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ABSTRACT

Attention is a mechanism that has been instrumental in driving remarkable per-
formance gains of deep neural network models in a host of visual, NLP and mul-
timodal tasks. One additional notable aspect of attention is that it conveniently
exposes the “reasoning” behind each particular output generated by the model.
Specifically, attention scores over input regions or intermediate features have been
interpreted as a measure of the contribution of the attended element to the model
inference. While the debate in regard to the interpretability of attention is still not
settled, researchers have pointed out the existence of architectures and scenarios
that afford a meaningful interpretation of the attention mechanism.

Here we propose the generalization of attention from low-level input features
to high-level concepts as a mechanism to ensure the interpretability of attention
scores within a given application domain. In particular, we design the Concept-
Transformer, a deep learning module that exposes explanations of the output of a
model in which it is embedded in terms of attention over user-defined high-level
concepts. Such explanations are plausible (i.e. convincing to the human user) and
faithful (i.e. truly reflective of the reasoning process of the model). Plausibility
of such explanations is obtained by construction by training the attention heads to
conform with known relations between inputs, concepts and outputs dictated by
domain knowledge. Faithfulness is achieved by design by enforcing a linear re-
lation between the transformer value vectors that represent the concepts and their
contribution to the classification log-probabilities.

We validate our ConceptTransformer module on established explainability bench-
marks and show how it can be used to infuse domain knowledge into clas-
sifiers to improve accuracy, and conversely to extract concept-based explana-
tions of classification outputs. Code to reproduce our results is available at:
https://github.com/ibm/concept_transformer.

1 INTRODUCTION

The spectacular gains in accuracy of recent large-scale machine learning models like deep neural
networks have generally come at the cost of a loss of transparency into their functioning. This “black
box” aspect severely limits their applicability in safety-critical domains, such as medical diagnostics,
healthcare, public infrastructure safety, visual inspection for civil engineering, to name just a few,
where it is essential for decisions to be corroborated by robust domain-relevant knowledge. In recent
years, approaches focusing on explaining black box models have emerged, mostly with the goal of
providing post-hoc explanations in terms of a set of relevant features used by the underlying model to
make predictions (Ribeiro et al.,[2016j Selvaraju et al.,|2017; |[Lundberg & Leel|2017;|Smilkov et al.,
2017). While widely used, such post-hoc explainability methods have been criticized for operating
on low-level features such as pixel values, or sensory signals that are combined in unintelligible
ways and do not correspond to high-level concepts that humans easily understand (Kim et al., 2018;
Alvarez-Melis & Jaakkola, 2018 |[Kindermans et al., 2019; Su et al.,[2019).

To overcome these limitations and sidestep the potential perils resulting from a misuse of post-
hoc explainability of black box models, some researchers have been vocally advocating for the use
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of inherently interpretable models (Rudinl [2019) that in particular would generate decisions based
on human-understandable categories (i.e., concepts) grounded in domain expertise rather than raw
features (Barbiero et al., 2021} |Ghorbani et al., 2019; |[Kim et al., 2018} Yeh et al., |2020; [Koh et al.,
2020; |Goyal et al.||2019; | Kazhdan et al., 2020; |Chen et al.| 2020} |Alvarez-Melis & Jaakkolal 2018;
Li et al., [2018}; |Chen et al., |2019). For example, to identify a bird species, a model should focus on
morphologically meaningful concepts, such as the shape, size and colors of beak, feathers or wings,
rather than focusing on raw pixels, and combine them in ways that a domain expert (in this case an
ornithologist) would reckon as intelligible to produce a classification. In addition, using high-level
concepts emulates a human’s thinking process (i.e., structured into familiar concepts) and provides
insights into the model’s reasoning in a human-understandable way.

The chasm between post-hoc explainability vs. inherently interpretable models closely reflects a
related ongoing discussion in the NLP community on the interpretation of attention mechanisms
(Bahdanau et al., [2014), and in particular on the interpretability of attention weights over input
tokens, with researchers on one end of the debate claiming that attention provides interpretability,
while others claim that “Attention is not explanation” (Jain & Wallacel[2019). While the debate over
what degree of interpretability that can be ascribed to attention weights is still not settled (Wiegretfe
& Pinter, 2019), it is arguable that in many situations attention is not a “fail-safe indicator” (Serrano
& Smith, 2019), particularly when decisions rely on the interaction of multiple interacting tokens as
is typically the case in deep architectures. Conversely then, a way to guarantee the interpretability of
attention weights would be to make sure that they are not being processed by downstream operations
that renders their relation to the decision outputs uninterpretable. This is indeed something that had
been proposed in the past, in particular in architectures that preserve the interpretability of “relevance
scores” (akin to attention weights) by acting on them only through a restricted class of intelligible
“aggregation functions” such as additive models (Alvarez-Melis & Jaakkola, 2018)), which are a
common functional elements in interpretable and white-box models (Caruana et al., 2015).

In this paper, we propose the ConceptTransformer (CT), a transformer-based module (Vaswani et al.,
2017) for classification tasks, that can be used to enhance an arbitrary deep learning classifier with
domain knowledge in the form of plausible cross-attention weights between input features and high-
level interpretable concepts. The CT can be used as a drop-in replacement for the classifier head
of any deep learning architecture. The resulting model can then be trained end-to-end without any
additional overhead on the training pipeline, except a modification of the loss function that enforces
plausibility of the explanation. Importantly, the CT was specifically conceived to provide explana-
tions that guarantee faithfulness by design and plausibility by construction. Faithfulness is defined as
the degree to which the explanation reflects the decision and aims therefore to ensure that the expla-
nations are indeed explaining the model’s operation (Lakkaraju et al., 2019} |Guidotti et al., [2018).
In our model this is achieved by enforcing a linear relation between the transformer value vectors
that represent the concepts and their contribution to the classification log-probabilities. Plausibility
refers to how convincing the interpretation is to humans (Guidotti et al.,|2018};|/Carvalho et al., 2019).
In the CT architecture, plausibility is achieved by construction by supervising the attention heads of
the cross-attention mechanism to conform with inputs-concepts-outputs relations derived by domain
knowledge.

We validate our approach on three image benchmark datasets, MNIST Even/Odd (Barbiero et al.|
2021), CUB-200-2011 (Welinder et al.,|2010), and aPY (Farhadi et al., [2009). On these datasets we
will examine how the faithfulness and plausibility of the CT explanations are practically translated
into domain-relevant explanations behind particular output decisions or diagnostic insights about
ensuing wrong classifications. We will also quantify the benefit of domain-expert knowledge in
terms of statistical efficiency by showing that providing domain-relevant explanations to our CT
model tends to improve the performance of the downstream classification, in particular in low-data
regime. This for instance translates in an 8-9% improvement in accuracy on the bird classification
CUB-200-2011 dataset when CT is trained in conjunction with part location annotations.

We note in addition that one of the strengths of our CT model is its versatility that allows it to
be effortlessly applied to other data modalities as well by combining it with deep learning classi-
fiers which are then rendered interpretable with no appreciable overhead or change in their training
pipeline. This is in stark contrast to other inherently interpretable models that are often specifically
designed for the domain at hand, and require adhoc multi-stage training procedures. CT on the
other hand, is differentiable and can be flexibly included in any end-to-end training pipeline that
uses backpropagation, as we will showcase by combining it with a host of different deep learn-
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ing backbones ranging from convolutional architectures like Residual Networks (He et al., [2016)
to more modern Vision Transformer (Dosovitskiy et al., 2020) and hybrid Compact Convolutional
Transformer models (Hassani et al., 2021).

2 RELATED WORK

In recent years, there have been significant advancements towards designing interpretable models
that quantify the importance of individual features with respect to the prediction output. One general
approach is post-hoc analysis, in which one interprets a trained model by fitting explanations to the
classification outputs (Alvarez-Melis & Jaakkola, 2018} |Ribeiro et al.,|2016; Lundberg & Lee},[2017).
In particular for CNNSs, popular techniques are activation maximization (van den Oord et al.| 2016;
Nguyen et al., 2016;|Yosinski et al.,2015) and saliency visualization (Selvaraju et al.,[2017; Smilkov
et al.| 2017;Sundararajan et al.,[2017).

However, these post-hoc methods do not actually explain how the underlying model reached a par-
ticular classification outcome. In contrast, attention-based interpretable techniques aim to expose
which parts of a given input a network focuses on, and therefore deems to be most relevant, when
making a decision. Examples of attention models are Zhang et al.|(2014)); Zhou et al.| (2016} [2018));
Zheng et al.| (2017); |[Fu et al.| (2017); |Girshick! (2015); |Girshick et al.| (2014); Huang et al.| (2016).
The problem with these models is that they focus on low-level individual features when providing
an explanation. Such features are often not intuitive for humans, are typically noisy and non-robust,
or can be misleading when interpreted afterwards (Kim et al., 2018).

One of the recent advancements in the field of interpretability was to design methods that explain
predictions with high-level human understandable concepts (Ghorbani et al., 2019; Kim et al.,[2018}
Yeh et al., 2020; [Koh et al.| 20205 |(Goyal et al., 2019; [Kazhdan et al., 2020; [Chen et al.| 2020;
Barbiero et al, 2021} [Li et al., 2018} |Chen et al.| 2019) — either by identifying common activation
patterns in the last nodes of the neural network corresponding to human understandable categories or
constraining the network to learn such concepts. For instance, TCAV (Kim et al.,|2018)) proposes to
define concepts from user-annotated examples in which concepts appear. Others propose prototypes-
based explanation models (Li et al., 2018} |Chen et al., 2019), but they typically require specialized
convolutional architectures to ensure feature extraction. In particular, ProtoPNet (Li et al., [2018)
uses previously learned prototypes to focus attention on various parts of an image. This architectural
design implies that object-level (global) concepts cannot be easily incorporated, and since prototypes
are not learned together with the attention model, explanations based on these prototypes may lack
faithfulness. SENN (Alvarez-Melis & Jaakkola, [2018) proposes a network that transforms inputs
into interpretable basic features, generates concept relevance scores and then aggregates concepts
with relevance scores to explain predictions. While it is out-of-the-box interpretable, it lacks concept
localization. Barbiero et al.|(2021)) proposed a differentiable approach that allows the extraction of
logic explanations from neural network models using First-Order Logic. The approach relies on an
entropy-based criterion to automatically identify the most relevant concepts that have contributed to
a particular classification output.

In our approach, high-level concepts are defined with a set of related dimensions, and can be part-
specific or global. Such concepts are typically readily available in many domains and can be used
to enhance the performance of the learning task while offering explainability at no additional cost
for the network. Obtained explanations are plausible and guaranteed to be faithful, since concepts
participate in the model computation. Finally, CT also allows in some cases to discover the presence
concepts that were not annotated.

3 APPROACH

The ConceptTransformer module. The ConceptTransformer (CT) is a transformer-based mod-
ule designed to be used as classifier head in a deep learning architecture that generates classification
outputs using cross-attention (Vaswani et al., 2017)) between input features and a set of embeddings
representing domain-relevant concepts. Fig. [1| shows the case where the inputs to the CT are em-
beddings of P visual patches of an input image that are linearly projected and concatenated into the
query matrix Q € RP*4m of a query-key-value cross-attention mechanism whose corresponding
key matrix K € RY*%m is the linearly projected concatenation of the embeddings representing
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the C' concepts. In addition, the concepts are linearly projected with a value projection matrix and
concatenated to result in the value matrix V' € R¢*m Cross-attention then outputs an attention
weight

1
Qpe = softmax [ —— Q K | with =1,....P, ¢c=1,...,C|
b ( \% dm Q ) pc p
between each patch-concept pair, which are combined into an attention map matrix A = [ay.] €
RP*C The final output of the CT is the product obtained by multiplying the attention map A, the
value matrix V and an output matrix O € R%m*"< that projects onto the (unnormalized) n.. logits
over the output classes, and averaging over patches:
P
1
logiti = & > [AVOl  withi=1,...,n,. (1)
p=1
Notice that here for simplicity we described a single-head attention model, but in our experiments
we will be using a multi-head version (Vaswani et al., [2017)).

Equation [I] says that, given an input  to the network, the conditional probability of output class  is
c

Pr(i|z) = softmax; ( E ) Be fyc(x)) with 8. with components (5.); = [VO]e, (2)
c=

and v.(z) are positive relevance scores that depend on z through the averaged attention weights:
Ye(z) = % 25:1 aype. The output of the CT is therefore essentially a simple multinomial logistic
regression model over positive variables ~y.(z) that measures the contribution of each concept.

Notice that this result follows from the linear relation between the value vectors and the classification

logits, which itself comes from the design choices of computing outputs from the value matrix V'
through the linear projection V'O, and aggregating patch contributions by averaging.

) classification
BT > - — 1B - — > outputs
----------- BT - — 2B — o Lm3 -

. : >

] : : x

input image patch logits
embeddings
concept

embeddings

(R—>
EE

Figure 1: The ConceptTransformer (CT) is a transformer module that provides concept-based inter-
pretability by design. It is a drop-in replacement for the classifier head of an arbitrary deep learning
classifier and uses cross-attention to generate classification log-probabilities as additive contribu-
tions from user-defined concepts that are plausible in the domain under consideration. In the figure
it is used as classifier head of a patch-based architecture like a ViT or a patch-level CNN.

Faithful concept-based explanations by design. The CT was conceived as a drop-in replacement
for the classifier head of an arbitrary deep learning classifier to provide concept-based explanations
of the outputs that are guaranteed to be faithful by design. We formalize this statement as follows:

Proposition 1 Each concept relevance score 7y.(x) in Equation |2|is a faithful explanation of the
output. More specifically, the probability of choosing the preferred output i° = argmax;(S.);
of concept ¢ (assuming it’s unique) is guaranteed to decrease if ~.(x) is externally set to zero.
Moreover, the correlation between ~y.(x) and Pr(i€|z) is strictly positive.

Proof Proof of Proposition []is provided in Appendix [A] |

Note that the last statement in the Proposition above is a corollary of the first one, and it specifically
shows that CT is guaranteed to satisfy the technical definitions of faithfulness given for instance by
Alvarez-Melis & Jaakkola (2018]).
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Training and plausibility by construction. As mentioned, the CT is a differentiable transformer-
based module that can be embedded in a deep learning architecture trained end-to-end with back-
propagation. In addition, the fact that it exposes attention weights over concept tokens that can be
user defined gives us the freedom to shape these attention weights according domain-expert knowl-
edge relevant for the problem under consideration. This can be done by explicitly guiding the atten-
tion heads to attend to concepts in the input that are a priori known to be informative to correctly
classify the input. In practice this can be achieved by supervising the attention weights at training
as for instance proposed by Deshpande & Narasimhan| (2020) as a self-supervised technique for bi-
directional language models. In particular, given a desired distribution of attention H provided by
domain knowledge (e.g., we know which patches in the input image contain which concepts that are
relevant to classify the input) we can force the CT attention weights A by adding an “explanation
cost” term to the loss function that is proportional to L., = ||A — H||%, where || - || is the
Frobenius norm. The final loss used to train the architecture then becomes £ = L5 + A Legpis
where L5 denotes the original classification loss, L.,y the additional explanation loss, and the
constant A > 0 controls the relative contribution of the explanation loss to the total loss. Notice
that setting A = 0 essentially amounts to just minimizing the classification loss and disregarding the
prior domain knowledge as imparted into CT by guiding the attention heads.

4 RESULTS

We have evaluated the proposed approach on three datasets: MNIST Even/Odd (mni), CUB-200-
2011 (Welinder et al.l [2010) and aPY (Attribute Pascal and Yahoo) (Farhadi et al., 2009). Each
dataset illustrates a slightly different use case and different visual backbone in combination with the
CT. This variety is meant to showcase the flexibility and versatility of the CT module.

With MNIST Even/Odd we consider a case where the correspondence between concepts and output
classes is many-to-one and deterministic. In addition, concepts are global as opposed to being
spatially localized. That means that we will not use a patch-based representation of the input, and
instead the concepts refer to the whole input, which is essentially equivalent to having only one
patch. For this task, CT is combined with a small Compact Convolutional Transformer architecture
(Hassani et al., 2021)).

In the case of CUB-200-2011 we consider a case where the relation between concepts and outputs
is instead many-to-many and non-deterministic, and there exists a mixture of global and spatially
localized concepts. In order to handle both types of concepts we instantiate two CTs, one for spatial
concepts and one for global concepts and we then average the logits provided by both in order
to preserve interpretability (as explained in the previous section). For this dataset, we use a Vision
Transformer as a backbone. As inputs to the CT handling the spatial concepts we use the embeddings
of the tokenized image patches, while as input to the CT in charge of the global concepts we use the
embedding of the CLS token.

Finally, with the aPY (Attribute Pascal and Yahoo) dataset we consider another situation where con-
cepts are exclusively global but this time are many-to-many. The architecture of the visual backbone
used on this dataset is a larger version of the Compact Convolutional Transformer architecture used
on MNIST Even/Odd, but with a larger tokenizer consisting of a ResNet50 model pre-trained on
ImageNet.

4.1 EVALUATION ON MNIST EVEN/ODD

The objective of this evaluation is simply to illustrate how our architecture works. We perform
a simple binary classification task, based on the MNIST Even/Odd dataset, aiming at classifying
28x28 pixel images of hand-written digits ranging from O to 9 as either ‘even’ or ‘odd’. In this case,
we exploit the fact that we know the identity of each digit and use that as an explanation for the
binary classification prediction. In other words, for instance a *7’ should be classified as ‘odd’, and
a plausible explanation to support this prediction is that it is ‘odd’ because itis a ‘7.

Figure 2] shows the accuracy on the test set (left) and explanation loss during validation (right),
relative to the number of samples used at training, which varies from 100 to 7000. With the largest
number of training samples, the CT achieves 99% accuracy, irrespective of whether concepts are
leveraged (A = 2.0) or not (A\ = 0.0). However, when the model is trained with significantly
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fewer samples (e.g., 100 - 500), using concepts provides a performance boost, in the range of 5%.
Accordingly, we observe a more graceful decay of the explanation loss when A = 2.0.
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Figure 2: Sample-efficiency gain of using explanations at training on the MNIST Even/Odd dataset.

Figure [3] (left) shows a test sample, a ‘7" whose correct binary label is ‘odd’, which is itself a
prediction that should be supported by the correct ground-truth explanation “7 (i.e., *“ the sample is
‘odd’, because itis a ‘7’ ). CT in this case outputs the correct prediction, and looking at the concept
attention weights we can see that indeed this prediction is supported by the correct concept.

prediction: odd (correct) . prediction: odd (wrong)
ground-truth explanation

0123456172829

ground-truth explanation

0123456172829

concept attention scores

0123456789

concept attention scores

0123456789

Figure 3: Examples of correct and incorrect predictions on MNIST Even/Odd.

Figure [3] (right) on the other hand shows the example of a test sample which is being misclassified
by CT: the sample (an ‘8’) is supposed to be classified as an even digit, but is instead classified as an
odd number. If we look at the concept attention weights for this sample we see that the reason for the
incorrect prediction can be traced back to the fact that the CT strongly associated the sample to the
‘9’ concept and hence predicted the sample to be ‘odd’ because it “thought” that it was a ‘9’. Notice
that also the correct concept ‘8’ is being attended to by the architecture, but the wrong concept ‘9’
received in this case a higher attention score. Interestingly, visually inspecting the sample it is not
far from being a ’9’.

4.2 EVALUATION ON CUB-200-2011

The CUB-200-2011 (Welinder et al.|[2010) dataset contains 11788 images of birds, classified in 200
species. Each image is annotated with a given number of concepts (e.g., shape of the beak, color of
the back, etc.) explaining the visual characteristics of the bird in the image. It uses 312 concepts, but
their distribution varies across images. We therefore pre-process the dataset and retain concepts that
are sufficiently representative in class-level annotations. Specifically, for a given class, we retain
only concepts that are present in at least 45% of the images of that class and subsequently present in
at least 9 classes. This led us to retain 108 concepts.

Table [T| compares our CT against other deep models (top models in bold), classified based on their
training procedure in Multi-Stage (i.e., complex training) and End-to-end (i.e., training with back-
propagation). When concepts are leveraged to train the CT, we notice a significant boost in accuracy
of 8.2% (i.e., CT [w/o] vs. CT). Therefore, not only does the CT provide explainability by design,
but it also boosts the overall performance of the classification task. In future, we plan to examine
ways of modeling and taking advantage of the relation between extracted concepts. This has been
shown to further boost performance by Barbiero et al.|(2021) by extracting First Order Logic clauses
that relate concepts.

The test accuracy of our model is on par with the baseline, non-interpretable model (B-CNN) as
well as with ProtoPNet, PN-CNN, SPDA-CNN, MA-CNN and RA-CNN, even though some of
these techniques require significantly more complex training than the CT. In terms of the type of
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Table 1: Performance on CUB-200-2011 when concepts are leveraged at training (CT) or without
concepts (CT [w/o]). Comparison against state-of-the-art approaches, classified by their training
complexity: B-CNN (Lin et al., |2015b), Part R-CNN (Zhang et al., [2014), PS-CNN (Huang et al.,
2016), PN-CNN (Branson et al., [2014), SPDA-CNN (Zhang et al., 2016), PA-CNN (Krause et al.,
2015), MG-CNN (Wang et al., 2015), 2-level attn. (Xiao et al., 2015), FCAN (Liu et al., |2016),
Neural const. (Simon & Rodner, 2015), ProtoPNet (L1 et al., 2018), CAM (Zhou et al., [2016),
DeepLAC (Lin et al. |2015a), ST-CNN (Jaderberg et al., 2015), MA-CNN (Zheng et al., |2017),
RA-CNN (Fu et al., [2017). We report their best performance from (Li et al.||2018), irrespective of
whether they are trained on full images or bounding boxes.

Training Accuracy [%]

Multi-stage  Part R-CNN: 76.4  PS-CNN: 76.2 PN-CNN: 85.4 SPDA-CNN: 85.1
PA-CNN: 82.8 MG-CNN: 83.0 2-level attn.: 77.9 FCAN: 82.0
Neural const.: 81.0 ProtoPNet: 84.8

End-to-end B-CNN: 85.1 CAM: 70.5 DeepLAC: 80.3 ST-CNN: 84.1

MA-CNN: 86.5 RA-CNN: 853  CT [w/o]: 76.9£3 CT: 88.0+0.4

explanations provided, at the coarsest level, CAM highlights the entire object as the reason behind
a classification decision. At a finer level, most models offer part-level attention, however they dif-
fer in how attention is generated. For example, Part R-CNN, SPDA-CNN, PS-CNN, PN-CNN use
additional part-localization models previously trained with part annotations. RA-CNN uses an ad-
ditional neural network to decide where to focus attention, whereas MA-CNN uses convolutional
feature maps to direct attention to various parts of the image. ProtoPNet generates attention based on
previously learned prototypes, namely it focuses on a specific region of the input image because the
region is similar to a learned prototypical example. This leads to two main drawbacks. First, object-
level concepts cannot be naturally incorporated, since the approach is based specifically on part-level
concepts. Second, finding learned prototypes for other models requires post-hoc analysis, specifi-
cally inspecting which region mostly activates a model’s convolutional filter. Since such prototypes
are not computed together with the model, resulting explanations cannot be always guaranteed to be
faithful to the classifier’s decisions.

In contrast, the CT makes use of both part-level (spatial) and object-level (global) concepts to gen-
erate explanations, as shown in Fig. |4l We highlight concepts with the highest attention scores and
hence most relevant for the classifier for four correctly predicted bird species. In addition, the model
guarantees faithful explanations by learning concepts together with the classification model. Specif-
ically, this is achieved by enforcing an additive relation between the transformer value vectors that
represent the concepts and their contribution to the classification log-probabilities. We show that
explanations mimic the reasoning of the classifier in Fig. [5] for one misdiagnosed bird species (left
image). The CT predicts the species to be Summer Tanager, when in fact the bird is a Scarlet Tan-
ager. If we look at the concept attention scores for this sample, we notice that there are two reasons
for the incorrect prediction. First, relevant parts of the bird such as upper_parts_color :: black
and has_primary_color :: black are not fully visible in the left most image. Both concepts are ex-
tremely important to ensure a correct classification as Scarlet Tanager, as seen in the middle image.
Second, attention is not attended to the has_wing_color :: black concept (missing), but instead to
the has_shape :: perching — like concept, which is typical for the Summer Tanager species.

4.3 EVALUATION ON APY (ATTRIBUTE PASCAL AND YAHOO)

The aPY (Attribute Pascal and Yahoo) dataset introduced by [Farhadi et al.| (2009) consists of two
subsets. The aPascal dataset was created for the Visual Object Classes Challenge 2008 by |[Ever-
ingham et al.| and consists of 6340 training samples and 6355 test samples. aYahoo is a dataset
developed by [Farhadi et al|(2009) using Yahoo image search and comprises 2644 samples, which
are typically used for testing only. Each sample image in either dataset contains one or more objects
which are enclosed by a bounding box and labeled with a single class. In total there are 32 classes
describing everyday objects (in the form of nouns) such as animals, vehicle types, or common items
found in apartments. In addition, for most of the objects there is a set of associated attributes, de-
noting present object parts or characteristics, e.g., “tail”, “hair”, “door”, or “screen”. The number
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Prediction: Black_footed Albatross (correct)  Prediction: Groove_billed_Ani (correct) Prediction: Indigo_Bunting (correct) Prediction: Black_billed_Cuckoo (correct)
Spatial explanations: Spatial explanations: spatial explanations: spatial explanations:
- has_eye color::black - has_eye_color::black - has_breast_pattern::solid - has_eye color::black
Global explanations: - has_forehead _color::black - has_eye color::black - has forehead color::brown
- has_primary color::brown - has_leg_color::grey - has_forehead color::blue - has leg color::grey
- has_leg_color::black - has_belly pattern::solid - has_leg color::black
Global explanations: - has_leg color::black Global explanations:
- has_primary color::black Global explanations: - has_primary color::brown
- has size::small (5 - 9 _in) - has_primary color::blue - has_size::small (5 - 9 in)

Figure 4: Attention scores for spatial (part-level) and global (object-level) concepts for four correctly
predicted bird species from CUB-200-2011.

A ., -

Prediction: Summer_Tanager (wrong) Prediction: Scarlet_Tanager (correct) Prediction: Summer_Tanager (correct)
(gt is Scarlet_Tanager)
Spatial explanations: Spatial explanations:
Spatial explanations: - has_wing color::black - has_breast pattern::solid
- has breast pattern::solid - has_upperparts_color: :black - has_eye color::black
- has eye color::black - has_breast pattern::solid - has_forehead color::red
- has back pattern::solid - has_eye color::black - has_back pattern::solid
- has belly pattern::solid - has_forehead color::red - has_belly pattern::solid
- has leg color::grey - has_belly pattern::solid - has_leg color::grey
Global explanations: - has_leg color::grey Global explanations:
- has_shape::perching-like Global explanations: - has_shape: :perching-like
- has_size::small (5 - 9 in) - has_primary_color::black - has_size::small_(5 - 9 in)

- has_size::small (5 - 9 in)

Figure 5: Diagnosing classification mistakes in CUB-200-2011.

of attributes is 64, with an average of around 20 present attributes per object while the minimum
number of attributes is 2 and the maximum is 43. In contrast to the CUB dataset, there is no notion
of object parts and associated attributes, i.e. the attributes are referring to the entire object (‘“global
attributes”). Furthermore, the combined dataset of aPascal and aYahoo contains 989 objects without
any attribute associated. We pruned these cases for our experiments so that 14350 objects remain. A
cropped image was created for each bounding box in the samples of the dataset, yielding one image
per object. At training time, the following augmentations were applied to the individual object sam-
ples: resizing to a standardized format (H x W = 320 x 320 pixels), random horizontal flipping
with probability p = 0.5, random rotations in the range of +15° based on an uniform probability
distribution and nomlalizationﬂ For validation and testing, only resizing and normalization were
applied.

We evaluated the aPascal as well as the combined aPY dataset with varying regularization parameter
values applied to the explanation loss. Table[2]shows the negative log likelihood loss for the classi-
fication, the mean squared error (MSE) loss for the concepts (explanation loss) and accuracy figures
for the aPascal and the aPY datasets. The accuracy numbers are in a narrow range, implying that
the concept regularization does not seem to significantly affect the classification accuracy. On the
other hand, the decrease of the concept-related MSE loss for increasing A values by approximately
one order of magnitude suggests, that the labeled concepts are indeed learned by the model. The
experiments were conducted with six different data-seeds and it was confirmed that the results are
generalizable.

"We use the Albumentations library by |Buslaev et a1.| (12020[).
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Table 2: Classification loss, explanation loss, accuracy on the PY test set and accuracy on the aPascal
test set for selected concept regularization parameter values A after 500 epochs.

A NLL class MSE concepts Accuracy aPY [%] Accuracy aPascal [%]

0.0 0.1475 0.2463 61.2 84.7
0.5 0.1526 0.1152 60.1 85.1
1.0 0.1530 0.0855 61.3 85.6
2.0 0.1596 0.0737 61.5 85.8
50 0.1734 0.0596 61.2 85.4

Evaluations on the combined aPY dataset appear to be focused on specific applications like zero-shot
learning and classifying attributes in the literature, which renders this dataset difficult to baseline.
Still, Wang & Jil (2013) report 63.02% overall class prediction accuracy on the aPascal dataset,
while (Mahajan et al., 2011) reached an accuracy of 67.33% on the same dataset.

E/

_ : e |
Prediction: car (correct) Prediction: dog (correct) Prediction: bird (correct) Prediction: do?( Prediction: person Prediction: diningtable
(wrong, gt is monkey) (wrong, gt is bottle) (wrong, gt is person)
« 3D Boxy ¢ Occluded * Tail * Head * Occluded * 2D Boxy
* Window * Head * Beak « Torso * Head * Occluded
* Wheel « Ear * Head * Leg * Torso « Furn. Back
« Door * Snout * Eye « Skin * Plastic
* Headlight * Eye * Torso « Cloth
* Metal * Furry *Leg
« Shiny

Figure 6: Correctly and incorrectly classified samples and activated global (object level) concepts
above the given threshold from the aPY dataset. Red labels denote attributes that are not annotated
in the ground truth.

Figure[6|shows samples of correctly and incorrectly classified objects and the activated concepts (i.e.,
above a given threshold) for the aPY dataset. Notably, our model is able to discover meaningful and
obviously correct concepts that were not annotated in the ground truth, e.g., the “wheel”, “door”” and
“shiny” attributes that pertain to the first image with the car, or the “snout” in the image with the
dog. The incorrectly classified objects were associated with concepts that seem, to a certain extent,
understandable. For example, the monkey (predicted as dog) or the bottle (predicted as person). In
the latter case, we find that the classification is consistent with the concepts that were discovered,
i.e., if “head”, “torso”, “arm”, etc. are detected, it is coherent that the corresponding classification is
“person”El It also shows that the concepts allow a person to better understand how the model arrived
at the misclassification as well as more easily to identify it as such. We believe that the CT approach
can be extended for applications in concept discovery and zero-shot learning.

5 CONCLUSIONS

In this work, we generalize the notion of attention from low-level features to high-level concepts to
ensure an interpretability of attention scores that agrees with a human’s reasoning for classification
tasks. We propose the ConceptTransformer, a novel deep learning module that accommodates this
form of interpretability and show on three benchmark image datasets that the explanations obtained
are plausible and faithful. Our architecture achieves performance that matches the state-of-the-art
techniques, while being more versatile, significantly less complex and easier to train.

2This resembles the role of attention weights in the NLP literature where they can be associated with syn-
tactic elements in the input sentence.
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REPRODUCIBILITY

We provide code for the model implementation in the Appendix. Upon acceptance of the paper,
we plan to release the full code for the experiments that we reported in a public repository. The
datasets used for evaluation of our approach are public benchmarks, therefore already available in
the community.
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A APPENDIX: ADDITIONAL DETAILS

PROOF OF PROPOSITION(I]

Let us fix a specific ¢ and let us denote Pr(i¢|z) in Equation 2] after we externally set yc(z) > 0 to
zero with Pr(i°|x)|.=o.

We want to calculate the difference:

exp ( (Be)ieVe + 2 wse(Ber)ieVer exp (D orso(Ber)icver
Pr(i®|z) — Pr(i|z)]y.=0 = ( ’ ) - ( 7 )

S iexp (B)ive + Lo peBe)iver ) Ysexp (LorpelBeiver)
exp ((BeTe + LopelB)ere)  exp (TopelBedere)

>
S el T exp (Lo sBe)ive ) Liexp (Lope(Be)ine )
=0,

where the inequality comes from the assumption that the preferred output ¢ = arg max;(5.); of
concept ¢ is unique, i.e. exp((Be)ic) > exp((Be)q), Vi # i°.
This proves that setting ¢ to zero causes a non-zero drop in Pr(i¢|z).

The same type of inequality more in general proves that increasing/decreasing 0 < ~.(z) < 1
increases/decreases Pr(i¢|z), which proves the second part of Proposition |1| that ~.(x) is strictly
positively correlated with Pr(i¢|z).

B APPENDIX: ADDITIONAL FIGURES

Original Sample Altered Sample
Cardinal_0072_17159.jpg Cardinal_0072_17159__prim_red_blue.jpg

Prediction: Cardinal Prediction: Indigo_Bunting
Spatial explanations: Spatial explanations:
- has_breast_pattern::solid - has_breast_pattern::solid identical
- has_throat_color::black - has_eye_color::black identical
- has_eye_color::black - has_forehead_color::blue changed
-has forehead color::red - has_belly_pattern::solid identical
- has_belly pattern::solid - has_leg_color:grey identical
- has_leg_color::grey - has_leg_color::buff identical
- has_leg_color::buff - has_throat_color::black removed
Global explanations:
Global explanations: - has_shape::perching-like identical
- has_shape::perching-like - has_size::small_(5_-_9_in) identical
- has_size::small_(5_-_9_in) - has_size::very_small (3_-_5_in)  changed

Figure 7: Counterfactual intervention on an exemplary CUB sample. Artificially chang-
ing the color of a Cardinal from red to blue, causes an attention shifts from the concept
has_forhead.-color: :red to has_forhead_color: :blue (among others). Correspond-
ingly, the bird that was classified as a Cardigan is then being classified as an Indigo Bunting.
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insertions (attention rank): 14 insertions (random): 57

insertions (attention rank): 42 insertions (random): 95

\

Figure 8: Illustration of the patch-based version of the insertion metric in [Petsiuk et al.| (2018). On
the left patches corresponding to a sample in CUB are inserted one by one to the image according to
the rank given by the maximal attention weight that they give to a concept until the classifier outputs
the correct classification. On the right, the patches are inserted in random order. Inserting according
to the rank of the attention weights allows the model to recognize the bird with less insertions,
indicating that the attention weights are meaningfully related to the decision. This can be used as a
measure of faithfulness captured by an insertion metric.
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Figure 9: Patch-based insertion metric on CUB: inserting patches following the rank given by the at-
tention scores learned by our ConceptTransformer an image has the probability of being recognized
that reaches 50% of its maximum after 34 insertion. Random insertions on the other hand require
on average 60 insertions.
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C APPENDIX: CONCEPTTRANSFORMER PYTORCH CODE

import math

import torch

import torch.nn as nn

import torch.nn.functional as F

class ConceptTransformer (nn.Module) :
wnn
Processes spatial and non-spatial concepts in parallel and
aggregates the log-probabilities at the end

mon

def __ _init__ (
self,
embedding_dim,
num_classes,
num_heads,
attention_dropout=0.1,
projection_dropout=0.1,
n_concepts=10,
n_spatial_concepts=0,
*args,
~xkwargs,

super () .__init__ ()

# Non-spatial concepts
self.n_concepts = n_concepts

self.concepts = nn.Parameter (torch.zeros(l, n_concepts, embedding_dim), requires_grad=True)

nn.init.trunc_normal_(self.concepts, std=1.0 / math.sqgrt (embedding_dim))
if n_concepts > 0:
self.concept_tranformer = CrossAttention(

dim=embedding_dim,

n_outputs=num_classes,

num_heads=num_heads,

attention_dropout=attention_dropout,

projection_dropout=projection_dropout,

# Sequence pooling for non-spatial
if n_concepts > 0:
self.token_attention_pool = nn.Linear (embedding_dim, 1)

# Spatial Concepts
self.n_spatial_concepts = n_spatial_concepts
self.spatial_concepts = nn.Parameter (
torch.zeros (1, n_spatial_concepts, embedding_dim), requires_grad=True

)

nn.init.trunc_normal_(self.spatial_concepts, std=1.0 / math.sqrt (embedding_dim))

if n_spatial_concepts > 0:
self.spatial_concept_tranformer = CrossAttention (
dim=embedding_dim,
n_outputs=num_classes,
num_heads=num_heads,
attention_dropout=attention_dropout,
projection_dropout=projection_dropout,

def forward(self, x):
concept_attn, spatial_concept_attn = None, None

out = 0
if self.n_concepts > 0:

token_attn = F.softmax(self.token_attention_pool(x), dim=1).transpose (-1, -2)
x_pooled = torch.matmul (token_attn, x)
if self.n_concepts > 0: # Non-spatial stream
out_n, concept_attn = self.concept_tranformer (x_pooled, self.concepts)
concept_attn = concept_attn.mean (1) # average over heads
out = out + out_n.squeeze (1) # squeeze token dimension
if self.n_spatial_concepts > 0O: # Spatial stream
out_s, spatial_concept_attn = self.spatial_concept_tranformer(x, self.spatial_concepts)
spatial_concept_attn = spatial_concept_attn.mean (1) # average over heads
out = out + out_s.mean(1l) # pool tokens sequence

return out, concept_attn, spatial_concept_attn
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