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Abstract
Despite the impressive performance of deep learn-
ing models across diverse tasks, their complexity
poses challenges for interpretation. This chal-
lenge is particularly evident for audio signals,
where conveying interpretations becomes inher-
ently difficult. To address this issue, we introduce
Listenable Maps for Audio Classifiers (L-MAC),
a posthoc interpretation method that generates
faithful and listenable interpretations. L-MAC uti-
lizes a decoder on top of a pretrained classifier to
generate binary masks that highlight relevant por-
tions of the input audio. We train the decoder with
a loss function that maximizes the confidence of
the classifier decision on the masked-in portion
of the audio while minimizing the probability of
model output for the masked-out portion. Quan-
titative evaluations on both in-domain and out-
of-domain data demonstrate that L-MAC consis-
tently produces more faithful interpretations than
several gradient and masking-based methodolo-
gies. Furthermore, a user study confirms that, on
average, users prefer the interpretations generated
by the proposed technique.

1. Introduction
In recent years, deep learning models made significant
strides in a variety of speech/audio applications, including
sound event recognition, sound generation, speech recog-
nition, speech separation, and many more (Ravanelli et al.,
2021). An overwhelming majority of these models remain
opaque concerning the interpretation of their predictions,
as their large number of parameters, non-linearity, and
high dimensionality make them ”black-box” models (Mol-
nar, 2022). Explainable Machine Learning is a research
area that aims to render the models transparent concerning
their decision-making mechanisms. Posthoc interpretabil-
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ity methods (Smilkov et al., 2017; Simonyan et al., 2014;
Parekh et al., 2022), a sub-field within this domain, focus
on generating interpretations for pre-trained machine learn-
ing models. These interpretations should ideally remain as
faithful as possible to the pre-trained model while being
easy to understand for humans. Many existing posthoc in-
terpretability methods are primarily designed for computer
vision, where the task often involves classifying objects
against a clean background. In these cases, the interpre-
tation commonly takes the form of a saliency map, which
highlights the regions of the image relevant to model pre-
dictions. However, in the audio domain, achieving easily
understandable interpretations poses a much greater chal-
lenge. State-of-the-art models for speech and audio process-
ing typically operate on less interpretable inputs, such as
mel-spectrograms, as compared to standard images. Conse-
quently, generating saliency maps on these input features
does not yield straightforward interpretations. A potentially
more promising but relatively underexplored alternative in-
volves generating listenable interpretations, which offer a
more natural and user-friendly way for humans to compre-
hend the model prediction.

This paper contributes to this emerging field by introducing
a novel method called Listenable Maps for Audio Classi-
fiers (L-MAC). L-MAC outputs listenable explanations for
pretrained audio classifiers that utilize mel-spectrograms or
any other feature as input. Our approach employs a decoder
that leverages information from the latent representations
of pretrained classifiers to generate binary masks highlight-
ing relevant audio segments. The decoder applies the mask
not directly to the specific input features of the pretrained
classifier but to the magnitude of Short-Time Fourier Trans-
form (STFT) of the original input audio waveform. By
inheriting the phase from the original signal, we can per-
form the Inverse Short-Time Fourier Transform (ISTFT),
allowing the generation of a listenable waveform as the out-
come of the interpretation process. The decoder is trained
with a loss function that maximizes the confidence of the
classifier’s decision on the masked-in portion of the audio
while minimizing the probability of the model output for
the masked-out portion. Our loss term explicitly guides
the interpreter to produce explanations that closely follow
the target source without sacrificing the faithfulness of the
explanations.
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Figure 1. L-MAC Architecture. First, the linear spectrogram X is computed from an audio waveform x. Then, the audio features used by
the pretrained classifier (e.g., FBANKs) are extracted (Input Tf). The classifier generates class predictions ŷ and its latent representations
h are input to the decoder, which produces a binary mask M for selecting specific portions of the original linear spectrogram X . The
listenable interpretation is generated by applying the Inverse Short-Time Fourier Transform (ISTFT) on the masked spectrogram X ⊙M
with the phase inherited from the original audio waveform. The masked loss used to train the decoder is computed based on the classifier
predictions on the masked spectrogram and the predicted class ŷ.

To summarize, our contributions are the following:

• We propose a masking-based posthoc interpretation
method for audio classifiers capable of providing lis-
tenable interpretations, even when the input audio is in
the logmel domain.

• Using various faithfulness metrics, we demonstrate
that our proposed method outperforms several existing
posthoc interpretation methods on both in-domain and
out-of-domain data.

• We conducted a user study, highlighting that users, on
average, prefer the interpretation provided by L-MAC.

• We illustrate that our proposed method allows fine-
tuning during training to improve audio quality. We
show that this does not result in substantial loss in
faithfulness.

1.1. Related Works

In the literature, various methods have been proposed for
generating saliency maps, which aim to highlight the por-
tions of the input that significantly contribute to the model
prediction. These methods can be broadly categorized into
masking-based and gradient-based approaches.

Gradient-based methods include techniques such as the stan-
dard saliency method, where a map is obtained by comput-
ing the gradient with respect to the input of the network,
as described in (Simonyan et al., 2014). Other methods
include integrated gradients (Sundararajan et al., 2017),
guided back-prop (Springenberg et al., 2015), GradCAM
(Selvaraju et al., 2019), and SmoothGrad (Smilkov et al.,
2017). In (Adebayo et al., 2020), it has been shown that
gradient-based approaches may not accurately capture the
behavior of the classifier. Even under network weight and

label randomization, these approaches essentially yield a
behavior comparable to edge detection.

An emerging alternative is represented by masking-based ap-
proaches, which are the focus of this paper. Masking-based
approaches involve estimating a mask (typically binary) to
select a portion of the image that maximally contributes to
the classifier decision. There exists some methods which
directly learn a mask (Fong & Vedaldi, 2017; 2018; Petsiuk
et al., 2018; Chang et al., 2019). In another line of work, the
proposed methods involve training a decoder to estimate the
mask, in the same vein as we do in this paper. These works
include (Dabkowski & Gal, 2017; Fan, 2017; Zolna et al.,
2020; Phang et al., 2020).

In the audio domain, notable works on interpretability in-
clude (Becker et al., 2023), which proposed layer-wise rele-
vance propagation to generate saliency maps over spectro-
grams. Another noteworthy works include (Trinh et al.,
2018; Kavaki & Mandel, 2020) where authors learn to
identify important parts of the input spectrogram by mask-
ing additive white noise, within the context of automatic
speech recognition. Additionally, (Won et al., 2019) pro-
posed creating visualizations using attention layer outputs,
while (Muckenhirn et al., 2019) suggested using Guided
Backpropagation for spectrogram saliency maps. SLIME
(Mishra et al., 2017; 2020) proposes to divide the spectro-
gram into predefined time/frequency regions (akin to the
superpixels in LIME (Ribeiro et al., 2016) for images) and
determines the feature importance for each region. Audi-
oLIME (Haunschmid et al., 2020; Chowdhury et al., 2021),
on the other hand, defines the LIME superpixels as sources
extracted from the input audio and determines a saliency
score for each source. More recently (Parekh et al., 2022)
proposed Listen-to-Interpret (L2I) to learn the classifier rel-
evance for Non-Negative Matrix factorization (NMF) (Lee
& Seung, 1999) dictionaries, via a decoder trained to esti-
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mate NMF activations. This work is particularly relevant to
our method, as we also train a decoder. Consequently, we
include detailed comparisons with L2I in our experiments.

2. Methodology
The architecture of the proposed L-MAC method is illus-
trated in Figure 1. Starting with the original audio waveform,
we compute the (linear) spectrogram, denoted as X . The au-
dio spectrogram X is then processed by a feature extraction
block that computes the features needed by the pretrained
classifier. Notably, the pretrained model can internally use
various input features, such as FBANKs (mel-spectrogram
features), making our approach feature-agnostic. These
features are input to the classifier, which then generates
predictions.

To generate an interpretation signal that explains these pre-
dictions, the latent representations h of the classifier are fed
into the decoder, as illustrated in Figure 1. A more detailed
diagram of how the classifier representations are used is
shown in Figure 5 in Appendix A. The decoder is trained
to generate a binary mask M , selecting relevant portions
of the original spectrogram X . Importantly, the decoder is
not specifically tuned to the features used by the pretrained
classifier as we apply the binary mask to the (linear) spectro-
gram of the original audio X . This feature-agnostic aspect
allows L-MAC to maintain listenability. By inheriting the
phase from the original audio, we can indeed invert the
masked spectrogram and produce a listenable audio signal
as an interpretation outcome. To train the decoder, we feed
the masked input into the classifier, and compute the mask
loss. The objective is to learn a decoder capable of out-
putting a mask that accurately selects the region of interest
in the input spectrogram. The main components of L-MAC
are detailed in the following sub-sections.

2.1. The Masking Objective

The masking loss employed in this work draws inspiration
from similar objectives described in (Dabkowski & Gal,
2017; Zolna et al., 2020; Phang et al., 2020). The goal is to
maximize the confidence of the classification decision for
the masked-in portion of the audio while minimizing it for
the masked-out portion. The overall objective function is
the following:

min
M

αLin(f(M ⊙X), y) (1)

− βLout(f((1−M)⊙X), y) +R(M),

where f(.) represents the pretrained classifier being in-
terpreted. The term Lin represents the categorical cross-
entropy loss computed when we input the masked input
X ⊙M to the pretrained classifier. In contrast to the afore-
mentioned prior works, the categorical cross-entropy is com-

puted using the network decision as the label, denoted as
y = argmaxc fc(X), rather than the actual targets. Our
objective is to minimize this term, as we want the masked
signal to capture the elements that influenced the decision
made by the classifier.

The term Lout represents the categorical cross-entropy com-
puted for all parts of the input x not selected by the mask
M . We aim to maximize it, as we want the mask to exclude
information relevant to the pretrained classifier. Overall, we
engage in a optimization problem where the Lin term tends
to encourage larger masks, while the Lout term encourages
smaller ones. The decoder must find a valuable trade-off
between these aspects. Finally, note that R(Mθ(h)) is a reg-
ularization term that includes an l1-regularizer to promote
sparsity in the estimated mask.

One important aspect of our work is the use of a neural net-
work, specifically the decoder, to estimate the binary mask
M . This choice is motivated by our observation that neural
networks yield more faithful and understandable masks. Af-
ter parameterizing the interpretation mask M with a neural
decoder, represented by parameters denoted as θ, the corre-
sponding optimization objective becomes the following,

min
θ

λinLin(log f(Mθ(h)⊙X), y) (2)

−λoutLout(log f((1−Mθ(h))⊙X), y) +R(Mθ(h)),

where the decoder Mθ maps an internal representation h of
the classifier to a binary mask.

After the initial mask optimization, this framework allows
a fine-tuning stage where the interpretation mask is refined
to enhance the quality of the interpretations. This is accom-
plished by adding a term to the regularizer R(.) as follows:

R(Mθ(h)) = λg∥Mθ(h)⊙X −X∥+ λs∥Mθ(h)∥1,

where λg and λs are regularization coefficients, and X rep-
resents the spectrogram of the original signal. The first term
in the regularization encourages the decoder to produce
masked representations close to the original inputs, while
the second term promotes sparsity in the mask. In our best
configuration, this guidance is applied exclusively during
training in a selective manner. Specifically, we only apply it
to data items if the mask after the initial stage is highly sim-
ilar to the binarized target spectrogram X . The similarity
is measured by calculating the normalized cosine similarity
between these two objects. This selective fine-tuning helps
prevent steering the masks away from faithful interpreta-
tions. Finally, note that in case data augmentation is used,
the target is chosen as the clean signal in the fune-tuning
stage.
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2.2. Producing Listenable Explanations

State-of-the-art audio and speech classifiers often rely on
features computed on top of the linear spectrogram, such as
FBANKs (mel-spectrograms). These features intelligently
compress the frequency axis, often leading to more compact
features that enhance performance. However, these features
are non-invertible due to the compression applied to the
frequency axis.

In our pipeline (Figure 1), we tackle this challenge by having
the decoder Mθ(.) output a mask for the linear spectrogram
X instead of generating a mask for the specific features used
by the pretrained classifier. During training, we convert
this masked signal Mθ(h)⊙X back to the feature domain
before computing the training loss in Equation (2). The
audio domain interpretations are obtained by inverting the
linear spectrogram using the phase of the original audio
waveform x, expressed as:

xinterpretation = ISTFT
(
(Mθ(h)⊙X)ejXphase

)
. (3)

3. Experiments
In our experiments, we evaluate the faithfulness and under-
standability of the generated interpretations. To achieve this,
we considered two setups: i) Classification under in-domain
conditions, and ii) Classification under out-of-domain con-
ditions. We utilized the ESC50 dataset (Piczak) which con-
tains 50 environmental sound classes for both setups. We
also provide additional results on the UrbanSound8k dataset
(Salamon et al., 2014) in Appendix B.

3.1. Metrics

To measure the faithfulness of classifications we have used
the following metrics:

Faithfulness on Spectra (FF): This metric is originally
introduced in (Parekh et al., 2022), as a way to measure
how important is the generated interpretation for a classifier.
The metric is calculated by measuring the drop in class-
specific logit value, when the masked out portion of the
interpretation mask is input to the classifier. This amounts
to calculating,

FFn := f(Xn)c − f(Xn ⊙ (1−Mθ(h)))c

If this metric is large, this signifies that the masked-in por-
tion of the input spectrogram X is highly influential for the
classifier decision for class c. We report the average faith-
fulness over all examples by reporting the average quantity
FF :=

∑
n

1
N FFn. Larger is better.

Average Increase (AI): Average increase, originally pro-
posed in (Chattopadhay et al., 2018), measures the increase

in confidence for the masked-in portion of the interpretation,
and it is calculated as follows:

AI :=
1

N

N∑
n=1

1[f(Xn⊙Mθ(h))>f(Xn)c] · 100,

where 1[.], is an indicator function which returns one if the
argument is true, and zero otherwise. For this metric, larger
is better.

Average Drop (AD): Average drop, originally proposed in
(Chattopadhay et al., 2018), measures how much confidence
is lost when the input image is masked, and calculated as
follows:

AD :=
1

N

N∑
n=1

max(0, f(Xn)c − f(Xn ⊙Mθ(h))c)

f(Xn)c
· 100.

For this metric, smaller is better.

Average Gain (AG): This metric is first proposed in (Zhang
et al., 2023), and it measures how much confidence is gained
after masking the input image. It is calculated as follows:

AG :=
1

N

N∑
n=1

max(0, f(Xn ⊙Mθ(h))c − f(Xn)c)

1− f(Xn)c
· 100.

Input Fidelity (Fid-In): This metric is introduced in (Pais-
san et al., 2023), and it measures if the classifier outputs the
same class prediction on the masked-in portion of the input
image. It is defined as,

Fid-In =
1

N

N∑
n=1

1[argmaxc f(Xn)c=argmaxc fc(Xn⊙Mθ(h))].

Larger values are better.

Sparseness (SPS): Sparseness measure is introduced in
(Chalasani et al., 2020), and it measures if only values with
large predicted saliency contribute to the prediction of the
neural network. Larger values indicate more sparse/concise
saliency maps. We use the implementation from the Quantus
library (Hedström et al., 2023).

Complexity (COMP): Complexity metric is introduced in
(Bhatt et al., 2020), and this metric measures the entropy
of the distribution of contributions from each feature to the
attibution. Smaller values indicate less complex interpreta-
tions. We again used the implementation from the Quantus
library.

3.2. Faithfulness Evaluation

In these experiments, we first train a CNN14 classifier (Kong
et al., 2020) on the ESC-50 dataset (Piczak) augmented with
WHAM! noise, to simulate real-world mixtures. The classi-
fier is trained on folds 1, 2, and 3 and obtains 75% and 78%
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Table 1. In-domain quantitative evaluation on the ESC50 dataset. Our results reveal that L-MAC consistently achieves significantly higher
faithfulness scores (AI, AD, AG, FF, Fid-In) compared to other methods.

Metric AI (↑) AD (↓) AG (↑) FF (↑) Fid-In (↑) SPS (↑) COMP (↓)

Saliency 0.00 15.79 0.00 0.05 0.07 0.39 5.48
Smoothgrad 0.00 15.71 0.00 0.03 0.05 0.42 5.32
IG 0.25 15.45 0.01 0.07 0.13 0.43 5.11
GradCAM 8.50 10.11 1.47 0.17 0.33 0.34 5.64
Guided GradCAM 0.00 15.61 0.00 0.05 0.06 0.44 5.12

ST
FT

-M
el

Guided Backprop 0.00 15.66 0.00 0.05 0.06 0.39 5.47
L2I, RT=0.2 1.63 12.78 0.42 0.11 0.15 0.25 5.50
L2I, RT=0.4 1.13 11.72 0.15 0.08 0.11 0.23 4.41
L2I, RT=0.60 0.50 7.90 0.05 0.04 0.06 0.14 2.61
L2I, RT=0.80 0.13 3.21 0.01 0.01 0.02 0.06 0.98
SHAP 0.00 15.79 0.00 0.05 0.06 0.43 5.24
L-MAC (ours) 36.25 1.15 23.50 0.20 0.42 0.47 4.71
L-MAC, FT, λg = 4 (ours) 32.37 1.98 18.74 0.21 0.41 0.43 5.20
L-MAC, FT, λg = 16 (ours) 27.12 3.32 16.18 0.19 0.39 0.44 5.03
L-MAC, FT, λg = 32 (ours) 23.00 4.42 12.63 0.18 0.37 0.45 4.92

Saliency 0.00 15.81 0.00 0.10 0.07 0.39 4.53
Smoothgrad 0.00 15.61 0.00 0.07 0.04 0.39 4.54
IG 0.00 15.55 0.00 0.12 0.08 0.42 4.36

M
el GradCAM 7.00 10.93 1.04 0.17 0.29 0.34 4.72

Guided GradCAM 0.125 15.40 6.67 0.08 0.07 0.45 4.17
Guided Backprop 0.125 15.54 0.00 0.10 0.08 0.39 4.53
SHAP 0.00 15.57 0.00 0.11 0.08 0.41 4.42
L-MAC (ours) 35.63 1.59 24.28 0.22 0.42 0.45 4.11
L-MAC (ours) FT, λg = 4 36.13 1.28 21.15 0.23 0.42 0.32 4.71

classification accuracy on folds 5 and 4, respectively. The
CNN14 classifier we employed has 12 2D convolutional lay-
ers and is pre-trained on the VGG-sound dataset (Chen et al.,
2020a) using SimCLR (Chen et al., 2020b). The decoder of
L-MAC consists of a series of transposed 2D convolutional
layers. Each convolutional layer upsamples the time and
frequency axis. The classifier’s representations are fed to the
decoder in a U-Net-like fashion to incorporate information
at different time-frequency resolutions (as shown in Figure
5 in Appendix A). Specifically, the decoder takes the four
deepest representations of the classifier.

We then freeze the weights of the classifier and train a de-
coder on the same training set as the classifier (ESC50 +
WHAM! noise), as shown in Figure 1. We perform two sets
of evaluations on the ESC-50 dataset to validate the robust-
ness of L-MAC in real-world settings. First, we evaluate
L-MAC on in-domain data, where the interpreter is tested
against data similar to the one in the training set (ESC 50
folds 4 and 5 with WHAM! noise). The results are provided
in Table 1. In the second place, we evaluate L-MAC perfor-
mance on out-of-domain data. We generate out-of-domain
data by creating mixtures of samples from folds 4 and 5.
The results are provided in Table 2. We report results ob-

tained with STFT and Mel domain spectra for in-domain
and out-of-domain data. We have also reported additional
results on the UrbanSound8k dataset (Salamon et al., 2014)
in Table 2, in Appendix B.

To compare L-MAC with the literature, we used several
gradient-based methods such as standard saliency maps (Si-
monyan et al., 2014), SmoothGrad (Smilkov et al., 2017),
IntegratedGradients (Sundararajan et al., 2017), Guided-
BackProp (Springenberg et al., 2015), and decoder based
audio specific method, Listen-to-Interpret (L2I) (Parekh
et al., 2022), and we also include SHAP (Lundberg & Lee,
2017). For L2I, we have reported results using relevance
thresholds RT=0.2, 0.4, 0.6, and 0.8 (an important hyper-
parameter for the L2I method). We have used the Captum
implementations (Kokhlikyan et al., 2020) for the gradient-
based methods and SHAP and adapted the SpeechBrain (Ra-
vanelli et al., 2021) implementation for L2I. For L-MAC, we
have obtained results for finetuning strengths λg = 4, 16, 32.
The implementation of our experimental setup is accessible
through the companion website.1.

1https://fpaissan.github.io/lmac
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Table 2. Out-of-Domain Quantitative Evaluation for the ESC50 Dataset. In out-of-distribution conditions, L-MAC consistently outperforms
other methods across all evaluated metrics.

Metric AI (↑) AD (↓) AG (↑) FF (↑) Fid-In (↑) SPS (↑) COMP (↓)

Saliency 0.62 31.73 0.07 0.06 0.12 0.76 11.06
Smoothgrad 0.12 31.84 0.00 0.06 0.13 0.83 10.66
IG 0.37 31.15 0.03 0.12 0.26 0.87 10.22
L2I 5.00 25.65 1.00 0.20 0.35 0.52 10.99

ST
FT

-M
el GradCAM 14.12 17.62 7.46 0.25 0.00 0.91 9.66

Guided GradCAM 0.00 31.74 0.00 0.07 0.11 0.89 10.24
Guided Backprop 0.63 31.73 0.07 0.06 0.11 0.76 11.06
SHAP 0.00 31.81 0.00 0.07 0.14 0.84 10.58
L-MAC (ours) 60.63 4.82 35.85 0.39 0.81 0.94 9.61
L-MAC FT, λg = 4 (ours) 50.75 6.73 26.00 0.39 0.78 0.84 10.51
L-MAC FT, λg = 16 (ours) 37.62 10.67 19.29 0.34 0.70 0.87 10.19
L-MAC - FT, λg = 32 (ours) 28.88 12.69 14.56 0.32 0.66 0.89 10.01
L-MAC - FT, λg = 4 (ours), CCT 0.7 52.87 6.71 29.46 0.38 0.78 0.93 9.76
L-MAC - FT, λg = 16 (ours), CCT 0.7 45.87 8.12 23.91 0.37 0.74 0.91 9.93
L-MAC - FT, λg = 32 (ours), CCT 0.7 38.50 9.62 19.11 0.35 0.70 0.89 10.04

Saliency 0.38 31.64 0.01 0.15 0.12 0.77 9.17
Smoothgrad 0.25 31.66 0.01 0.14 0.11 0.79 9.03
IG 0.12 31.52 0.01 0.19 0.19 0.84 8.62
GradCAM 19.88 18.85 4.67 0.34 0.69 0.66 9.49

M
el

Guided GradCAM 0.00 31.68 0 0.14 0.12 0.89 10.24
Guided Backprop 0.38 31.64 0.01 0.15 0.12 0.77 9.16
SHAP 0.25 31.60 0.00 0.17 0.15 0.82 8.81
L-MAC (ours) 60.25 4.84 34.72 0.44 0.80 0.90 8.29
L-MAC - FT, λg = 4 (ours) 60.75 4.84 29.34 0.44 0.83 0.64 9.38
L-MAC - FT, λg = 16 (ours) 45.75 9.93 17.04 0.43 0.80 0.69 9.16
L-MAC - FT, λg = 32 (ours) 37.50 8.65 14.08 0.43 0.77 0.70 9.05

For in-domain data, we observe in Table 1 that L-MAC
generally results in better faithfulness scores (AI, AD, AG,
FF, Fid-In) compared to the baselines. Since we work with
a classifier trained in the Mel domain, we would like to note
that we evaluated the methods in cases where we both mask
in the STFT domain (denoted with STFT-Mel in Tables
1, 2) and in the Mel domain (denoted with Mel in Tables
1, 2). This is important, as masking in the STFT domain
gives the ability to produce listenable interpretations. We
observe that for L-MAC, the STFT domain interpretations
result in similar faithfulness scores compared to the Mel
domain. More specifically, for the in-domain evaluation, we
observe that the gradient-based methods such as standard
saliency, Smoothgrad, IG, GradCAM, Guided BackProp,
and SHAP generally result in less faithful interpretations
than the decoder-based methods such as L2I and L-MAC.
We see that the most faithful results are obtained without
having the finetuning (FT) stage in L-MAC. However, with
additional finetuning, we see that L-MAC can produce re-
sults that only lose slightly from their faithfulness scores
while increasing the understandability of the interpretation,
as shown by user preference. We observe that after finetun-
ing, L-MAC can still be more faithful compared to the other
baselines we investigate, including our L2I implementation.
We also see that in terms of the sparsity metric, L-MAC has

better overall numbers than L2I and the other gradient-based
methods. In terms of the complexity metric, it is compara-
ble with the gradient-based methods and with L2I with a
relevance threshold of 0.2. Note that with larger relevance
threshold values, L2I returns less active interpretations.

In Table 2, we show the metrics on out-of-distribution data.
In this case, the gradient-based posthoc saliency methods
also do not yield very faithful results except for GradCAM.
We also observe that L-MAC outperforms L2I even if a
severe finetuning strength of λg = 32 is employed. Another
observation is that the listenable STFT version of L-MAC
yields comparable faithfulness results to the direct Mel do-
main interpretations yielded by L-MAC. For this data, we
also try increasing the cross-correlation threshold (denoted
with CCT in Table 2) between the interpretations and the
target mask during training (as discussed in Section 2). We
see that using a larger CCT generally helps increase the
interpretations’ faithfulness for larger λg values.

3.3. Qualitative Evaluation

In order to assess the quality of the evaluations, we have
conducted a user study with 15 participants to evaluate the
perceived quality of the produced interpretations. We gave
the evaluators the following two instructions:

6



Listenable Maps for Audio Classifiers

Recording 1 Recording 2 Recording 3 Recording 4
0

10

20

30

40

50

60

70

80
M

OS
L2I Recordings

L-MAC
L-MAC-FT1
L-MAC-FT2
L2I

Recording 1 Recording 2 Recording 3 Recording 4 Recording 5
0

10

20

30

40

50

60

70

80

M
OS

New Random Recordings

L-MAC
L-MAC-FT1
L-MAC-FT2
L2I

Figure 2. The Mean Opinion Scores (MOS) obtained in the user study. (Left) MOS values obtained on recordings from L2I companion
website (Right) MOS values obtained on newly created random recordings with two sound classes.

1. How well does the interpretation correspond to the part
of the input audio associated with the given class?

2. While evaluating, please pay attention to audio quality
also.

Note that we showed the label of the predicted class to the
participants. We have asked the users to rate the interpre-
tations they listen between 0-100. We have used the open
source webMushra (Schoeffler & et al., 2018) package.

In order to directly compare the perceived quality of the in-
terpretations of L-MAC and L2I we used the audio samples
provided in the L2I companion website. That is, we have
downloaded the first four audio tracks and the correspond-
ing generated interpretations from the official companion
website2 of L2I. These audio tracks are similar to the audio
tracks we have used for OOD evaluation in Section 3.2, as
they are formed by mixing two audio recordings. We show
the summary of this user study in Table 3 in the MOS-1
column. The results indicate that, on average, users pre-
ferred the quality of the interpretations provided by L-MAC
compared to the interpretations provided in the companion
website of L2I. We also show the comparison of mean-
opinion-scores specific to each recording in the left panel of
Figure 2. We observe that for each recording, L-MAC inter-
pretations result in either better or comparable preference.
It is worth noting that, in general, fine-tuning improves user
preference compared to the standard L-MAC.

In addition to the showcase recordings for L2I, we have
also randomly picked five mixture recordings that we have
created and presented these recordings to the users. In total
therefore we have presented each user 9 recordings. The
average preference for these recordings are shown in Table
3 in the MOS-2 column. Once again, we observe that L-
MAC surpasses L2I, and fine-tuning further enhances user
preference. The results of this user study for each recording

2https://jayneelparekh.github.io/
listen2interpret/

Table 3. Mean-Opinion Scores for the showcased examples from
the L2I Website. L-MAC is, on average, preferred by the users.

Method MOS-1 MOS-2

L-MAC 59.13 64.00
L-MAC, FT, λg = 16 59.8 66.7
L-MAC, FT, λg = 16, CCT0.7 63.7 67.2
L2I 55.1 50.8

are depicted in the right panel of Figure 2. Some examples
of interpretations can be found at our companion website3.

3.4. Sanity Checks

Beyond the quantitative and qualitative evaluation of L-
MAC, we have also conducted two sanity checking exper-
iments. First, we tested L-MAC against the Remove-and-
retrain (ROAR) test proposed in (Hooker et al., 2019). This
test checks the classification accuracy when top-k percent
of the most time-frequency bins which are deemed to be the
most salient are removed, and then a classifier is retrained
on the remaining portion of the input spectra. Intuitively,
this sanity check verifies whether the interpreter focuses
on relevant time-frequency points for the class of interest.
We see in the left panel of the Figure 4 that with increasing
percentage in the removed portion, compared to randomly
removing the masks the classification accuracy drops faster
with L-MAC interpretations, which suggests that L-MAC
returns interpretations on semantically relevant portion of
the spectra.

We have also conducted the cascading randomization test
from (Adebayo et al., 2020) in order to verify that L-MAC
does not generate interpretations that are invariant to the
classifier weights, but actually is sensitive to the randomiza-
tion of the classifier weights. In Figure 3, we showcase this,
where we compare the interpretations obtained when the

3https://fpaissan.github.io/lmac/
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Figure 3. Example demonstrating the behaviour of L-MAC during the MRT test. From left to right: original sample, interpretation, and
interpretations generated by randomizing the weights of the convolutional blocks starting from the logits in a cascading fashion, as
suggested in (Adebayo et al., 2020). As expected, the interpretations are corrupted by randomizing the weights of the model. From top to
bottom: L-MAC, L-MAC finetuned with λg = 4 and CCT= 0.6, L-MAC finetuned with λg = 4 and CCT = 0.7, and GradCAM.
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Figure 4. Sanity checks for saliency maps: (left) RemOve And Retrain test. The presented results are the averages over three runs.
The dashed line represents the random attribution baseline. (right) Structured Similarity Index (SSIM) extracted using the Model
Randomization Test.

classifier layers are randomized. We see that, as expected,
with more random layers L-MAC interpretations lose their
original focus. Whereas for instance with GradCAM inter-
pretations, we observe that the interpretations basically re-
main insensitive to the classifier weight randomization. We
furthermore quantify this finding by calculating the Struc-
tural Similarity Index (SSIM) between the interpretations
generated for the original model and the interpretations gen-
erated for the model with randomized weights (as was done
in (Adebayo et al., 2020)). Similar to the visualization of
the interpretations in Figure 3, we see that L-MAC inter-
pretations quicly drop in similarity after starting from the
5’th convolutional block (5’th deepest block - note that we
start randomizing from the, last layer, and then go down).
Whereas, we see that the GradCAM interpretations remain
practically unchanged.

3.5. Additional Results on Out-of-Domain Data

In addition to the Out-of-Domain experiments conducted in
Section 3.2, we have also tested L-MAC on audio samples
corrupted with white noise and speech. We have created
3dB Signal-to-noise ratio mixtures, and used samples from
the LJSpeech (Ito & Johnson, 2017) dataset for speech.
In Table 4, we show these additional results on ESC50
dataset. In Appendix B with Table 5, we provide the results
for this experimental setup applied on the UrbanSound8K
benchmark. We observe that L-MAC is able to obtain better
results in terms of quantitative faithfulness metrics such as
AI, AD, AG, FF, and Fid-In. In this table we also report
the mask-mean to indicate the size of the obtained mask
(denoted with MM). We observe that even though the mask
area of L-MAC is significantly smaller than GradCAM for
instance, it is able to obtain considerably better metrics that

8
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Table 4. Additional results obtained on the ESC50 dataset with White Noise and LJSpeech contamination. The masking is done on the
STFT domain for this experiment. Note that we also indicate the mask-mean (denoted with MM)

Metric AI (↑) AD (↓) AG (↑) FF (↑) Fid-In (↑) SPS (↑) COMP (↓) MM

Classification on ESC50, White Noise Contamination, 38.6% accuracy
Saliency 0.25 26.31 0.02 0.05 0.06 0.79 10.92 0.016
Smoothgrad 0.00 26.37 0.00 0.04 0.09 0.84 10.62 0.01
IG 0.75 25.60 0.56 0.10 0.21 0.82 10.65 0.01
L2I @ 0.2 0.00 19.41 0.21 0.11 0.04 36.62 7.32 0.12
GradCAM 8.87 20.88 1.24 0.28 0.51 0.69 11.25 0.18
Guided GradCAM 0.50 26.23 0.05 0.07 0.11 0.91 10.14 0.01
Guided Backprop 0.25 26.30 0.02 0.05 0.07 0.79 10.92 0.02
SHAP 0.12 26.34 0.001 0.05 0.12 0.86 10.40 0.004
L-MAC (ours) 83.62 1.50 56.12 0.33 0.86 0.92 10.03 0.06
All-ones baseline 0 0 0 0.34 1 N.A. N.A. 1

Classification on ESC50, LJSpeech Contamination, 79.3% accuracy
Saliency 0.87 26.00 0.20 0.06 0.11 0.75 11.10 0.02
Smoothgrad 0.50 26.14 0.11 0.05 0.13 0.79 10.91 0.08
IG 0.37 25.70 0.01 0.11 0.25 0.87 10.14 0.00
L2I @ 0.2 1.75 29.49 0.27 0.15 0.18 0.79 9.56 0.16
GradCAM 20.37 13.49 2.63 0.28 0.73 0.66 11.33 0.22
Guided GradCAM 0.25 26.10 0.09 0.06 0.11 0.88 10.30 0.01
Guided Backprop 0.87 26.01 0.20 0.05 0.11 0.75 11.10 0.02
SHAP 0.00 26.14 0.00 0.06 0.16 0.79 10.81 0.01
L-MAC (ours) 70.75 2.73 39.64 0.33 0.83 0.93 9.70 0.05
All-ones baseline 0 0 0 0.35 1 N/A N/A 1

measure faithfulness. Moreover, we have also calculated
the scores obtained with an all-zeros mask. We observe that
the FF score obtained with L-MAC is very similar to the all-
ones mask which removes the entire spectrogram during the
score computation, and we also observe that the mask-mean
of L-MAC is significantly smaller than 1. This indicates
that the masked-out portion of the L-MAC interpretations
are not very significant for the classifier.

4. Conclusions
This paper introduced a novel approach, called Listenable
Maps for Audio Classifiers (L-MAC), that produces post-
hoc interpretations for audio classifiers. L-MAC employs
a decoder that uses the latent representations of the black-
box classifier to estimate a binary mask that effectively
highlights the portions of the input audio that triggered the
prediction made by the classifier. The application of this
mask to the linear-frequency-scale spectrogram enables gen-
erating interpretations that are listenable. We would like to
note that our methodology is also applicable for classifiers
whose input domains are not linear-frequency-scale spec-
tra. We train the decoder using an objective that promotes
faithfulness to the classifier decisions, that minimizes the

categorical cross-entropy for masked inputs while maximiz-
ing it for masked-out inputs.

Through an extensive experimental evaluation involving
quantitative and qualitative assessments, as well as through
sanity checks, our results demonstrate that L-MAC achieves
significantly superior faithfulness metrics and user prefer-
ence, compared to various baselines.

Impact statement
This paper proposes a methodology to improve neural net-
work interpretability. We do not foresee a direct, socially
negative impact. On the contrary, the proposed methodology
may facilitate socially beneficial applications of machine
learning-based audio processing by enhancing the human
trust in neural network decisions.
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A. Decoder structure illustration
In Figure 5 we show the architecture of the decoder Mθ(·) employed in our experiments.

Figure 5. Diagram of the decoder neural network Mθ(·). The representations from the classifier f(·) are fed through different layers of
the decoder Mθ(·) via skip connections.

B. Results on UrbanSound8k Dataset
We provide additional results for the In-Domain and Out-of-Domain experiments on the UrbanSound8k dataset (Salamon
et al., 2014), in addition to the experiments conducted on the ESC50 dataset in the mainbody of the paper. In Table 5, we
first report the results obtained on the In-Domain experiments, and then for the Out-of-Domain experiments where we
contaminate the samples with other samples from the US8k dataset, White Noise, and speech (the same experimental setup
as the setup on the ESC50). We observe that on both the ID experiment and on different OOD experiments, L-MAC is able
to outperform or obtain very similar results compared to the baselines. We also observe that L-MAC masks are in general
smaller compared to the ones obtained by comparably performing models such as GradCAM or L2I, which suggests that
L-MAC is able to obtain masks that are not trivial.
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Table 5. Additional experiments on UrbanSound8k Dataset

Metric AI (↑) AD (↓) AG (↑) FF (↑) Fid-In (↑) SPS (↑) COMP (↓) MM

Classification on US8k, WHAM! Noise Contamination (ID experiment), 82.8% accuracy
Saliency 0.40 23.86 0.26 0.072 0.12 0.30 5.69 0.02
Smoothgrad 0.00 26.86 0.00 0.04 0.04 0.30 5.69 0.01
IG 0.25 23.70 0.15 0.10 0.12 0.40 5.24 0.005
L2I @ 0.2 0.55 19.59 0.28 0.17 0.18 0.24 5.67 0.21
GradCAM 7.68 6.94 4.04 0.31 0.39 0.13 5.96 0.29
Guided GradCAM 0.40 24.29 0.26 0.06 0.10 0.33 5.58 0.01
Guided Backprop 0.40 23.86 0.26 0.07 0.12 0.30 5.69 0.02
SHAP 0.10 26.32 0.03 0.05 0.06 0.33 5.59 0.01
L-MAC (ours) 19.09 2.51 13.57 0.40 0.46 0.32 5.55 0.14
All-ones baseline 0 0 0 0.42 1 N/A N/A 1

Classification on US8k, US8k Contamination, 82.6% accuracy
Saliency 0.40 48.24 0.23 0.10 0.24 0.61 11.35 0.056
Smoothgrad 0.00 54.65 0.00 0.06 0.09 0.60 11.40 0.023
IG 0.51 46.31 0.20 0.15 0.30 0.80 10.39 0.01
L2I @ 20 2.88 27.84 2.01 0.27 0.38 0.50 11.05 0.37
GradCAM 14.65 9.71 6.42 0.61 0.86 0.18 12.02 0.60
Guided GradCAM 0.40 49.61 0.19 0.10 0.21 0.66 11.17 0.03
Guided Backprop 0.40 48.24 0.23 0.10 0.24 0.61 11.35 0.04
SHAP 0.05 53.66 0.01 0.07 0.12 0.67 11.17 0.01
L-MAC (ours) 27.12 9.58 20.04 0.77 0.85 0.71 10.75 0.24
All-ones baseline 0 0 0 0.86 1 N/A N/A 1

Classification on US8k, White Noise Contamination, 48.5% accuracy
Saliency 0.56 48.42 0.16 0.13 0.14 0.57 11.50 0.04
Smoothgrad 0.00 48.96 0.00 0.07 0.10 0.66 11.24 0.02
IG 0.85 47.92 0.30 0.15 0.16 0.63 11.21 0.02
L2I @ 0.2 27.45 32.73 23.45 0.25 0.42 0.32 11.81 0.41
GradCAM 37.37 16.69 31.29 0.45 0.69 0.24 11.95 0.61
Guided GradCAM 0.51 48.26 0.27 0.12 0.14 0.62 11.31 0.03
Guided Backprop 0.56 48.41 0.16 0.13 0.13 0.59 11.44 0.04
SHAP 0.15 48.51 0.02 0.09 0.12 0.72 10.98 0.01
L-MAC (ours) 31.62 16.31 22.4 0.81 0.71 0.39 11.72 0.39
All-ones baseline 0 0 0 0.74 1 N/A N/A 0

Classification on US8k, LJSpeech Contamination, 88.7% accuracy
Saliency 0.30 50.60 0.11 0.08 0.25 0.58 11.44 0.04
Smoothgrad 0.00 52.68 0.00 0.05 0.19 0.61 11.39 0.02
IG 0.35 50.13 0.18 0.10 0.26 0.79 10.43 0.01
L2I @ 0.20 1.21 41.91 0.72 0.23 0.27 0.55 10.50 0.23
GradCAM 13.29 7.16 6.20 0.53 0.91 0.25 11.93 0.61
Guided GradCAM 0.30 51.18 0.14 0.08 0.23 0.64 11.27 0.03
Guided Backprop 0.30 50.6 0.11 0.09 0.25 0.58 11.44 0.04
SHAP 0.05 52.15 0.01 0.06 0.18 0.67 11.16 0.01
L-MAC (ours) 18.18 9.91 11.28 0.90 0.86 0.69 10.91 0.26
All-ones baseline 0 0 0 0.83 1 N/A N/A 0
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