequent 10 frames. TaxiBJ is
a dataset that contains GPS data from taxis in Beijing. The
objective is to predict future urban population flow based on
historical data. KTH is a dataset designed for human action
recognition. The goal of this dataset is to recognize human

Table 1. The statistics of datasets. The training/testing set has
Ntrain/Ntest samples, composed of T and T ′ images.

Ntrain Ntest (C,H,W ) T T ′

Moving MNIST 10000 10000 (1,64,64) 10 10
TaxiBJ 19627 1334 (2,32,32) 4 4
KTH 5200 3167 (1,128,128) 10 20 or 40

Table 2. Quantitative results on the Moving MNIST dataset.

Method MSE↓ MAE↓ SSIM↑

Vanilla LIF 102.8 246.2 0.640
PLIF (Fang et al., 2021b) 99.2 233.3 0.691
GLIF (Yao et al., 2022) 79.7 225.3 0.685

TCLIF (Zhang et al., 2023a) 105.1 257.9 0.634
LM-H (Hao et al., 2023b) 93.2 244.5 0.661

STC-LIF 47.0 136.4 0.863

action categories based on video sequences. The statistical
summaries of these datasets are provided in Table. 1.

Evaluation. We evaluated the prediction performance using
commonly used metrics in spatio-temporal prediction tasks,
namely mean squared error (MSE), mean absolute error
(MAE), structural similarity index measure (SSIM), and
peak signal-to-noise ratio (PSNR).

Detailed Setup. Our network architecture consisted of four
layers, with the first three layers composed of spiking neu-
rons and channel dimensions set to [256, 256, 256]. The
feature map resolution remained constant throughout net-
works. The final layer was a convolutional layer designed to
restore the predicted image dimensions. In order to address
covariate shift (Wu & He, 2018) and enhance training sta-
bility, each convolutional layer, except for the last one, was
followed by a group normalization layer. For more detailed
information regarding the experiments, please refer to the
Appendix.

5.1. Evaluation on the Moving MNIST Dataset

Moving MNIST is a benchmark dataset for spatio-temporal
prediction.It poses challenges due to the random motion
trajectories of the digits, which encompass complex sce-
narios like collisions, occlusions, and boundary rebounds.
Therefore, predicting future frames necessitates modeling
and inferring information such as digit shape, speed, direc-
tion, and position. Additionally, the dataset’s low resolution
introduces blurriness, further complicating the prediction.

Quantitative results for Moving MNIST are presented in
Table 2. It is evident that the STC-LIF model outperforms
other spiking neuron models in terms of MSE, MAE, and
SSIM metrics. For instance, our model reduces the MSE
by 55.8 compared to the vanilla LIF model and by 32.7
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Figure 3. Qualitative visualization of the prediction results of vanilla LIF and STC-LIF models on the Moving MNIST dataset.

Table 3. Quantitative results on the TaxiBJ dataset.

Method MSE(×100)↓ MAE↓ SSIM↑

Vanilla LIF 70.4 22.1 0.966
PLIF (Fang et al., 2021b) 70.8 21.9 0.967
GLIF (Yao et al., 2022) 62.9 20.6 0.971

TCLIF (Zhang et al., 2023a) 59.2 19.3 0.973
LM-H (Hao et al., 2023b) 63.3 20.1 0.971

STC-LIF 56.4 19.5 0.973

compared to the best-performing PLIF model among other
spiking neuron models. Qualitative prediction results are
depicted in Figure 3. The images generated by the vanilla
LIF model are notably blurry, particularly in later time steps.
Conversely, the STC-LIF model produces higher-quality
images, clearly depicting the trajectories and contours of
each digit. Therefore, it can be concluded that the STC-
LIF model significantly enhances the extraction of spatio-
temporal features and the modeling of long-term dependen-
cies. Additional visualization results can be found in the
Appendix.

5.2. Evaluation on the TaxiBJ Dataset

TaxiBJ is a real and representative urban traffic flow dataset
that holds significant value in urban planning and traffic
management. Traffic patterns are known to be complex and
highly dynamic, with strong dependencies between adja-
cent timestamps. In the TaxiBJ dataset, each data sequence
consists of 8 consecutive frames, and the task involves pre-
dicting the remaining 4 frames given the initial 4 frames as
input. We evaluated the performance of our model on this
dataset, and the quantitative results are reported in Table 3.
Additionally, we assessed the MSE differences (×100) for
each frame, as presented in Table 4. It is evident that among

Table 4. Per-frame MSE(×100) on the TaxiBJ dataset.

Method Frame1 Frame2 Frame3 Frame4

Vanilla LIF 66.7 68.1 68.5 78.5
PLIF (Fang et al., 2021b) 66.8 66.9 71.5 78.0
GLIF (Yao et al., 2022) 55.3 60.5 65.5 78.4

TCLIF (Zhang et al., 2023a) 49.0 56.8 62.2 69.2
LM-H (Hao et al., 2023b) 59.7 62.5 64.4 67.6

STC-LIF 48.1 54.8 58.9 63.0

Table 5. Quantitative results on the KTH dataset.

KTH(10 → 20) KTH(10 → 40)

Method SSIM↑ PSNR↑ SSIM↑ PSNR↑

Vanilla LIF 0.767 21.62 0.754 20.89
PLIF (Fang et al., 2021b) 0.796 21.79 0.785 21.17
GLIF (Yao et al., 2022) 0.805 22.41 0.795 21.90

TCLIF (Zhang et al., 2023a) 0.786 22.08 0.746 20.0
LM-H (Hao et al., 2023b) 0.710 17.13 0.708 16.91

STC-LIF 0.822 23.14 0.815 22.63

all the spiking neuron models, our proposed STC-LIF model
demonstrated the best predictive performance, exhibiting
the smallest prediction errors.

5.3. Evaluation on the KTH Dataset

Recursive models offer the advantage of flexible output
length expansion. We evaluate the dynamic generaliza-
tion of our model for predicting variable frame numbers
on the KTH dataset. The task involved predicting the next
20 frames or 40 frames given a 10-frame input. During
training, we made predictions for 20 frames, but during eval-
uation, we extended it to predict 40 frames, distinguishing
it from the previous two datasets. We used SSIM and PSNR
as evaluation metrics, where higher values indicate higher

7



Autaptic Synaptic Circuit Enhances Spatio-temporal Predictive Learning of Spiking Neural Networks

Table 6. Comparison of quantitative results of the adaptive spiking neural models and the enhanced models.

Moving MNIST TaxiBJ KTH(10 → 20) KTH(10 → 40)

Method MSE↓ MAE↓ SSIM↑ MSE×100↓ MAE↓ SSIM↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑

PLIF (Fang et al., 2021b) 99.2 233.3 0.691 70.8 21.9 0.967 0.796 21.79 0.785 21.17
STC-PLIF 48.4 139.4 0.860 58.6 20.0 0.972 0.819 23.02 0.806 22.32

LM-H (Hao et al., 2023b) 93.2 244.5 0.661 63.3 20.1 0.971 0.710 17.13 0.708 16.91
STC-LM-H 45.9 125.8 0.881 54.6 19.3 0.975 0.827 23.16 0.818 22.61
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Figure 4. Comparison of vanilla LIF (a) and STC-LIF (b) when
inputting sequential sequences or random sequences from the
DVS128 Gesture dataset. The experiments were repeated three
times, and the solid curve represents the average value.

quality predictions. The results are presented in Table 5. No-
tably, our model exhibited superior performance compared
to other spiking neuron models in both scenarios: predicting
20 frames and extending the prediction to 40 frames.

5.4. Generalize to Other Spiking Neuron Models

The concept of the spatio-temporal self-connection circuit
is highly adaptable and scalable, making it compatible with
various spiking neural models (Yu et al., 2018a;b). Here we
extend its application to the PLIF and LM-H models, de-
noting the enhanced versions as STC-PLIF and STC-LM-H,
respectively. The detailed derivations can be found in the
Appendix. Table 6 presents the results, clearly indicating
that both STC-PLIF and STC-LM-H outperform their re-
spective base models, PLIF and LM-H, by a significant mar-
gin. Notably, the improvement is particularly pronounced
for the LM-H model, which has more complex dynamics.
These results demonstrate the generality of our model and
its effectiveness in enhancing spiking neurons’ ability to
extract spatio-temporal features and model long-term depen-
dencies.

5.5. Rethinking Neuromorphic Data Recognition

The neuromorphic dataset contains asynchronous, event-
driven, and sparse spatio-temporal information, making it
naturally suitable for processing with spiking neural net-
works. However, can SNNs truly learn the rich spatio-

Table 7. Ablation study of our proposed method.

Method MSE↓ MAE↓ Parameters(M) Flops(G)

Vanilla LIF (Baseline) 102.8 246.2 3.305 64.346
STC-LIF w/o TC 62.5 168.1 3.614 70.398
STC-LIF w/o SC 58.3 163.8 3.614 70.398

STC-LIF 47.0 136.4 3.922 76.449

temporal information in neuromorphic data? Here we con-
sider the commonly used DVS128 Gesture (Amir et al.,
2017) dataset to evaluate the performance of SNNs. The
dataset provides information such as timestamps, spatial
coordinates, and polarity, encompassing both spatial (ges-
ture positions) and temporal (gesture order) aspects. During
training, we use the normal gesture sequence as input, but
during prediction, we deliberately disrupt the gesture order
to discern the information SNNs rely on for classification.
As shown in Figure 4, the vanilla LIF model achieves com-
parable performance on randomly shuffled input and sequen-
tial input, implying that it primarily learns spatial positional
relationships. In contrast, the STC-LIF model exhibits a
significant decrease in accuracy for randomly shuffled input
across both training and testing sets. This indicates that the
STC-LIF model is capable of simultaneously learning both
temporal and spatial feature in neuromorphic data.

5.6. Computational Cost and Ablation Study

We perform ablative experiments on the STC-LIF model
and present the results in Table 7.The findings indicate that
both the temporal circuit (TC) and spatial circuit (SC) con-
tribute to the model’s performance, with the temporal circuit
playing a more prominent role. In terms of computational
cost, the spatio-temporal circuit exhibits a modest increase
in parameter count and computational complexity per mod-
ule, thanks to the utilization of grouped convolutions, with
respective increments of only 9.3% and 9.4%. Considering
the noticeable improvement in performance, the increase in
computational cost is clearly acceptable.

6. Conclusion
This paper analyzes the limitations of the vanilla LIF model
in spatio-temporal prediction tasks. Inspired by biological
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autaptic synapses, we propose the STC-LIF model, which
incorporates a spatio-temporal self-connection circuit to en-
hance the extraction of spatio-temporal features and model
spatio-temporal dependencies. Our method achieves state-
of-the-art performance among all spiking neuronal models,
showcasing the immense potential of temporal processing
capabilities in SNNs.
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A. Experimental Details
Datasets. Moving MNIST (Srivastava et al., 2015) serves as a benchmark dataset for spatio-temporal prediction. It is a video
sequence dataset generated from the MNIST dataset. It comprises 10,000 sequences, each consisting of 20 frames. Each
frame is a grayscale image with dimensions 64x64 and contains two randomly moving digits. The objective of this dataset is
to input the first 10 frames and predict the positions and shapes of the digits in the subsequent 10 frames. TaxiBJ (Zhang
et al., 2017) is a dataset that contains GPS data from taxis in Beijing, including both inflow and outflow channels. The
objective is to predict future urban population flow based on historical data. KTH (Schuldt et al., 2004) is a dataset designed
for human action recognition. It includes six different actions (walking, jogging, running, boxing, waving, and clapping)
performed by 25 individuals in four distinct scenarios (outdoor, outdoor with scale variation, outdoor with clothing variation,
and indoor). The goal of this dataset is to recognize human action categories based on video sequences. We used individuals
1-16 for training and individuals 17-25 for prediction.

Evaluation. We evaluated the prediction performance using commonly used metrics in spatio-temporal prediction tasks,
namely mean squared error (MSE), mean absolute error (MAE), structural similarity index measure (SSIM), and peak
signal-to-noise ratio (PSNR). MSE and MAE are image-based metrics that measure the similarity of content in the spatial
domain. They calculate the average of squared or absolute pixel differences between the ground truth and predicted images,
respectively. SSIM is a feature-based metric that evaluates category/texture similarity. It mimics the theory of structural
similarity in the human visual system (HVS) and demonstrates sensitivity to local structural variations in images. SSIM
quantifies image attributes such as luminance, contrast, and structure by estimating the mean for luminance, variance for
contrast, and covariance for structural similarity. SSIM values range from 0 to 1, with higher values indicating greater image
similarity. One advantage of SSIM is its better alignment with human subjective evaluation. PSNR is a widely used measure
for evaluating image quality. It represents the reference value of image quality between the maximum signal and background
noise. PSNR is expressed in decibels (dB), with higher values indicating lesser image distortion.

Decoupling of spike output and self-regulation. In the STC-LIF model, the spiking signals play a dual role in information
output and self-regulation. Therefore, it is necessary to decouple these two functions to strike a balance between the output
and regulation of spiking neurons. During backpropagation, we truncate the gradient information of the spatio-temporal
circuit (Figure 5). This ensures that the additional learnable weight parameters, W l

gt and W l
gs, only affect the optimization

of the dynamic modulation factors, βl[t] and γl[t], without impacting the output of the spiking signals.

Forward

Backward

Figure 5. The unfolded computation graph of STC-LIF model.

Implementation Details. The experimental settings of different datasets are as shown in Table 8. For the Moving MNIST
and KTH datasets, we set the patchsize to 2× 2 and 4× 4, which means that each 64× 64 frame and 128× 128 frame are
resized into 4× 32× 32 and 16× 32× 32 tensors for the representation, following (Srivastava et al., 2015). The kernel size
of all convolutional layers is set to 5× 5, stride to 1 and padding to 2. For experiments on the DVS128 Gesture dataset, we
used a 3Conv-1FC classification architecture. The Conv layer consisted of a convolutional layer, a spiking neuron layer, and
a Maxpool layer, with dimensions of [64,64,64]. The FC layer contained an AvgPool and a linear fully connected layer. Each
Maxpool layer and Avgpool layer performed a downsampling of the feature map by a factor of 2.The Adam (Kingma & Ba,
2014) optimizer was employed for all experiments, and we utilized a combination of warm-up (Goyal et al., 2017) and cosine
learning rate scheduling (Loshchilov & Hutter, 2016). The other hyperparameters are shown in Table 9. The hyperparameters
of the PLIF (Fang et al., 2021b), GLIF (Yao et al., 2022), TC-LIF (Zhang et al., 2023a) and LM-H (Hao et al., 2023b) models
follow the settings in their papers or public codes. Our codes are available https:\\github.com\wangtianyi1874\stclif. The
implementation is based on the OpenSTL (Tan et al., 2023) and SpikingJelly (Fang et al., 2023) frameworks, utilizing a
single NVIDIA-3090 GPU.
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Table 8. Experimental settings of different datasets.

Dataset Architecture Resize Optimizer(weight decay) Batchsize Epochs Gradient Detach

Moving MNIST 4Conv (4,32,32) adam(0) 16 500 N
TaxiBJ 4Conv (2,32,32) adam(0) 16 200 Y
KTH 4Conv (16,32,32) adam(0) 16 200 Y

DVS128 Gesture 3Conv-FC (2,128,128) sgd(0.05) 8 300 Y

Table 9. Hyperparameter settings for ours experimental implementation.

Parameters Descriptions Value

αl membrane constant 0.5
vth firing threshold 1.0
- initial learning rate 1e-3
- final learning rate 1e-5
- learning rate schedule cosine decay
- warmup epochs 10
γ sgd optimizer momentum 0.9

β1, β2 adam optimizer momentum 0.9,0.999

k
number of groups for group 16convolution and group normalization

n
number of frames for dvs128 20gesture dataset sliced along time axis

B. Proof of Theorem
Proof of Eq. (6). According to Eqs. (1)-(4),We derived the relationship between the membrane potential vl[t] at time t and
the membrane potential vl[t+ T ] after T iterations of the vanilla LIF model. The iterative derivation process is represented
as follows:

vl[t+ T ] = αlvl[t+ T − 1] + (1− αl)xl[t+ T ]− vths
l[t+ T ]

= (αl)2vl[t+ T − 2] + αl(1− αl)xl[t+ T − 1]− vthα
lsl[t+ T − 1] + (1− αl)xl[t+ T ]− vths

l[t+ T ]

= (αl)Tvl[t] +

T∑
i=1

(αl)T−i(1− αl)xl[t+ i]− vth

T∑
i=1

(αl)T−isl[t+ i] (17)

Proof of Eq. (14). Similarly,for the STC-LIF model, according to Eqs. (8)-(13), we derived the relationship between the
membrane potential vl[t] at time t and the membrane potential vl[t+ T ] after T iterations. The iterative derivation process
is represented as follows:

vl[t+ T ] = (1 + βl[t+ T ])vl[t+ T − 1] + (1 + γl[t+ T ])xl[t+ T ]− vths
l[t+ T ]

= (1 + βl[t+ T ])(1 + βl[t+ T − 1])vl[t+ T − 2] + (1 + βl[t+ T ])(1 + γl[t+ T − 1])xl[t+ T − 1]

− vth(1 + βl[t+ T ])sl[t+ T − 1] + (1 + γl[t+ T ])xl[t+ T ]− vths
l[t+ T ]

= vl[t]

T∏
j=1

(1 + βl[t+ j]) +

T∑
i=1

(1 + γl[t+ i])xl[t+ i]

T−i∏
j=1

(1 + βl[t+ i+ j])

− vth

T∑
i=1

sl[t+ i]

T−i∏
j=1

(1 + βl[t+ i+ j]) (18)

C. Enhanced Versions of PLIF and LM-H Models
The STC-PLIF Model. We extended the spatio-temporal circuit to the PLIF model and the LM-H model. The enhanced
version for the PLIF model, STC-PLF model, is represented as follows:
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xl[t] = W lsl−1[t] (19)

βl[t]= Tanh(W l
gts

l[t− 1]) (20)

γl[t]= Tanh(W l
gss

l[t− 1]) (21)

ml[t] = αlvl[t− 1]⊙(1 + βl[t]) + (1− αl)xl[t]⊙(1 + γl[t]) (22)

sl[t] = H(ml[t]− vth) (23)

vl[t] = ml[t]− vths
l[t] (24)

Here the black part is the original formula of the PLIF model, and the red part is the improvement for the PLIF model. It
is worth noting that the membrane constant αl is different from the vanilla LIF model in that it is a learnable parameter,
and its range is [0,1]. The PLIF model enhances the adaptability of spiking neurons by learnable membrane constant. Our
improvement for the PLIF model is similar to the vanilla LIF model, which adds the regulatory factors βl[t] and γl[t] on the
basis of the original dynamics of the PLIF model.

The STC-LM-H Model. The enhanced version for the LM-H model, STC-LM-H model, is represented as follows:

xl[t] = W lsl−1[t] (25)

βl[t]= Tanh(W l
gts

l[t− 1]) (26)

γl[t]= Tanh(W l
gss

l[t− 1]) (27)

vl
D[t] = µl

Dvl
D[t− 1] + µl

Sv
l
S [t− 1] + xl[t]⊙(1 + γl[t]) (28)

ml[t] = λl
Sv

l
S [t− 1]⊙(1 + βl[t]) + λl

Dvl
D[t] (29)

sl[t] = H(ml[t]− vth) (30)

vl
S [t] = ml[t]− vths

l[t] (31)

Similarly, the black part is the original formula of the LM-H model, and the red part is the improvement for the LM-H
model. The LM-H model has more complex neural dynamics than the vanilla LIF model and the PLIF model. It is a
two-compartment model, which contains two membrane potentials vl

D[t] and vl
S [t]. Moreover, it contains four learnable

parameters µl
D,µl

S ,λl
D and λl

S . The LM-H model significantly enhances the representation ability and adaptability by
regulating the dual membrane potentials and multiple learnable parameters. Following the similar idea of STC-LIF and
STC-PLIF, γl[t] regulates the input xl[t], while βl[t] regulates the key membrane potential vl

S [t]. In addition, in the soft
reset process of the LM-H model, the gradient backpropagation of sl[t] is truncated. We find that this increases the gradient
calculation error, so we choose not to truncate the gradient information of sl[t].

Analysis of Enhanced Models. For the enhanced models, it is obvious that they have more complex dynamic characteristics
than the original models. When βl[t] and γl[t] equals 0, the enhanced models are equivalent to the original models,
Therefore, the spatio-temporal circuit is an improvement in the basic representation ability of the spiking neuron models.
The comparison of the qualitative visualization results of the enhanced models and the original models on Moving MNIST is
shown in Figure 6, which shows that the spatio-temporal circuit significantly improves the models’ performance in capturing
deep spatio-temporal information features and modeling spatio-temporal dependencie.

D. Additional Experiments
Experiments on static classification tasks. We have conducted experiments on the CIFAR100 dataset using the VGGSNN
(64C3-128C3-MP2-256C3-256C3-MP2-512C3-512C3-MP2-512C3-512C3-MP2-FC) architecture. The results are presented
in Table 10. It is evident that the STC-LIF model is also beneficial in improving the performance of classification tasks.
The accuracy of the STC-LIF model surpasses that of the vanilla LIF model at the same time step. Notably, this advantage
becomes more pronounced as the time step increases. Consequently, we believe that spiking neural networks, with their
remarkable spatial and temporal processing capabilities, possess substantial potential for advancements in the domain of
complex dynamic task processing.
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Input

Target

PLIF

STC-PLIF

LM-H

STC-LM-H

Figure 6. Comparison of the qualitative visualization prediction results of original models and enhanced models on the Moving MNIST
dataset.

Table 10. Comparsion of different methods on the CIFAR100 dataset.

Method Time-steps Accuracy(%)

Vanilla LIF 4 63.40
STC-LIF 4 66.64

Vanilla LIF 6 63.99
STC-LIF 6 68.93

Experiments with different self-connection methods. We have conducted more comprehensive experiments on the
Moving MNIST dataset, and the corresponding results are presented in Table 11. It has been observed that employing
self-connections alone can effectively enhance the dynamic representation of spiking neurons, resulting in a significant
improvement compared to the vanilla LIF model. However, this approach has certain drawbacks. Firstly, it lacks flexibility
and limits the representational capacity of spiking neurons, thereby leading to inferior performance compared to the STC-LIF
model with group convolution or global convolution. Secondly, it entails a higher memory cost due to the assignment
of weight parameters to each neuron. While global convolution yields the best performance, it comes at the expense of
substantial computational requirements. Therefore, considering the overall trade-off, utilizing group convolution emerges as
a favorable choice. It significantly enhances the model’s representational capacity without imposing a significant increase in
computational cost.

Table 11. Comparison of models with self-connection, group convolution and global convolution on the Moving MNIST dataset.

Model Operation MSE↓ MAE↓ Parameters(M)

Vanilla LIF - 102.8 246.2 3.305
STC-LIF Only self-connection 64.5 177.6 6.451
STC-LIF Group convolution(groups=16) 47.0 136.4 3.922
STC-LIF Global convolution 38.5 108.1 13.138
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