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Figure 1: Diverse results from our proposed methods given single content image (the leftmost).
Controlling λ in our proposed sampling method (GCDM) results in different magnitudes of style
translation in (a). While fixing the content feature, applying convex combinations between the style
features of the content and the style images shows smooth interpolations as shown in (b). PCA on
the learned style code gives disentangled attribute-specific manipulation directions in (c). Detailed
experiment setups and more results are in Sections F.1, F.2 and in Fig. 18 in the supplementary.

ABSTRACT

As Diffusion Models have shown remarkable capabilities in generating images,
the controllability of Diffusion Models has received much attention. However,
there is still room for improvement of controllability in some aspects, such as
feature disentanglement of Diffusion Models for extended editability and com-
posing multiple conditions naturally. In this paper, we present three methods that
can be used in either training or sampling to enhance the controllability of Dif-
fusion Models. Concisely, we train Diffusion Models conditioned on two latent
codes, a spatial content mask, and a flattened style embedding. We rely on the
inductive bias of the progressive denoising process of Diffusion Models to encode
pose/layout information in the spatial structure mask and semantic/style infor-
mation in the style code. We also propose two generic sampling techniques for
improving controllability. First, we extend Composable Diffusion Models to al-
low for some dependence between conditional inputs, to improve the quality of
generations while also providing control over the amount of guidance from each
condition and their joint distribution. Second, we propose timestep-dependent
weight scheduling for content and style latents to further improve the translations.
We observe better controllability compared to existing methods and show that
with our proposed methods, Diffusion Models can be used for effective image
manipulation and image translation.

1 INTRODUCTION

Improving controllability of generative models has been one of the most prominent research topics
in past few years, e.g., GANs (Goodfellow et al., 2014; Härkönen et al., 2020), VAE (Kingma &
Welling, 2013; Bouchacourt et al., 2018), Flow-based Models (Dinh et al., 2017; Esser et al., 2020),
Masked Generative Transformers (Chang et al., 2023), and Autoregressive Models (Yu et al., 2023).
The enhanced controls are useful for many practical applications such as Image Synthesis (Park
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Figure 2: overview of our proposed framework.
We first obtain z0 from the pretrained Autoen-
coder (Esser et al., 2021), which is the actual
input for the LDM (Rombach et al., 2022). The
external encoders Ec(ψ) and Es(ϕ) and the de-
noising UNet ϵ(θ) are trained together without
any additional objectives.

et al., 2020), Domain Adaptation (Hoffman et al., 2018), Style Transfer (Huang et al., 2018; Lee
et al., 2018) and Interpretability (Lang et al., 2021) to name a few.

Recently, Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have gained much attention
due to their impressive performance in image generation (Dhariwal & Nichol, 2021; Ramesh et al.,
2022; Rombach et al., 2022) and likelihood estimation (Nichol & Dhariwal, 2021). Even though
there have been many research papers on extending controllability of Diffusion Models, it has rela-
tively remained underexplored how to disentangle the latent space of diffusion models, and how to
combine the multiple conditions naturally during the sampling in a controllable way.

Indeed, the topic of generative models with multiple external disentangled latent spaces has been
widely explored in GANs (Park et al., 2020; Huang et al., 2018; Lee et al., 2018; Kwon & Ye,
2021). A common theme across such methods is to learn a structure/content code to capture the
underlying structure (e.g., facial shape and pose in face images) and a texture/style code to capture
global semantic information (e.g. visual appearance, color, hair style etc.). Similar approaches have
been tried in Diffusion Models in (Kwon & Ye, 2022; Preechakul et al., 2022), however, these
techniques do not learn multiple controllable latent spaces.

In this paper, we propose a novel framework as shown in Fig. 2 to effectively learn two latent spaces
to enhance controllability in diffusion models. Inspired by (Park et al., 2020; Kwon & Ye, 2021)
we add a Content Encoder that learns a spatial layout mask and a Style Encoder that outputs a
flattened semantic code to condition the diffusion model during training (Section 3.1). The content
and style codes are injected differently into the UNet (Ronneberger et al., 2015) to ensure they
encode different semantic factors of an image.

Though decomposing content and style information from an image enables better controllability,
enforcing independence between the codes during sampling may not always be ideal. For example,
face structure (e.g. square or round face) that is ideally encoded in the content code and gender (e.g.
male or female) an attribute encoded in the style code (Park et al., 2020), may not be independent
and treating them as such might lead to unnatural compositions (Fig. 3). However, an existing
method Composable Diffusion Models (CDM) (Liu et al., 2022) assumes conditioning inputs are
independent and hence shows unnatural compositions for certain prompts like ‘a flower’ and ‘a
bird’ (see Fig.6 in (Liu et al., 2022)). We extend the formulation in (Liu et al., 2022) and propose
Generalized Composable Diffusion Models (GCDM) to support compositions during inference when
the conditional inputs are not necessarily independent (Section 3.3). This also provides the ability
to control the amount of information from content, style, and their joint conditioning separately
during sampling. We observe significantly better translations with GCDM and also show improved
compositions in Stable Diffusion compared to CDM (Fig. 5).

In addition, we leverage the inductive bias (Balaji et al., 2022; Choi et al., 2021; 2022) of Diffusion
Models that learns low-frequency layout information in earlier steps and high-frequency or imper-
ceptible details in the later steps of the reverse diffusion process, to further improve results. We use a
predefined controllable timestep-dependent weight schedule to compose the content and style codes
during generation. This simulates the mixture of denoising experts proposed in (Balaji et al., 2022)
by virtue of varying the conditional information at different timesteps during inference.

2 PRELIMINARIES AND RELATED WORKS

2.1 DIFFUSION MODELS

Diffusion Models (Sohl-Dickstein et al., 2015) like DDPM (Ho et al., 2020) showed impressive
image generation and likelihood estimation but had a computationally expensive sampling proce-
dure. DDIM (Song et al., 2020) reduced the sampling time by deriving a non-Markovian variant of
DDPM. Similarly, ImprovedDDPM (Nichol & Dhariwal, 2021) also improved sampling speed and
proposed to learn the variance schedule that was fixed in previous works to enhance mode coverage.
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Figure 3: Conceptual illustration of CDM
and GCDM. (a) The result based on CDM
can be outside of manifold while the joint
guidance stays on manifold. (b) GCDM
trades off between the independent guidance
provided by CDM (stronger effects of the
condition) and the joint guidance (more re-
alistic). Please see Fig. 5, 6 (main paper) and
Fig. 16 (supplementary).

LDM (Rombach et al., 2022) used a pretrained autoencoder (Esser et al., 2021) to train a diffusion
model on the learned latent space, reducing time and memory complexity without loss in quality.
More descriptions are provided in Section D in the supplementary.

2.2 CONTROLLABILITY IN DIFFUSION MODELS

Guidance:
Some recent works have explored modeling the conditional density p(xt|c) for controllability.
Dhariwal et al. (Dhariwal & Nichol, 2021) proposed to use a pretrained classifier but finetuning
a classifier that estimates gradients from noisy images, which increases the complexity of the over-
all process (Ho & Salimans, 2022). Ho et al. (Ho & Salimans, 2022) proposed to use an implicit
classifier while Composable Diffusion Models (Liu et al., 2022) (CDM) extend the classifier-free
guidance approach to work with multiple conditions assuming conditional independence. Though
guidance approaches help control the generation, they do not offer fine-grained controllability or
support applications such as reference-based image translation.

Conditional Diffusion Models:
Conditional Diffusion Models have been explored in diverse applications showing state-of-the-art
performance in text-to-image generation (DALLE2 (Ramesh et al., 2022), Imagen (Saharia et al.,
2022), Parti (Yu et al., 2022)). These methods use pretrained embeddings (e.g., CLIP) that support
interpolation but not further editability. Instructpix2pix (Brooks et al., 2023) proposed to generate
synthetic paired data via pretrained GPT-3 (Brown et al., 2020) and StableDiffusion, with which con-
ditional Diffusion Models are trained. DiffAE (Preechakul et al., 2022) proposed to learn a semantic
space that has nice properties making it suitable for image manipulation. However, a single latent
space capturing all the information makes it difficult to isolate attributes to manipulate. Recently,
ControlNet and T2Iadapter (Mou et al., 2023; Zhang & Agrawala, 2023) showed impressive perfor-
mance in conditioning image generation. They use additional auxiliary networks and layers that are
trained to encode structure into pretrained text2image Diffusion Models. However, our architecture
is particular to reference-based image translation, the proposed GCDM and timestep scheduling are
generic and applicable to any multi-conditioned Diffusion Models beyond image translation.

Inference only Editing:
SDEdit (Meng et al., 2021) enables structure-preserving edits while Prompt-to-prompt (Hertz et al.,
2022) modifies the attention maps from cross-attention layers to add, remove, or reweigh the impor-
tance of an object in an image. DiffusionCLIP (Kim et al., 2022), Imagic (Kawar et al., 2022) and
Unitune (Valevski et al., 2022) propose optimization-based techniques for text-based image edit-
ing. Textual Inversion (Gal et al., 2022) and DreamBooth (Ruiz et al., 2022) finetune pretrained
models using a few reference images to get personalized models. Though the above techniques are
helpful with editing, most of these methods require computationally expensive optimization, modify
the weights of pretrained model for each sample, and/or don’t support fine-grained controllability
for reference-based image translation. The closest related work to ours is DiffuseIT (Kwon & Ye,
2022). They enabled reference and text-guided image translation by leveraging Dino-VIT (Caron
et al., 2021) to encode content and style. However, their approach requires costly optimization
during inference and doesn’t support controlling the final generation.

3 PROPOSED METHOD

Our framework is based on the LDM (Rombach et al., 2022) architecture as it is faster to train
and sample from, compared to pixel-based diffusion models. Let x be an input image and ELDM
and DLDM be the pretrained and fixed encoder and decoder respectively. The actual input space
for our diffusion model is the low-dimensional latent space z = ELDM (x). The output of the
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reverse diffusion process is the low dimensional latent ẑ0 which is then passed through the pretrained
decoder as x = DLDM (ẑ0) to get the final image x̂0.

3.1 LEARNING CONTENT AND STYLE LATENT SPACES

Inspired by DiffAE (Preechakul et al., 2022) and similar approaches in GANs (Kwon & Ye, 2021),
we introduce a content encoder Ec( · ;ψ) and a style encoder Es( · ;ϕ) in our framework as shown
in Fig. 2. The objective for training is formulated as:

min
θ,ψ,ϕ

Ez0,ϵt
[
∥ϵt − ϵ(zt, t, Ec(z0;ψ), Es(z0;ϕ); θ)∥22

]
,

where zt is from the forward process, i.e., zt = q(zt|z0). To ensure that the encoders capture
different semantic factors of an image, we design the shape of zs and zc asymmetrically as done in
(Park et al., 2020; Tumanyan et al., 2022; Huang et al., 2018; Lee et al., 2018; Kwon & Ye, 2021;
Cho et al., 2019). The content encoderEc(z0;ψ) outputs a spatial layout mask zc ∈ R1×h

4 ×
w
4 where

w and h are the width and height of z0 latent. In contrast, Es(z0;ϕ) outputs zs ∈ R512×1×1 after
global average pool layer to capture global high-level semantics. At each layer of the denoising UNet
ϵ( · ; θ), the style code zs is applied using channel-wise affine transformation while the content code
zc is applied in a spatial manner. In specific, let ⊙ denote the element-wise product (i.e., Hadamard
product), let ⊗ denote outer product, and let 1 denote all one’s vector/matrix where subscript denotes
dimensionality. We define a variant of adaptive group normalization layer (AdaGN) in the UNet as:

AdaGN(hℓ) =[1C ⊗ (1H,W + t1φ
ℓ(zc))]⊙ [(1C + ζℓ(zs))⊗ 1H,W ]

⊙ [[(1C + t2)⊗ 1H,W ]⊙ GN(hℓ) + [t3 ⊗ 1H,W ]],
(1)

where φℓ is the spatial-wise content-specific term operating down or upsampling at ℓ-th layer to
make the dimensions of φℓ(zc) and hℓ match. ζℓ is the channel-wise style-specific term which is
implemented as an MLP layer. hℓ is (hidden) input to the ℓ-th layer, and t1, t2 and t3 are timestep-
specific adjustment terms inspired by Eq. 7 in DiffAE (Preechakul et al., 2022). The (1+ ) struc-
ture reveals the residual architecture of the content, style, and timestep modifications that maintain
the input if all adjustment terms are zero. When C,H,W are all 1 (i.e., the scalar case), the equation
can be simplified to reveal the basic structure as : (1 + t1φ(zc))(1 + ζ(zs))((1 + t2)h+ t3).

3.2 TIMESTEP SCHEDULING FOR CONDITIONING

It has been observed in (Choi et al., 2021; 2022; Balaji et al., 2022) that low-frequency information,
i.e., coarse features such as pose and facial shape are learned in the earlier timesteps (e.g., 0 <
SNR(t) < 10−2) while high-frequency information such as fine-grained features and imperceptible
details are encoded in later timesteps (e.g., 100 < SNR(t) < 104) in the reverse diffusion process.

Inspired by this, we introduce a weight scheduler for zc and zs that determines how much the content
and the style conditions are applied to the denoising networks. We use the following schedule:

wc(t) =
1

1 + exp (−a(t− b))
, ws(t) =

1

1 + exp (−a(−t+ b))
, (2)

where a is a coefficient for determining how many timesteps content and style are jointly provided
while b indicates the timestep at which ws(t) ≥ wc(t). We also tried a simple linear weighting
and a constant schedule but observed that the proposed schedule gave consistently better results
(examples are provided in Section G.2 in the supplementary). When applying, we use weighted
form, denoted φ̄ and ζ̄, of the style and content functions during sampling. They are defined as
φ̄(zc, t) := wc(t)φ(zc) and ζ̄(zs, t) := ws(t)ζ(zs), which respectively replace φ and ζ in Eq. 1.

We additionally evaluate using timestep scheduling during training. It is an interesting future direc-
tion showing better decomposition of content and style (Section G.1 in the supplementary).

3.3 GENERALIZED COMPOSABLE DIFFUSION MODELS (GCDM)

As mentioned in Section 1, CDM has an inherent limitation that conditional independence is as-
sumed (i.e., C1 ⊥ C2|Xt), which may not always hold in practice. Incorporating the joint compo-
nent into CDM formulation possibly yields a better composition of seemingly irrelevant objects in
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the real world, e.g., c1 = ‘an octopus’ and c2 = ‘a pyramid’, by finding the real manifold that both
objects can be naturally placed together. Thus, we propose GCDM which can potentially improve
the composition of multiple conditions.

Furthermore, GCDM formulation can enhance controllability over the generation enabling extended
control over CDM. The conceptual benefit of GCDM over CDM can be understood by Fig. 3. (a)
shows an example that the content and the style guidances from CDM generate unrealistic samples
because the combined guidance is outside the manifold. On the contrary, the joint guidance helps
keep the generation within the manifold. (b) visualizes the proposed GCDM which can be seen as
a linear interpolation between CDM and the joint guidance. GCDM has the added advantage of
enabling separate controls for c1 (e.g., style), c2 (e.g., content), and realism.

Definition 3.1 (Generalized Composable Diffusion Models (GCDM)). The score function of
GCDM is the unconditional score function plus a convex combination of joint and independent
guidance terms formalized as:

∇xt log p̃α,λ,β1,β2(xt|c1, c2) ≜ ϵ(xt, t) + α
[
λ(ϵ(xt, t, c1, c2)− ϵ(xt, t)︸ ︷︷ ︸

∇xt log p(c1,c2|xt)

) (3)

+ (1− λ)
∑

i={1,2}

βi

(
ϵ(xt, t, ci)− ϵ(xt, t)︸ ︷︷ ︸

∇xt log p(ci|xt)

)]
,

where α ≥ 0 controls the strength of conditioning, λ ∈ [0, 1] controls the trade-off between joint
and independent conditioning, and βi controls the weight for the i-th condition under the constraint
that

∑
i βi = 1.

Note that the implicit classifiers, e.g., ∇xt
log p(ci|xt), play a role in guiding xt to be close to

the corresponding condition. The GCDM formulation p̃ in Definition 3.1 stems from the idea of
extending controllability of naive joint conditioning ∇xt

log p(xt|c1, c2) to mixed conditioning be-
tween joint and independent guidance. Similar to previous studies (Ho & Salimans, 2021; Liu et al.,
2022), the guidance terms (i.e., the implicit classifiers) to be controlled are derived from reformulat-
ing the joint conditioning by simple Bayes rule. Please see Section B in the Supplementary for the
derivations.

We next show some of the interesting features of GCDM. First, GCDM generalizes simple joint
guidance, CDM, and Classifier-Free Guidance (Ho & Salimans, 2021) (CFG).

Proposition 3.2 (GCDM Generalizes Joint Guidance, CDM and CFG). If λ = 1, then GCDM
simplifies to joint guidance:

∇xt log p̃λ=1(xt|c1, c2) = ϵ(xt, t) + α(ϵ(xt, t, c1, c2)− ϵ(xt, t))︸ ︷︷ ︸
Joint Guidance

= ∇xt log p(xt|c1, c2) . (4)

If λ = 0, then GCDM simplifies to CDM:

∇xt log p̃λ=0(xt|c1, c2) = ϵ(xt, t) + α
[ ∑
i={1,2}

βi(ϵ(xt, t, ci)− ϵ(xt, t))
]

︸ ︷︷ ︸
CDM

. (5)

If λ = 0 and β2 = 0, then GCDM simplifies to CFG:

∇xt
log p̃λ=0,β2=0(xt|c1, c2) = ϵ(xt, t) + αβ1(ϵ(xt, t, c1)− ϵ(xt, t))︸ ︷︷ ︸

CFG

. (6)

The proof is simple from inspection of the GCDM definition. Second, the GCDM PDF p̃ from
Definition 3.1 is proportional to a nested geometric average of different conditional distributions.

Corollary 3.3. The GCDM distribution p̃ is proportional to nested geometric averages of condi-
tional distributions of xt:

p̃α,λ,β1,β2
(xt|c1, c2) ∝ p(xt)

(1−α)
[
p(xt|c1, c2)λ

(
p(xt|c1)β1p(xt|c2)(1−β1)

)(1−λ)
]α

. (7)
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The outermost geometric average is between an unconditional and conditional model. Then inside
we have the geometric average of the joint and independent conditional, and finally inside the inde-
pendent conditional we have a geometric average of the independent conditionals. The derivation is
provided in Section C in the supplementary.

Note that GCDM and timestep scheduling are generic sampling techniques for Diffusion Models
that can also be applied to other tasks beyond image translation (Fig. 5). A thorough investigation
of the effect of the various hyperparameters is provided in Section E.1 in the supplementary.

4 EXPERIMENTS

We comprehensively evaluate the proposed model on image-to-image translation and additionally
show qualitative examples of GCDM and CDM on text-to-image composition with stable diffusion.
Implementation details are provided in Section E.

4.1 EXPERIMENTAL SETUP

Datasets
We train different models on the commonly used datasets such as AFHQ (Choi et al., 2020),
FFHQ (Karras et al., 2019) and LSUN-church (Yu et al., 2015).

Baselines
DiffuseIT: The most similar work to ours based on diffusion models is DiffuseIT (Kwon & Ye,
2022) that tackles the same problem formulation. We compare our results with DiffuseIT using their
pretrained model and default parameters.
DiffAE+SDEdit: Since Diffusion Autoencoder (Preechakul et al., 2022) does not directly support
image-to-image translation, we combine that with SDEdit (Meng et al., 2021). The input image
for the reverse process is x600 (chosen empirically) obtained as q(x600|xc) by running the forward
process on the content image. The semantic feature zsem from the semantic encoder of DiffAE is
used given the style image xs.
DiffAE+MagicMix: We also combine MagixMix (Liew et al., 2022) with DiffAE. Similar to Dif-
fAE+SDEdit, this model takes x600 from xc as input and zsem from xs as conditioning. Addition-
ally, at each timestep, the approximated previous timestep x̂t−1 is combined with xt−1 from the
content image xc, i.e., x̂t−1 = vx̂t−1+(1− v)q(xt−1|xc). For this experiment, v = 0.5 is used and
the noise mixing technique is applied between t = [600, 300].
SAE: Swapping Autoencoder (Park et al., 2020) based on GAN (Goodfellow et al., 2014) is also
evaluated. Since the available pretrained model is on a resolution of 512, we resize the generated
results to 256 for a fair comparison.

Evaluation Metrics
FID: We use the commonly used Fréchet inception distance (FID) (Heusel et al., 2017) to ensure the
generated samples are realistic. We follow the protocol proposed in (Choi et al., 2020) for reference-
based image translation. To obtain statistics from generated images, 2000 test samples are used as
the content images, and five randomly chosen images from the rest of the test set are used as style
images for each content image to generate 10,000 synthetic images.
LPIPS: Even though FID evaluates the realism of the generations, the model could use just content
and ignore style (or vice versa) and still get good FID. Following (Choi et al., 2020), we use LPIPS
score obtained by measuring the feature distances between pairs of synthetic images generated from
the same content image but with different style images. Higher LPIPS indicates more diverse
results. It is ideal for the model to tradeoff between LPIPS and FID, i.e., incorporate enough style
information from different style images for the same content image (increasing LPIPS) but without
going out of the real distribution (decreasing FID).

4.2 COMPARISON WITH EXISTING WORKS

Qualitative Results.
Fig. 4 visually shows example generations from different techniques. We observe that Dif-
fAE+SDEdit loses content information while DiffAE+MagicMix generates unnatural images that
naively combine the two images. This indicates that a single latent space even with additional

6



Under review as a conference paper at ICLR 2024

© 2022 Adobe. All Rights Reserved. Adobe 
Confidential.

Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

Content Style
DiffAE

+ SDEdit
DiffAE

+ MagicMixDiffuseIT SAE
Ours

𝜆 = 0.9
Ours

𝜆 = 0.6
Ours

𝜆 = 0.3

Figure 4: Comparison of the proposed model with baselines on FFHQ dataset. Our method generates
more realistic combinations of the content and style images with better controllability.

techniques such as SDEdit and MagicMix is not suitable for reference-based image translation. Dif-
fuseIT and SAE models maintain more content information but do not transfer enough information
from the style image and have no control over the amount of information transferred from style.

An important benefit of our proposed method is better controllability. First of all, by manipulating
λ, we can control how much joint guidance is applied. In Fig. 4, decreasing λ indirectly increases
the effect of style from the style image when βc = 0 and βs = 1, where βc and βs are the weights
for each conditional guidance. It is because the smaller λ brings more information from the style
guidance (ref. 1 − λ term in Eq. 3). For example, the man on the second row has more wrinkles
and a beard as λ decreases. Second, given a fixed value of λ, we can control the amount of the
content and the style guidance by controlling βc and βs as shown in Fig. 6. More examples showing
the superior performance of our method in controllability are provided in Fig. 1 in the supplementary.

Table 1: Quantitative comparison using FID and LPIPS on FFHQ dataset.

DiffuseIT SAE DiffAE+SDEdit DiffAE+MagicMix Ours(λ = 0.9) Ours(λ = 0.6) Ours(λ = 0.3)
FID 29.99 25.06 26.63 84.55 11.99 13.40 15.45

LPIPS 0.47 0.39 0.64 0.41 0.34 0.42 0.49

Quantitative Results.
Table 1 shows the quantitative comparison in terms of FID and LPIPS metrics on FFHQ dataset.
Our variants generate images that are realistic as indicated by the lowest FID scores compared with
other models while also performing better on diversity as measured by the highest LPIPS except for
DiffAE+SDEdit method. However, DiffAE+SDEdit does not show a meaningful translation of style
onto the content image. DiffAE+MagicMix shows the worst performance because of its unrealistic
generation. SAE and DiffuseIT show lower LPIPS scores than ours, indicating that they transfer
relatively little information from the style image onto the generated samples (i.e., less diverse).
We can also observe that increasing λ (when βc = 0 and βs = 1) makes LPIPS worse while
improving FID. In other words, the stronger the joint guidance is the more realistic but less diverse
the generations. This verifies our assumption in Fig. 3 that the joint component has an effect of
pushing the generations into the real manifold.

4.3 EFFECT OF GCDM AND TIMESTEP SCHEDULING

Table 2: FID comparisons between
SAE and our model with CDM and
GCDM on AFHQ dataset.

SAE CDM GCDM GCDM
(λ = 0.9) (λ = 1.0)

FID 9.29 10.57 9.75 8.58
LPIPS 0.45 0.59 0.59 0.57

Table 3: Comparisons between CDM and GCDM in
FFHQ. Best method without timestep scheduling is high-
lighted in bold and with scheduling is highlighted with *.

w/o schedule w/ schedule

CDM GCDM CDM GCDM (βc = 1) GCDM (βs = 1)
FID 21.43 14.46 10.50 10.21* 10.61

LPIPS 0.47 0.51 0.31 0.28 0.33*

We compare SAE (Park et al., 2020) (the best performing baseline) and ours with CDM and GCDM
on AFHQ dataset in Table 2. The joint guidance (λ = 1) gets the lowest FID indicating that the
generations are more realistic as it pulls the guided results to be within the real data manifold. We
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Figure 5: GCDM vs CDM for text-to-image generation with Stable Diffusion. We can observe that
CDM generates unnatural images (e.g., blending two objects) that may be out of the real manifold
while GCDM ensures realistic generations (e.g., combining two objects in a realistic way)

Content Style

without 𝑡 scheduling

CDM GCDM
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CDM GCDM 
(𝛽! = 1)

GCDM
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Figure 6: Timestep scheduling improved the
results of both CDM and GCDM and gives
the best results when combined with GCDM.

Figure 7: Visualization of the effect of each
guidance term on generation. xT is randomly
sampled.

can also see that GCDM can be thought of as interpolating between CDM and the joint guidance
since FID for GCDM (λ = 0.9) is in between the joint and CDM. By comparing LPIPS and FID
of the variants of GCDM, we can see that the outputs become less diverse as realism is increased.
SAE shows worse performance than ours in terms of both diversity and realism. The qualitative
comparisons can be found in Fig. 16 in the supplementary.
Generalizability of GCDM.
We also compare the performance of CDM and GCDM in composing text prompts for text-to-image
generation using Stable Diffusion V2(Rombach et al., 2022) in Fig. 5. The phrases before and after
‘and’ are used as c1 and c2. The full sentence is used to represent joint conditioning.

As shown in Fig. 5, CDM tends to fail in composing multiple conditions if both conditions contain
object information. For example, the red bird and the yellow flower are merged in most cases. On the
other hand, GCDM consistently shows better compositions in the generated images. This empha-
sizes that GCDM is a generalized formulation for composing multiple conditioning inputs providing
more control to the user in terms of realism and diversity as illustrated in Fig. 3. Additional results
comparing CDM, GCDM (joint only), and GCDM can be found in Fig. 20.
Effect of Timestep Scheduling.
To more carefully analyze the effect of timestep scheduling when combined with GCDM or CDM,
we alter the timestep scheduling so that there is at least a 0.1 weight on style or content. Specif-
ically, we change the upper and lower bounds of the sigmoid to be 0.1 and 0.9 in Eq. 2, e.g.,
w′
c(t) = 0.8wc(t)+0.1. The results can be seen in Table 3 and Fig. 6. Without timestep scheduling,

GCDM shows better performance in both FID (realism) and LPIPS (diversity) than CDM. Com-
bined with timestep scheduling, both CDM and GCDM show meaningful improvements in FID in
exchange for losing diversity. This is because timestep scheduling improves content identity preser-
vation. Additionally, timestep scheduling with GCDM variants shows better FID or LPIPS than
CDM depending on the strength of guidance terms showing varied control over the generations.

4.4 ANALYSIS AND DISCUSSION

In this section, we analyze each of the components of our framework using AFHQ and LSUN-
church dataset and aim to better understand the content and style latent spaces. Further analysis and
results on PCA, latent interpolation, and KNN are in Section F.1, F.2 and F.3 in the supplementary.
Visualization of Each Guidance Term.

The proposed GCDM in Section 3.3 has guidance from three terms, the joint conditioning and
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Figure 8: Reference-based image translation results on LSUN-church.

style and content conditionings separately. Fig. 7 shows a comparison of the effect of these terms.
From the content guidance (column 3), it can be seen that the generated animals are not exactly the
same as the content image but have the exact same structure and pose. Similarly, when only style
guidance is used (column 4), the pose is random while the style such as color and fur corresponds to
the style image. From columns 5-6, it can be observed that the GCDM results have more semantic
information from the style than the results by simply using the joint guidance.

Table 4: Classifier-based comparisons in FFHQ.

Probability
Att. is Equal (%)

xc xs

Gender Age Race Gender Age Race
SAE 65.95 62.36 50.40 34.05 26.40 27.91

Ours (λ = 0.9) 65.14 53.79 53.31 34.86 31.60 28.51
Ours (λ = 0.25) 26.61 25.94 31.73 73.39 56.77 44.48

Classifier-based comparisons.
To further understand what kind of
attributes are encoded in style and
content latent spaces, we use pretrained
classifiers to predict the attributes of
translated images and compare them
with the original style and content im-
ages. We sample 2000 random images
from the test set to use as xc and another 2000 as xs to form 2000 content-style pairs. Next, we
acquire the translated output xo and corresponding pseudo labels yc, ys, and yo by leveraging an
off-the-shelf pretrained attribute classifier (EasyFace). In Table 4, we show the probabilities that
the final generated image xo has an attribute from content image as p(yattc = yatto ) and likewise
for style image. Both ours and SAE are designed to make zs encode global high-level semantics,
e.g., Gender, Age, etc. Thus, methods would show ideal performance if yatto = yatts ̸= yattc .
We see that most global attributes come from the content image for SAE indicating conservative
translations from the style image (as seen in Fig. 4 and lower LPIPS in Table 1). In contrast, ours
has a controllable way of deciding the strength of attributes from the style image through λ. The
lower the value of λ, the more disentangled and consistent the attributes will be in the generations.

Information Encoded in Each Latent Space.
We analyze the role of the denoising network ϵθ and the encoders Ec and Es by analyzing what
information is encoded in the respective latent spaces. Fig. 8 shows the results of fixing the content
while varying the style images (and vice versa). xT is fixed as well to reduce the stochasticity. The
remaining stochasticity comes from the white noise at each timestep during the reverse process.
From the results, we can see that the structure information is maintained while style information
changes according to the style image (and vice versa) as we intended. Similarly, in Fig. 17 in
supplementary, we forward the same image to content and style encoders while the generation starts
from different random noise xT .

5 CONCLUSION

We propose a novel framework for enhancing controllability in image-conditioned diffusion mod-
els for reference-based image translation and image manipulation. Our content and style encoders
trained along with the diffusion model do not require additional objectives or labels to learn to de-
compose style and content from images. The proposed generalized composable diffusion model
extends CDM for a more generalized scenario. It shows significantly better performance when
compared with CDM for translation as well as compositing text prompts. We also show that
timestep-dependent weight schedules for conditioning inputs can help improve overall results and
controllability. Additionally, the learned latent spaces are observed to have desirable properties like
PCA-based attribute manipulation and smooth interpolations. Quantitative and qualitative evalua-
tion shows the benefits of the proposed sampling techniques.
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