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Abstract
Efficient compression of correlated data is vital
for reducing communication overload in multi-
sensor networks, where sensors independently
compress data for transmission to a central node.
To optimize performance, it’s crucial for the com-
pressor to learn only task-relevant features, con-
sidering the fluctuating bandwidth availability.
Our work introduces a novel distributed com-
pression framework, Neural Distributed Principal
Component Analysis (NDPCA), comprising in-
dependent encoders and a joint decoder. NDPCA
adapts flexibly to varying bandwidth, reducing
computational and storage demands by employ-
ing a single model. By learning low-rank task
representations and efficiently allocating band-
width among sensors, NDPCA achieves a bal-
anced trade-off between performance and band-
width utilization. Experimental results demon-
strate NDPCA’s effectiveness, improving success
rates in multi-view robotic arm manipulation by
9% and enhancing object detection accuracy in
satellite imagery tasks by 14% compared to an
autoencoder with uniform bandwidth allocation.1

1. Introduction
Efficient data compression is pivotal in multi-sensor net-
works to minimize communication overload. Due to the
limited bandwidth of such networks, it is often impractical
to transmit all sensor data to a central server, and compress-
ing data is necessary. In many cases, the sensors, so-called
sources, observe correlated data, which are only processed
by a downstream task, e.g., an object detection model, but
not by human eyes. For example, satellites observe overlap-
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ping images and transmit them through limited bandwidth
to a central server on Earth. Hence, sources should not trans-
mit redundant information from correlated data and only
transmit features relevant to the downstream task. It is im-
portant to compress each source independently to reduce the
communication overload in the network. Literature refers
to this setting as distributed source coding. Together, we
name the distributed compression of task-relevant features
task-aware distributed source coding.

However, existing compression methods fail to combine
three aspects: 1. Existing distributed compression methods
perform poorly in the presence of a task model. Although
neural networks have been shown to be capable of compress-
ing stereo images (Ballé et al., 2016; 2018) and correlated
images (Zhang et al., 2023), existing methods focus on re-
constructing data, but not for downstream tasks. 2. Existing
task-aware compression methods cannot take advantage of
the correlation of sources. Previous works only consider
compressing task-relevant features of single source (Cheng
et al., 2022a; Ji et al., 2012; Choi and Han, 2020; Nakanoya
et al., 2023; Cheng et al., 2021), but not multiple correlated
sources. 3. All existing methods, especially those based on
neural networks, only compress data to a fixed compression
level but not multiple levels. Thus, they cannot operate in
environments with different demands of compression lev-
els. We use the term bandwidth to indicate the information
bottleneck in the dimension of transmitted data, and more
related works are discussed in Appendix A.

We present neural distributed principal component analy-
sis (NDPCA), a distributed compression framework that
transmits task-relevant features at multiple compression
levels. Fig. 1 illustrates the scenario where the cen-
tral node requires data from all sources, and network
bandwidth varies over time. NDPCA consists of neu-
ral encoders E1, E2, . . . , EK that independently compress
correlated data X1, X2, . . . , XK to latent representations
Z1, Z2, . . . , ZK . The distributed principal component anal-
ysis (DPCA) module compresses these representations to
any dimension based on the current bandwidth. At the
central node, a neural decoder reconstructs the represen-
tations Ẑ1, Ẑ2, . . . , Ẑk to X̂1, X̂2, . . . , X̂K and feeds them
into a task. NDPCA combines a neural autoencoder and
the DPCA module to generate task-relevant compressible
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representations.
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Figure 1: Task-aware distributed source coding with NDPCA.
X1, . . . , Xk are correlated data sources. Encoders E1, . . . , Ek

independently compress data to latent representations Z1, . . . , Zk.
The DPCA module allocates the bandwidth of sources based on the
importance of the task Φ. The goal is to find the optimal encoders
and corresponding decoder that minimize the final task loss.

Contributions: First, we formulate the task-aware dis-
tributed source coding problem (Sec. 2). Second, we provide
a theoretical justification for the framework by analyzing the
case of a linear compressor and a task (Sec. 3). Third, we
propose a task-aware distributed source coding framework,
NDPCA, that learns a single model for different compres-
sion levels (Sec. 4). We validate NDPCA with an object
detection task of satellite imagery (Sec. 5), resulting in a
14% increase in accuracy compared to an autoencoder with
uniform bandwidth allocation.

2. Problem Formulation
Consider a set of K correlated sources. Let
xi ∈ Rni denote the sample from source i where
i ∈ {1, 2, . . . ,K}. Samples from each source are
compressed independently by encoder Ei to a latent
representation zi ∈ Rmi such that

∑K
i=1 mi = m,

where m is the total bandwidth available. A joint de-
coder D receives the representations {z1, z2, . . . , zk}
and reconstructs the sources {x̂1, x̂2, . . . , x̂k} =
{D(E1(x1)), D(E2(x2)), . . . , D(Ek(xk)))}. In the
presence of a task Φ, it takes the reconstructed inputs to
compute the final output Φ(x̂1, x̂2, . . . , x̂k). The goal is
to find a set of encoders and a decoder such that the task
loss Ltask is minimized. We call this problem as task-aware
distributed source coding, which is the focus of this paper:

argmin
E1,...,Ek,D

Ltask(Y, Ŷ )

s.t. Y = Φ(x1, . . . , xk), Ŷ = Φ(x̂1, . . . , x̂k))

(Task-aware distributed source coding),
(1)

where Ltask is the task loss, e.g., the difference of bounding
boxes when the task is object detection.

Bandwidth allocation: In the previous formulations, we
assume that the output dimensions of encoders are known a
priori. However, the dimensions determine the compression
of each encoder, which is also a design factor. Given the

total available bandwidth m, we first need to obtain the
optimal mi for each source i; then, we can design the opti-
mal encoders and decoder accordingly. Finding the optimal
set of bandwidths for a given task is a long-standing open
problem, even for the simple task of a modulo-two sum
of two binary sources (Korner and Marton, 1979). Also,
existing works (Zhang et al., 2023; Whang et al., 2021;
Mital et al., 2023) largely assume a fixed latent dimension
for sources and train different models for different total
available bandwidth m, which is, of course, suboptimal.
NDPCA provides heuristics to the underlying key challenge
of optimally allocating available bandwidth, i.e., deciding
mi, while adapting to different total bandwidths m with a
single model.

3. Theoretical Analysis
We start with a motivating example of task-aware distributed
source coding under the constraint of linear encoders, a
decoder, and a linear task.

DPCA: We consider a linear task for two sources, de-
fined by the task matrix Φ ∈ Rp×(n1+n2), where the
sources x1 ∈ Rn1 and x2 ∈ Rn2 are of dimensions
n1 and n2, respectively, and the task output is given by
y = Φx ∈ Rp, where x = [x⊤

1 , x
⊤
2 ]

⊤. Without loss of
generality, we assume the sources to be zero-mean. Now,
we have N observations of two sources X1 ∈ Rn1×N

and X2 ∈ Rn2×N and their corresponding task outputs
Y = Φ(X) ∈ Rp×N , where X = [X⊤

1 X⊤
2 ]⊤. We aim

to design the optimal linear encoding matrices (encoders)
E1 ∈ Rm1×n1 , E2 ∈ Rm2×n2 , and the decoding matrix
(decoder) D ∈ R(n1+n2)×(m1+m2) that minimizes the task
loss defined as the Frobenius norm of Φ(X)−Φ(X̂), where
X̂ is the reconstructed X . For now, we assume that m1

and m2 are given. Letting Z1 = E1X1 ∈ Rm1×N and
Z2 = E2X2 ∈ Rm2×N denote the encoded representations
and M = ΦD denote the product of the task and decoder
matrices, we solve the optimization problem:

E∗
1 , E

∗
2 ,M

∗ = argmin
E1,E2,M

∥Y −MZ∥22 (2a)

s.t. Z =

[
Z1

Z2

]
=

[
E1X1

E2X̃2

]
, (2b)

ZZ⊤ = Im , Ŷ = MZ, Y = Φ

[
X1

X2

]
(2c)

Note that solving M is identical to solving the decoder D
since we can always convert M to D by the generalized
inverse of task Φ. We constrain the representations to be
orthonormal vectors in (2c) as in the normalization in prin-
cipal component analysis (PCA) for the compression of a
single source (Jolliffe, 2011).

We discuss the detailed solution of DPCA in Appendix B
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and provide a brief summary here. First, a preprocessing
step removes the correlation part of X1 from X2 by sub-
tracting the least-square estimator X̂2(X1):

X̃2 = X2 − X̂2(X1) = X2 −X2X
⊤
1 (X1X

⊤
1 )−1X1. (3)

The orthogonality principle of least-square estimators (Kay,
1993) ensures that X1X̃

⊤
2 = 0n1×n2

. Thus, we can decou-
ple the original problem in (2) into subproblems where each
corresponds to a single encoder, which can be solved by
canonical correlation analysis (Hardoon et al., 2004).

Dynamic bandwidth: We extend our approach to determine
the optimal bandwidth allocation given a total bandwidth
m. By solving DPCA with m1 = n1 and m2 = n2, we
obtain optimal encoders E∗

1 and E∗
2 , as well as pairs of

canonical directions and correlations. Similar to PCA, these
pairs can be seen as a generalization of singular vectors and
values, and the sums of squares of canonical correlations
are the optimal values of (2). We select the largest m pairs
of canonical correlations and directions. These canonical
correlations determine the optimal encoders E∗

1 , E∗
2 , and

decoder D∗. The importance of a direction to the task is
indicated by the canonical correlations, so we prioritize the
transmission of important directions.

Performance analysis of DPCA: When DPCA compresses
new data matrices with encoder E∗

1 and E∗
2 , the prepro-

cessing step (3) is invalid as the encoders cannot com-
municate with each other. So for DPCA to perform op-
timally while skipping the step, the two data matrices need
to be uncorrelated, namely, X̂2(X1) = 0, because in such
case, the preprocessing step removes nothing from the data
sources. Given that correlated sources lead to suboptimal-
ity of DPCA, we characterize the performance under the
same bandwidth in Lemma C.1 with the simplest case of
reconstruction, namely, Φ = Ip. In this case, the canonical
correlation analysis is relaxed to the singular value decompo-
sition, which is later used for NDPCA in Sec. 4. Lemma C.1
concludes that DPCA performs more closely the optimal
joint compression, PCA, as the covariance decreases.

4. Neural Distributed Principal Component
Analysis

Theoretical analysis reveals that DPCA has limitations: it
optimally compresses data only when sources are uncorre-
lated and is limited to linear tasks but can allocate the band-
width dynamically. Neural autoencoders, on the other hand,
excel at fixed-dimension compression but lack dynamic
bandwidth allocation. To address this contrast, we propose
neural distributed principal component analysis (NDPCA),
which combines a neural autoencoder and DPCA. This inte-
grated approach enables efficient compression and optimal
bandwidth allocation. NDPCA has two encoding stages, as
shown in Fig. 1: First, the neural encoder at each i-th source

encodes data Xi to a fixed-dimensional representation Zi

for i ∈ [K]. Then, DPCA adapts the dimension of Zi via
linear matrices according to the available bandwidth as per
Sec. 3. Similarly, the decoding of NDPCA is also performed
in two stages. First, the DPCA linear decoder reconstructs
the K fixed-dimensional representations Ẑ1, . . . , ẐK , based
on which the joint neural decoder generates the estimate
of data X̂1, . . . , X̂K . These estimates are then passed to
the neural task model Φ to obtain the final task output Ŷ .
Since we have a non-linear task model here, DPCA mainly
adapts the dimension appropriately as needed; the role of
the DPCA here is to reliability reconstruct the embedding
Ẑ, which corresponds to the case described in Lemma C.1
with the task matrix Φ as identity.

Training procedure: During the training of NDPCA, we
assume the task model is pre-trained, and we do not update
its weights. We aim to learn the K neural encoders and the
joint neural decoder, which minimize the loss function:

Ltot = λtask ∥Ŷ − Y ∥2F︸ ︷︷ ︸
task loss

+λrec

K∑
i=1

∥X̂i −Xi∥2F︸ ︷︷ ︸
reconstruction loss

. (4)

In the task-aware setting when λrec = 0, the neural autoen-
coder fully restores task-relevant features, which is the main
focus of this paper. When λtask = 0, the neural autoencoder
learns to reconstruct the data X, which is the task-agnostic
setting later compared in Sec. 5.

To encourage NDPCA to work well under various available
bandwidths with DPCA during the training phase, we need
uncorrelatedness from the limitations of the DPCA. To com-
press representations with a few singular vectors and make
NDPCA more bandwidth efficient, we need linear com-
pressibility. That is, encouraging the neural autoencoder
to generate low-rank representations. We tried to explic-
itly encourage the desired properties with additional terms
in (4), but they all adversely affect the task performance.
We tried to use the cosine similarity to generate uncorre-
lated representations as per (Bardes et al., 2022; Singh et al.,
2022; Bousmalis et al., 2016; Chen et al., 2018), and the
convex low-rank approximation, nuclear norm, to increase
linear compressibility, as per (Salzmann et al., 2010; Fazel,
2002). For the comparison of the resulting performance,
see Appendix H.1. In this regard, we propose a novel linear
compression module that allows us to adapt to DPCA during
training rather than using additional terms in the loss. We
introduce a random-dimension DPCA projection module
to improve performance in lower bandwidths. It projects
representations Z to a random low dimension, simulating
projections in various available bandwidths during inference.
It can be interpreted as a differentiable singular value de-
composition with a random dimension, described in Alg. 1.
Note that no retraining is needed for different bandwidths,
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Figure 2: Top: Performance Comparison for 3 different tasks. Our method achieves equal or higher performance than other methods.
Bottom: Distribution of total available bandwidth (latent space) among the two views for NDPCA (ours). The unequal allocation
highlights the difference in the importance of the views for a given task.

and only the storage of a neural autoencoder and a linear
matrix at each encoder and decoder is needed.

5. Experiments
We consider three different tasks to test our framework: (a)
the denoising of CIFAR-10 images (Krizhevsky, 2009), (b)
multi-view robotic arm manipulation (Zhan et al., 2022),
which we refer to as the locate and lift task, and (c) object
detection on satellite imagery (Defense and Intelligence,
2021). Across all the experiments, we assume that there are
two data sources, referred to as views, each containing par-
tial information relevant to the task. We present our results
based on the testing set and refer to our proposed method,
task-aware NDPCA, as NDPCA for simplicity. NDPCA
includes a single autoencoder with a large dimension of
representations Z ∈ R2∗mmax . It then compresses repre-
sentations and allocates bandwidth via DPCA, as discussed
previously. We show that NDPCA can bridge the perfor-
mance gap between distributed autoencoders and joint au-
toencoders, defined below, to allocate bandwidth and avoid
transmitting task-irrelevant features.

Baselines: We compare NDPCA against three baselines:
(a) Task-aware joint autoencoder (JAE), where a single pair
of encoder and decoder compresses both views. JAE is con-
sidered an upper bound of NDPCA since it can leverage
the correlation between both views while avoiding encoding

redundant information. (b) Task-aware vanilla distributed
autoencoder (DAE), where two encoders independently en-
code one view to equal bandwidths, and a joint decoder
decodes the data. DAE is considered a lower bound of
NDPCA since both encoders utilize the same bandwidth
regardless of the importance of the views for the task, while
NDPCA allocates bandwidths in a task-aware manner. (c)
Task-agnostic NDPCA differs from NDPCA in the training
loss of reconstructing the original views.

CIFAR-10 Denoising: We tackle CIFAR-10 image denois-
ing using two noisy observations of the same image (Fig. 3
(a)). This serves as a simplified example to demonstrate
NDPCA’s advantage when source importance varies. With
the task requiring only 4 bits for classification, denoising
is chosen to showcase performance across different band-
widths. Each observation’s significance depends solely on
its noise level. View 1 is corrupted with AWGN variance
0.12, while view 2 has higher corruption with variance 1.
Images are normalized to [0, 1] before noise addition. After
compressing the noisy data, we pass the reconstructed im-
ages through a pre-trained denoising network, calculating
PSNR relative to the clean image. Unequal noise levels
across views result in varying task importance, suggesting a
non-uniform bandwidth allocation strategy and emphasiz-
ing NDPCA’s advantage. Optimal bandwidth distribution
is crucial to address the CEO problem (Berger et al., 1996;
Prabhakaran et al., 2004), ensuring all views are leveraged,
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(a) CIFAR-10 (b) Locate and lift (c) Airbus detection

Figure 3: Datasets: (column 1) view 1. (column 2) view 2. In all experiments, both views are correlated, but one view is more important
than the other as it contains more information relevant to the task.

even if heavily corrupted, rather than allocating zero band-
width.

Locate and lift: For the manipulation task, we consider a
scenario in which a simulated 6 degrees-of-freedom robotic
arm controlled by a reinforcement learning agent inputs two
camera views to locate and lift a yellow brick. We call the
view from the robotic arm "arm-view" and the one recording
the whole desk "side-view", as shown in Fig. 3 (b). The
two views are complementary to completing the task, de-
tails discussed in Appendix H.3. We trained the agent in
a supervised-learning manner. We collected a dataset of
observation and action pairs (Zhao et al., 2023) and trained
an agent from the dataset. Then, we defined task loss as the
L2 norm of actions from images with and without compres-
sion and trained NDPCA to minimize the task loss through
the agent. Literature calls this training method "behavior
cloning" (Torabi et al., 2018) as it learns from demonstra-
tions. Behavior cloning causes a drop in performance, but
this paper only focuses on the performance degradation
caused by compression, so we treat the behavior cloning
agent with uncompressed views as the upper bound of our
method.

Airbus detection: This task considers using satellite im-
agery to locate Airbuses. Satellites observe overlapping
images of an airport and transmit data to Earth through lim-
ited bandwidth, as shown in Fig. 3 (c). We crop all images
in the dataset into smaller pieces (224 × 224 pixels). The
two data sources are the upper 160 pixels (source 1) and
the lower 104 pixels of the image (source 2) with 40 pixels
overlapped. Our object detection model follows the paper
"You Only Look Once" (Yolo) (Redmon et al., 2016). The
task loss here is the difference between object detection loss
with and without compression.

Results: Our key findings are: (1) Task-aware NDPCA
outperforms task-agnostic NDPCA, and (2) bandwidth allo-
cation should correlate with task importance.

Across experiments (Fig. 2(a)-(c)), task-aware NDPCA no-
tably surpasses task-agnostic NDPCA and DAE, which
evenly distribute bandwidth. Task-aware NDPCA exhibits

graceful performance degradation with available bandwidth,
requiring no additional training or storage of multiple mod-
els, unlike DAE and JAE, which necessitate retraining for
each compression level.

In Fig. 2(a), denoising CIFAR-10 with NDPCA trained
at (mmin,mmax) = (8, 64) reveals NDPCA’s ability to
flexibly allocate bandwidth, yielding a 1.2 dB PSNR gain
over DAE when m = 64.

Fig. 2(b) showcases locate-and-lift task results with NDPCA
trained at (mmin,mmax) = (8, 48). NDPCA achieves a 9%
higher success rate compared to DAE when m = 24 due to
its effective allocation of bandwidth, prioritizing the more
crucial arm view.

In Fig. 2(c), Airbus detection with NDPCA trained at
(mmin,mmax) = (8, 40) demonstrates up to a 14% gain
in mAP50 over DAE. Interestingly, NDPCA’s empirical
bandwidth allocation closely aligns with the theoretical ra-
tio, suggesting its proficiency in capturing task importance.

Comparison with JAE: Despite JAE’s theoretical advan-
tage, NDPCA outperforms not only DAE but also JAE in
some cases. This superiority is attributed to NDPCA’s more
efficient representation in higher-dimensional latent space
compared to JAE’s direct learning of low-dimensional rep-
resentation. This approach is akin to pruning large neural
networks to identify effective sparse sub-networks.

6. Conclusion
We proposed a theoretically-grounded linear distributed
compressor, DPCA, and analyzed its performance compared
to the optimal joint compressor. Then, we designed a dis-
tributed compression framework called NDPCA by combin-
ing a neural autoencoder and DPCA to allocate bandwidth
according to their importance to the task. Experiments
on Airbus detection showed that NDPCA near-optimally
outperforms task-agnostic or equal-bandwidth compression
schemes. Moreover, NDPCA requires only a single model
for different compression levels, which makes it suitable for
settings with dynamic bandwidths.
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Appendix

A. Related Work
Information theoretic perspective: Slepian and Wolf et al. are the first to obtain the minimum bandwidth of distributed
sources to perfectly reconstruct data (Slepian and Wolf, 1973). However, they use exponentially complex compressors while
assuming that the joint distribution of sources is known, which is impractical. In the presence of a task, finding the rate
region of two binary sources has remained an open problem, even for modulo-two sum tasks (Korner and Marton, 1979). In
terms of imperfectly reconstructing data with neural autoencoders, previous works consider compression of the original data
to a fixed dimension (Whang et al., 2021; Diao et al., 2020), while our work focuses on compressing data to any bandwidth
with a task model.

Task-aware compression: Real-world data, such as images or audio, are ubiquitous and high-dimensional, while down-
stream tasks that input the data only utilize certain features for the output. Task-aware compression aims to compress data
while maximizing the performance of a downstream task. Previous works analyze linear task (Cheng et al., 2022a), image
compression (Ji et al., 2012; Choi and Han, 2020; Nakanoya et al., 2023; Dubois et al., 2021), future prediction (Cheng
et al., 2021), and data privacy (han Li et al., 2023; Cheng et al., 2022b), while ours compresses distributed sources under
limited bandwidth.

Neural autoencoder: Previous works show the ability of neural autoencoders to generate meaningful and uncorrelated
representations. Instead of adding additional loss terms during training like (Bardes et al., 2022; Singh et al., 2022; Chen
et al., 2018; Bousmalis et al., 2016; Lo et al., 2023), we use a random projection module to help a neural autoencoder
learn uncorrelated and linear-compressible representations. Other works focus on designing new neural architectures for
multi-view image compression (Zhang et al., 2023; Mital et al., 2023), while ours focuses on the framework to compress
data to different compression levels. We choose autoencoders instead of variational autoencoders (Kingma and Welling,
2013; Higgins et al., 2017) because we focus on the compression of fixed representations rather than generative tasks from
latent distributions. Also, autoencoders are more compatible with DPCA than variational autoencoders.

B. Solving DPCA
We now solve the optimization problem in (2). For any given E1, E2 (thus, a given Z), we can optimally obtain
M∗ = Y Z⊤(ZZ⊤)−1 = Y Z⊤ by linear regression. Now, we are left to find the optimal encoders E1, E2. First, a
preprocessing step removes the correlation part of X1 from X2 by subtracting the least-square estimator X̂2(X1):

X̃2 = X2 − X̂2(X1) = X2 −X2X
⊤
1 (X1X

⊤
1 )−1X1. (5)

The orthogonality principle of least-square estimators (Kay, 1993) ensures that X1X̃
⊤
2 = 0n1×n2

. We decouple the objective
in (2a) with respect to E1, E2 by the orthogonality principle and (2c):

min
E1,E2

∥Y −M∗Z∥22 = ∥Y ∥22 − max
E1,E2

∥M∗∥22

= ∥Y ∥22 −max
E1

∥Y1X
⊤
1 E⊤

1 ∥22 −max
E2

∥Y2X̃
⊤
2 E⊤

2 ∥22,
(6)

where Y = ΦX =
[
Φ1Φ2

] [
X⊤

1 X⊤
2

]⊤
= Y1 + Y2. We then have two subproblems from (2):

E∗
1 = argmax

E1

∥Φ1X1X
⊤
1 E⊤

1 ∥22

s.t. E1X1X
⊤
1 E⊤

1 = Im1
,

(7)

E∗
2 = argmax

E2

∥Φ2X̃2X̃
⊤
2 E⊤

2 ∥22

s.t. E2X̃2X̃
⊤
2 E⊤

2 = Im2 .
(8)

The two subproblems are the canonical correlation analysis (Hardoon et al., 2004), which can be solved by whitening
E1X1, E2X̃2 and singular value decomposition (see (Hardoon et al., 2004) for details).
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C. Proof of Lemma
C.1. Bounds of DPCA

Lemma (Bounds of DPCA Reconstruction). Given a zero-mean data matrix and its covariance,

X =

[
X1

X2

]
∈ R(n1+n2)×N , XX⊤ =

[
Cov11 0

0 Cov22

]
︸ ︷︷ ︸

Xdiag

+

[
0 Cov12

Cov21 0

]
︸ ︷︷ ︸

∆X

,

assume that ∆X is relatively smaller than XX⊤, and XX⊤ is positive definite with distinct eigenvalues. For PCA’s encoding
and decoding matrices EPCA, DPCA and DPCA’s encoding and decoding matrices EDPCA, DDPCA, the difference of the
reconstruction losses is bounded by

0 ≤ ∥X −DDPCA EDPCA(X)∥22 − ∥X −DPCAEPCA(X)∥22 = −
n1+n2∑
i=m+1

λie
⊤
i ∆Xei.

where λi and ei are the i-th largest eigenvalue and eigenvector of XX⊤, Tr is the trace function, and m is the dimension of
the compression bottleneck.

Proof. The lower bound is intuitive. We know that DPCA cannot outperform PCA since distributed coding cannot
outperform joint coding and PCA is the optimal linear encoding. The reconstruction loss of PCA is always not greater than
the loss of DPCA, thus the lower bound is 0. Now consider the upper bound:

∥X −DDPCAEDPCAX∥22 − ∥X −DPCAEPCAX∥22
= Tr(XX⊤ +DDPCAEDPCAX (DDPCAEDPCAX)

⊤ − 2DDPCAEDPCAXX⊤)

−
n1+n2∑
i=m+1

λi(XX⊤)

= Tr(Xdiag +∆X +DDPCAEDPCAX (DDPCAEDPCAX)
⊤ − 2DDPCAEDPCAXX⊤)

−
n1+n2∑
i=m+1

λi(XX⊤)

= Tr(∆X + E⊤
DPCAD

⊤
DPCADDPCAEDPCA∆X − 2DDPCAEDPCA∆X)

+

n1+n2∑
i=m+1

λi(Xdiag)− λi(XX⊤)

=

n1+n2∑
i=m+1

λi(Xdiag)− λi(XX⊤).

Finally, we use the matrix perturbation theory (Rellich and Berkowitz, 1969) to calculate the first-order approximation of the
effect of ∆X on the singular values of Xdiag. The perturbation theory assumes that the perturbation ∆X is relatively small
compared to Xdiag. Then, we know:

∥X −DDPCAEDPCAX∥22 − ∥X −DPCAEPCAX∥22 =

n1+n2∑
i=m+1

λi(Xdiag)− λi(XX⊤)

≤
n1+n2∑
i=m+1

λi − λi − λie
⊤
i ∆Xei

=−
n1+n2∑
i=m+1

λie
⊤
i ∆Xei.
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Note that the encoding and decoding matrices of DPCA look like:

DDPCA =

[
D1 0
0 D1

]
, EDPCA =

[
E1 0
0 E2,

]
where E1, E2, D1, D2 are matrices obtained from each source with DPCA.
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Figure 4: Bound from Lemma C.1: The obtained upper bound is always larger than the difference of losses of DPCA and PCA.

We examine the correctness of our bound with random data matrices in Fig. 4. We can see that the gap between DPCA and
PCA decreases as the Frobenius norm of ∆X decreases. The upper bound also has the same trend, while it is always larger
than the exact value. Note that in Fig. 4, all axes are in log scale.

D. DPCA Module Pseudocode

Algorithm 1 Projection into a random low dimension using DPCA

1: Input: A size b batch of latent representations Zi ∈ Rb×mi from each source i, min and max bandwidth mmin,mmax

2: Output: Compressed representation Zm
i of each source, reconstructed representation Ẑ for all sources

3: function ENCODE(Zi,mmin,mmax)
4: for each source i do
5: Z̄i ← Zi −Mean(Zi) ▷ Normalize representations
6: si, Vi, Hi ← SVD(Z̄i) ▷ Singular value decomposition
7: end for
8: s, V ← Cat(si), Cat(Vi) ▷ Concatenate singular values and vectors
9: m ← Rand(mmin,mmax) ▷ Randomly choose projection dimension

10: sm , V m ← argmax([s, V ],m) ▷ Select the top m values of s
11: for each source i do
12: V m

i ← {V |V ∈ V m , V ∈ Vi} ▷ Select m vectors from sources
13: Zm

i = Z̄i × V m
i ▷ Project Zi to lower dimensions

14: end for
15: return Zlow ← Cat(Zm

i ) ▷ Return Compressed representation
16: end function
17: function DECODE(Zm

i )
18: for each source i do
19: ˆ̄Zi ← Zm

i × Cat(V m
i )⊤ ▷ Decompressed representation

20: Ẑi← ˆ̄Zi +Mean(Zi) ▷ Denormalize representations
21: end for
22: return Ẑ ← Cat(Ẑi) ▷ Return reconstructed representations
23: end function

E. Discussion of Other Experiments
We now describe the other two datasets and the corresponding tasks of our additional experiments:
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CIFAR-10 denoising: We first consider a simple task of denoising CIFAR-10 images using two noisy observations of the
same image, shown in Fig. 3 (a). Here, the importance of each observation, or view, for the task is simply the noise level.
For view 1, we consider an image corrupted with additive white Gaussian noise (AWGN) with a variance of 0.12. And view
2 is highly corrupted by AWGN with a variance of 1. All the images were normalized to [0, 1] before adding the noise. We
compressed the noisy observations and passed the reconstructed images through a pre-trained denoising network. We then
computed the final peak signal-to-noise ratio (PSNR) with respect to the clean image. Since the noise levels of both views
are unequal, the importance of the task is unequal as well. The optimal bandwidth allocation should not be equal, thus
showing the advantage of NDPCA. Although view 1 contains more information, not all bandwidth should be allocated to
view 1. This problem is called the CEO problem (Berger et al., 1996; Prabhakaran et al., 2004). In fact, even if one view is
highly corrupted, we should still leverage that view and never allocate 0 bandwidth to it.

Locate and lift: For the manipulation task, we consider a scenario in which a simulated 6 degrees-of-freedom robotic arm
controlled by a reinforcement learning agent inputs two camera views to locate and lift a yellow brick. We call the view
from the robotic arm "arm-view" and the one recording the whole desk "side-view", as shown in Fig. 3 (b). The two views
are complementary to completing the task, details discussed in Appendix H.3. We trained the agent in a supervised-learning
manner. We collected a dataset of observation and action pairs (Zhao et al., 2023) and trained an agent from the dataset.
Then, we defined task loss as the L2 norm of actions from images with and without compression and trained NDPCA to
minimize the task loss through the agent. Literature calls this training method "behavior cloning" (Torabi et al., 2018) as it
learns from demonstrations. Behavior cloning causes a drop in performance, but this paper only focuses on the performance
degradation caused by compression, so we treat the behavior cloning agent with uncompressed views as the upper bound of
our method.

The results of the other two experiments are:

Fig. 2(a) shows the results of denoising CIFAR-10 with NPDCA trained at (mmin,mmax) = (8, 64). Although view 1 is
more important than view 2, DAE can only equally allocates bandwidth to both sources. NDPCA compresses the data and
flexibly allocates bandwidths, as shown in 2(d), where we can see that Z1 has more bandwidth than Z2. NDPCA results in
1.2 dB gain in PSNR compared to DAE when m = 64.

Fig. 2(b) shows the results of the locate and lift task with NPDCA trained at (mmin,mmax) = (8, 48). We set the length of
an episode as 50 time steps and measure the success rate in 100 episodes. We show the upper bound, a behavior cloning
agent without compression, in gray dotted lines. The arm view is more important as it captures the precise location of the
brick, and as expected, NDPCA allocates more bandwidth to the arm-view (Z2), as seen in Fig. 2(e). We see that NDPCA
has a 9% higher success rate compared to DAE when m = 24.

Comparison of NDPCA with JAE: JAE uses the information from both views simultaneously to capture the best joint
embedding for the task. In an ideal scenario, JAE will be the upper bound for the performance and hence easily performs
better than DAE across all the experiments. Interestingly, in Fig. 2(b) and (c), we see that NDPCA outperforms not only
DAE but also JAE as well. We attribute it to the better representations present in higher-dimension latent space. It turns
out that learning a high-dimensional representation and then projecting to a lower dimension space, like NDPCA, is more
efficient compared to directly learning a low-dimensional representation, like JAE. This projection from higher dimensional
to lower dimensional is similar to pruning large neural networks to identify effective sparse sub-networks. (Frankle and
Carbin, 2019; Ye et al., 2020). We also note that Low-Rank Adaptation (LoRA) (Hu et al., 2022) technique for large
language models can be thought of as a similar approach.

Limitations: In general, autoencoders are poor at generalizing to out-of-distribution data and the drawback translates to
NDPCA as well. When the testing set is noticeably different from the training set, the performance of NDPCA can get
noticeably lower. Additionally, during training, DPCA performs the singular value decomposition in the training set. The
decomposition operation can become ill-conditioned and unstable if the batch size is too small. An alternative approach
could be a parametric low-rank decomposition such as LoRA (Hu et al., 2022) or using adapter networks (Houlsby et al.,
2019), although the complexity increases and the compatibility with DPCA remains to be explored.
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F. Details of the Datasets
F.1. CIFAR-10 denoising:

We started with the standard CIFAR-10 dataset and normalized the images to [0, 1]. Two different views are created by
adding different levels of Gaussian noise, N (0, 0.12) and N (0, 1). The pre-trained task model is created by training a
denoising autoencoder that takes both views, concatenates them along the channel dimension, and produces a clean image.
The autoencoders need to learn features that are important for this task model.

F.2. Locate and lift:

We collected 20, 000 pairs of actions and the corresponding images of both views for our training set. The actions are 4
dimensional, controlling the x, y, z coordinate movements and the gripper of the robotic arm. We randomly cropped the
images from 128× 128 to 112× 112 pixels to make our autoencoder more robust. The expert agent is pre-trained by the
same data augmentation as well.

F.3. Airbus detection:

We first cropped all original images of 2560× 2560 pixels (Fig. 5) into 224× 224 pixels with 28 pixels overlapping between
each cropped image. We then eliminated the bounding boxes that are less than 30% left after cropping.

Figure 5: Original image of airbus detection. The original images are 2560× 2560 pixels, and we cropped them into smaller pieces in
224× 224.

G. Implementation Details
G.1. CIFAR-10 denoising:

For the CIFAR-10 dataset, we used the standard CIFAR-10 dataset and applied different levels of AWGN noise to create
two correlated datasets. We used the CIFAR-10 experiments as a proof of concept to try different architectures and loss
functions and other techniques to finalize our framework. We choose λtask = 1 for the task-aware setting and λrec = 1 for
the task-agnostic setting. We run 4 random seeds on NDPCA and all baselines to evaluate the performance.
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G.2. Locate and lift:

For the locate and lift experiment, we trained our autoencoder with the same random cropping setting as in Sec. F, which
cropped the images from 128× 128 to 112× 112 pixels. During testing, we randomly initialized the location of the brick
and center-cropped the images from 128× 128 to 112× 112 pixels. We scaled all images to 0 to 1 and ran 5 random seeds
on NDPCA and all baselines to evaluate the performance. For the task-aware setting, λtask = 500, and λrec = 1000 for the
task-agnostic. setting

G.3. Airbus detection:

For the Airbus detection task, we used the original Yolo paper for our object detection model together with the detection loss
(Redmon et al., 2016). Our experiments with the latest state-of-the-art Yolo v8 model (Yol, 2023) showed that there is no
big difference in the Airbus detection dataset in terms of run time and accuracy. Since the size of the original dataset is not
enough to train an object detection model, we used the data augmentation proposed in Yolo v8, mosaic, to increase the size
of the dataset. Mosaic randomly crops 4 images and merges them to generate a new image. We used random resized crop,
blur, median blur, and CLAHE enhancement during training, each with probability 0.05 by functions in the Albumentations
package (Buslaev et al., 2020). We increased the size of the Airbus dataset from 5904 to 21808 with mosiac and trained the
Yolo detection model. Finally, we trained our autoencoder with the same dataset, but downsample the images to 112× 112
pixels so that the autoencoder is faster to train. For the task-aware setting, λtask = 0.1, and λrec = 0.5 for the task-agnostic
setting. We run 2 random seeds on NDPCA and all baselines to evaluate the performance.

G.4. Neural Autoencoder Architecture and Hyperparameters
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Figure 6: ResNet Autoencoer: The encoder processes inputs through r convolution layers and r ×N residual blocks, followed by 3
fully connected layers with ReLU activation. The decoder processes latent representations in the reverse order from the encoder with 2×
upsamplings.

We used the ResNet encoder shown in Fig. 6a and the decoder in Fig. 6b for all experiments. We used different numbers
of filters and numbers of residual blocks for our experiments, shown as C and r. We denote m as the number of latent
dimensions. The numbers of filters are C1 = 32, C2 = 64, C3 = 128, C1 = 8, C2 = 16, C3 = 32, C4 = 64, and
C1 = 16, C2 = 32, C3 = 64, C4 = 128, and the numbers of residual blocks are r = 0, r = 1, r = 1 for CIFAR-10
denoising, locate and lift, and Airbus detection. For CIFAR-10 denoising, we use the Adam optimizer with a learning rate
of 0.0002, and for the other two experiments, we use the Adam optimizer with a learning rate of 0.0001. For the sake of
training speed, when training DAE and JAE, we first trained a large network with mmax with each random seed. Then, we
fixed the network parameters and trained concatenate 3 fully connected layers on each encoder and decoder network to
compress and decompress the data to smaller m.

G.5. Balancing Task-aware and Task-agnostic Loss

NPDCA has a loss function consisting of 2 terms, as shown in (4):

Ltot = λtask ∥Ŷ − Y ∥2F︸ ︷︷ ︸
task loss

+λrec

(
∥X̂1 −X1∥2F + ∥X̂2 −X2∥2F + . . . ∥X̂K −XK∥2F

)
︸ ︷︷ ︸

reconstruction loss

. (4 revisited)
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Locate and lift Airbus detection

Ground Truth

Task-aware

Task-agnostic

Figure 7: Weighted task-loss: Weighted task-aware images faintly reconstruct the original images while restoring task-relevant features
with high-frequency noise. In Airbus detection, location of Airbuses is captured with shiny high-frequency pixels in row 3.

Previous work (Nakanoya et al., 2023) tested cases of (4), such as task-aware when λtask > 0, λrec = 0, and task-agnostic
when λtask = 0, λrec > 0. Of course, one can use different weighted sums of the 2 terms in (4), which we call weighted
task-aware. We show the resulting reconstructed image in Fig. 7, whose weights are a mixture of half of the two other
methods. Weighted task-aware images have both blurry reconstructions of the original images and task-relevant features.
Unsurprisingly, the task loss and the reconstructed loss of weighted task-aware images are between pure task-aware and
task-agnostic, that is, we can use the weights in the loss function to trade off compressing human perception features against
task-relevant features. Interestingly, we can see that the task-aware images look similar to the images without Airbuses (last
2 columns), and when there are Airbuses, the task-aware images look different. It means that the features of no Airbuses
are pretty much the same in the latent space, thus resulting in similar images in pixel space. Hence we can conclude that
task-aware features are not random noise, they are meaningful features only to the task model but not to our eyes.

G.6. Storage and Training Complexity

Model CIFAR-10 Locate and lift Airbus detection

Storage (MB) Train (hr) Storage (MB) Train (hr) Storage (MB) Train (hr)

NDPCA 8.3 0.25 16.4 5.0 33.0 13.0
DAE 5× 8.4 5× 0.21 4× 16.3 4× 5.0 4× 22.5 4× 11.5
JAE 5× 10.2 5× 0.22 4× 11.4 4× 3.5 4× 32.9 4× 10.5

Table 1: Storage and training complexity: NDPCA has slightly more storage and training overload than other models for a single
bandwidth but can operate across different bandwidths. We multiply the number of bandwidths tested in Fig. 2 to the storage size and
training time of DAE and JAE as they require different models for different compression levels.

One key feature of NDPCA is that it only needs one model to operate in different bandwidths. Therefore, we only need
to train and store one model at the edge devices and the central node. We compare the complexity of storage and training
in Table 1. Although NDPCA has a larger storage size and longer training time than other models, it can operate across
different bandwidths. According to Table 1, if all models operate in more than 1 bandwidths, NDPCA saves more storage
and training overload because other models have more than 50% of NPDCA’s overload. For CIFAR-10 denoising, we tested
the training time on an RTX 4090, and for the locate and lift and Airbus detection experiments, we tested the training time
on an NVIDIA RTX A5000.
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Figure 8: Ablation study of the nuclear norm and cosine similarity: Adding the nuclear norm or cosine similarity to the loss function
does not improve the performance of the model when compressing latent representations to lower dimensions.

H. Ablation Study
H.1. Cosine similarity and nuclear norm

In Fig. 8, we show that adding nuclear norm or cosine similarity in the training loss (4) does not help the model perform
when we use DPCA to project latent representations into lower dimensions. We compared our proposed NDPCA with
the DPCA module against NDPCA without the DPCA module but with the penalization of the nuclear norm and cosine
similarity added. The weights of all the additional terms are 0.1. From Fig. 8, we conclude that the DPCA module can
increase the performance better than the other two.
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Figure 9: Ablation study of DPCA module: The proposed DPCA module effectively increases the performance in lower bandwidths,
while achieving the same performance at larger bandwidths.

H.2. DPCA module

In Fig. 9, we show that the proposed DPCA module can help the neural autoencoder learn linear compressible representations,
as described in Sec. 4. We see that with the DPCA module, NDPCA can increase the performance in lower bandwidths,
while saturating at the performance close to the model without the module. We conclude that with the DPCA module,
NDPCA learns to generate low-rank representations, so the performance is better in lower bandwidths. However, when the
bandwidth is higher, the bandwidth can almost fully restore the representations, so the two methods perform similarly.

15



Task-aware Distributed Source Coding under Dynamic Bandwidth

H.3. Single view performance of locate and lift

In the locate and lift experiments, the reinforcement learning agent leverages information from both views as input to
manipulate. Here, we detail why the 2 views are complementary to accomplish the task. The success rate of an agent is 76%
with only the arm-view and 45% with the side-view. When combining both, the success rate is 83%. The reason why the
views are complementary is that the side-view provides global information on the position of the arm and the brick, but
sometimes the brick is hidden behind the arm. The arm-view captures detailed information from a narrow view of the desk.
Once the arm-view captures the brick, it is straightforward to move toward it and lift it. The arm view is more important
because with only the arm-view, the agent can randomly explore the brick, but with only the side-view, the brick might be
vague to see and thus harder to lift. Of course, with both views, the robotic arm can easily move toward the vague position
of the brick and use arm-view to lift it.
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