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Abstract
The locate-then-edit paradigm has shown signifi-
cant promise for knowledge editing (KE) in Large
Language Models (LLMs). While previous meth-
ods perform well on single-hop fact recall tasks,
they consistently struggle with multi-hop factual
recall tasks involving newly edited knowledge.
In this paper, leveraging tools in mechanistic in-
terpretability, we first identify that in multi-hop
tasks, LLMs tend to retrieve knowledge with im-
plicit subject information from deeper MLP lay-
ers, unlike single-hop tasks, which rely on shallow
layers. This distinction explains the poor perfor-
mance of current methods in multi-hop queries,
as they primarily focus on editing shallow lay-
ers with single-hop edit prompts, leaving deeper
layers unchanged. To address this, we propose
IFMET, a novel locate-then-edit KE approach de-
signed to edit both shallow and deep MLP layers.
Beyond single-hop editing prompts, IFMET fur-
ther incorporates multi-hop editing prompts to lo-
cate and modify knowledge across different stages
of reasoning. Experimental results demonstrate
that IFMET significantly improves performance
on multi-hop factual recall tasks, overcoming the
limitations of previous locate-then-edit methods.

1. Introduction
Large Language Models (LLMs) like ChatGPT (Achiam
et al., 2024) and LLaMA-2 (Touvron et al., 2023) have
emerged as powerful knowledge bases, demonstrating re-
markable abilities in both factual knowledge representation
and reasoning over complex queries (Etezadi & Shamsfard,
2022). However, as the need for updating and correcting
knowledge within these models grows, research on knowl-
edge editing (KE) has gained significant attention, focusing
on cost-effective ways to modify specific information in
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LLMs (Mazzia et al., 2023). KE methods can be broadly
classified into two categories based on whether they al-
ter the original model weights: weight-preserving (Zhong
et al., 2023) and weight-modifying approaches (Meng et al.,
2022a;b). Weight-preserving methods aim to modify the
model’s outputs by integrating external memory or leverag-
ing strategies such as in-context learning without altering
the underlying weights (Cheng et al., 2024b;a). Weight-
modifying methods can be further categorized into learning-
based and optimization-based methods. The former update
weights using gradients but face challenges such as over-
fitting and poor generalization. The latter, such as ROME
(Meng et al., 2022a) and MEMIT (Meng et al., 2022b),
have introduced the “locate-then-edit” paradigm, which first
identifies the knowledge storage layers and then adjusts
their weights through optimization techniques to achieve
the desired knowledge modification.

Compared to weight-preserving methods and learning-
based weight-modifying approaches, the locate-then-edit
paradigm offers precise editing of the model’s internal
knowledge with low computational costs (Zhang et al.,
2024). However, despite the success of locate-then-edit
methods in single-hop fact recall tasks (Li et al., 2024c),
they share a common limitation (Zhong et al., 2023): The
post-edited model struggles with multi-hop factual re-
call tasks involving the newly edited knowledge (see Ta-
ble 3 for details). For example, after changing the knowl-
edge(fact) “The capital of Spain” from “Madrid” to “Hart-
ford”, the model correctly answers Q1 = “What is the
capital city of Spain?”. However, when posed with the
multi-hop question Q2 = “What is the capital city of the
country where Pablo Picasso holds citizenship?”, it still
responds with “Madrid” (Figure 1 (b)). This discrepancy
raises a natural question: Has the locate-then-edit paradigm
reached its limits for multi-hop factual recall tasks, or does
it still hold unexplored potential?

To address this question, we focus on the key distinction be-
tween the existing locate-then-edit paradigm and the multi-
hop fact recall task, which lies in the single-hop editing
prompts. Previous methods were primarily designed for
single-hop factual recall tasks. They typically associate an
edit instance, such as (Spain, Capital, Madrid→ Hartford),
with a single-hop editing prompt “The capital of Spain is”
and use it for the following editing process. Considering
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has the capital city called  Madrid  Hartford

Figure 1. (a) The existing locate-then-edit KE method updates new fact to the shallow layers of the model using a single-hop edit prompt.
(b) For multi-hop fact recall tasks, especially when the edited fact is in the second or subsequent hops, the hops typically access the deeper
layers which outputs the unmodified knowledge. (c) Our method introduces a prefix hop for each single-hop edit, creating a two-hop
edit prompt. We utilize this new prompt to perform a furtherance edit, targeting the deeper layers for more effective knowledge updating.

this limitation, we propose the following hypotheses: 1) The
recall process of the same fact may differ mechanistically
between single-hop and multi-hop scenarios; 2) This dis-
crepancy leads to the insufficiency of knowledge updates
across the model, resulting in unsatisfactory performance
on multi-hop factual recall tasks.

To test hypothesis 1, we first explored the mechanisms of
the pre-edited model when handling multi-hop and single-
hop factual recall tasks. Using the example mentioned
(Spain, Capital, Madrid), we attempt to illustrate how the
model reasons with the implicit subject “Spain” in Q2, com-
pared to the explicit mention in Q1. In Section 3.1, by
interpreting the information encoded in each layer’s hid-
den states using LogitLens (nostalgebraist, 2020; Dar et al.,
2023), We find that at the last token position, the information
of the implicit subject accumulates before the final answer,
which is significantly different from the single-hop scenario.

We then investigate the causal influence of the implicit sub-
ject on the final answer and the mechanism by which it
affects the prediction. By using causal intervention exper-
iments (Li et al., 2024d), our results indicate that in the
multi-hop scenario, the implicit subject causally guides
the emergence of the final answer by retrieving relevant
knowledge from the deeper MLP layers. This contrasts
sharply with the single-hop cases (Meng et al., 2022a; 2023),
where the subject information is used to retrieve informa-
tion from shallow MLP layers. Based on this difference,
We provide a more detailed explanation for hypothesis 2:
Previous methods leveraging single-hop prompts for edit-
ing are insufficient as they only update the relevant knowl-
edge in the shallow MLP layers but fail to propagate the
changes to deeper layers. As a result, the deeper lay-
ers retain unedited knowledge that is only activated by

implicit multi-hop fact recall mechanisms. Based on
these observations, we developed an advanced locate-then-
edit KE method specifically designed to modify knowledge
in both shallow and deep MLP layers, which we named
Interpretability-Guided Furtherance Model Editing in a
Transformer (IFMET). To surpass the limitations of single-
hop prompts, IFMET generates relevant multi-hop editing
prompts for each edit instance. To address the issue of in-
sufficient knowledge updates caused by differences in the
reasoning mechanisms, IFMET extends existing methods by
using multi-hop prompts for furtherance editing, effectively
addressing cases in the single-hop and multi-hop scenario,
as illustrated in Figure 1. Our contributions can be summa-
rized as follows 1:

• We first identified key differences in the mechanisms
the model uses for reasoning in single-hop versus multi-
hop fact recall tasks. In multi-hop scenarios, unlike
single-hop cases, the model prioritizes inferring the
implicit subject at the last token position, which guides
the generation of the final answer.

• Next, we pinpointed the components of the implicit
subject that influenced the final answer within the
deeper MLP layers. We demonstrated that the absence
of edited knowledge of these components significantly
impacted the model’s performance.

• We propose IFMET, an advanced locate-then-edit KE
method specifically designed to modify knowledge in
both shallow and deep MLP layers using single and
multi-hop edit prompts. Experimental results confirm
the effectiveness of our method, showing that it suc-

1Due to the space limit, we refer readers to Appendix A for
previous work.
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cessfully overcomes the limitations of previous meth-
ods in handling multi-hop factual recall tasks.

2. Preliminaries
Notations. We define the set of knowledge(fact) as K =
{(s, r, o)} ⊆ E ×R× E , where E andR denote the set of
entities and relations respectively. Each tuple (s, r, o) ∈ K
represents that the corresponding entity of subject entity s
under relation r is object entity o. An editing instance can be
described in the form of a triplet: e = (s, r, o→ o∗), where
o∗ denotes the new edited object in place of the original
object o related to s through r.

2.1. Factual Recall Tasks
Format of Factual Recall Tasks. Factual recall tasks refer
to verifying whether the model M can correctly provide
the final answer to a single-hop or multi-hop factual recall
Q. Q requires multi-step(≥ 1) reasoning to reach the final
answer. Its reasoning process is composed of a chain of
knowledge C = (s1, r1, o1)⊕ · · · ⊕ (sn, rn, on), where s1
is the start subject that is explicitly given in the question, on
is the final answer. There are two different format question
prompts for factual recall tasks: Cloze-Format Qcloze and
QA-Format Qqa. For instance, given two-hop questions
with the knowledge chain like (Paradiso, author, Dante
Alighieri) ⊕ (Dante Alighieri, country of citizenship, Italy),
Qcloze can be “The author of Paradiso is a citizen of”, while
Qqa is “What country does the author of Paradiso hold
citizenship in?”. For better clarity, we categorize the multi-
hop fact recall into two types: explicit recall step (s1, r1, o1)
and implicit recall steps {(s2, r2, o2) , . . . , (sn, rn, on)}. If
the model’s final answer is the same as the answer to the
question, the recall is considered successful, which can be
represented asM(Qcloze) = on orM(Qqa) = on.

Multi-hop Factual Recall under Knowledge Editing. This
task assesses whether the post-edited model can effectively
leverage the updated knowledge for reasoning in multi-hop
fact recall tasks. Given an edit e = (s, r, o→ o∗), the edit
prompt Te and a chain of facts Ce which includes (s, r, o) as
one of its components. The post-edited model must leverage
the new factual knowledge (s, r, o∗) to answer the multi-hop
query. For example, given edit (Paradiso, author, Dante
Alighieri → Mark Twain), the model’s response of “The
author of Paradiso is a citizen of” should change from the
original answer Italy to the new answer USA.

2.2. Mechanistic Interpretation Tools

LogitLens. LogitLens (nostalgebraist, 2020) is a frame-
work for interpreting the hidden states (activations) of lan-
guage models such as GPT (Brown et al., 2020). For the
hidden state hi

l (token i at the l-th layer), the logits sil and

probabilities pil over the output vocabulary set V are:

{
sil = WUh

i
l ∈ R|V |,

pil = softmax
(
sil
)

where WU denotes the unembedding matrix used in the
final prediction layer of the model. LogitLens also works
for the decomposition of hidden states, such as MLPs mi

l

and attention heads ail , where hi
l = hi

l−1 +mi
l + ail .

2 Log-
itLens posits that probabilities and logits provide insights
into how the model prioritizes different potential tokens, as
indicated by the proportion of related information. So we
define Info(hi

l, j) as the information related to token j ∈ V
contained in hi

l , positively correlated with sil[j] and pil[j].
To account for the probability variations across different
layers, we define Info(hi

l, j) as the layer-wise min-max nor-
malized probability (Li et al., 2024d), where L is the total
number of layers:


pimax[j] = max

{l=1,...,L}
pil[j],

pimin[j] = min
{l=1,...,L}

pil[j],

Info(hi
l, j) =

pi
l [j]−pi

min[j]

pi
max[j]−pi

min[j]

Causal Intervention on Hidden States. Causal interven-
tion on hidden states (Li et al., 2024d;a) involves deliber-
ately altering specific hidden states in a model to observe the
resulting changes in various metrics, thereby helping to es-
tablish cause-and-effect relationships. This process includes
three pivotal components: the intervention operation I to
be conducted, the target hidden state or its decomposition
H selected for intervention, and the effect metric IE which
measures the change caused by the intervention I.

3. Mechanisms of Knowledge Storage and
Reasoning

In this section, we will explore the reasoning mechanisms
of the pre-edited model for multi-hop factual recall tasks
and how they differ from those in single-hop. Specifically,
we focus on two-hop tasks to better illustrate these dis-
tinctions, whose knowledge chain is represented as C =
(s1, r1, o1)⊕(s2, r2, o2). In Section 3.1, we primarily inves-
tigate the differences in the recall mechanism of the same
fact (s2, r2, o2) when it severs as the implicit multi-hop step
in the chain and the explicit single-hop reasoning step. In
Sections 3.2, we explain why the model edited by existing
method tends to output the original answer instead of the
new edited one in multi-hop scenario3.

2We employ GPT variants such as GPT-J (Wang & Komat-
suzaki, 2021) that position attention in parallel to the MLP, which
mathematically equates to models that calculate MLP sequentially
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Figure 2. LogitLens results of the last token position at different
layers. Yellow line represents the information containing implicit
subject s2, i.e., Info(hl, s2). Blue line represents the information
for the final answer, i.e., Info(hl, o2). Larger versions of the sub-
figures are available in Appendix Figure 6.

3.1. How Pre-edited Models Reason Fact Recall Tasks

For a multi-hop fact recall task, the model may employ mul-
tiple strategies to answer such tasks, including the formation
of a single super-relation (Ju et al., 2024) (s1, rmul, on),
where rmul = r1 → · · · → rn, or by segmenting the task
into one explicit recall step followed by several implicit
recall steps to answer step-by-step. Previous research (Hou
et al., 2023) suggests that models typically engage in rea-
soning by considering each single-hop recall individually.

Based on this, we hypothesize that the model prioritizes
deducing the implicit subject s2 and subsequently recalls
the final answer o2 based on it. We conduct exploratory
experiments about the role of layer hidden state and compo-
nents like MLP and Attention head at different positions of
prompt. The following sections aim to verify this hypothesis
by addressing the three questions: Q1: In the case of multi-
hop reasoning, is the information related to s2 accumulated
before that of o2? Q2: Does the accumulation of relevant
information about s2 causally influence the model’s reason-

after the attention module, as discussed in (Brown et al., 2020).
3All experiments in section 3 are conducted using a subset of

single and two-hop data from MQuAKE-CF (Zhong et al., 2023)
with the GPT-J (6B) model (Wang & Komatsuzaki, 2021). More
detailed information about the data and the experimental setup is
provided in Appendix B.2.1.

ing for o2? Q3: Which component facilitates the influence
of factual recall process from s2 to o2?

Is the information related to s2 accumulated before that
of o2 ? We use LogitLens to examine the accumulation of
information related to the implicit subject s2 and the final
answer o2 in the two-hop scenario. The model’s predictions
for o2, are derived from the last token of the prompt, where
crucial information about the resolved implicit subject s2
should be propagated (Biran et al., 2024). Therefore, we
focus on the hidden state hl at the l-th layer of the last
token position, analyzing Info(hl, s2) and Info(hl, o2) as
measures of the information related to s2 and o2 contained
in hl.

The results, depicted in Figure 2a, show that Info(hl, s2)
gradually reaches its peak during middle layers [15-17],
while Info(hl, o2) increases and peaks during later layers
[21-24]. This pattern suggests that, in multi-hop tasks, the
implicit subject s2 is processed during the middle layers
before reaching the final answer o2. We conducted a similar
experiment by giving s2 explicitly in a single-hop prompt.
The results, shown in Figure 2b, indicate that there is no
significant peak for the subject information before the final
answer probability begins to accumulate, suggesting that
in single-hop cases, the accumulation process of the final
answer at the last token is not significantly correlated with
the subject information.

Takeaway 1

In multi-hop scenarios, the implicit subject informa-
tion consistently accumulates before the final answer
at the last token position. However, in single-hop
scenarios, since the subject is explicitly given, there
is no need for accumulation at the last token position.

Does the accumulation of relevant information about
s2 causally influence the model’s reasoning for o2? We
propose an intervention experiment where we reduce the
information content of s2 at the subject token and last token
position, then observe changes in the output probability of
the final answer in the last prediction layer.

Specifically, we replace the hidden state hl (in layer ℓ of the
last token or subject token) with h∗

l , and the corresponding
logits sl (= WUhl) changes to s∗l (= WUh

∗
l ). s∗l is defined

as:

s∗l [j] =

{
min(sl[j]), if j ∈ s2

sl[j], otherwise,
(1)

where we minimize the logits corresponding to the tokens
in s2 without altering the logits of other tokens, aiming to
diminish the effect of s2. Follow the setting in (Meng et al.,
2022a), we select the window size = 5, meaning that in
each intervention we consider the hidden states across five
consecutive layers centered on the targeted layer. This setup
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allows us to describe the process through a causal interven-
tion framework, where the target H is hl, the intervention
Ih and the effect IEh are defined as follows:

Ih : h∗
l = hl + argmin

∆hl

∥WU (hl +∆hl)− s∗l ∥2,

IEh = pL[j]− pEL [j], j ∈ o2, (2)

where L is the last layer, pL[j] denotes the original out-
put probability of the first token of o2 in the L-th layer,
and pEL [j] is the probability after the intervention is applied.
This approach illustrates how the hidden states and proba-
bilities are expected to change when the logits are modified
to s∗. For computational efficiency, we opt to approximate
h∗
l using a combination of least squares and minimum-norm

methods (Lawson & Hanson, 1995) (further details are pro-
vided in Appendix C.1).

Figure 3a presents the outcomes of our intervention exper-
iments across all layers, where a brighter color signifies
a stronger intervention effect. We found a clear positive
impact from intervening in layers [17-18] for the last token
group. In comparison, the subject token group demonstrated
only slight influences, confined mainly to the early layers.
This suggests that, in the last token position, the informa-
tion of s2 encoded in the intermediate layers plays a crucial
role in the probability accumulation process of o2. We at-
tribute the significant effects observed in the last two layers
to the model’s tendency to increase the probability of output
articles in these layers, thereby influencing the likelihood
of answer generation, rather than involving factual recall
mechanisms.

Takeaway 2

Unlike the mechanism of reasoning the knowledge
in single-hop scenarios, in the reasoning process
of the second-hop knowledge in two-hop scenarios,
the accumulated implicit subject information has
causal effects on the final answer.

Which component facilitates the influence of the factual
recall process from s2 to o2? Previous studies claimed
that single-hop tasks using subject information to retrieve
knowledge from MLP layers (Meng et al., 2022a;b). By
comparing the effects of MLP and attention components,
we seek to answer how the implicit subject s2 influences the
prediction of the final answer o2 in the multi-hop scenario.
We conducted causal intervention experiments similar to the
experiments above but focused specifically on the Attention
Head and MLP components. Specifically, we aim to replace
ml (the input hidden state of the last token in the l-th MLP
or attention head) with m∗

l , where we have sl = WUml and
s∗l = WUm

∗
l with s∗l is same as in (1). The intervention

Im shares the same idea as in (2), except that hl is replaced
with ml. We follow the definition of the intervention effect
IEh, which is the probability change calculated from the

last layer L. In total, our causal intervention is formulated
as

Im : m∗
l = ml + argmin

∆ml

∥WU (ml +∆ml)− s∗l ∥2,

IEh = pL[j]− pEL [j], j ∈ o2.

Figure 3b presents the outcomes of our intervention exper-
iments across all layers. The clear positive impact from
intervening in the intermediate layers [19-25] is demon-
strated in the MLP group, in contrast to negligible effects
observed in the attention head group in the deeper layers.
This suggests that the implicit subject s2 at the last token
position was used for retrieving the related information of o2
from deeper MLP layers. Note that previous work (Meng
et al., 2022a; 2023) has mentioned that explicit single-hop
tasks primarily rely on the subject token position to retrieve
information from shallow MLP layers.
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(a) Causal intervention results of layer hidden state at the subject
token and last token position.
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Figure 3. Causal Intervention Result: A brighter color signifies
a stronger intervention effect. Note that negative effect values
(≤ 0) are clipped to 0 in both groups for better visualization. (a)
is probability change IEh of intervention Ih, (b) is probability
change IEh of intervention Im.
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Takeaway 3

In single-hop fact recall, relevant knowledge is re-
trieved through the token at the subject position,
utilizing shallow MLP layers. In contrast, when
the same knowledge serves as an implicit reasoning
step in multi-hop, it is retrieved through the token at
the last position, utilizing deeper MLP layers.

3.2. Why Existing locate-then-edit KE Methods Failed

Based on the findings above, we can explain the unsatisfac-
tory performance of the existing locate-then-edit methods.
The factual recall mechanism for the same knowledge dif-
fers when it serves as a single-hop reasoning step versus
an implicit reasoning step in multi-hop reasoning. Conse-
quently, for an editing instance (s, r, o → o∗), using only
the corresponding explicit single-hop prompt for editing
in previous methods is insufficient as they only update the
relevant knowledge in the shallow MLP layers but fail to
propagate the changes to deeper layers, which are essential
for multi-hop factual recall tasks.

We provide a concrete example in Table 1 for a better under-
standing. Given an editing instance e and Te. Existing meth-
ods modify the weights of shallow MLPs with Te to make
it answer Hartford. Cpre and Cpost represent the multi-hop
factual recall chains obtained by e as an explicit recall step
and an implicit recall step, respectively. TCpre

and TCpost

represent the corresponding prompts. In this example, the
query TCpre

should be answered correctly because the ex-
plicit fact (Spain, capital,Hartford) can be recalled in
shallow MLPs. However, the TCpost is still answered with
Madrid because the knowledge (Spain, capital,Madrid)
stored in deeper MLPs does not change. To verify our claim
above, we divide the two-hop factual recall tasks into two
sets, DPre and DPost, depending on the position of the
edited knowledge within the two-hop reasoning process.
Specifically, for an edit instance e = (s, r, o, o∗), we have
the following two sets:

DPre = {(s, r, o∗)⊕ (s2, r2, o2)},
DPost = {(s1, r1, o1)⊕ (s, r, o∗)}.

The specific experimental details are in the appendix C.2.
Table 2 presents the results of the comparative experiments.
As shown, the multi-hop question accuracy performance of
the existing SOTA locate-then-edit method PMET on DPre
is significantly better than on DPost, which aligns with our
expectations. This is because the reasoning in the explicit
recall step is similar to the single-hop process. After updat-
ing the knowledge in the shallow MLP layers by single-hop
edit prompt, the newly edited knowledge can be leveraged
in Dpre. In contrast, for cases in DPost, the model fails to
produce the correct final answer because existing methods
didn’t update the knowledge in deeper MLP layers.

e (Spain, capital, Madrid→ Hartford)
Te The capital city of Spain is
Cpre e ⊕

::::::::
(Hartford,

::::::
mayor,

::::::::::::
Arulampalam)

TCpre
The mayor of the capital city
of Spain is

Cpost :::::::::
(Barcelona,

:::::::
country,

::::::
Spain) ⊕ e

TCpost
The capital city of the country
where Barcelona is located is

Table 1. An example for an single-hop edit instance and its corre-
sponding multi-hop prompt.

Table 2. Comparison of multi-hop Acc for DPre,DPost.

Edit Method QA Format(%) ↑ Cloze Format(%) ↑
DPre DPost DPre DPost

Base 50.62 41.72 20.31 18.63
PMET 64.29 2.93 43.37 4.60

4. IFMET
Motivated by our findings on the distinctions between single-
hop and multi-hop factual recall processes, we introduce
the Interpretability-Guided Furtherance Model Editing in a
Transformer (IFMET). IFMET extends the existing locate-
then-edit paradigm in two ways: first, constructing multi-
hop edit prompts for each edit instance to expand the origi-
nal single-hop edit prompt, and second, adding a furtherance
editing step that applies multi-hop edit prompts to deeper
MLPs. IFMET thoroughly integrates new knowledge across
shallow and deeper MLP layers, significantly improving the
model’s accuracy and robustness in multi-hop factual recall
scenarios.

Multi-hop edit prompt construction. For a given edit
e = (s, r, o→ o∗), existing locate-then-edit methods pro-
vide only a single-hop edit prompt such as Te in Table 1.
Through Section 3.2, we recognize that the main limitation
of these methods lies in ignoring the difference between
explicit single-hop and implicit multi-hop reasoning mech-
anisms. Single-hop edit prompts only modify knowledge
in the shallow MLP layers, leading to poor performance in
the Cpost format multi-hop factual recall. Therefore, we
aim to construct TCpost-format multi-hop edit prompt for
each edit instance, just like mentioned in Table 1. We first
transform each edit instance into a two-hop fact recall chain
C = (s′, r′, o′)⊕ (s, r, o) where o′ = s, then transform this
two-hop factual recall chain into an edit prompt by using
the corresponding prompt templates. The key step is to
identify the relevant preceding knowledge (s′, r′, s) for e,
which can be sourced from any valid knowledge base. Here,
we provide two methods: one based on WikiData and the
other using the model itself. Further discussion of these two
construction methods is detailed in Appendix D.1.

IFMET. Now we introduce the proposed IFMET frame-
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Editor +CoT Average # Edits = # hops =

1-edit 2-edit 3-edit 4-edit 2-hop 3-hop 4-hop

Base 42.83 36.96 45.27 46.85 48.51 48.9 30.7 48.9

FT 1.9 4.2 0.7 0.3 0.0 3.7 1.4 0.5
MEND 11.5 16.0 11.0 7.3 4.4 13.9 11.3 9.5
ROME 18.1 23.8 20.9 9.0 2.6 33.8 9.1 11.4
MEMIT 12.3 20.5 9.8 5.5 2.6 22.5 6.0 8.4
PMET 17.04 22.63 16.74 11.19 7.84 26.65 12.76 11.7
IFMET (ours) 31.01 30.26 35.21 24.30 31.72 44.06 23.58 25.4

Table 3. Multi-hop accuracy comparison of different methods on the MQuAKE-3K dataset in a few-shot setting, showing the Base
model’s performance on the unedited answer and the edited model’s performance on the edited answer.

work, providing a single-hop edit prompt and multi-hop
edit prompt for each edit instance. Based on the difference
between the single and multi-top reasoning mechanisms we
discussed above, in the first edit stage, we use the single-hop
edit prompt to edit shallow MLPs. In the second stage, we
further use the multi-hop edit prompt to edit deeper MLPs.

Based on previous key-value memories (Geva et al., 2021),
our method to edit the MLP is based on the hypothesis
that factual knowledge is stored within the Feedforward
Neural Networks (FFNs) of MLPs. Specifically, for the
l-th layer FFN, its output of the i-th token’s hidden state
hi
l−1, is given by: vil = f(W in

l hi
l−1)W

out
l , where f(·)

is the activation function, and hi
l−1 is the input of the l-

th MLP layer (for simplicity, the superscript l is omitted
in the following discussion). In this context, f(W inhi)
functions as the keys, denoted as ki, the outputs represent
the corresponding values vi, and W out denotes the weights
of the knowledge stored in the FFN that needs modifying.
Such a structure is well aligned with the triplet form (s, r, o),
where the keys ki correspond to entities of interest si or
some specific fact (si, ri) and values vi contain information
about oi. Thus, we have W outk = v for (k, v), which
represents the fact (s, r, o) (Geva et al., 2021). We aim to
modify W out such that W outk = v∗, where v∗ contains the
information of the new knowledge.

Motivated by the above, in IFMET, there are two main
steps for both the first and second edit stages: Search and
Calculate. The Search process identifies the suitable v∗

through the edit prompt. Then the Calculate process com-
putes the change in weights W out using v∗. These two
processes are foundational in existing knowledge editing
methodologies. In experiments, we adopt the state-of-the-
art locate-then-edit method PMET (Li et al., 2024c). The
primary differences between the first and further edit stages
are reflected in the used edit prompt and the layers edited.
Specifically, for the edit instance e = (s, r, o → o∗), the
first edit utilized a single-hop edit prompt Te provided by
the dataset to edit shallow layers of the model. For the
furtherance edit, the two-hop prompt TCpost

composed of

(s′, r, s) and (s, r, o∗) was used, and this prompt was applied
to edit deeper layers of the model. Due to space limitations,
the flowchart of the algorithm and related implementation
details are provided in Algorithm 1 and Appendix D.2.

5. Experiments
5.1. Experimental Setup

Dataset and Baselines4. MQuAKE-3K (Zhong et al., 2023),
a challenging and widely used dataset designed to evalu-
ate models’ ability to perform multi-hop fact recall with
newly edited knowledge. Each edit instance contains a
multi-hop factual recall chain and the corresponding multi-
hop textual question. The instance includes at least one fact
from the chain to be edited and provides its single-hop edit
prompt. Baselines are Base, which refers to the original
GPT-J(6B) model without any edits; FT basic fine-tuning
method; MEND (Mitchell et al., 2022), which employs
meta-learning for weight updating; ROME (Meng et al.,
2022a), the classic single-stage locate-then-edit method;
MEMIT (Meng et al., 2023), which extends ROME to edit
a large set of facts by updating weights in a range of layers;
PMET, locate-then-edit method with FFN optimization.

Setup and Hyperparameters. To evaluate the performance
of different KE methods, we adopt Multi-hop question an-
swering accuracy(Multi-hop Acc) as the primary metric. For
each query, the unedited answer denotes the expected old
fact before knowledge editing, while the edited answer rep-
resents the expected new fact after editing. We use PMET as
our primary experimental method for both the first and fur-
therance edits and construct multi-hop edit prompts from the
knowledge triples of MQuAKE-3K to support our IFMET.
Additional details are presented in Appendix E.2.

4More details about the dataset in Appendix B.1. We mainly
compare IFMET with previous weight-modifying approaches, es-
pecially these single-stage edit methods applying shallow MLP
edits based on single-hop edit prompts. Comparison with weight-
preserving methods is discussed in section G.1
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Editor Average↑ Pre ↑ Post ↑
Base 7.70 11.97 6.99
Base+CoT 6.83 8.22 6.60

PMET 11.17 39.20 6.53
PMET+CoT 17.04 43.66 12.63
IFMET 23.04 38.03 20.55
IFMET+CoT 31.01 43.66 28.90

(a) Edited Answer

Editor Average ↓ Pre ↓ Post ↓
Base 39.63 34.04 40.56
Base+CoT 42.83 41.31 43.08

PMET 29.95 10.09 33.26
PMET+CoT 29.35 12.67 32.13
IFMET 23.08 11.27 25.02
IFMET+CoT 21.32 10.80 23.08

(b) Unedited Answer

Table 4. Multi-hop accuracy comparison for edited and unedited
answers using PMET and our editors on the MQuAKE-3K dataset.
Average accuracy is calculated as the weighted average of results
from these two categories, which have respective quantities of 426
and 2574. Additionally, +CoT denoted the performance incorpo-
rating a Chain-of-thought (CoT) prompt.

5.2. Experimental Results

General performance. Table 3 demonstrates the perfor-
mance of various established methods alongside IFMET
on MQuAKE-3K. To thoroughly explore the model’s ability
to leverage the newly edited knowledge, we use Chain-of-
Thought (CoT) prompting to guide the model’s responses to
multi-hop tasks in this experiment. # Hops refers to the num-
ber of hops of the multi-hop fact chain in the edit instance,
with a maximum of 4 hops. # Edits quantifies how many
individual facts within the chain are edited, and its maxi-
mum value is the same as the maximum number of hops
in the instance. What can be observed is that, on the over-
all average performance, IFMET consistently outperforms

Editor Multi-hop ↑ Efficacy ↑
IFMET 28.38 (↑78.0%) 99.56 (↑12.8%)

w/o First 23.14 (↑45.1%) 66.59 (↓24.6%)
w/o Multi 17.69 (↑10.9%) 100.00 (↑13.3%)

w/o Deeper 15.07 (↓5.4%) 99.56 (↑12.8%)
PMET 15.94 88.21

Table 5. The results of the ablation experiments on GPT-J-6B
model using a subset of MQuAKE-CF. Both the percentages of
decrease(↓) and increase(↑) are calculated relative to PMET as the
baseline. The most significant performance decline is highlighted
in red and the most significant performance increase is highlighted
in green.

previous methods by a significant margin. Moreover, the
performance improvement of IFMET is consistent across
all subsets (e.g., 2-edit or 2-hop) of the dataset. Notably, in
more complex reasoning scenarios, such as when edits>2
or hops>3, IFMET achieves a performance improvement
of two to three times. This demonstrates the adequacy of
knowledge updates in the IFMET method.

Comparison between the unedited answer and edited an-
swer. In Section 3.2, we attempted to explain and demon-
strate why existing methods still tend to output the unedited
answer in multi-hop tasks, especially in the post-type multi-
hop fact recall task. Here, we provide a more detailed break-
down of the dataset to investigate whether IFMET effec-
tively alleviates this issue. Please refer to Appendix E.1 for
the classification of {Pre,Post}. Results in Table 4 show that,
in the Post scenarios where the facts are typically treated
as implicit reasoning steps, IFMET effectively reduces the
output of the unedited answer and improves the accuracy
of the correct answer. On the pre-type tasks, as expected,
existing methods demonstrate performance comparable to
IFMET. This is because they primarily modify knowledge
in the shallower layers.

Ablation study. With Efficacy metric, which measures
whether the model can successfully answer the single-hop
fact recall prompt, we comprehensively evaluate the model’s
ability to perform both single-hop and multi-hop reasoning
using the edited knowledge. The importance of each com-
ponent is reflected through comparisons of performance
improvements over PMET. From the analysis of the ablation
experiments in Table 5, we derive the following conclusions:
w/o First: Only modifying the deeper layers using second
stage edit with multi-hop edit prompt effectively enhances
performance on multi-hop reasoning tasks. However, the
absence of the single-hop edit prompt in the first stage re-
sulted in the shallow MLP layers not being updated, leading
to poor performance in single-hop fact recall tasks. This
highlights the importance of the two-stage editing process.
w/o Multi: In the second editing stage, we try to use the
original single-hop edit prompt instead of a multi-hop edit
prompt to edit the deeper MLP layers. However, the results
corroborate our interpretability analysis which emphasizes
the differences between single-hop and multi-hop reasoning
mechanisms. Single-hop prompts cannot correctly modify
knowledge in deep MLPs, highlighting the critical impor-
tance of multi-hop prompts. w/o Deeper: In this setup, we
try to use the multi-hop edit prompt to edit shallow MLP
layers (rather than deeper MLP layers). As observed across
the table, there was a consistent minor fluctuation in perfor-
mance. In contrast to IFMET’s +70% improvement, this
underscores the necessity of editing knowledge in the deeper
MLP layers when using the multi-hop prompts. More com-
prehensive ablation studies and discussions can be found in
Appendix F.
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Generalizability. Additionally, we conducted experiments
on larger edit batches, newer models and more metrics in
Appendix G, all of which showed significant performance
improvements, effectively demonstrating the generalizabil-
ity of our approach.

6. Conclusion
We focused on developing locate-then-edit knowledge edit-
ing methods for multi-hop factual recall tasks. We first
verified that in multi-hop tasks, LLMs tend to retrieve im-
plicit subject knowledge from deeper MLP layers, unlike
single-hop tasks, which rely on earlier layers. This dis-
tinction explains the poor performance of current methods
in multi-hop queries, as they primarily focus on editing
shallow layers, leaving deeper layers unchanged. We then
proposed IFMET, a novel locate-then-edit KE approach
designed to edit both shallow and deep MLP layers. Ex-
perimental results demonstrate that IFMET significantly
improves performance on multi-hop factual recall tasks.

Impact Statement
This paper presents work whose goal is to advance the
field of knowledge editing. We aim to enhance the locate-
then-edit paradigm to address multi-hop factual recall tasks.
There are many potential societal consequences of our work,
none of which we feel must be specifically highlighted here.

Acknowledgements
This work is supported in part by the funding BAS/1/1689-
01-01, URF/1/4663-01-01, REI/1/5232-01-01, REI/1/5332-
01-01, and URF/1/5508-01-01 from KAUST, and funding
from KAUST - Center of Excellence for Generative AI,
under award number 5940.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Belinkov, Y. Probing classifiers: Promises, shortcomings,
and advances. Computational Linguistics, 48(1):207–
219, 2022.

Belinkov, Y. and Glass, J. Analysis methods in neu-
ral language processing: A survey. Transactions of
the Association for Computational Linguistics, 7:49–72,
2019.

Belrose, N., Furman, Z., Smith, L., Halawi, D., Ostrovsky, I.,
McKinney, L., Biderman, S., and Steinhardt, J. Eliciting
latent predictions from transformers with the tuned lens.
arXiv preprint arXiv:2303.08112, 2023.

Biran, E., Gottesman, D., Yang, S., Geva, M., and Glober-
son, A. Hopping too late: Exploring the limitations of
large language models on multi-hop queries, 2024. URL
https://arxiv.org/abs/2406.12775.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.
html.

Cheng, K., Ali, M. A., Yang, S., Ling, G., Zhai, Y., Fei, H.,
Xu, K., Yu, L., Hu, L., and Wang, D. Leveraging logical
rules in knowledge editing: A cherry on the top. arXiv
preprint arXiv:2405.15452, 2024a.

Cheng, K., Lin, G., Fei, H., Zhai, Y., Yu, L., Ali, M. A., Hu,
L., and Wang, D. Multi-hop question answering under
temporal knowledge editing. ArXiv, abs/2404.00492,
2024b. URL https://api.semanticscholar.
org/CorpusID:268819534.

Dai, D., Dong, L., Hao, Y., Sui, Z., Chang, B., and
Wei, F. Knowledge neurons in pretrained transform-
ers. In Muresan, S., Nakov, P., and Villavicencio,
A. (eds.), Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8493–8502, Dublin, Ireland,
May 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-long.581. URL https:
//aclanthology.org/2022.acl-long.581.

Dar, G., Geva, M., Gupta, A., and Berant, J. Analyz-
ing transformers in embedding space. arXiv preprint
arXiv:2209.02535, 2022.

Dar, G., Geva, M., Gupta, A., and Berant, J. Analyzing trans-
formers in embedding space. In Rogers, A., Boyd-Graber,
J., and Okazaki, N. (eds.), Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 16124–16170,
Toronto, Canada, July 2023. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2023.acl-long.
893. URL https://aclanthology.org/2023.
acl-long.893.

9

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2406.12775
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://api.semanticscholar.org/CorpusID:268819534
https://api.semanticscholar.org/CorpusID:268819534
https://aclanthology.org/2022.acl-long.581
https://aclanthology.org/2022.acl-long.581
https://aclanthology.org/2023.acl-long.893
https://aclanthology.org/2023.acl-long.893


Locate-then-edit for Multi-hop Factual Recall under Knowledge Editing

Etezadi, R. and Shamsfard, M. The state of
the art in open domain complex question answer-
ing: a survey. Applied Intelligence, 53:4124–4144,
2022. URL https://api.semanticscholar.
org/CorpusID:249439927.

Geva, M., Schuster, R., Berant, J., and Levy, O. Trans-
former feed-forward layers are key-value memories. In
Moens, M., Huang, X., Specia, L., and Yih, S. W.
(eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, pp. 5484–5495. Association for Com-
putational Linguistics, 2021. doi: 10.18653/V1/2021.
EMNLP-MAIN.446. URL https://doi.org/10.
18653/v1/2021.emnlp-main.446.

Geva, M., Caciularu, A., Wang, K., and Goldberg, Y. Trans-
former feed-forward layers build predictions by promot-
ing concepts in the vocabulary space. In Goldberg,
Y., Kozareva, Z., and Zhang, Y. (eds.), Proceedings of
the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 30–45, Abu Dhabi, United
Arab Emirates, December 2022. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.emnlp-main.
3. URL https://aclanthology.org/2022.
emnlp-main.3.

Ghandeharioun, A., Caciularu, A., Pearce, A., Dixon, L.,
and Geva, M. Patchscope: A unifying framework for
inspecting hidden representations of language models.
arXiv preprint arXiv:2401.06102, 2024.

Gupta, A., Sajnani, D., and Anumanchipalli, G. A unified
framework for model editing, 2024. URL https://
arxiv.org/abs/2403.14236.

Hendel, R., Geva, M., and Globerson, A. In-context learn-
ing creates task vectors, 2023. URL https://arxiv.
org/abs/2310.15916.

Hewitt, J., Chen, S., Xie, L. L., Adams, E., Liang, P., and
Manning, C. D. Model editing with canonical examples.
arXiv preprint arXiv:2402.06155, 2024.

Hou, Y., Li, J., Fei, Y., Stolfo, A., Zhou, W., Zeng, G.,
Bosselut, A., and Sachan, M. Towards a mechanis-
tic interpretation of multi-step reasoning capabilities
of language models. In Bouamor, H., Pino, J., and
Bali, K. (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing,
pp. 4902–4919, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.299. URL https://aclanthology.
org/2023.emnlp-main.299.

Hu, C., Cao, P., Chen, Y., Liu, K., and Zhao, J. Wilke: Wise-
layer knowledge editor for lifelong knowledge editing.
arXiv preprint arXiv:2402.10987, 2024.

Jin, Z., Cao, P., Yuan, H., Chen, Y., Xu, J., Li, H., Jiang,
X., Liu, K., and Zhao, J. Cutting off the head ends the
conflict: A mechanism for interpreting and mitigating
knowledge conflicts in language models, 2024. URL
https://arxiv.org/abs/2402.18154.

Ju, T., Chen, Y., Yuan, X., Zhang, Z., Du, W., Zheng, Y.,
and Liu, G. Investigating multi-hop factual shortcuts in
knowledge editing of large language models, 2024. URL
https://arxiv.org/abs/2402.11900.

Langedijk, A., Mohebbi, H., Sarti, G., Zuidema, W.,
and Jumelet, J. Decoderlens: Layerwise interpreta-
tion of encoder-decoder transformers. arXiv preprint
arXiv:2310.03686, 2023.

Lawson, C. L. and Hanson, R. J. Solving Least
Squares Problems. Society for Industrial and Applied
Mathematics, 1995. doi: 10.1137/1.9781611971217.
URL https://epubs.siam.org/doi/abs/10.
1137/1.9781611971217.

Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H., and
Wattenberg, M. Emergent world representations: Explor-
ing a sequence model trained on a synthetic task, 2024a.
URL https://arxiv.org/abs/2210.13382.

Li, K., Patel, O., Viégas, F., Pfister, H., and Wattenberg, M.
Inference-time intervention: Eliciting truthful answers
from a language model, 2024b. URL https://arxiv.
org/abs/2306.03341.

Li, X., Li, S., Song, S., Yang, J., Ma, J., and Yu, J. Pmet:
Precise model editing in a transformer, 2024c. URL
https://arxiv.org/abs/2308.08742.

Li, Z., Jiang, G., Xie, H., Song, L., Lian, D., and Wei,
Y. Understanding and patching compositional reasoning
in llms, 2024d. URL https://arxiv.org/abs/
2402.14328.

Liu, Y., Liu, Y., Chen, X., Chen, P.-Y., Zan, D., Kan, M.-
Y., and Ho, T.-Y. The devil is in the neurons: Inter-
preting and mitigating social biases in language models.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=SQGUDc9tC8.

Mazzia, V., Pedrani, A., Caciolai, A., Rottmann, K.,
and Bernardi, D. A survey on knowledge edit-
ing of neural networks. ArXiv, abs/2310.19704,
2023. URL https://api.semanticscholar.
org/CorpusID:264820150.

10

https://api.semanticscholar.org/CorpusID:249439927
https://api.semanticscholar.org/CorpusID:249439927
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://aclanthology.org/2022.emnlp-main.3
https://aclanthology.org/2022.emnlp-main.3
https://arxiv.org/abs/2403.14236
https://arxiv.org/abs/2403.14236
https://arxiv.org/abs/2310.15916
https://arxiv.org/abs/2310.15916
https://aclanthology.org/2023.emnlp-main.299
https://aclanthology.org/2023.emnlp-main.299
https://arxiv.org/abs/2402.18154
https://arxiv.org/abs/2402.11900
https://epubs.siam.org/doi/abs/10.1137/1.9781611971217
https://epubs.siam.org/doi/abs/10.1137/1.9781611971217
https://arxiv.org/abs/2210.13382
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2308.08742
https://arxiv.org/abs/2402.14328
https://arxiv.org/abs/2402.14328
https://openreview.net/forum?id=SQGUDc9tC8
https://openreview.net/forum?id=SQGUDc9tC8
https://api.semanticscholar.org/CorpusID:264820150
https://api.semanticscholar.org/CorpusID:264820150


Locate-then-edit for Multi-hop Factual Recall under Knowledge Editing

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locat-
ing and editing factual associations in GPT. In Koyejo,
S., Mohamed, S., Agarwal, A., Belgrave, D., Cho,
K., and Oh, A. (eds.), Advances in Neural Information
Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9,
2022, 2022a.

Meng, K., Sharma, A. S., Andonian, A. J., Belinkov, Y.,
and Bau, D. Mass-editing memory in a transformer.
In The Eleventh International Conference on Learning
Representations, 2022b.

Meng, K., Sharma, A. S., Andonian, A. J., Belinkov,
Y., and Bau, D. Mass-editing memory in a trans-
former. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=MkbcAHIYgyS.

Merullo, J., Eickhoff, C., and Pavlick, E. A mechanism for
solving relational tasks in transformer language models.
2023.

Merullo, J., Eickhoff, C., and Pavlick, E. Language models
implement simple word2vec-style vector arithmetic, 2024.
URL https://arxiv.org/abs/2305.16130.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Man-
ning, C. D. Fast model editing at scale. In The Tenth
International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net, 2022. URL https://openreview.net/
forum?id=0DcZxeWfOPt.

nostalgebraist. interpreting gpt: the logit
lens. https://www.lesswrong.
com/posts/AcKRB8wDpdaN6v6ru/
interpreting-gpt-the-logit-lens, 2020.

Tan, C., Zhang, G., and Fu, J. Massive editing for large
language models via meta learning. arXiv preprint
arXiv:2311.04661, 2023.

Todd, E., Li, M. L., Sharma, A. S., Mueller, A., Wallace,
B. C., and Bau, D. Function vectors in large language
models, 2024. URL https://arxiv.org/abs/
2310.15213.

Touvron, H., Martin, L., Stone, K. R., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D. M., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A. S., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I. M., Korenev, A. V., Koura,

P. S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D.,
Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P.,
Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta,
R., Saladi, K., Schelten, A., Silva, R., Smith, E. M., Sub-
ramanian, R., Tan, X., Tang, B., Taylor, R., Williams, A.,
Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan,
A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic,
R., Edunov, S., and Scialom, T. Llama 2: Open founda-
tion and fine-tuned chat models. ArXiv, abs/2307.09288,
2023. URL https://api.semanticscholar.
org/CorpusID:259950998.

Upadhayay, B., Behzadan, V., and Karbasi, A. Cognitive
overload attack:prompt injection for long context, 2024.
URL https://arxiv.org/abs/2410.11272.

Wang, B. and Komatsuzaki, A. GPT-J-6B: A
6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/
mesh-transformer-jax, May 2021.

Wang, Z., Ku, A., Baldridge, J., Griffiths, T., and Kim,
B. Gaussian process probes (gpp) for uncertainty-aware
probing. Advances in Neural Information Processing
Systems, 36, 2024.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis,
M. Efficient streaming language models with atten-
tion sinks, 2024. URL https://arxiv.org/abs/
2309.17453.

Yin, X., Jiang, J., Yang, L., and Wan, X. History matters:
Temporal knowledge editing in large language model.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38(17), pp. 19413–19421, 2024.

Zhang, N., Yao, Y., Tian, B., Wang, P., Deng, S., Wang,
M., Xi, Z., Mao, S., Zhang, J., Ni, Y., Cheng, S., Xu, Z.,
Xu, X., Gu, J.-C., Jiang, Y., Xie, P., Huang, F., Liang, L.,
Zhang, Z., Zhu, X., Zhou, J., and Chen, H. A comprehen-
sive study of knowledge editing for large language mod-
els, 2024. URL https://arxiv.org/abs/2401.
01286.

Zhong, Z., Wu, Z., Manning, C. D., Potts, C., and Chen,
D. Mquake: Assessing knowledge editing in language
models via multi-hop questions. In Bouamor, H., Pino, J.,
and Bali, K. (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing,
EMNLP 2023, Singapore, December 6-10, 2023, pp.
15686–15702. Association for Computational Linguis-
tics, 2023. URL https://aclanthology.org/
2023.emnlp-main.971.

11

https://openreview.net/pdf?id=MkbcAHIYgyS
https://openreview.net/pdf?id=MkbcAHIYgyS
https://arxiv.org/abs/2305.16130
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://arxiv.org/abs/2310.15213
https://arxiv.org/abs/2310.15213
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://arxiv.org/abs/2410.11272
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2401.01286
https://arxiv.org/abs/2401.01286
https://aclanthology.org/2023.emnlp-main.971
https://aclanthology.org/2023.emnlp-main.971


Locate-then-edit for Multi-hop Factual Recall under Knowledge Editing

A. Related Work
Parameter-based Editing Knowledge editing refers to modifying outdated, inaccurate, or harmful knowledge in LLMs
without the need for retraining. Parameter-editing methods achieve this by adjusting the model’s internal parameters to
update its knowledge while ensuring that information unrelated to the editing domain remains unaffected. An example is
ROME (Meng et al., 2022a), which explored the knowledge storage mechanisms in single-hop factual recall tasks based on
causal tracing methods and proposed the Rank-One Model Editing method. Together with KN (Dai et al., 2022), it pioneered
a paradigm of locate-then-edit, providing guidance for subsequent editing methods. The later extended versions, MEMIT
(Meng et al., 2023), MALMEN (Tan et al., 2023), and EMMET (Gupta et al., 2024), further improved ROME by addressing
its limitations in large-scale editing, enabling comprehensive edits in a single operation while demonstrating exceptional
performance. Meanwhile, PMET (Li et al., 2024c) achieved more precise model editing by decoupling the residual flow of
the Transformer into three components: Multi-Head Self-Attention (MHSA), Feed-Forward Networks (FFN), and residual
connections, utilizing only the optimized hidden states of the FFN to accurately update FFN weights. Additionally, MEND
(Mitchell et al., 2022) trained a hypernetwork to efficiently predict LLM weight updates, enabling rapid knowledge editing.
METO (Yin et al., 2024) optimized the model’s temporal prediction of facts, editing both historical and new knowledge to
reduce forgetting during updates. Wilke (Hu et al., 2024) selected the layers in LLMs that best matched the knowledge
pattern for editing, achieving continuous updates and corrections in the model’s knowledge. Hewitt et al. (2024) used
canonical examples to guide the model editing process, enabling fine-tuned adjustments to model behavior. However, these
editing methods primarily focus on knowledge updates in specific layers and lack in-depth optimization for knowledge
integration and application in multi-hop reasoning, rendering them inadequate for multi-hop questions. In contrast, IFMET
enhances model interpretability, guiding more accurate knowledge integration and thereby improving model performance in
multi-hop factual recall tasks.

Mechanistic Interpretability LLMs are capable of producing high-quality answers, but their internal workings remain
opaque. As a result, the interpretability of LLMs has emerged as both a research hotspot and a critical area of focus.
Mechanistic Interpretability refers to the effort to explain the internal mechanisms, decision-making processes, and outputs
of LLMs. There are two primary approaches for interpreting large language models (LLMs) in the vocabulary space by
examining hidden representations: Probing Classifiers (Belinkov & Glass, 2019; Belinkov, 2022; Wang et al., 2024) and
Projecting Representations to the Vocabulary Space (Dar et al., 2022; Merullo et al., 2023; Belrose et al., 2023; Langedijk
et al., 2023). The former identifies which parts of the model are crucial for specific tasks by training classifiers, known
as probes, on hidden representations, while the latter involves mapping intermediate layer representations to the output
vocabulary space and analyzing how these projections predict the next word. In this paper, we focus primarily on Projecting
Representations. Logit Lens (nostalgebraist, 2020) extracted outputs corresponding to each layer in the decoding space by
applying unembedding operations on the intermediate layers of LLMs. Geva et al. (2022) analyzed the nature of updates
at each layer by comparing differences in logit outputs. Merullo et al. (2024) used the Logit Lens to explore how LLMs
handle different stages of question-answering tasks. Dar et al. (2022) mapped attention weights of LLMs to lexical space,
showing that these weights encode consistent concepts and relations. Belrose et al. (2023) introduced the Tuned Lens, which
improves the capability and reliability of the Logit Lens. Finally, Ghandeharioun et al. (2024) proposed the Patchscopes
framework, demonstrating that auxiliary models can represent lexical projections through tuning.

Mechanistic Interpretability serves as a tool for debugging and enhancing LLMs and can be applied to a variety of
downstream tasks. Xiao et al. (2024) leveraged explanations from multi-head self-attention (MHSA) mechanisms in LLMs
by introducing StreamingLLM, a model capable of handling unlimited text without requiring fine-tuning. Through causal
tracing, Hendel et al. (2023); Todd et al. (2024) demonstrated that certain attention heads can efficiently encode compact
representations of example tasks, leading to improved performance in few-shot prompting. Liu et al. (2024) explored the
role of social bias in LLMs, introducing the concept of social bias neurons to explain and mitigate such biases. Furthermore,
Li et al. (2024b) proposed an intervention technique during inference, which, based on the interpretability of attention heads,
shifts activation values toward “truthful” responses to reduce model hallucinations. In this paper, we analyze the MLP and
MHSA components of LLMs to uncover the mechanisms that enable multi-hop reasoning and, building on our findings, we
introduce a targeted knowledge-editing method, IFMET.
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B. Dataset
B.1. Details of MQuAKE-CF-3K

The MQuAKE-3K dataset comprises over 3,000 N-hop questions (where N ∈ {2, 3, 4}), each associated with one or more
edits. We use this dataset as a diagnostic tool to evaluate the performance of edited models in integrating newly injected
knowledge through editing methods. Two evaluation scenarios can be considered: a) In the first scenario, we perform
knowledge editing on a single instance d, which may involve up to four fact edits. b) In the second scenario, the dataset is
divided into groups of k instances (k ∈ {1, 100, 1000, 3000} for MQuAKE-3K. In this case, all instances within a group are
processed simultaneously, and the edited facts of these instances are injected into the model at once. This more challenging
setting is particularly relevant for editing methods like MEMIT (Meng et al., 2023), which efficiently handle large volumes
of edits. The main experiments in the main text focus on the first scenario, while experiments for the second scenario can be
found in the appendix G.

B.2. Subset of MQuAKE

B.2.1. 1-HOP AND 2-HOP SUBSET FOR MECHANISM EXPLORATION

In exploring the mechanisms of fact recall for one-hop and two-hop queries, this experiment utilized cloze templates as
the experimental prompts. We extracted knowledge from MQuAKE that could be answered by GPT-J-6B in a zero-shot
setting. This approach ensured that the model could recall the knowledge under the strictest conditions while minimizing
the impact of unclear responses on the experimental results. The distribution of various relation types across the two subsets
is illustrated in Figure 4.

B.2.2. PRE AND POST SUBSET

To construct the subset, we selected two-hop queries from MQuAKE with Cloze-Format templates and then randomly drew
a nearly equal number(≈ 300) of cases based on the proportion of relations.

C. Causal Intervention
C.1. Least squares and Minimum-norm method

When performing interventions, we need to solve the least squares constraint as follows:

argmin
∆hl

∥WU (hl +∆hl)− s∗l ∥2

In certain situations, the minimum norm method is more effective than directly solving linear systems or using other
numerical methods, especially when the system is underdetermined (i.e., there are fewer equations than unknowns) or when
there are infinitely many solutions. The minimum norm method provides a solution with the smallest norm among all
possible solutions.

To minimize the probability of the intermediate answer j, we replace its logits with the smallest logits of the model’s
vocabulary and provide appropriate compensation for the final answer k to maintain the probability of the final answer
unchanged. The ∆h can be represented as:


∆h = ∆hj +∆hk

∆hj =
sl[j]−smin

l

∥Wu[j]∥2 Wu[j]

∆hk =
sl[k]−smin

l

∥Wu[j]∥2 αWu[k]

The change in the probability of the final answer after causal intervention can be represented by the function f(α):
f(α) = P (h∗, k)− P (h, k) Where f(α) is a monotonically increasing function on the interval (0, 1). We can find the zero
of this function using the bisection method, ensuring that the final answer, after the causal intervention, remains within an
acceptable error margin with unchanged probability.
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C.2. Comparative experiments on the same fact at different positions in multi-hop factual recall

We sampled two subsets with approximately equal sizes from the MQuAKE-3K dataset, detailed in Appendix B.2.2. By
applying the SOTA locate-then-edit method PMET to layer [3-8], which follows (Li et al., 2024c), we present the percentage
of cases where both pre-edited and post-edited models answer successfully in QA format or Cloze format under different
edit batches. Notably we show the performance of pre-edited model on unedited answer, as well as the edited answer for the
posted-edited model.

D. Details of IFMET
D.1. Detailed Multi-hop Edit Prompts Construction Process

We provide two methods for constructing multi-hop edit prompts. The first method is used in the main experiments of this
paper, while the performance of multi-hop edit prompts generated by the second method is discussed in the appendix G.

WikiData as Knowledge Base Practically, we utilize WikiData5 to construct. We start by extracting all 2615 subjects from
the MQuAKE dataset’s edits and deduplicating them to form a set of subjects Se = {si|i = 1, . . . }. For each subject s, We
then perform a WikiData SPARQL query6 to identify a set of triplets for each subject si: Sup = {(s′, r′, o′)|o′ = si}. The
query is illustrated in Table 14. To keep the query complexity within an acceptable range, we collected all relationships that
have appeared in MQuAKE and restricted r′ to those that have occurred in the relation set. To ensure the reliability of these
facts, we then use the prompt 11 to filter out the answerable (s′, r′, s) triples. For each edit case (s, r, o→ o∗), we are able
to construct a two-hop edit template TC(s

′) with the multi-hop chain C = (s′, r′s)⊕ (s, r, o→ o∗).

Model as Knowledge Base We used a simple prompt in table 13 to retrieve relevant knowledge directly from the model to
be edited for constructing the multi-hop edit prompt. Due to computational and time constraints, we limited each case to a
minimum of one multi-hop edit prompt and a maximum of five multi-hop edit prompts.

D.2. Detailed Edit Process

Algorithm 1: IFMET

Data: Requested edits E = {(si, ri, oi → o∗i )}Ni=1, Supplementary set Sup = {(s′i, r′i, si)}Ni=1, modelM , first edit
layers l1, furtherance edit layers l2

Result: Modified modelME containing edits from E
1 for (si, ri, o

∗
i ) ∈ E do // First Edit Process

2 Generate the single edit prompt Tri(si) ;
3 Optimize v∗i ← Search(Tri(si)) ; // v∗i for every new fact
4 end
5 for l ∈ l1 do // Update weights of Shallow MLPs
6 ∆l ← Calculate([v∗1 , . . . , v

∗
N ]) ; // Compute weight change with target vectors

7 W l ←W l +∆l ; // Update layer l MLP weights in model
8 end
9 for (s′i, r

′
i, si) ∈ Sup do // Furtherance Edit Process

10 Construct the multi-hop Chain C = (s′i, r
′
i, si)⊕ (si, ri, o) ;

11 Generate the multi-hop edit prompt TC(s
′
i) ;

12 Optimize v∗i ← Search(TC(s
′
i)) ;

13 end
14 for l ∈ l2 do // Update weights of Deeper MLPs
15 ∆l ← Calculate([v∗1 , . . . , v

∗
N ]) ;

16 W l ←W l +∆l

17 end

Our method primarily consists of a first edit (step 1-8 in Algorithm 1) and a furtherance edit (step 9-17 in Algorithm 1).

5www.wikidata.org
6https://query.wikidata.org/
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Each single edit process obtains target weights via optimizing the objective of knowledge preservation and editing:

argmin
Ŵ

λ ∥ŴK0 −W outK0∥2︸ ︷︷ ︸
Preserve

+ ∥ŴKE − VE∥2︸ ︷︷ ︸
Edit

 ,

where K0 =
[
k10 | k20 | · · · | kN0

]
and V0 = W outK0 contain all the knowledge we want to preserve, KE =[

k1e | k2e | · · · | kEe
]

is the matrix containing the edits we try to make and Ve = [v∗e1 | . . . | v
∗
eE ] represents the target

representations of the new knowledge. (KE , VE) corresponds to the edited fact set {(si, ri, o∗i ) |i = 1, 2, · · · , E}. We
consider the target weight Ŵ as the sum of the original weight W out and the incremental weight ∆, as explicated in (Li
et al., 2024c), a closed-form solution to the incremental weight can be derived:

∆ = RKT
E(C0 +KEK

T
E)

−1, R ≜ (VE −W outKE), C0 ≜ K0K
T
0 . (3)

Thus, solving the optimal parameter Ŵ is transformed into calculating edited fact representation {(kie, vie)|i = 1, . . . , E}.
In this process, an edit instance e = (s, r, o → o∗), (ke, ve) the pre-edited fact (s, r, o) and (ke, v

∗
e) denotes post-edited

(s, r, o∗). To obtain the target representations of the new knowledge v∗e = ve + δ, we optimize the learnable parameter
vector δ to modify the original value vector. Search is the process of obtain the optimized δ through gradient descent:

δ = argmin
δ
L(δ) = µDKL (PMe [t

′ | T ] ∥PM [t′ | T ]) + φ
1

P

P∑
j=1

− logPMe

[
o∗ | prefj ⊕ Te

]
,

where T is the KL prompt, such as “s is a ” and t′ is the tokens excluding the token for the answer o∗, Te is the prompt for
editing, such as “The capital of Spain is ” , φ and µ serve as the scaling factor for adjusting the loss. Calculate process is
using the v∗e to slove the ∆ which is a function of v∗e . involves substituting the values of Ve = [v∗e1 | . . . | v

∗
eE ] corresponding

to a series of edits into (3) to compute the ∆.

The primary differences between the first and furtherance edits are reflected in the edit prompt Te and the layers edited. For
example, for the edit instance e = (s, r, o→ o∗), the first edit utilized a single-hop edit template Te = Tr(s) provided by
MQuAKE to edit layers [3,8] of the GPT-J model in the subject last token position. For the furtherance edit, a two-hop
prompt Te = TC(s

′) composed of a support case (s′, r, s) and (s, r, o∗), and this two-hop edit prompt was applied to edit
layers [16,20] of the GPT-J model in the last token position.

E. Addition Experimental Settings
E.1. Criteria for classifying dataset into pre and post.

Consider a multi-hop question composed of n triples. We define the positions of edits (with the index starting from 1) as the
set {e1, e2, . . . , em}, where m represents the total number of edits. The important insight is to divide according to whether
only the first hop is edited. Edits only occurring in the first hop are classified as pre, while those hold edits more than one
are labeled post.

E.2. Experimental Settings

When constructing the multi-hop edit prompts, for each edit case, no more than three triplets per relation were added. The
relation types of the multi-hop edit prompts set are the same as MQuAKE. We set the edit batch sizes to 1.

In both the first and furtherance edits, our configuration for PMET adheres to the settings specified by (Li et al., 2024c).
Initially, we set φ = 1 and 0 ≤ µ ≤ 1 to manage the retention of the model’s original knowledge. As µ increases, the
retention level also increases, while φ exhibits the opposite trend. After maximizing the probability of the target knowledge,
we reduce φ to 0.1 to preserve the original knowledge as much as possible. Optimization is halted when DKL < 0.01. On
GPT-J, for estimating the covariance matrix (i.e., the set of previously memorized keys C0), we sample 10,0000 times on
Wikitext in fp32 precision and set λ = 6000. When optimizing, we limit the total optimization steps to 30 with a learning
rate of 0.2. All our experiments were conducted using the MQuAKE dataset. To test the accuracy of answers to multi-hop
questions, we adhered to the few-shot in Table 12 and Chain of Thought (CoT) templates in Table 10 and procedures as
outlined in (Zhong et al., 2023).
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F. Ablation Study
Our mechanism analysis has identified that the existing editing methods with only single-hop edit prompts fail to adequately
modify knowledge in the deeper MLP layers, resulting in poor performance on multi-hop factual recall tasks. Additionally,
our findings suggest that implicit multi-hop step dependencies rely on the knowledge provided by these deeper MLP layers.
Based on these interpretability results related to the mechanistic difference, we propose the IFMET. Given the distinctions
between IFMET and other existing methods, we highlight four key components, especially in the furtherance edit: two-stage
modification, the use of multi-hop edit prompt, editing the last token position, and updating knowledge in the deeper-layer
MLPs during the second stage, as illustrated in the table 6.

To investigate whether the IFMET method effectively balances the requirements of general knowledge editing and multi-hop
fact recall tasks, we constructed the paraphrase set and neighborhood set for a subset of the MQuAKE-3K dataset , following
the approach used in the COUNTERFACT dataset (Meng et al., 2022b). We conducted experiments under two configurations:
edit batch = 1 and edit batch = 100 and focused on analyzing the roles of these key components on the following metrics:

• Efficacy measures whether an edit has been successfully applied to a model and whether the model can successfully
answer the single-hop fact recall prompt. It is calculated as the percentage of edits where P (edited answer) >
P (unedited answer) for a given query prompt used during model editing.

• Multi-hop measures whether the multi-hop question related to the edited knowledge can be successfully answered by
the model.

• Paraphrase evaluates the model’s generalization ability under an edit. It is defined as the percentage of edits where
P (edited answer) > P (unedited answer) for paraphrases of the query prompt.

• Specificity assesses the locality of the model editing, i.e., whether the edit of a specific fact affects other facts stored
within the model. Specificity score is defined as the percentage of facts in the neighborhood of the edited fact that
remain unchanged after the edit.

In Table 7, we have utilized the PMET as a baseline to assess method performance. The importance of each component is
reflected through comparisons of performance improvements over PMET. PMET’s performance exemplifies a single-stage
locate-then-edit approach editing shallow MLPs based on a single-hop prompt. From the analysis of the ablation experiments,
we derive the following conclusions:

• IFMET: Firstly, it can be observed that the implementation of IFMET achieves the best performance in Multi-hop Acc.
In the second stage of editing, we employ multi-hop edit prompts alongside deep MLP editing techniques. Across all the
experimental tables mentioned, IFMET consistently demonstrates a substantial improvement in inferential performance
compared to PMET. As the edit batch size increases, IFMET continues to sustain performance improvements. However,
it is worth noting that the IFMET framework also leads to a slight decrease in the specificity metric, indicating that
more extensive modifications to the model’s knowledge can somewhat compromise specificity. But, as mentioned
in previous works, the pursuit of a balanced performance across the four metrics—Multi-hop Efficacy, Specificity,
Paraphrase—we believe IFMET performs exceptionally well in this regard as well.

• w/o First: When only applying the second edit stage in IFMET, which modifies the deeper layers using a multi-hop
edit prompt, it effectively enhances performance on multi-hop reasoning tasks. However, the absence of first-stage
editing results in unchanged knowledge in the earlier layers, leading to poor performance in single-hop fact recall tasks.
This highlights the importance of the two stages, where each stage is indispensable.

Method Stage Edit Prompt Position Layers

Previous Only one Single-hop Subject Last Token Shallow

IFMET
First

Furtherance
Single-hop
Multi-hop

Subject Last Token
Last Token

Shallow
Deeper

Table 6. The main difference between IFMET and previous methods. The term Stage refers to the phases of the editing process, Data
denotes the query utilized for editing, Position specifies the token position where the editing is applied, and Layers indicate the edited
layers.
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Edits Editor Multi-hop Efficacy Specificity Paraphrase

1

IFMET 28.38 (↑78.0%) 99.56 (↑12.8%) 69.87 (↓11.1%) 90.17 (↑5.3%)
w/o First 23.14 (↑45.1%) 66.59 (↓24.6%) 62.61 (↓20.3%) 41.48 (↓51.6%)
w/o Multi 17.69 (↑10.9%) 100.00 (↑13.3%) 77.71 (↓1.2%) 86.24 (↑0.7%)
w/o Last 18.12 (↑13.6%) 88.21 (↑0.0%) 78.60 (↓0.0%) 86.24 (↑0.7%)

w/o Deeper 15.07 (↓5.4%) 99.56 (↑12.8%) 70.31 (↓10.6%) 86.90 (↑1.5%)
PMET 15.94 88.21 78.60 85.59

100

IFMET 27.07 (↑64.8%) 96.29 (↑8.1%) 69.89 (↓9.4%) 84.28 (↑3.8%)
w/o First 22.71 (↑35.1%) 73.36 (↓17.8%) 69.21 (↓10.2%) 34.72 (↓57.3%)
w/o Multi 17.25 (↑2.6%) 99.13 (↑11.3%) 76.63 (↑0.6%) 84.06 (↑3.5%)
w/o Last 15.94 (↓5.2%) 89.08 (↓0.0%) 76.85 (↑0.3%) 81.55 (↑0.4%)

w/o Deeper 16.16 (↓3.9%) 99.56 (↑11.8%) 74.67 (↓3.2%) 81.00 (↓0.3%)
PMET 16.81 89.08 77.07 81.22

Table 7. The results of the ablation experiments on GPT-J-6B model using a subset of MQuAKE-3K. Both the percentages of decrease(↓)
and increase(↑) are calculated relative to PMET as the baseline. The most significant performance decline is highlighted in red and the
most significant performance increase is highlighted in green.

• w/o Last demonstrated the importance of editing the last token position in the second stage. This is consistent with the
findings from the mechanism exploration in Section 3.1, where subject information converges at the last token position
and has a causal effect on the retrieval of the knowledge about the final answer.

• w/o Multi: This represents that, in the second editing stage, we continued to use the original single-hop edit prompt
instead of the multi-hop edit prompt to edit the deeper MLP layers. The performance improvement in efficiency
somewhat indicates that single-layer edit prompts can edit knowledge in deep MLP for single-hop scenarios, but there
is no significant improvement in multi-hop performance. This suggests that, due to the difference in mechanisms, the
knowledge used in implicit reasoning steps that have not been sufficiently modified in the deep MLP layers remains
unedited. It also indicates that using single-hop prompts combined with deep MLP editing is ineffective, highlighting
the critical importance of the multi-hop prompts.

• w/o Deeper: In this setup, the second-stage editing was modified to use the multi-hop edit prompt combined with
shallow MLP editing(rather than deeper MLP layers). If this also shows a significant performance improvement in
multi-hop accuracy, it would indicate that merely expanding with the multi-hop edit prompt, without considering
its mechanism on the deeper MLP layers, can enhance results. However, as observed across the table, there was a
consistent minor fluctuation in performance (ranging from -5.4% to +3.9%). In contrast to IFMET’s own +70%
improvement, this underscores the importance of editing the deeper MLP layers when using the multi-hop edit prompts
set.

In light of the results from the ablation experiments w/o Multi and w/o Deeper, we emphasize that it is essential to apply
multi-hop edit prompts to the deeper MLP layers for knowledge editing, ensuring a mechanism match, in order to effectively
improve the performance of multi-hop factual recall tasks. In conclusion, we can summarize that the four components
proposed by IFMET are essential for performance improvement, also highlighting the importance and validity of our
interpretability exploration work.

G. Generalizability of IFMET
In this subsection, We explore the generalizability of our method from four key perspectives:

Generalization to other models. We repeated the ablation experiments on LLaMA-2-7B to evaluate the generalizability
of IFMET. The results shown in Table 8 are consistent with those observed on GPT-J, highlighting the importance of the
four components in IFMET as well as the superiority of the method itself on LLaMA-2-7B model. Considering both the
interpretability analysis and experimental outcomes, we conclude that our analysis and method are equally applicable to
larger models, such as LLaMA-2.

Generalization to other edit batch number. In addition to editing a single instance at a time, we also tested scenarios
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Edits Editor Multi-hop Efficacy Specificity Paraphrase

1

IFMET 28.38 (↑73.3%) 99.78 (↑13.7%) 65.50 (↓10.8%) 75.00 (↑23.1%)
w/o First 25.76 (↑57.3%) 56.55 (↓35.6%) 62.18 (↓15.3%) 39.08 (↓35.9%)
w/o Multi 19.43 (↑18.6%) 98.68 (↑12.4%) 70.35 (↓4.2%) 69.00 (↑13.2%)
w/o Last 15.72 (↓4.1%) 88.86 (↑1.2%) 73.03 (↓0.6%) 61.90 (↑1.6%)

w/o Deeper 15.28 (↓6.8%) 96.72 (↑10.1%) 65.61 (↓10.7%) 66.99 (↑9.9%)
w Multimodel 26.86 (↑64.0%) 96.07 (↑9.4%) 63.32 (↓13.8%) 74.24 (↑21.8%)

PMET 16.38 87.77 73.41 60.92

100

IFMET 27.29 (↑76.0%) 97.82 (↑4.2%) 65.50 (↓9.9%) 84.17 (↑14.2%)
w/o First 24.67 (↑59.2%) 64.41 (↓31.4%) 63.97 (↓12.0%) 41.81 (↓43.3%)
w/o Multi 15.07 (↓2.8%) 99.34 (↑5.8%) 71.83 (↓1.2%) 76.64 (↑4.0%)
w/o Last 13.97 (↓9.9%) 94.32 (↑0.4%) 72.14 (↓0.8%) 74.67 (↑1.3%)

w/o Deeper 15.94 (↑2.8%) 96.51 (↑2.8%) 69.48 (↓4.4%) 75.44 (↑2.3%)
w Multimodel 22.49 (↑45.1%) 96.07 (↑2.3%) 63.32 (↓12.9%) 79.26 (↑7.5%)

PMET 15.50 93.89 72.66 73.69

Table 8. The results of the ablation experiments on LLaMA-2-7B model using a subset of MQuAKE-3K. w Multimodel represents the
multi-hop edit prompts generated by model itself to modify deeper MLPs. Both the percentages of decrease(↓ ) and increase(↑) are
calculated relative to IFMET as the baseline.

where 1,000 and 3,000 instances are edited together. The results, shown in Figure 5, demonstrate that IFMET outperforms
existing methods across all edit batch sizes.

Construction of the multi-hop prompts. In IFMET, we emphasize the importance of constructing a multi-hop edit
prompt for each edit instance. It is important to note that any other valid knowledge base can replace WikiData and SPARQL.
A straightforward alternative is to treat the model itself as a reliable knowledge base for extracting relevant knowledge.

The results of substituting the multi-hop edit prompt with one generated by LLaMA-2 itself for editing are also shown in
Table 8 called w Multimodel. The results show a significant improvement over the one-stage PMET, with performance
trends aligning closely with those of IFMET. Notably, minimal effort was invested in designing the knowledge retrieval
prompt, and no additional filtering or preprocessing was applied. This suggests that the multi-hop edit prompts generated by
the model represent a relatively low-quality version, effectively serving as a lower bound for the method’s performance
across various metrics. Despite this, it still outperforms existing one-stage methods. This highlights the inherent superiority
of the IFMET framework and demonstrates the feasibility of using the model itself to construct the prompts set.

Time complexity of IFMET. We compared the time complexity of IFMET with that of the one-stage PMET method it

Model Method Time

GPT-J-6B
MEMIT 4.5s
PMET 5.0s
IFMET 9.7s

LLaMA-2-7B
MEMIT 2.1s
PMET 2.0s
IFMET 3.4s

Table 9. The average time required to edit a single case varies across methods. For the two one-stage methods, MEMIT and PMET, this
corresponds to the process of optimizing the shallow-layer MLPs using single-hop queries. For IFMET, the process includes updating the
deeper-layer MLPs using two-hop edit prompts.
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builds upon, the result is shown in Table 9. On average, the time required to perform a complete edit for a single case on
GPT-J using IFMET was approximately 2.5× that of PMET. For LLaMA-2, the time required was about 1.5× that of
PMET. We believe this is within an acceptable range, and as the editing speed of the single-stage method improves, the
IFMET framework will correspondingly become faster.

G.1. Comparison with Weight-Preserving Methods

Although there have been some weight-preserving editing methods(e.g. RAG-based Methods) accessing good performance
for multi-hop question answering in the KE scenario, we believe that exploring the locate-then-edit methodology remains
meaningful for several reasons:

1. From the perspective of understanding internal knowledge utilization: The mechanisms underlying a model’s
use of internal knowledge differ fundamentally from those governing the use of external knowledge (Jin et al., 2024).
Investigating the potential of locate-then-edit methods holds significant value for advancing the interpretability of
internal knowledge processes, laying the groundwork for deeper insights and practical implementations. Additionally,
we believe this approach enables a more fundamental and precise modification of knowledge.

2. From a practical standpoint: Methods based on retrieval-augmented generation (RAG) require providing extensive
contextual input tokens, posing substantial challenges in terms of computational efficiency and hardware demands.
And these methods face several challenges. Instead of injecting knowledge into LLMs, they retrieve related facts stored
in memory for editing. As a result, their retrieval success rates become crucial, particularly when managing complex
real-world scenarios involving exponential growth in knowledge updates. Moreover, we argue that an over-reliance
on modifying knowledge through external contexts introduces security risks, as it may be exploited for data theft and
attacks (Upadhayay et al., 2024), especially in real-world applications.

H. Additional Experimental Results
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Figure 5. Multi-hop Acc Performance Comparison of different methods across edit batch sizes on MQUAKE-3K. Base in this table
represents unmodified GPT-J-6B model, and we report its performance on unedited answer.
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Figure 6. LogitLens results of the last token position at different layers. (a) Yellow line represents the information containing implicit
subject s2, i.e., Info(hl, s2). Blue line represents the information for the final answer, i.e., Info(hl, o2). (b) Yellow line represents the
information of subject s, i.e., Info(hl, s), and Blue line represents the information of the answer o, i.e., Info(hl, o). Larger versions of the
sub-figures are available in the Appendix.
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I. Prompts And Templates

Question: What is the capital of the country where Plainfield Town Hall is located?
Thoughts: Plainfield Town Hall is located in the country of the United States of America.
The capital of United States is Washington, D.C.
Answer: Washington, D.C.

Question: In which country is the company that created Nissan 200SX located?
Thoughts: Nissan 200SX was created by Nissan. Nissan is located in the country of Japan.
Answer: Japan

[3 in-context demonstrations abbreviated]

Question: Who has ownership of the developer of the Chevrolet Corvette (C4)?
Thoughts: The developer of Chevrolet Corvette (C4) is Chevrolet. Chevrolet is owned by
General Motors.
Answer: Model Generated Answer Goes Here

Table 10. The template of the prompt we used for asking multi-hop questions using chain-of-thoughts. Our CoT setting is to cut the
prompt after Thoughts:, so that the LM has to generate the thought itself (pressured by the prompt and ICL examples). For the same
multi-hop problem, we generate cot and its corresponding answers three times to ensure that possible errors are avoided.

(In-context-learning examples)

Q: Who is the developer of Telegram? A: Telegram FZ-LLC
Q: Who is the developer of Microsoft Windows? A: Microsoft
Q: Who is the developer of PlayStation 2? A: Sony Interactive Entertainment
Q: Who is the developer of iTunes? A: Apple Inc.
Q: Who is the developer of SR-71 Blackbird? A: Kelly Johnson
Q: Who is the developer of Moblin? A: Linux Foundation
Q: Who is the developer of Xbox 360? A: Microsoft
Q: Who is the developer of Kinsey scale? A: Alfred Kinsey
(Query during inference)

Q: Who is the developer of SteamOS? A:Valve Corporation

Table 11. An example of the prompt we used to recall single-hop fact
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(In-context-learning examples)

Q: What is the country where The Rotunda is located? A: United States of America
Q: In which country was Tohar Butbul granted citizenship? A: Israel
Q: Who was Nissan 200SX created by? A: Nissan
Q: What continent is the country where Prickly Pear grows located in? A: Europe
Q: What is the capital of the country where Plainfield Town Hall is located? A:
Washington, D.C.
Q: In which country is the company that created Nissan 200SX located? A: Japan
Q: Who was Dodge Ram SRT-10 created by? Dodge
Q: Who is the spouse of Joe Biden? A: Jill Biden
Q: Which continent is the country where the director of "My House Husband: Ikaw Na!" was
educated located in? A: Asia
Q: What country was the location of the Battle of Pressburg? A: Hungary
Q: Who is the spouse of the US president? A: Jill Biden
Q: Who has ownership of the developer of the Chevrolet Corvette (C4)? A: General Motors
Q: Who is Joe Biden married to? A: Jill Biden
Q: What is the country of citizenship of Charles II of Spain? A: Spain
Q: Who was Chevrolet Biscayne created by? A: Chevrolet
Q: What is the name of the current head of state in United Kingdom? A: Elizabeth II
Q: multi-hop question

Table 12. The template of the prompt we used for asking multi-hop questions using few shot.

(In-context-learning examples)

Input: The country that has nationals <mask> is located in the continent of Asia
Output: Hitomi Yaida
Input: The country that has nationals <mask> has the official language of Italian
Output: Giorgio Chiellini
Input: The university where <mask> was educated located its headquarters in the city of
Vienna
Output: Michael Haneke
Input: The country that has nationals <mask>, its capital is Washington
Output: Lou Pearlman
Input: The person who found <mask> is a citizen of United States of America
Outout: Microsoft
Input: The creator of <mask> hails from Italy
Output: Ferrari
Input: The author of <mask> is a citizen of United States of America
Output: Holly Potter
Input: The person who discovered <mask> lives in Germany
Output: Volkswagen
Input: question

Table 13. The template of the prompt we used for asking LLaMA-2-7B to generate the multi-hop edit prompt

SELECT ?subject ?subjectLabel ?predicate ?predicateLabel WHERE
?subject ?predicate wd:ss.
FILTER (?predicate IN (wdt:relation))
SERVICE wikibase:label bd:serviceParam wikibase:language "en".
LIMIT 50

Table 14. The template of the SPARQL Query we used for prefix fact recall triplets for a specific subject.
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