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Abstract

The past decade has seen vast progress in deep reinforcement learning (RL) on
the back of algorithms manually designed by human researchers. Recently, it
has been shown that it is possible to meta-learn update rules, with the hope of
discovering algorithms that can perform well on a wide range of RL tasks. Despite
impressive initial results from algorithms such as Learned Policy Gradient (LPG),
there remains a generalization gap when these algorithms are applied to unseen
environments. In this work, we examine how characteristics of the meta-training
distribution impact the generalization performance of these algorithms. Motivated
by this analysis and building on ideas from Unsupervised Environment Design
(UED), we propose a novel approach for automatically generating curricula to
maximize the regret of a meta-learned optimizer, in addition to a novel approxima-
tion of regret, which we name algorithmic regret (AR). The result is our method,
General RL Optimizers Obtained Via Environment Design (GROOVE). In a se-
ries of experiments, we show that GROOVE achieves superior generalization to
LPG, and evaluate AR against baseline metrics from UED, identifying it as a
critical component of environment design in this setting. We believe this approach
is a step towards the discovery of truly general RL algorithms, capable of solving a
wide range of real-world environments.

Boxi
ng

Fre
ew

ay

Batt
le 

Zon
e

Kru
ll
Sk

iing

Ban
k H

eis
t
So

lar
is

Fro
stb

ite

Cen
tip

ed
e

Defe
nd

er
Pon

g
En

du
ro
Pit

fal
l

Bow
ling

Bea
m Ride

r

Pri
va

te 
Ey

e

Grav
ita

r

Mon
tez

um
a R

ev
en

ge

Up N
Dow

n

Se
aq

ue
st

Su
rro

un
d

Sta
r G

un
ne

r

Zax
xon

Aste
roi

ds

Ve
ntu

re

Sp
ace

 In
va

de
rs

Ku
ng

 Fu
 Mast

er

Ph
oe

nixAlien

Rive
rra

id
Aste

rix

Wiza
rd 

Of W
or

Ms P
acm

anHero

Yar
s R

ev
en

ge
Amida

r

Cho
pp

er 
Com

man
d

Tut
an

kh
am

Ka
ng

aro
o
Qbe

rt

Gop
he

r

Berz
erk

Fis
hin

g D
erb

y

Dem
on

 At
tac

k

Nam
e T

his
 Gam

e

Brea
kou

t

Ro
bo

tan
k

Assa
ult

Ice
 Hock

ey

Tim
e P

ilot

Craz
y C

lim
be

r

Ro
ad

 Ru
nn

er

Jam
esb

on
d

Vid
eo

 Pin
ba

ll
Ten

nis

Dou
ble

 Dun
k

102

101

100
0

100

101

102

103

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t

GROOVE over LPG (Grid-World  Atari transfer)

Figure 1: Out-of-distribution performance on Atari—after meta-training exclusively on Grid-World levels, our
method (GROOVE) significantly outperforms LPG on Atari. Improvement is measured as a percentage of mean
human-normalized return over 5 seeds.
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1 Introduction

The past decade has seen vast progress in deep reinforcement learning [Sutton and Barto, 1998, RL],
a paradigm whereby agents interact with an environment to maximize a scalar reward. In particular,
deep RL agents have learned to master complex games [Silver et al., 2016, 2017, Berner et al., 2019],
control physical robots [OpenAI et al., 2019, Andrychowicz et al., 2020, Miki et al., 2022] and
increasingly solve real-world tasks [Degrave et al., 2022]. However, these successes have been driven
by the development of manually-designed algorithms, which have been refined over many years to
tackle new challenges in RL. As a result, these methods do not always exhibit the same performance
when transferred to new tasks [Henderson et al., 2018, Andrychowicz et al., 2021] and are limited by
our intuitions for RL.

Recently, meta-learning has emerged as a promising approach for discovering general RL algorithms
in a data-driven manner [Beck et al., 2023b]. In particular, Oh et al. [2020] introduced Learned Policy
Gradient (LPG), showing it is possible to meta-learn an update rule on toy environments and transfer
it zero-shot to train policies on challenging, unseen domains. Despite impressive initial results, there
remains a significant generalization gap when these algorithms are applied to unseen environments.
In this work, we seek to learn general and robust RL algorithms, by examining how characteristics of
the meta-training distribution impact the generalization of these algorithms.

Motivated by this analysis, our goal is to automatically learn a meta-training distribution. We build
on ideas from Unsupervised Environment Design [Dennis et al., 2020, UED], a paradigm where
a student agent trains on an adaptive distribution of environments proposed by a teacher, which
seeks to propose tasks which maximize the student’s regret. UED has typically been applied to
train single RL agents, where it has been shown to produce robust policies capable of zero-shot
transfer to challenging human-designed tasks. Instead, we apply UED to the meta-RL setting of
meta-learning a policy optimizer, which we refer to as policy meta-optimization (PMO). For this,
we propose algorithmic regret (AR), a novel metric for selecting meta-training tasks, in addition
to a method building on LPG and ideas from UED. We name our method General RL Optimizers
Obtained Via Environment Design, or GROOVE.

We train GROOVE on an unstructured distribution of Grid-World environments, and rigorously
examine its performance on a variety of unseen tasks—ranging from challenging Grid-Worlds to
Atari games. When evaluated against LPG, GROOVE achieves significantly improved generalization
performance on all of these domains. Furthermore, we compare AR against prior environment design
metrics proposed in UED literature, identifying it as a critical component for environment design in
this setting. We believe this approach is a step towards the discovery of truly-general RL algorithms,
capable of solving a wide range of real-world environments.

We implement GROOVE and LPG in JAX [Bradbury et al., 2018], resulting in a meta-training time of
3 hours on a single V100 GPU. As well as being the first complete and open-source implementation
of LPG, we achieve a major speedup against the reference implementation, which required 24 hours
on a 16-core TPU-v2. This will enable academic labs to perform follow-up research in this field,
where compute constraints have long been a limiting factor.

Levels
Agents

Optimizer

Unseen environment
Unseen agent

Learned 
optimizer

Meta-
optimizer

Update 
optimizer

Curator

Sampler

Figure 2: GROOVE meta-training (left) and meta-testing (right). During meta-training, levels are sampled
from both the level curator and sampler. Agents are trained by an optimizer for multiple updates, before a
meta-optimizer updates the optimizer based on agent return. At the end of an agent’s lifetime, its regret is
calculated and the level curator is updated. During meta-testing, the trained optimizer is applied to previously
unseen environments and agent architectures.
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Our contributions are summarized as follows:

• In order to distinguish this problem setting from traditional meta-RL, we provide a novel
formulation of PMO using the Meta-UPOMDP (Section 2.1).

• We propose AR (Section 3.2), a novel regret approximation for PMO, and GROOVE
(Section 3.3), a PMO method using AR for environment design.

• We analyze how features of the meta-training distribution impact generalization in PMO
(Section 4.2) and demonstrate AR as a proxy for task informativeness (Section 4.3).

• We extensively evaluate GROOVE against LPG, demonstrating improved in-distribution
robustness and out-of-distribution generalization (Section 4.4).

• We perform an ablation of AR, demonstrating the insufficiency of existing methods (PLR
and LPG) without AR, as well as the impact of the antagonist agent in AR (Section 4.5).

2 Problem Setting and Preliminaries

2.1 Formulating Policy Meta-Optimization for Environment Design

Policy Meta-Optimization In this work, we consider a subproblem of meta-RL which we refer
to as policy meta-optimization (PMO). PMO is a bilevel optimization problem. In the inner loop, a
collection of agents each interact with their associated environments and are updated with a policy
optimizer. Following a series of inner-loop updates, the outer loop updates the policy optimizer in
order to maximize the performance of these agents. PMO only trains the policy optimizer in the outer
loop, while the initial agent parameters for each task are generated by a static initialization function.

Unsupervised Environment Design In UED [Dennis et al., 2020], a teacher is given the problem
of designing an environment distribution which is maximally useful for training a student agent.
UED formalizes this problem setting with the Underspecified Partially Observable Markov Decision
Process (UPOMDP), an extension of the POMDP with additional free parameters ϕ that parameterize
those aspects of the environment which the teacher can modify throughout training. In prior work,
this paradigm has been used to adapt environment distributions to facilitate the learning of a robustly
transferable policy [Jiang et al., 2021b, Parker-Holder et al., 2022a]. However, in our problem setting
of PMO, the central focus is on learning the update rule itself, with the goal of transferring the update
rule to new environments.

Problem Formulation We therefore introduce the Meta-UPOMDP, an extension of the UP-
OMDP, to account for this difference. Formally, the Meta-UPOMDP is defined by the tuple
⟨A,O,S, T , I,R, γ,Φ,Θ⟩. The first components correspond to the standard UPOMDP, where
A is the action space, S is the state space, O is the observation space, and T : S ×A×Φ 7→ S is the
transition function. Upon each transition, the student agent receives an observation according to the
observation function I : S 7→ O and a reward according to the reward functionR : S×A 7→ R. Here,
the free parameters ϕ ∈ Φ control the variable aspects of the environment, such as the x, y-positions
of obstacles in a 2D maze.1

The Meta-UPOMDP models PMO, in which an optimizer F : Θ×T 7→ Θ learns to update an agent’s
parameters Θ given the sequence of states, actions, rewards and termination flags corresponding to the
agent’s past experience T in the environment. This update is performed after every transition over the
agent’s lifetime of N environment interactions, resulting in a sequence of parameters (θ0, . . . , θN ).
The Meta-UPOMDP extends the UPOMDP include agent parameters Θ and appends the agent
lifetime N to the free parameters ϕ, making it a controllable feature of tasks.

For an initialization of agent parameters θ0 and free parameters ϕ, we define the value of the optimizer
to be Vϕ,θ0(F) = EπθN

[
∑∞

t γtrt], which is the expected return of the trained agent πθN on the
environment specified by ϕ at the end of its lifetime. Given an optimizer Fη with meta-parameters η,
we reformulate the PMO objective from Oh et al. [2020] to

L(η) = Eϕ∼p(ϕ)Eθ0∼p(θ0)[Vϕ,θ0(Fη)], (1)

where p(ϕ) and p(θ0) are distributions of free parameters and initial agent parameters.
1The terms “tasks” and “levels” are used interchangeably to refer to settings of free parameters.

3



2.2 Learned Policy Gradient

Learned Policy Gradient [Oh et al., 2020, LPG] is a PMO method which trains a generalization
of the actor-critic architecture [Barto et al., 1983]. This replaces the critic with a generalization
of value functions from RL, that we refer to as bootstrap functions. Whilst value functions are
trained to predict the expected discounted return from a given state, bootstrap functions predict an
n-dimensional, categorical bootstrap vector, the properties of which are meta-learned by LPG.

LPG uses a reverse-LSTM [Hochreiter and Schmidhuber, 1997] to learn a policy update for
each agent transition, conditioned on all future episode transitions. For a single update to
agent parameters θ at time-step t, LPG outputs targets ŷt, π̂t = Uη(xt|xt+1, . . . , xT ), where
xt = [rt, dt, γ, πθ(at|st), yθ(st), yθ(st+1)] is a vector containing reward rt, episode-termination
flag dt, discount factor γ, probability of the chosen action πθ(at|st), and bootstrap vectors for the
current and next states yθ(st) and yθ(st+1). The targets ŷ and π̂ update the bootstrap function and
policy respectively, giving the update rule

∆θ ∝ [∇θ log πθ(a|s)π̂ − αy∇θDKL(yθ||ŷ)] . (2)

2.3 Learning Robust Policies via Minimax-Regret UED

A trivial example of UED is domain randomization [Jakobi, 1997, DR], in which the teacher generates
an environment distribution by uniformly sampling free parameters from the UPOMDP. By sampling
randomly, DR often fails to generate environments with interesting structure: they may be trivial,
impossible to solve, or irrelevant to downstream tasks of interest. An alternative approach is to train
an adversarial minimax teacher, whose objective is to generate environments which minimize the
agent’s return. This has the benefit of adapting the environment distribution to the agent’s current
capability, by presenting it with environments on which it performs poorly. However, by naïvely
minimizing return, the teacher is incentivized to generate environments which are impossible for the
agent to solve.

In contrast to this, Dennis et al. [2020] propose the minimax-regret objective for UED, in which
the teacher aims to maximize the agent’s regret, the difference between the achieved and maximum
return. Unlike return minimization, this disincentivizes the teacher from generating unsolvable levels
where regret would be 0. However, since computing the maximum return is generally intractable,
methods implementing this objective have proposed approximations of regret. PAIRED [Dennis et al.,
2020] co-trains an antagonist agent with the original (protagonist) agent, estimating regret as the
difference in their performance. PLR [Jiang et al., 2021b,a] curates a buffer of high-regret levels,
rather than training a generative model to produce them. In this, a range of regret approximations are
evaluated, with positive value loss, L1 value loss, and maximum Monte Carlo achieving consistent
performance across the evaluated domains.

3 Adversarial Environment Design for Policy Meta-Optimization

In this section, we introduce GROOVE, a novel method for PMO. We begin by formulating the
minimax-regret objective implemented by GROOVE, followed by AR, a novel regret approximation
designed for PMO. Finally, we discuss existing approaches to environment design and motivate the
selection of a curation-based approach.

3.1 Minimax-Regret as a Meta-Objective

Our method trains an optimizer Fη over an adversarial distribution of environments, in which the
UED adversary’s objective is to maximize the regret of the meta-learner, defined as

REGRET(η, ϕ) = Vϕ(η
∗
ϕ)− Vϕ(η). (3)

Here, η∗ϕ denotes the optimal meta-parameters for updating the student’s policy on an environment
instance ϕ, i.e., η∗ϕ = argmaxη Eϕ Eθ0∼p(θ0)[Vϕ,θ0(Fη)]. The function Vϕ : H 7→ R defines the
expected return of the student policy on ϕ at the end of the its lifetime (after N updates) using the
update rule parameterized by η ∈ H, when trained from an initialization θ0 ∼ p(θ0).

4



3.2 Approximating Minimax-Regret

As in the traditional UED setting, regret is generally intractable to compute. A range of scoring
functions have been proposed to approximate regret, often deriving the approximation from value
loss [Jiang et al., 2021b,a]. Two consistently high performing metrics are L1 value loss and positive
value loss, which are equal to the episodic mean of absolute and positive GAE [Schulman et al.,
2016] terms respectively.

In order to exploit the structure of our problem setting, we propose an alternative approximation
which we refer to as algorithmic regret (AR). In this, we co-train an antagonist agent using a manually
designed RL algorithm A (e.g., A2C [Mnih et al., 2016], PPO [Schulman et al., 2017]) in parallel
to the protagonist agent trained by GROOVE. AR is then computed from the difference in final
performance against the antagonist,

REGRETA(η, ϕ) = Vϕ(A)− Vϕ(η) (4)

where Vϕ(A) denotes the expected return of the antagonist policy when trained with A.

We evaluate AR against both L1 value loss and positive value loss in Section 4.4, demonstrating
improved generalization performance on Min-Atar.

3.3 Environment Design

Following the dual-curriculum design paradigm from Jiang et al. [2021a], a large class of UED
methods can be represented as a combination of two teachers: a curator and a generator. Here, the
level generator is a generative model that is optimized to produce regret-maximizing levels, whilst
the level curator maintains a set of previously-visited high-regret levels to be replayed by the agent.
The generator provides a slowly adapting mechanism for environment design, allowing the method to
design new levels without random sampling, whilst the curator provides a quickly-adapting replay
buffer of useful levels.

In PMO, a single sample of environment regret requires an agent to be trained to convergence and
subsequently evaluated on that environment. This is significantly less sample efficient than traditional
UED, where regret is measured from a single rollout of the current policy. Furthermore, generator-
based methods for UED (e.g. PAIRED) have been shown to achieve lower performance and sample
efficiency than curation-based approaches [Jiang et al., 2021a, Parker-Holder et al., 2022a]. Due
to this, we design GROOVE using PLR (Section 2.3), which curates randomly generated levels,
avoiding the need to train a level generator.

The meta-training loop for GROOVE is presented in Algorithm 1 and Figure 2.

Algorithm 1 GROOVE meta-training
input: Environment set Φ, agent parameter initialization function p(θ)
initialize: Meta-parameters η, PLR level buffer Λ, agent-environment lifetimes {θ, ϕ}i
repeat

for all lifetimes {θ, ϕ}i do
for update← 1 to K do

Rollout agent πθ on environment ϕ
Update θ with Fη (Equation 2)

end for
Compute meta-gradient for η with updated θ (Equation 1)
if lifetime over then

Evaluate regret approximationR ← REGRET∗(η, ϕ) with final θ
Update level buffer Λ withR and ϕ
Reinitialize lifetime (θ, ϕ) ∼ p(θ)× Λ

end if
end for
Update η with accumulated meta-gradients

until η converges
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4 Experiments

Our experiments are designed to determine (1) how the meta-training distribution impacts OOD
generalization in PMO, (2) how well AR identifies informative levels for generalization, and (3) the
effectiveness of GROOVE at generating curricula for generalization using this metric. To achieve
this, we first manually examine how informative and diverse meta-training distributions improve the
generalization performance of LPG (Section 4.2). We then evaluate curricula generated by AR against
those generated by randomly sampling and handcrafting (Section 4.3), demonstrating the ability
to identify informative levels. Following this, we evaluate GROOVE against LPG (Section 4.4),
demonstrating the impact of environment design for improving both in-distribution robustness and
generalization performance. Finally, we evaluate GROOVE with AR against baseline metrics from
the UED literature (Section 4.5), showing only AR consistently improves generalization.

4.1 Experimental Setup

Training Environment For meta-training, we use a generalization of the tabular Grid-World
environment presented by Oh et al. [2020]. In this environment distribution, a task is specified by
the maximum episode length, grid size, wall placement, start position, and number of objects, whilst
the objects themselves vary in position, reward, and probabilities of respawning or terminating the
episode. This space contains tasks encapsulating thematic challenges in RL, including exploration,
credit assignment, and stochasticity.

However, these challenges are notably sparse over the environment distribution. For instance, maze-
like arrangements of walls induce a hard exploration challenge by creating anomalously long shortest-
path lengths to objects, but are rare under uniform sampling. This captures the need for environment
design, in order to discover complex and informative structures required for generalization.

Testing Environments The purpose of our evaluation is to determine the generalization perfor-
mance of the algorithms we consider, i.e., the expected return on real-world RL tasks. In order to
approximate this, we evaluate on Atari [Bellemare et al., 2013], an archetypal RL benchmark, as well
as its simplified counterpart Min-Atar [Young and Tian, 2019] for our intermediate results.

Model Architecture and Implementation For our learned optimizer, we use the model architecture
proposed in LPG. Since GROOVE is agnostic to the underlying meta-optimization method, we select
LPG due to its state-of-the-art generalization performance on unseen tasks, in addition to the prior
analysis of training distribution performed on LPG, which we build upon in Section 4.2. Further
comparison to prior meta-optimization methods is presented in Section 5. Our experiments were
executed on two to five servers, containing eight GPUs each (ranging in performance from 1080-Ti
to V100). Model hyperparameters can be found in the supplementary materials and the project
repository is available at https://github.com/EmptyJackson/groove.

4.2 Designing Meta-Training Distributions for Generalization

Unlike in standard RL, the impact of meta-training distributions on OOD generalization in PMO
has not been explored in depth. One attempt at this came from Oh et al. [2020], who evaluate the
generalization performance of LPG after meta-training on three different environment sets, varying
both the number of tasks and the environments that the tasks are sampled from. By demonstrating
improved transfer to Atari, the authors claim that two factors improve generalization performance:

1. Task diversity (the number of training tasks), and

2. How informative the tasks are for generalization.2

Whilst these results suggest a relationship between the meta-training distribution and generalization
performance, the strength of these claims is limited by the number of environment sets (three) and
confounding of these factors.

2Quote: “specific types of training environments... improved generalization performance.” We refer to these
types of environments as being informative for generalization.
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Figure 3: Aggregate performance on Min-Atar, with
standard error shaded over 5 independent runs—PMCC
is given for Random levels. A per-task breakdown is
provided in the supplementary materials.

To analyze the impact of task diversity, we sam-
ple Grid-World subsets of various sizes, before
meta-training LPG on each of these and evaluat-
ing on Min-Atar (Figure 3). By generating envi-
ronment sets with i.i.d. sampling from the Grid-
World environment distribution, we remove the
informativeness of tasks as a confounding fac-
tor. We observe a significant (p < 0.05) positive
correlation in performance with number of lev-
els in the aggregate task return, supporting the
first claim. Furthermore, when considering the
per-task breakdown of results (see supplemen-
tary materials), we observe a significant positive
correlation on three of the four tasks, with the re-
maining task having a weak positive correlation,
thereby supporting the first claim.

We investigate the second factor using a set
of handcrafted Grid-World configurations pro-
posed by Oh et al. [2020] (see supplementary
materials). These are manually designed to em-
phasize stochasticity and credit assignment, two
key challenges in RL, making them more informative for generalization than randomly sampled
Grid-World configurations. At the same number of levels, we observe an improvement in perfor-
mance from meta-training on handcrafted levels against random levels. Moreover, training on five
handcrafted levels exceeds the performance of 26 = 64 random levels, demonstrating the need for
task distributions to contain tasks that are both informative and diverse.

4.3 Algorithmic Regret Identifies Informative Levels for Generalization

In Section 3.2, we hypothesize that AR identifies informative levels for meta-training. Before
evaluating auto-curricula generated with this metric (Section 4.4), we evaluate static curricula
generated by AR against random and handcrafted curricula. To achieve this, we train an LPG instance
to convergence and collect a buffer of 10k unseen levels, ranked by the final AR of the model. We then
train a new LPG instance on the highest-scoring levels, controlling for task diversity by subsampling
variable-sized level sets from the buffer.

At all sizes of training environment set, we observe improved OOD transfer performance when
training on high-AR levels compared to training on the same number of random levels (Figure 3).
Furthermore, training with high-AR levels outperforms training over the same number of handcrafted
levels, and far exceeds the performance of the fixed handcrafted set as the number of levels is
increased, without requiring any human curation. These results validate AR as an effective metric for
automatically generating informative curricula.

However, we note that the performance gap between high-AR and random levels decreases as the
number of levels grows. This is not surprising, since the high-AR levels are generated by ranking
and selecting the levels with the highest AR for each training set size, leading to a natural dilution
in average AR. This also highlights the need for automatic curriculum generation throughout meta-
training rather than training on static curricula, which we examine further in Section 4.4.

0.100 0.125
GROOVE

LPG
IQM

0.78 0.84 0.90

Optimality Gap

Human-Normalized Score

Figure 4: Aggregate performance metrics on Atari—shaded area shows 95% stratified bootstrap confidence
interval (CI) over 5 seeds, following methodology from Agarwal et al. [2021]. Higher score is better for IQM
and lower score is better for optimality gap.
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4.4 Adversarial Environment Design Improves Generalization
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Figure 5: A2C-normalized score distribution on unseen
Grid-World levels, shaded area shows a 95% CI over 10
seeds.

We now evaluate the impact of environment de-
sign on generalization performance by compar-
ing GROOVE to LPG, thereby evaluating the
same meta-optimizer with and without environ-
ment design. After meta-training both methods
on Grid-World, we first evaluate on randomly-
sampled, unseen Grid-Worlds (Figure 5). In
addition to GROOVE achieving higher mean
performance, we observe increased robustness
with GROOVE consistently outperforming LPG
on their lower-scoring half of tasks. Notably,
LPG fails to achieve greater than 75% A2C-
normalized return on 187% more tasks than
GROOVE. Despite this, GROOVE and LPG
achieve comparable performance on their higher-
scoring half of tasks, suggesting that GROOVE
increases in-distribution robustness without re-
ducing performance on easy tasks.

To evaluate generalization to challenging environments, we evaluate GROOVE against LPG on the
Atari benchmark. GROOVE achieves superior per-task performance to LPG, achieving higher mean
score on 39 vs. 17 tasks (Figure 1), with equal performance on one task (Montezuma’s Revenge).
Comparing aggregate performance, we observe significant increases in both IQM and optimality gap
from GROOVE against LPG (Figure 4). While both of these methods achieve inferior performance
to state-of-the-art, manually-designed RL algorithms [Hessel et al., 2018], the improvement from
GROOVE highlights the importance of the meta-training distribution and potential for UED-based
approaches when generalizing to complex and unseen environments.

4.5 Algorithmic Regret Outperforms Existing Metrics

Finally, we evaluate the quality of our proposed environment design metric, AR, against existing
metrics from UED (Figure 6). We compare to L1 value loss and positive value loss (Section 3.2) due
to their consistent performance in prior UED work, as well as regret against an optimal policy (as is
analytically computable on Grid-World), which serves as an upper bound on regret. As a baseline,
we also evaluate uniform scoring, which is equivalent to domain randomization (i.e. standard LPG).

3 6 9 12
Algorithm-Regret

Optimal-Policy Regret
Positive Value Loss

L1 Value Loss
Uniform

Asterix-MinAtar

3.2 4.0 4.8

Breakout-MinAtar

3 6 9

Freeway-MinAtar

75 90 105

SpaceInvaders-MinAtar

Return

Figure 6: Evaluation of our proposed environment score function, AR, against uniform scoring, optimal-policy
regret and baselines from UED literature. Mean return and standard error over 10 random seeds are shown.

AR achieves the highest performance on all tasks, significantly outperforming optimal-policy regret
on all tasks and each of the other baselines on at least two out of four tasks. Furthermore, the
value-loss metrics only significantly outperform uniform scoring on a single task, with positive value
loss underperforming it on all others. This failure to identify informative levels for generalization
highlights the challenge in transferring existing UED methods to PMO and the effectiveness of AR.

Whilst it is surprising that optimal-policy regret, which uses privileged level information, underper-
forms AR with an A2C antagonist, we hypothesize that the non-optimal performance and generality
of handcrafted algorithms is a benefit for identifying informative levels. Optimal-policy regret does
not account for training time, making it equivalent to an antagonist optimizer which always returns
the optimal policy parameters, a setting likely to identify artificially difficult levels. To investigate this,
we perform an comparison of A2C, PPO, random and expert antagonist agents (see supplementary
materials), finding that using A2C or PPO antagonists outperforms random or expert agents.
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5 Related Work

In this work, we examine the impact of training distribution for meta-learning general RL algorithms.
More broadly, our work aligns with the “AI-generating algorithm” [Clune, 2019, AI-GA] paradigm,
building upon two of the three pillars (learning algorithms and environments). In this section, we
outline prior work in each of these fields and explain their relation to this work.

Policy Meta-Optimization A common approach to PMO is to optimize RL algorithm components
via meta-gradients [Xu et al., 2018, 2020]. In particular, ML3 [Bechtle et al., 2021] uses meta-
gradients to optimize domain-specific loss functions that transfer between similar continuous control
tasks. MetaGenRL [Kirsch et al., 2020] expands upon this to optimize general loss functions
that transfer to unseen tasks. LPG [Oh et al., 2020] discovers a general update rule that transfers
from simple toy tasks to Atari environments. We choose to focus on LPG since it displays radical
out-of-distribution transfer and imposes minimal structural bias on the learned update rule.

An alternative approach uses Evolution Strategies [Rechenberg, 1978, Salimans et al., 2017] to
optimize RL objectives. EPG [Houthooft et al., 2018] evolves an objective function parameterized by
a neural network that transfers to similar MuJoco environments, whilst DPO [Lu et al., 2022] evolves
an objective that transfers from continuous control tasks to MinAtar environments. Other approaches
to PMO symbolically evolve RL optimization components such as the loss function [Co-Reyes et al.,
2021, Garau-Luis et al., 2022] or curiosity algorithms [Alet et al., 2020]. PMO is an instance of
Auto-RL [Parker-Holder et al., 2022b], which automates the discovery of learning algorithms.

Alternative Approaches to Meta-Reinforcement Learning PMO belongs to the subclass of many-
shot meta-RL algorithms, which pose the setting of learning-to-learn given a substantial number
of inner-loop environment interactions. An alternative class of approaches to this learn “intrinsic
rewards”, which augment the RL objective in order to improve learning. Alet et al. [2020] achieve this
by meta-learning a program to transform the agent’s objective, whilst Veeriah et al. [2021] propose a
hierarchical method which meta-learns transferable options.

However, the majority of work in meta-RL has instead been on few-shot learning [Beck et al., 2023b].
RL2 [Duan et al., 2016, Wang et al., 2016] use a black-box model for this, by representing both the
policy and update rule with a recurrent neural network. A range of extensions to RL2 have been
proposed, which augment the original model with auxiliary task-inference objectives [Humplik et al.,
2019, Zintgraf et al., 2020], additional exploration policies [Liu et al., 2021] and hypernetwork-
based updates [Beck et al., 2023a]. Parameterized policy gradients are an alternative approach, with
Model-Agnostic Meta-Learning [Finn et al., 2017, MAML] being the seminal method. MAML
meta-learns a shared neural network initialization, such that it rapidly adapts to new tasks when
optimized with policy gradients in the inner loop. Follow up work to this has proposed partitioning
parameters [Zintgraf et al., 2019], modulating parameters for multimodal distributions [Vuorio et al.,
2019] and investigated the reasons for its effectiveness [Raghu et al., 2019].

Unsupervised Environment Design Unsupervised Environment Design (UED) was first proposed
by Dennis et al. [2020] with the introduction of PAIRED, which trains a level generator for a single
agent with minimax regret. GROOVE is based on PLR [Jiang et al., 2021b,a], which builds upon
this objective by instead curating a buffer of high-regret levels. PLR remains one of the state of the
art UED algorithms, which has been extended to consider multi-agent settings [Samvelyan et al.,
2023], curriculum-induced covariate shift [Jiang et al., 2022] and more open-ended environment
generators [Parker-Holder et al., 2022a]. Aside from regret, environments can also be selected to
induce diversity in a population of agents [Brant and Stanley, 2017], most famously in the POET
algorithm [Wang et al., 2019] which evolves a population of highly capable specialist agents.

UED falls more broadly into the field of open-endedness [Soros and Stanley, 2014], which attempts
to design algorithms that continually produce novel and interesting behaviours. We take a step
towards more open-ended algorithms by combining UED with meta-learning, thus discovering both
algorithms and environments in a single method. Previous works combining these two AI-GA
pillars include Team et al. [2023] who introduce a memory-based agent capable of human-timescale
adaptation, and OpenAI et al. [2019] who train a policy capable of sim-to-real transfer to control a
Rubik’s Cube. Unlike our work, neither of these meta-learn general RL algorithms that can transfer
to far out-of-distribution environments such as Atari.
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6 Conclusion and Limitations

In this paper, we provide the first rigorous examination of the relationship between meta-training
distribution and generalization performance in policy meta-optimization (PMO). Based on this
analysis we leverage ideas from Unsupervised Environment Design (UED) and propose GROOVE, a
novel method for PMO, in addition to a novel environment design metric, algorithmic regret (AR).
Evaluating against LPG, we demonstrate significant gains in generalization from Grid-Worlds to
Atari, as well as increased robustness to challenging in-distribution tasks. Finally, we identify AR as
a critical component for applying environment design to PMO, demonstrating its effectiveness on
Min-Atar, where prior UED metrics fail to outperform random sampling.

We acknowledge limitations in our work, largely driven by computational constraints. Given the
huge number of environment interactions during meta-training, we heavily leverage our GPU-based
Grid-World implementation in lowering training time. This limits our analysis to these fast but
simple environments, meaning our conclusions cannot be guaranteed to generalize to more complex
environments. Due to the cost of meta-testing on the large-scale Atari benchmark, our evaluation is
also limited in variety of benchmarks, however we believe the diversity of the tasks in this domain
sufficiently captures a range of challenges in RL.

By releasing our implementation—which is capable of meta-training these models on single GPU in
hours, rather than days—we hope to spawn future work in this area from academic labs. In particular,
these results may be scaled to training distributions with more complex and diverse environments,
leading to the discovery of increasingly general RL algorithms.
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A Summary of Notation

Table 1: Summary of notation used in this work.

Symbol Definition
Meta-UPOMDP

A,S,O Action, state and observation spaces.
T , I,R Transition, observation and reward functions.

γ Discount factor.
ϕ ∈ Φ Free parameters of the environment.
θ ∈ Θ Agent parameters, shared between actor and critic/bootstrap function.

T Sequence of transitions (O ×A×R×O), denoted task “experience”.

Policy Meta-Optimization
Fη : Θ× T −→ Θ Agent optimizer.

η ∈ H Agent optimizer parameters.

Vϕ,θ0(Fη)
Expected return of Fη at the end of training, given task ϕ and agent
initialization θ0.

Vϕ(η)
(Shorthand) Expected return of Fη at the end of training on task ϕ, over
a distribution of agent initializations p(θ0).

Learned Policy Gradient [Oh et al., 2020]
πθ : A,O −→ [0, 1] Agent policy.

yθ : O −→ [0, 1]n
Agent bootstrap function—a generalization of value critics from RL,
outputting a vector with semantics determined by the learned optimizer.

Uη : T −→ [0, 1]n × R LPG target function, outputting bootstrap function and policy targets ŷ
and π̂ at time step t, conditioned on all future transitions.
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B Hyperparameters

B.1 GROOVE

Hyperparameters shared between GROOVE and LPG were tuned using LPG on Grid-World, then
transferred to GROOVE without further tuning. The additional GROOVE hyperparameters (regarding
the level buffer) were then tuned separately on Grid-World.

Table 2: GROOVE/LPG hyperparameters

Hyperparameter Value
Optimizer Adam

Learning rate 0.0001
Discount factor 0.99

Policy entropy coefficient (β0) 0.05
Bootstrap entropy coefficient (β1) 0.001

L2 regularization coefficient for π̂ (β2) 0.005
L2 regularization coefficient for ŷ (β3) 0.001

Level buffer size 4000
Replay probability 0.5

Number of interactions per agent update 20
Number of agent updates per optimizer update 5

Number of parallel lifetimes 512
Number of parallel environments per lifetime 64

Algorithmic regret baseline algorithm A2C

B.2 Agents

Agent hyperparameters were based on tuned A2C agents, before being fine-tuned with LPG. Since
we meta-train on a continuous distribution of Grid-World environments, we do not use the agent
hyperparameter bandit proposed by Oh et al. [2020] for meta-training.

Table 3: Agent hyperparameters—architecture descriptions D(N) and C(N) respectively refer to
dense and convolutional layers of size N ; ReLU activations are used throughout.

Hyperparameter Environment
Grid-World Min-Atar Atari

Architecture Tabular D(64)-D(64) C(32)-C(64)-C(64)-D(512)
Optimizer SGD Adam Adam

Learning rate 40 0.0005 0.0005
Bootstrap KL coefficient (αy) 0.5 0.5 0.5

Train steps 2500 100,000 100,000
Agent seeds per LPG seed 64 16 1
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C Handcrafted Environments

For our handcrafted environment set, we use the set of five tabular Grid-World configurations from
Oh et al. [2020]. Grid-World objects are defined by [r, ϵterm, ϵrespawn], where r represents the reward
when collected, ϵterm is the episode-termination probability and ϵrespawn is the probability of the object
respawning each step after collection.

C.1 Dense

Property Value
Size 11× 11

Objects 2× [1, 0, 0.05], [−1, 0.5, 0.1], [−1, 0, 0.5]
Maximum episode length 500

C.2 Sparse

Property Value
Size 13× 13

Objects [1, 1, 0], [−1, 1, 0]
Maximum episode length 50

C.3 Long Horizon

Property Value
Size 11× 11

Objects 2× [1, 0, 0.01], 2× [−1, 0.5, 1]
Maximum episode length 1000

C.4 Longer Horizon

Property Value
Size 9× 9

Objects 2× [1, 0.1, 0.01], 5× [−1, 0.8, 1]
Maximum episode length 2000

Note: size is increased from 7× 9 for consistency with our generalized Grid-World distribution.

C.5 Long Dense

Property Value
Size 11× 11

Objects 4× [1, 0, 0.005]
Maximum episode length 2000
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D Atari Training Curves
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Figure 7: Atari training curves—environment names are highlighted according to highest evaluation
return, asterisks (*) denote significant differences in evaluation return (5 seeds, p < 0.05).
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E Min-Atar Per-Task Performance

As expected, we observe increased noise when breaking down performance by individual Min-Atar
tasks, however, the results from the majority of tasks support our earlier conclusions. Firstly, we
observe a significant positive correlation between the number of random training levels and return on
three of the four Min-Atar tasks, again demonstrating the impact of task diversity on generalization.
When controlling for the number of levels, we observe improved performance after training on
handcrafted, rather than random, levels on three of the four Min-Atar tasks. Furthermore, on Asterix,
training on handcrafted levels results in higher performance than the largest set of 210 = 1024 random
levels, supporting our conclusion about level informativeness.

After training on high-AR levels, we observe an improvement against random levels on at least three
of the four Min-Atar tasks for all sizes of training environment set up to 26 = 64 levels. Beyond this,
random and high-AR levels outperform each other on an equal number of tasks, however the dilution
in mean AR for larger training sets makes this convergence unsurprising. Furthermore, high-AR
levels are competitive with handcrafted levels at the same training set size and quickly outperform
the fixed handcrafted set as more high-AR levels are added, demonstrating the effectiveness of AR at
identifying informative curricula.

20 24 28
0

5

10

15

Re
tu

rn

r = 0.30

Asterix-MinAtar

Random Max-AR Handcrafted

20 24 28
0.0

2.5

5.0

7.5

r = 0.80 *

Breakout-MinAtar

20 24 28
0

10

20

r = 0.64 *

Freeway-MinAtar

20 24 28
0

50

100

r = 0.78 *

SpaceInvaders-MinAtar

Number of Grid-World training levelsNumber of Grid-World training levelsNumber of Grid-World training levelsNumber of Grid-World training levels
Figure 8: Generalization performance on Min-Atar, after meta-training LPG on variable-sized sets
of Grid-World levels (5 seeds)—levels are selected through uniform-random sampling of all levels
(“Random”), from the highest-regret levels of a previous LPG instance (“Max-AR”), or from a set of
five handcrafted levels (“Handcrafted”). Pearson correlation coefficient is given for Random levels;
significant positive correlations are marked with an asterisk (*).

F GROOVE vs. LPG Procgen Evaluation

After meta-training on Grid-World, we observe superior GROOVE performance on 2 out of 4 Procgen
environments, superior LPG performance on 1 environment, and no difference on the remaining
environment. We note that A2C is very weak on Procgen, failing to learn on the majority of
environments, so we selected a subset of Procgen levels that A2C managed to learn in preliminary
experiments. Procgen poses a robustness challenge that has required an extensive amount of further
research to solve, using components not found in LPG or GROOVE.
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Figure 9: GROOVE and LPG training curves on Procgen (test performance, 5 seeds).
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G Algorithmic Regret Antagonist Comparison

In order to investigate the impact of the antagonist agent on the performance of AR, we evaluated the
performance of GROOVE with a range of antagonists (Figure 10). On Min-Atar, using a random or
optimal agent as the antagonist for AR results in lower performance than using A2C or PPO on all
environments. Furthermore, using A2C achieves higher performance than PPO on all environments.
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Figure 10: GROOVE Min-Atar performance after Grid-World meta-training, using random, expert,
A2C and PPO agents as the algorithmic regret antagonist—mean return over 10 random seeds is
marked, with standard error shaded.

To further investigate this result, we evaluated PPO and A2C on both random and difficult, handcrafted
Grid-World levels. PPO achieves lower performance than A2C on Grid-World, with a larger gap on
difficult, handcrafted Grid-World levels. This explains the previous results, as PPO will be inferior at
identifying difficult levels when used as the AR antagonist. Furthermore, the update parameterized by
LPG is capable of representing A2C, but not PPO. This implies that levels solvable by A2C should
also be solvable by LPG, making them useful for training. In contrast, PPO may identify levels that
cannot be solved without components found in PPO (clipping, mini-batch iterations) but not LPG.
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Figure 11: A2C and PPO training curves on random and handcrafted Grid-World levels—we observe
a larger performance gap on harder, handcrafted levels (10 seeds).
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