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ABSTRACT

Decentralized consensus learning has been hugely successful that minimizing a
finite sum of expected objectives over a network of agents. However, the local
communication across neighbouring agents in the network may lead to the leak-
age of private information. To address this challenge, we propose a general differ-
entially private (DP) learning framework that is applicable to direct and indirect
communication networks without a central coordinator. We show that the pro-
posed algorithm retains the performance guarantee in terms of generalization and
finite sample performance. We investigate the impact of local privacy-preserving
computation on the global DP guarantee. Further, we extend the discussion by
adopting a new class of noise-adding DP mechanisms based on generalized Gaus-
sian distributions to improve the utility-privacy trade-offs. Our numerical results
demonstrate the effectiveness of our algorithm and its better performance over the
state-of-the-art baseline methods in various decentralized settings.

1 INTRODUCTION

Decentralized learning is a process of learning a consensus model using the datasets that are dis-
tributed across different agents, such as machines, hospitals, and mobile devices (Shi et al., 2014;
Han et al., 2017; Gong et al., 2016; Beyan et al., 2020). During the process, each local agent (1)
keeps its own private data locally; (2) requires no exchange of raw data; and (3) communicates
only with its connected agents to train its local model and updates the global parameters directly
without a central coordinator. In particular, as medical data are inherently decentralized, i.e., owned
or distributed across different institutions, direct sharing or central aggregation of such distributed
medical data is increasingly restricted due to either ownership or other regulatory constraints. As a
consequence, the advancement of decentralized learning will offer innovative solutions to transform
healthcare sectors (Warnat-Herresthal et al., 2021).

Although decentralized learning only requires parallel computation at each local agent and shar-
ing of the estimates or perhaps other intermediate parameters (auxiliary variables) with connected
neighbouring agents, past experience has demonstrated the possibility of privacy leakage in the pro-
cess: the attacker can still recover sensitive information from local communications (e.g., Fredrikson
et al. 2015; Shokri et al. 2017). One defence procedure is to adopt a private variant of the learning
algorithm using Differential Privacy (DP) to secure the training process. Very few DP algorithms
focus on decentralized learning systems, with the exception of recent works in Xu et al. (2022);
Yu et al. (2021a); Huang & Gong (2020). However, when introducing perturbation into the itera-
tive learning process, these earlier methods only focus on achieving (ϵ, δ)−DP guarantee for each
agent. Due to the communications with neighbouring agents during the iterative process, the overall
privacy guarantee of the algorithm is no longer (ϵ, δ)−DP. Importantly, it is unclear how one can
split the privacy budgets among all the agents in order to achieve a global (ϵ, δ)−DP guarantee for
the algorithm when using these earlier methods. Finally, these existing methods consider a stan-
dard Gaussian noise-adding mechanism. The added unbounded noise could lead to unstable results,
which can severely affect the learning efficiency and degrade the performance of the trained global
model (Farokhi, 2022). This paper aims to provide a unified solution to address these issues and
discuss the theoretical guarantees of the proposed algorithm.
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1.1 RELATED WORKS

In the setting of centralized learning for distributed data, a handful number of papers have studied
how to integrate privacy-preserving techniques, such as DP, into the training process (Jayaraman
et al., 2018; Li et al., 2022a; Guo et al., 2020; Cai et al., 2018; Li et al., 2022b; Huang et al.,
2020; Cao et al., 2021). For example, Jayaraman et al. (2018) proposed DP algorithms for convex
problems where ensuring the information obtained from each local model satisfies DP guarantees
before being aggregated in a central coordinator; Li et al. (2022b) proposed a unified centralized
learning framework to ensure DP guarantees for each local agent for a general class of non-convex
problems. However, these algorithms cannot be directly adapted to solve our problem; they focus
on the setting where there exists a central coordinator that is responsible for aggregating information
obtained from each local agent.

There have been very few recent developments in decentralized learning algorithms with DP guar-
antees. We are aware of only three recent works in the literature. Among them, Huang & Gong
(2020) is the first one; they proposed a DP Alternating Direction Method of Multipliers (ADMM)
algorithm for a wide range of convex learning problems, where they perturb the objective function
before solving the minimization associated with the local dataset at each local agent. More recently,
Yu et al. (2021a) proposed a DP decentralized stochastic gradient descent (SGD)-based algorithm
by perturbing the intermediate parameter updates at each local agent before communicating the
perturbed parameter updates with its connected neighbouring agents; Xu et al. (2022) proposed a
blockchain-enabled decentralized DP learning algorithm through gradient perturbation. However,
these gradient-based methods impose restrictions on the objectives, such as smoothness, and there-
fore have limited application in broader settings. In contrast, we don’t restrict ourselves to using
gradient descent to find the minimums of the target objective functions. Instead, by using operator
theory, we solve the optimization problem by defining a suitable operator or mapping such that the
fixed points are the solutions to the original problem; in other words, we consider a broader generic
problem of finding a fixed point of averaged iteration of a nonexpansive mapping. Under such an
operator theoretical framework, the SGD and ADMM algorithms previously considered in Huang
& Gong (2020); Yu et al. (2021a); Xu et al. (2022) can be considered special cases of our proposed
generic algorithm.

1.2 OUR CONTRIBUTIONS

In this paper, we propose a general framework of a decentralized learning algorithm with DP guaran-
tee, referring to Differentially Private decentralized Krasnosel’skiı̌–Mann iteration (DP-dKM). Our
contributions are summarized as follows.

1. Built on the Krasnosel’skiı̌–Mann(KM) iteration (Krasnosel’skii, 1955; Mann, 1953), we
propose a unified decentralized learning framework with an overall DP guarantee, which is
applicable to all communication network diagrams and covers many existing optimization
algorithms, including the previously considered ones in Xu et al. (2022); Yu et al. (2021a);
Huang & Gong (2020), as special cases.

2. We obtain an upper bound of the global sensitivity of the intermediate updates until the
fixed iteration step; by injecting enough noises calibrated according to this upper bound,
we can achieve a global (ϵ, δ)−DP guarantee without worrying about splitting the total
privacy costs among different agents.

3. To the best of our knowledge, we provide the first decentralized learning algorithm that can
achieve any desired overall DP guarantee while existing works rely on local DP mecha-
nisms and therefore have no control over the overall privacy cost beforehand. And this is
the first work that provides theoretical guarantees on the generalization and finite sample
performance of the proposed algorithm.

4. To further optimize the privacy and utility trade-offs, we propose a class of truncated gen-
eralized Gaussian noise-adding DP mechanisms, which allows one to achieve significantly
higher utility under the same level of DP guarantee.

5. Empirically, we conduct comprehensive experiments to demonstrate that our approach out-
performs prior works in various decentralized settings characterized by different commu-
nication network diagrams.
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2 PROBLEM STATEMENT AND PRELIMINARIES

In this section, we first start with the problem set. We then present preliminaries about decentralized
learning schemes as well as differential privacy. Throughout this paper, we denote the ℓ1, ℓ2, ℓ∞
norm of x ∈ Rp as ∥x∥1, ∥x∥ and ∥x∥∞. For a function l(x, ξ) : Rp × Ξ → R, ∥l∥∞ :=
supx,ξ |l(x, ξ)|. For a matrix, A denotes A⊤, ∥A∥op, ∥A∥F as its transpose, spectral norm, and
Frobenius norm respectively. Given another matrix B, A ≻ B means that A − B is positively
defined, and A ⪰ B means A−B is positive semidefinite.

Problem formulation: Consider a network with M agents, each of which holds a dataset Ξm =
{ξi(m)}Ni

i=1, for m = 1, · · · ,M , where Ni is the number of training samples in the dataset Ξm,
ξi(m) ∈ Rp is the i-th sample stored in the m-th agent. We assume that data are evenly collected and
each agent has an equal sample size of N for ease of presentation. Our primary focus is on solving
a stochastic decentralized optimization approximated by its corresponding empirical loss,

L̂(x) := min
x∈Rp

1

MN

M∑
m=1

N∑
i=1

lm
(
x, ξi(m)

)
, x̂ := arg min

x∈Rp

1

MN

M∑
m=1

N∑
i=1

lm
(
x, ξi(m)

)
,

where x is the target parameter, and lm(·)s are the objectives that measure the performance of
the local models. Throughout, we assume the objectives are convex, closed, and proper (c.c.p)
but not necessarily differentiable. The goal is to learn a globally optimal solution, referring to
consensus parameter (Cao et al., 2021; Shi et al., 2014) x̄ = 1

M

∑M
m=1 x(m), on M agents across a

network diagram, where x(m) is the solution of the local parameter on the m-th agent. Among the
agents, the estimates per iterate are peer-to-peer without the existence of a central coordinator, and
its connection is typically modeled as a graph, e.g. Figure 4 in the Appendix. We stress that each
agent operates independently and the average is only taken in the last iteration.

Communication graph: We now formally define the mathematical concept of graphs to character-
ize the communication among the agents. We define the connected network by, G = (V, E) with
vertex set V = {1, . . . ,M} and edge set E ⊆ V×V . We denote N (m) as the neighbour set of agents
m. Edge (m, l) ∈ E represents the interconnection between agent m and its neighbors l ∈ N (m).
The decentralized optimization is associated with a given network topology that can be formulated
mathematically by a mixing matrix (Alghunaim et al., 2019; Ying et al., 2021) and its properties can
be summarized as follows.

Definition 1 (Mixing Matrix) For any given graph G = (V, E), the mixing matrix W = [wm,l] ∈
RM×M is defined on the edge set V that satisfies: (1) if m ̸= l and (m, l) /∈ E , then wml = 0;
otherwise, wml > 0; (2) W = W⊤; (3) null{I−W} = span{1}; (4) I ⪰ W ≻ −I.

We remark that W is a double gossip matrix that characterizes the communication among the agents
and the matrix is non-unique for a given graph (Ying et al., 2021; Sun et al., 2021). Let λ :=
max {|λ2| , |λM |}, where λi denotes the ith largest eigenvalue of W ∈ RM×M . The spectral gap as
1 − λ measures the connectivity of gossip communications among these agents (Zhu et al., 2022).
Definition 1 implies that 0 ≤ λ < 1. A larger value of λ indicates less exchange communication
among local agents.

The KM iteration, as a simple implementation and fast convergence method in practice, has a long
history and has been the most useful method in modern computing including operator-splitting and
alternating-direction methods (Wotao, 2019; Wang et al., 2022). It is the basic and one of the most
popular iterative schemes for finding one fixed point of a nonexpansive operator. Specifically, the
KM algorithm offers several advantages over traditional optimization methods (e.g., Newton-type
algorithms and interior-point methods) (Davis & Yin, 2016; Ryu & Yin, 2022; Liang, 2016): the
former can easily handle nonsmooth terms and abstract linear operators, requires only simple arith-
metic operations and scales well with the dimension of the problem. The KM additionally applies a
decomposition procedure in which the original problem is broken into subproblems that can easily
be solved (Ryu & Boyd, 2016). The KM iteration is widely applied to centralized learning (Chraibi
& Takác̆, 2019; Saber Malekmohammadi, 2021; Malinovsky et al., 2020).However, it is still an
open question to perform the KM iteration in a decentralized learning setting. We next fill this gap
by proposing the decentralized KM iteration and presenting detailed schemes for the local agents.
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Definition 2 (Stochastic Decentralized Krasnosel’skiı̌–Mann (dKM)) Suppose the training sam-
ple set Ξ :=

⋃M
m=1 Ξm is distributed-stored in M agents with total sample size NM , where Ξm is

a training dataset located in the m-th agent for m = 1, · · · ,M . We assume that ξi(m) ∼ P with
ξi(m) ∈ Ξm for any m, i. For each agent, given a nonexpansive operator T , the iterative formula of
the stochastic dKM algorithm, A, is defined as,

xk+1(m) = A
(
xk(m); Ξ

)
=

∑
l∈N (m)

wmlx
k(l) + αk

(
T
(
xk(m); ξik(m)

)
− xk(m)

)
, (1)

where wml is the element of a given matrix W satisfying Definition 1, αk ∈ (0, 1]. ik is an i.i.d.
variable drawn from the uniform distribution over {1, · · · , N} at the k-th iteration. Further, let
X = [x(1), · · · , x(M)]

⊤ ∈ RM×p that stores all local parameters across the network, T(X; Ξ) =

[T (x(1); Ξ1) , · · · , T (x(M); ΞM )]
⊤ ∈ RM×p stacking all local updating w.r.t. the first argument.

Iteration (1) has the matrix form, Xk+1 = WXk + αk

(
T
(
Xk; Ξ

)
−Xk

)
.

As we consider the general framework of a decentralized learning problem with mild conditions
(c.c.p.) for the loss, general computational procedures with wide coverage and flexibility that can
be used to handle numerically inconvenient loss come more naturally. Specifically, the form of
T in Definition 2 depends on the specific algorithm we adopt. For example, dKM implies gradient
descent, proximal gradient descent, and ADMM algorithms in a decentralized setting when choosing
T as a forward operator, forward-backward operator, and Douglas-Rachford operator. Please refer to
Table 1 in the appendix for some forms of T . Additionally, the stochastic dKM algorithm provides
a guideline to design a new decentralized learning algorithm by specifying the form of T .

Privacy Concern: Despite each agent communicating with its neighbours by sending parameters
instead of directly exchanging raw data, the risk of leaking information still exists: the attacker
can recover the sensitive information of data from shared parameters as discussed in Shokri et al.
(2017), Fredrikson et al. (2015). This motivates us to consider privacy preserving iteration procedure
with efficient communication while it retains a performance guarantee. Differential Privacy (DP),
introduced by Dwork et al. (2006), is a widely adopted definition due to its important advantages
over other privacy techniques. It quantifies to what extent individual privacy in a dataset is preserved
while releasing aggregated information.

Definition 3 ((ε, δ)-Differential Privacy Dwork et al. (2006)) A stochastic algorithm A is called
(ε, δ)-differential privacy if for any subset R0 ⊂ Rp and any neighbouring sample set pair Ξ and Ξ′

which differs by only one sample, we have log

[
PA(Ξ)(A(Ξ)∈R0)−δ

PA(Ξ′)(A(Ξ′)∈R0)

]
≤ ε.

The common interpretation of (ε, δ)-differential privacy is that it is ε-differential privacy except with
probability δ (Mironov, 2017). The parameters ε and δ are privacy budgets indicating the strength
of privacy protection from the algorithm. The classic differential privacy is called ε-differential
privacy with δ = 0, which imposes an upper bound eε on the multiplicative distance of probability
distributions of randomized query outputs for any two neighbouring data sets (Dong et al., 2019).

3 SENSITIVITY OF THE STOCHASTIC DKM ITERATION

In this section, we estimate the ℓ2 norm sensitivity of the stochastic dKM, laying the foundation for
noise addition in the truncated generalized Gaussian mechanisms in Section 5. Before formalizing
the result, we present the assumptions throughout and introduce the definition of the sensitivity of
algorithms in a decentralized learning setting.

Assumption (1) The loss function is c.c.p. and sub-differentiable with respect to x, and the fixed-
point iteration is bounded by a finite constant B, i.e., maxx,ξ ∥T (x; ξ) − x∥ ≤ B; (2) The loss
function l(x, ξ) is nonnegative and ∥l∥∞ ≤ R for some constant R > 0.

∥T (x; ξ)− x∥ in Assumption (1) is defined as a fixed point residual in the literature which typically
relates to the gradient of an objective function (Davis & Yin, 2016). We note that Assumption (1) is
weaker than Yu et al. (2021a); Xu et al. (2022); Huang & Gong (2020); Sun et al. (2021); Zhu et al.
(2022) as well as a common Assumption (2) in Sun et al. (2021); Zhu et al. (2022).
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The sensitivity based on two datasets that differ at only one point is commonly used in Yu et al.
(2021a); Xu et al. (2022); Huang & Gong (2020). Although the only different point stored at any lo-
cal agent, the local communication among agents without a coordinator, affecting the full networks,
promotes us to quantify its impact on a learning algorithm globally as introduced in Definition 4.

Definition 4 (Sensitivity) For a specific algorithm A acting on training samples, Ξ′,Ξ′′ which are
two adjacent datasets that differ by one data point. Until iteration K, define the ∆K-sensitivity of
algorithm A as ∆K := supΞ′,Ξ′′ ∥A (Ξ′)−A (Ξ′′)∥ .

We are now establishing the ∆K-sensitivity of the dKM algorithm. That is, we, through Theorem 1,
provide the boundedness on ∆K due to the only one different point for any two adjacent datasets.

Theorem 1 (∆K-Sensitivity) Given xK =
∑M

m=1 xK(m)

M , yK =
∑M

m=1 yK(m)

M , denote xK and yK

as the corresponding outputs of the dKM algorithm applied to two sets Ξ′, Ξ′′ of size NM which
differ at only one point. Assume the initial value X = 0. With Assumption (1) satisfied, given relaxed
parameter, {αk}Kk=0 ∈ (0, 1], the ∆K-sensitivity of the dKM algorithm has the upper bound,

E∆K ≤
2B
∑K−1

k=0 αk

NM
+ 4B

K−1∑
k=0

(1 + 2αk)
k−1∑
j=0

αjλ
k−1−j .

Note that the derivation of sensitivity of our proposed dKM algorithm does not require the assump-
tion of smoothness and strong convexity of objective functions. Theorem 1 quantifies the accumu-
lated deviation bound between two trajectories of iterates based on two datasets that differ at only
one point, where it allows to exist at any local agent. Compared with Huang & Gong (2020) studying
the local sensitivity, Theorem 1 establishes the global sensitivity as the local communication of the
network makes this different point, e.g. storing in agent 1, affects the final output. The expectation
in Theorem 1 comes from the randomness of picking the different point to update the iterate in Defi-
nition 2. Specifically, we pick the only different point for two adjacent datasets with probability 1/N
to update the iterate and have 1−1/N chance using the same points. We, from Theorem 1, have that
with a fixed iteration number K, as the data size, M,N increases and λ decreases, ∆K gets smaller
for both diminishing and constant learning rates. However, it fails to control the sensitivity when
K increases, which also suggests the risk of privacy that, with the higher iterative step, it will be
easier to identify the specific sample. Moreover, the sensitivity decreases as λ decreases indicating
the effect of different topologies on ∆K . Table 2 in the appendix summarizes it for clarity. This
theorem also provides a rule to establish the adding mechanisms to guarantee DP in Section 5.

4 PERFORMANCE AND GENERALIZATION OF DECENTRALIZED LEARNING
ALGORITHMS WITH DIFFERENTIAL PRIVACY

Existing DP schemes in decentralized learning typically rely on the perturbation of objective func-
tions, and gradients, but are limited to iterates (Yu et al., 2021a; Xu et al., 2022; Huang & Gong,
2020). Such methods usually introduce extra noise that has privacy preservation. It is still hard to
examine the privacy and performance trade-off in the generalization of DP algorithms (He et al.,
2021). In this section, we establish a generalization error bound and a finite sample guarantee of
decentralized learning algorithms when these algorithms satisfy differential privacy. These results
illustrate the effectiveness of using dKM with any differentially private mechanism (Definition 3)
in applications. We next proceed by quantifying the bound considering iterate independent noise
addition mechanisms and computing the end-to-end differential privacy guarantee across M agents
over a network system.

Let L(x) = Eξ∼P[l(x, ξ)] and x⋆ be its optimal solution. Note that, for a specific stochastic al-
gorithm B := (A1, · · · ,AM ) on Ξ with sample size NM with output B(Ξ), where A1, . . . ,AM

performing on local agent allows being different, the excess generalization error of B defined as,
EΞ,B [L(B(Ξ))− L (x⋆)] , can be decomposed into three terms (Bottou & Bousquet, 2007),

EΞ,B

[
L(B(Ξ))− L̂(B(Ξ))

]
︸ ︷︷ ︸

generalization error

+EΞ,B

[
L̂(B(Ξ))− L̂(x̂)

]
︸ ︷︷ ︸

optimization error

+EΞ,B

[
L̂(x̂)− L̂ (x⋆)

]
︸ ︷︷ ︸

test error

. (2)
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We establish the boundedness of generalization error in Theorem 2 that reflects joint effects caused
by the data Ξ and the algorithm.

Theorem 2 (Generalization Bound) Assume that the decentralized learning algorithm B : Ξ 7→
Rp × {1, · · · ,M} is (ε, δ)-differentially private. Under Assumption (2), we have that,

| E
Ξ∼PMN ,B(Ξ)

[
L(B(Ξ))− L̂(B(Ξ))

]
| ≤ (1− e−ε)R+ e−εMδ.

Theorem 3 (Finite Sample Guarantee) Under the Assumption of Theorem 2, we have,

P(L(B(Ξ)) ≤ L̂(B(Ξ)) + ϵ) ≥ ϵ− (1− e−ε)R− e−εMδ

ϵ+R
, for any ϵ > 0.

These two theorems represent the gap between the empirical loss based on finite samples and its
expectation. It demonstrates the impact of differential privacy on out-of-sample performance by
establishing the bound of L(B(Ξ)) in probability and expectation. Although ensuring data privacy
sacrifices the generalization, these results show that a good privacy-preserving mechanism still re-
tains a certain level of generalization as well as a finite sample guarantee. In the existing work for
DP decentralized learning, Xu et al. (2022) provided convergence and regret analysis based on gra-
dient aggregation and Gaussian mechanism in the presence of Byzantine nodes; Yu et al. (2021a)
explored the convergence rate of DP-SGD algorithm with Gaussian mechanism; Huang & Gong
(2020) theoretically analyzed the utility of DP-ADMM algorithm, which can be measured by the
expected empirical risk with feasibility violation. Note that our theoretical results in Theorem 2 and
3 are suitable for all DP mechanisms. As far as we know, we are the first to establish a generalization
bound and finite sample guarantee in DP decentralized setting.

We address that Theorem 2 and 3 require the algorithm B globally being (ε, δ)-DP. Additionally,
considering that each agent acts independently in practice, where there is less likely to reach an
agreement on a consistent (ε, δ)-DP across all agents (Bellet et al., 2018), we then proceed by
investigating how the local computation would affect global differential privacy as a composition
theorem which also provides the reasonableness of DP assumption in Theorem 2 and 3. In detail,
Theorem 4 shows the level of overall privacy cost, given the privacy cost levels of the local agents.
Similar results are discussed in Huang & Gong (2020); Yu et al. (2021a).

Theorem 4 (Composition Theorem) Define iterates, which is similar to the output in Definition 2,
generated by the specific stochastic algorithm with K steps as {xk}Kk=1. For the m-th agent, denote
Ãm : Ξ 7→ {x̃k(m)}Kk=1, where x̃k(m) is the iterates corrupted by noise. For any fixed m, if Ãm

is (εm, δm)-differential private, then X̃k = (x̃k(1), · · · , x̃k(M))T is (ε′, δ′)-differential private,
where,

ε′ = min {ε1, ε2, ε3} , δ′ = 1−

{
M∏

m=1

(1− eam
δm

1 + eεm
)

}
+

{
1−

M∏
m=1

(1− δm
1 + eεm

)

}
,

with, ε1 =
∑M

m=1 εm, ε2 =
∑M

m=1
(eεm−1)εm

eεm+1 +

√∑M
m=1 2ε

2
m log

(
e+

√∑M
m=1 ε2m
δ̃

)
, ε3 =∑M

m=1 CKL(m) +
√
2log( 1

δ′ )(
∑M

m=1 ε
2
m) with CKL(m) := min {min {2, eεm − 1} εm, εm}, for

some 0 < am ≤ εm,
∑M

m=1 am = ε′, and real constant δ̃.

For completeness, Algorithm 1 shows the detailed iterative step of dKM with noise addition to
preserve DP, and we further examine the optimization error bound in formula (2) that is caused
by adding noise to the query output. Specifically, we consider iterate independent noise addition
mechanisms (Definition 5) to preserve DP for dKM in practice: a random noise is added to the
iterate to reduce leakage information.

Definition 5 (Noise-adding Mechanisms for dKM) Given a data set Ξ, a query-output indepen-
dent noise-adding mechanism Ã will release the query output x̃k = Ã(xk; Ξ) corrupted by an
additive random noise d, x̃k = xk + d.
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Algorithm 1 Differentially Private Decentralized Krasnosel’skiı̌–Mann Iteration (DP-dKM)

1: Initialize: X̃
0
, mixing matrix W, αk ∈ (0, 1], number of iterations K

2: while k ≤ K do
3: for m ∈ V (m ∈ [1,M ]) do
4: xk(m) = WX̃

k−1
(m) + αk−1(T (x

k−1(m))− xk−1(m)) (Local computation)
5: end for
6: for m ∈ V do
7: Generate random noise εkm, x̃k(m) = xk(m) + εkm (Differential Privacy)
8: Broadcast x̃k(m) to all neighbours j ∈ N (m)
9: end for

10: end while
11: Output: XK = (xK(1), · · · , xK(M)) and x̄K = 1

M

∑M
m=1 x

K(m)

Let X⋆ = [x⋆, · · · , x⋆]⊤ ∈ RM×p be the true parameter and X̃ = [x̃(1), · · · , x̃(M)]⊤ be the
released iterates corrupted by an additive random noise for each agent, the DP-dKM can be written
as Xk+1 = WX̃k + αk

(
T
(
Xk; Ξ

)
−Xk

)
. According to Assumption (1) and (2), the error bound

is controlled by

∥WX̃k + αk

(
T
(
Xk; Ξ

)
−Xk

)
−X⋆∥ ≤ ∥Xk+1 −X⋆∥+ ∥W

(
Xk − X̃k

)
∥,

where the first term is the same as in the non-privacy setting, which depends on the convergence
properties of a given algorithm (Wotao, 2019). The second term indicates the deviation by using the
privacy mechanisms. The following theorem gives the upper bound of the second term.

Theorem 5 (Boundedness of local iterates based on Gaussian additive noise) Given a data set
Ξ, assume an iterative independently noise-adding mechanism Ã releases the output Ã(xk; Ξ) :=
xk+d corrupted by an additive random noise d, where d follows a Gaussian distribution with mean
µ and variance σ2. The error bound caused by the additive noise is,

E
[∥∥∥W (

Xk − X̃k
)∥∥∥2

F
≤ p

(
σ2 + µ2

) [
(M − 1)λ2 + 1

]
.

5 DIFFERENTIAL PRIVACY VIA TRUNCATED GENERALIZED GAUSSIAN
MECHANISMS

While commonly adopted Gaussian noise-adding mechanisms for a single iterate can guarantee
DP (Croft et al., 2022; Cormode et al., 2019; Yu et al., 2021a; Xu et al., 2022; Huang & Gong,
2020), such mechanisms do not take into consideration the valid range of the iterates being posed
and the utility of learning algorithm Geng et al. (2018); Bun et al. (2018): the extremely large
noise will severely affect a learning process and degrade the performance of the trained model under
differential privacy guarantee. For example, Yu et al. (2021a;b) gave the lower bound of variance
of Gaussian noise to guarantee DP. Ganesh & Zhao (2020) considered (ε, δ)-differential privacy
with generalized Gaussian mechanisms to answer k counting queries about a database. Different
from Ganesh & Zhao (2020), our proposed generalized Gaussian mechanisms are novel due to
the boundedness of noise. Specifically, we truncate the probability density function used for the
generation of noise with a careful determination of an appropriate bounding parameter and propose
truncated Generalized Gaussian (GG) distribution Pd := GG(0, σ, b) with location parameter 0,
scale parameter σ > 0, shape parameter b > 0. Its probability density function is,

p(z | 0, σ, b) = Cgg exp

{
−
(
|z|
σ

)b
}
, where z ∈ [−A,A], (3)

where Cgg is a constant to guanrantee
∫ A

−A
p(z | 0, σ, b)dz = 1. In the experiment, we use truncated

GG noise with b = 1, 2, which represents the truncated Laplace distribution (Definition 6) and
truncated normal distribution (Theorem 6) to preserve DP.
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Definition 6 (Truncated Laplacian Distribution Geng et al. (2018)) Given the privacy parame-
ters, 0 < δ < 1

2 , ε > 0, and iterates sensitivity ∆ > 0, the truncated Laplacian distri-
bution with p = 1 in formula (3) preserves (ε, δ)-differential privacy when taking λ := ∆

ε ,

CLap :=
(
2λ
(
1− e−

A
λ

))−1

, A := ∆
ε log

(
1 + eε−1

2δ

)
.

Theorem 6 (Truncated Gaussian Distribution) The truncated Gaussian distribution pnor(z) with
p = 2 in formula (3) preserves (ε, δ)-differential privacy, where σ2 ≥ ε−1∆2, the constants Cnor

and A are determined by
∫ A

−A
pnor(z)dz = 1 satisfying the equation,

Cnor ·
∞∑
l=0

(−1)l · A2l+1

σ2ll!(2l + 1)
=

1

2
, Cnor ·

∞∑
l=0

(−1)l
A2l+1 − (A−∆)2l+1

σ2ll!(2l + 1)
= δ.

Note that the truncated Gaussian mechanism is also considered in Cesar & Rogers (2021) which
focused on exploring privacy loss composition bounds for special classes of differentially private
algorithms, while we aim to reduce the amount of added noise with the same level of privacy. An
important property of the truncated GG mechanism is that the range of addition noises is bounded
to [−A,A] while the DP still holds. More importantly, the truncated GG mechanism simultaneously
improves the utility and guarantees privacy. Its good performance compared with the state-of-the-art
methods is illustrated in the numerical experiments.
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Figure 1: The sensitivity analysis of parameter (ε, δ) for SGD with a full connected graph.

6 NUMERICAL EXPERIMENT

We compare the proposed DP-dKM algorithm with baseline algorithms under various decentralized
settings (ring, star, and full-connected graphs): (a) non-private decentralized approach; (b) private
decentralized approach with Laplace noise; (c) private decentralized approach with Gaussian noise
(Yu et al., 2021a; Huang & Gong, 2020). The average root means squared error (RMSE) is used to
quantify their performance. To start with, we do a sensitivity analysis caused by privacy parameters
(ε, δ) by solving least squares using the SGD algorithm on a fully connected graph. The results are
shown in Figure 1.

In Figure 1, the first and second columns compare the performance of Laplace and truncated Laplace
mechanisms with different ε and δ. Similarly, the comparisons between Gaussian and truncated
Gaussian mechanisms are shown in the third and fourth columns. Figure 1 indicates that the pro-
posed mechanism has the smallest RMSE compared with Laplace and Gaussian mechanisms and
enjoys better convergence properties. In addition, the results demonstrate the privacy-utility trade-
offs of the proposed approach: the RMSE increases as ε increases with fixed δ. When privacy
leakage increases, the truncated Laplace and truncated Gaussian approach achieves better utility.

We next consider ℓ1 regularized least square regression and ℓ1 regularized logistic regression by
employing the differentially private SPGD and ADMM algorithms with truncated generalized GG
noise with b = 1, 2 to evaluate the performance of Algorithm 1,

1

MN

M∑
m=1

N∑
i=1

(Amix− bmi)
2 + λ∥x∥1,

1

MN

M∑
m=1

N∑
i=1

{log(1 + eAmix)− bmiAmix}+ λ∥x∥1.

The element Ami, x are drawn independently from the normal distribution. λ > 0 is a regularized
parameter controlling the impact of the regularizer and is chosen by the grid search method. We fix

8
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Figure 2: Estimation error on Ring, Star, and Full connected graphs. The first and two columns are
ℓ1 penalized least squares; The third and fourth columns are ℓ1 penalized logistic regression.

the privacy budget ε = 0.5 and δ = 10−3 to evaluate the performance of the truncated approaches
under the settings with different numbers of distributed data sources and different typologies. The
results are summarized in Figure 2-3. We consider M = 5, N = 100 in Figure 2. Figure 3
explores the estimation error as the number of agents changes, showing that RMSE increases as
agents increases. It also demonstrates that the truncated GG mechanism has the smallest RMSE than
Laplace and Gaussian mechanisms, and keeps the same level of privacy. These results also show the
effect of the topology graph on the convergence of the Algorithm 1: the algorithm converges faster
with the star and full-connected graphs than the ring graph.
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Figure 3: The estimation error as the number of agents changes.

7 CONCLUSION

In this paper, we have proposed a general framework of the privacy-preserving algorithm, DP-dKM,
that is applicable to all communication network diagrams and covers many existing decentralized
learning and optimization problems and show that the proposed algorithm retains the performance
guarantee on generalization, and finite sample performance. We also established the effect of local
privacy-preserving computation on global differential privacy. To avoid extremely large additional
noise added to the shared information that will severely affect and degrade the performance of the
learning process, we have introduced a truncated generalized Gaussian mechanism, in which we
demonstrate privacy and utility trade-offs under a differential privacy guarantee. Experiments have
demonstrated that our algorithm is effective in decentralized settings and performs better than the
state-of-the-art baseline algorithms.
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Ilya Mironov. Rényi differential privacy. In IEEE 30th Computer Security Foundations Symposium
(CSF), pp. 263–275. IEEE, 2017.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, 2018.

Ernest K Ryu and Stephen Boyd. Primer on monotone operator methods. Appl. comput. math, 15
(1):3–43, 2016.

Ernest K Ryu and Wotao Yin. Large-Scale Convex Optimization. Cambridge University Press, 2022.

Zeou Hu Yaoliang Yu Saber Malekmohammadi, Kiarash Shaloudegi. An operator splitting view of
federated learning. arXiv:2108.05974, 2021.

11



Under review as a conference paper at ICLR 2023

Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin. On the linear convergence of the admm
in decentralized consensus optimization. IEEE Transactions on Signal Processing, 62(7):1750–
1761, 2014. doi: 10.1109/TSP.2014.2304432.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In IEEE Symposium on Security and Privacy (SP), pp.
3–18. IEEE, 2017.

Tao Sun, Dongsheng Li, and Bao Wang. Stability and generalization of decentralized stochastic
gradient descent. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 9756–9764, 2021.

Yafei Wang, Bo Pan, Wei Tu, Peng Liu, Bei Jiang, Chao Gao, Wei Lu, Shangling Jui, and Lin-
glong Kong. Sample average approximation for stochastic optimization with dependent data:
Performance guarantees and tractability. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 3859–3867, 2022.

Stefanie Warnat-Herresthal, Hartmut Schultze, Krishnaprasad Lingadahalli Shastry, Sathya-
narayanan Manamohan, Saikat Mukherjee, Vishesh Garg, Ravi Sarveswara, Kristian Händler,
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