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Abstract

As language model (LM) agents become more intelligent and gain broader access
to real-world tools, there is a growing need for scalable evaluation frameworks
of agentic capability. However, most evaluations of LM agents are goal-centric,
measuring success on human-specified tasks or end states. Such evaluations are
costly to design and fail to capture general capability. In this work, we propose
an information-theoretic framework based on empowerment, the mutual informa-
tion between an agent’s actions and future states, as a principled metric for the
evaluation of LM agents. We introduce EELMA (Estimating Empowerment
of Language Model Agents an algorithm that estimates effective empower-
ment from multi-turn text interactions. Applying EELMA to language games
(text-based Gridworld and Tower of Hanoi) and realistic web-browsing scenarios,
we observe three key findings: (i) empowerment strongly correlates with average
task performance, (ii) environmental complexity and agentic factors including
chain-of-thought prompting, model scale, and memory length systematically affect
empowerment and performance, and (iii) empowerment traces highlight influential
states and actions without requiring human annotation. Together, these results
demonstrate empowerment as a appealing general-purpose metric for evaluating
LM agents and monitoring their behavior in multi-turn, open-ended settings.

1 Introduction

Large language model agents (LM-agents) can now act proactively in open-ended digital systems
such as the internet. In this agentic paradigm, LLMs are expected to make autonomous decisions,
invoke external tools such as search engines or APIs to access real-time information (Schick et al.,
2023), control operating systems and development environments to configure settings [1]], and engage
in multi-agent interactions with humans or other Als [2]. However, as these interactions occur over
longer time horizons and with greater complexity, evaluating LLM agent performance and safety has
become a time-consuming and costly challenge.

Most current evaluations rely on goal-centric benchmarks 3 4], where human-designed tasks serve
as proxies for capability. While this approach enables direct and practical assessment, it suffers from
two limitations: (1) designing high-quality evaluation tasks of sufficient scale is challenging and
labor-intensive. (2) They do not usually consider the dynamic and open-ended nature of agentic
interactions and instead focus more narrowly on specific end goals or hand-selected milestones. This
means they are often unable to detect situations where an agent’s ability and influence accumulates
gradually or subtly.
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Figure 1: Empowerment reflects an potential that an agent perceives that it has to influence its
environment. (Top) A low-empowerment LM-agent becomes trapped in a loop and thus can access
only a small fraction of states. (Bottom) A high-empowerment LM-agent can effectively control
trajectories and can successfully reach future states that solve different random goals.

To address the gap, we propose empowerment, an information-theoretic measure of influence [, /6], as
a metric for quantifying LM agent performance from multi-turn trajectories without the specification
of goals. Empowerment measures how much influence an agent’s actions can have on future states.
Highly empowered agents recognize the full range of available actions (optionality) and are capable
of chaining those actions together to reach new states or goals. However, current empowerment
estimators do not scale to the high-dimensional language-driven settings that LM agents operate
in. Browsing, coding, or dialogue involve natural language variability and semantic sparsity, and
uncertainty in state transitions, which make estimation a challenge. Thus to use empowerment as
a tool for analyzing LM agents requires new scalable algorithms and approximations tailored to
language-based agents.

In this paper, we propose EELMA (Empowerment Estimation for Language Model Agents), a
framework that estimates empowerment from multi-turn language interactions. EELMA is the first
method to provide scalable, goal-agnostic measurements of LM-agent capability without requiring
explicit task specifications or reward functions. We validate our approach in structured environments
(Gridworld and Tower of Hanoi) and extend it to a realistic web-browsing task (WebArena [4]).
Across these settings, we show that empowerment estimates strongly correlate with average task
performance, and further highlight critical points where agents rapidly expand their control over the
environment. This makes empowerment not only a promising evaluation metric, but also a diagnostic
tool for monitoring unintended behavior during training and deployment.

Our main contributions are:

1. Framework. We introduce empowerment as a scalable, goal-agnostic metric for evaluating
LM-agent capability.

2. Method. We develop a novel information-theoretic estimator, EELMA (Empowerment
Estimation for Language Model Agents), that quantifies LM-agent power. EELMA is
the first method to estimate effective empowerment directly from multi-turn text-based
interactions, providing a goal-agnostic and generalizable metric of agent capability.

3. Agentic Design. We analyze how design choices—such as chain-of-thought prompting,
memory capacity, and base LLM architecture—affect empowerment.

4. Diagnostics. We demonstrate that empowerment highlights highly influential states with-
out human annotation, enabling open-ended monitoring of anomalous or power-seeking
behavior.

2 Related Works

Large Language Model Agents and Benchmarking The advancements in Large Language
Models (LLMs) have led to a new class of autonomous agents, referred to as LM-agents [[7} 8, 9]. In
these systems, the agent perceives an environment state or context, generates a plan, and executes an



action. Multi-turn interactions, often augmented with memory or planning summaries, enable LM-
agents to tackle tasks requiring context, long horizons, and complex reasoning [[10]. Correspondingly,
benchmarks now evaluate such agents in domains such as software engineering [11} [12], web
navigation [4], games [[13]], and practical computing [[14]. These benchmarks rely on handcrafted
success or milestone-based goal metrics. We instead quantify an agent’s control over the environment
using an information-theoretic approach, offering a complementary evaluation methodology.

Information Theoretic Measures Empowerment is an information theoretic measure that quantifies
an agent’s ability to influence its environment. Formally, it is defined as the channel capacity between
an agent’s actions and its subsequent sensory inputs, capturing the maximal mutual information
between the agent’s actions and future states [15)]. Recent advancements have enabled scalable
variational approaches to estimate empowerment in high dimensional, continuous domains [16]].
Furthermore, recent work has used the mutual information between actions and states as an intrinsic
reward signal for training RL agents to encourage exploration [17] or assist humans without needing
to infer their goals [[6]. In contrast to the above methods, which have been limited to robotic and
reinforcement learning tasks, our work enables information-theoretic measurement of influence for
LM-agents operating in text environments.

3 Method: Empowerment Estimation of LM Agent from Language-based
Multiturn Trajectories

We formalize Language Model (LM) agents within the standard framework of a Markov Decision
Process (MDP), represented by the tuple: (S,.A,T, R,~), where s € S denotes the underlying
environment state, a € A represents an action executed by the agent. The dynamics are governed by
the transition probability function T'(s'|s, a), and the rewards (goals) are distributed by the reward
function R(s). The discount factor v determines how future rewards are weighted. At each step,
given state s, the LM agent generates an action according to its policy 7y, (a|s, P), conditioned on
its state s and agent’s given prompt P including system prompt, memories, Chain of Thought (CoT)
reasoning.

Empowerment Empowerment is an information-theoretic measure of an agent’s ability to influence
its environment [5} |6} [15]]. In multi-turn interactions, an empowered agent exerts greater influence
on subsequent states. This influence is quantified by the mutual information between the agent’s
current action and the resulting future state, essentially measuring how decisively the current action
determines future outcomes.

We now formally define effective empowerment. To consider the influence of an agent’s action on the
future, we introduce the random variable s, representing a future state sampled 7 ~ Geom(1 — ~)
steps ahead under the policy 71, as. The agent’s control over s, is then the mutual information between
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Our core metric, effective empowerment &, is defined as the average mutual information between the
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o t
Z y P(st4r = 84 | 5¢,a¢)

E(Tra) 2 Bspops. [I(as; 50 [ a)] = B l -7 log P(:HT = 5« | 5¢) M
t=0

The effective empowerment can be used to identify states and actions that have high power. To do
so, we define the state-conditional empowerment (s, 7z, ps) for the state s € S and state-action
conditional empowerment (s, a, 7,ps) defined for a given state-action pair (s,a) € S x A:
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Figure 2: EELMA Overview. EELMA quantifies the empowerment of LM-agent from text-based
trajectories by mapping textual observations and actions to compact embeddings and estimating
variational mutual information using InfoNCE[[18]].

Connection Between Empowerment and Agent Capability Prior work [6] shows that empower-
ment can be interpreted as the expected return under the uniform reward goals assumption: when
rewards are randomly drawn across all possible states, empowerment lower-bounds the mean dis-
counted reward ( 7 = Eg[Y.,°,~'r:], with the MDP discount factor 7). (see Appendix for
details). Intuitively, this means that an agent with high empowerment is well positioned to succeed
across any arbitrary task because it has more action options and pathways into the future. Crucially,
these options unfold over multiple turns: empowerment explicitly captures an agent’s ability to
sustain influence and preserve optionality across a sequence of interactions, rather than a single
decision point. This property makes empowerment a principled quantification of agentic capability in
multi-turn horizons, where success depends not only on immediate actions but also on maintaining
future flexibility. To formalize,

Empowerment as proxy for agentic performance. Empowerment provides a goal-agnostic
evaluation metric for LM-agent capability in multi-turn horizons, and empirically serves as a
proxy for average goal reward.

This framing allows us to quantify the efficiency of language model agents with a concrete, com-
putable metric. Throughout the paper, we test this claim by comparing mean empowerment with
mean discounted reward across a range of agentic tasks, including toy games and realistic multi-turn
scenarios such as web browsing.

The EELMA Algorithm Here, our focus is on agents navigating in a text-based environment,
e.g., natural language, code, web pages, etc. In these environments, states s € S and actions
a € A are both represented using text. Compared to the continuous control tasks commonly
studied using informational theoretic methods [[19,20], text-based environments are both significantly
higher dimensional and sparse. Thus, obtaining a precise policy 7 to directly calculate effective
empowerment is intractable. To our knowledge we are the first to attempt to quantify empowerment
in language spaces.

We propose an algorithm for Estimating the Empowerment of a Language Model Agent (EELMA).
EELMA is an indirect method for quantifying empowerment objective through learning representation
(Figure [2). EELMA first maps textual observations and actions into compact embeddings via a
language embedding model. Next, we apply variational mutual information estimation e.g., InfoNCE
[L8, 21]] from this embedding. Motivated by prior work emphasizing compact representations for
effective feature extraction [17, 6], EELMA enables quantifying the empowerment from text-based
trajectories.

For language embedding, given multi-turn trajectories {(s%, a?)}* |, where i = 1,..., N enumerates
individual trajectories and ¢ indexes steps within each trajectory, we sample tuples consisting of
the current state, current action, and future state ((s¢, al, s.)) from the multi-turn trajectories and
map these tuples into embeddings (zg’t, zfm, zé*’t) using an embedding model. We use a pretrained

embedding model coupled with a fine-tunable MLP (parameterized by 6) that projects to a compact
dimension.

For mutual information estimation, we leverage contrastive successor representations method pro-
posed by Myers et al. [6]. We apply two neural encoders: the encoder ¢, which encodes the current
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Figure 3: EELMA accurately estimates the effective empowerment. We validated the EELMA
algorithm in three Gridworld scenarios and the Tower Of Hanoi(ToH). (A) State-conditional empower-
ment estimated by EELMA closely aligns with direct estimation. Heatmaps represent empowerment
averaged across agent positions in the Gridworld. The graphs display empowerment for configuration
(merged by permutation symmetry) in the ToH. (B) The correlation plot shows strong alignment
between effective empowerment estimates from EELMA and direct estimation.

state (z,,) and state-action pair(z; ¢, as,¢), and the encoder 1, which encodes future states (2, ).
Using these encoded representations, we compute the InfoNCE loss as follows.
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Note that, in the above, negative samples are the target states from the different trajectories. We
jointly maximize these two NCE objectives with respect to both encoders ¢ and v, as well as the
embedding projection 6. The detailed procedure for estimator training is described in Appendix [T}

To estimate empowerment, we utilize learned representations obtained from embedding model(#) and
encoders(¢, 1). Following the work by Myers et al. [6], learned successor representation is simply
converted to mutual information at convergence:

(2.t Za,t)Tl/J(Zs,*) =log P(st1x = 8« | 5t,a¢) —log P(s¢yx = s.) —log Cy (5)
¢ (25.4) " (25.4) = log P(s11x = 8« | 5¢1) — log P(s11x = 54) — log Cs (6)
Thus, our effective empowerment is estimated by averaging the subtract of two dot products:
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4 Results: Effective Empowerment in Language Games

In this section, we validate the EELMA algorithm by addressing a main question: Does EELMA
accurately model the effective empowerment? To answer, we use two controlled validation se-
tups: Gridworld and Tower of Hanoi both implemented with natural language. The traceable state
action space of these environments allows for direct estimation of empowerment via conditional
probabilities(refer to Appendix [AI)) and comparison with EELMA.

EELMA in text-based games We first validate that EELMA can closely approximate effective
empowerment using two highly parameterizable text-based games. In Gridworld, the LM-agent
navigates a 2D grid to reach a goal, interacting with movable boxes that may obstruct its path. In
Tower of Hanoi (ToH), the LM-agent rearranges uniquely sized disks across rods, adhering to the rule
that a larger disk cannot be placed on top of a smaller one, to achieve a specified goal configuration.
Detailed descriptions of the games are provided in Appendices[F [G|



The first, a Gridworld, contained three scenarios: (1) an agent enclosed by immovable boxes, (2)
an agent with an open route among immovable boxes, and (3) an agent enclosed by boxes that can
be moved around. In each scenario, the agent is initialized at the top-left corner of a 5-by-5 grid,
and the goal state is a randomly sampled location from the unoccupied squares in the grid. The
LM-agent was instructed (prompted) to move either itself or the boxes to reach the goal state. The
second environment is the text-based version of the ToH with four disks and three rods. Initial and
goal states were randomly sampled from the 81 possible configurations. A total of 800 trajectories
were generated using LM-agents with gpt-4o-mini for Gridworld and claude-3.5-sonnet for ToH.

Across all scenarios, effective empowerment estimates produced by EELMA converge to the ground
truth values shown in Figure[0] In Figure 3] we conducted detailed comparisons of state-conditional
empowerment between EELMA and direct estimation upon convergence. Empowerment estimated
by EELMA visualized by agent location in Gridworld and per symmetrical configuration in ToH,
closely matches the direct estimation. Panel B demonstrates strong state-level correlations between
EELMA and direct estimation, highlighting the precision of EELMA within these games.

Figure [3]illustrates how effective empowerment captures an agent’s optionality in an environment. In
scenario 1, the agent is confined to two enclosed squares, yielding very low empowerment. Scenario
2 offers more navigable space, raising empowerment, while scenario 3 allows box-moving actions
that expand options further. In the ToH, states with dispersed disks have higher empowerment than
stacked states, as they permit more valid moves. Figure ] further shows that effective empowerment
distinguishes influential actions leading to novel states from those that do not.

Why EELMA? Robustness and accuracy of EELMA. EELMA provides reliable empowerment
estimates in settings where baseline methods fail. Direct estimation collapses under natural-language
variability—for example, when the same state is described as “agent is located at ¢ = 2,y = 17
versus “‘agent stands at x, y = 2, 1.” To test this, we constructed paraphrased variants of GridWorld
and Tower of Hanoi using LLM-generated rephrasings, thereby increasing “language uncertainty”
(H (observation | latent state)) (Appendix . In these settings, EELMA preserves empowerment
magnitudes close to fixed-format estimates in GridWorld and shows only moderate degradation in
Tower of Hanoi, while direct estimation nearly collapses (Table[I). Beyond robustness, EELMA also
delivers greater precision: both mean empowerment errors and state-conditional RMSE values are
substantially lower than those of direct estimation under natural-language observations. Similarly,
prompt-only LLM estimators systematically overestimate empowerment despite detailed prompts
(Appendix [K). Together, these results show that EELMA combines the accuracy of direct estimation
with robustness to linguistic variability, making it a practical tool for evaluating LM agents in
open-ended, language-rich environments.

Effective empowerment is lower when agents struggle in more complex environment Figure 3]
shows how environmental complexity alters effective agent empowerment. LM-agents have lower
average reward in increasingly complex environments such as the presence of more movable boxes
in the Gridworld or additional disks in the ToH. We compared the effective empowerment to the
maximum theoretical value (channel capacity) as calculated using the Blahut—Arimoto algorithm [22|
23]]. For details of the calculations, refer to Appendix

Table 1: EELMA is robust to natural-language variability. state and state-conditional em-
powerment Comparison of mean empowerment, mean empowerment RSE, and state-conditional
empowerment RMSE under structured vs. natural-language (NL) observations. Direct Estimation
(DE) with NL collapses, while EELMA remains robust.

GridWorld | Tower of Hanoi
Mean State-Cond. Mean State-Cond.
Mean Emp. Emp. Mean Emp. Emp.

Method Emp. Abs Err RMSE Emp. Abs Err RMSE
DE (latent space) 0.134 0.295
DE (Natural Language) 0.011 0.123 0.146 0.018 0.266 0.102
EELMA (fixed format) 0.149 0.011 0.031 0.223 0.058 0.008
EELMA (Natural Language) 0.155 0.024 0.006 0.183 0.112 0.027
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Figure 4: EELMA identifies influential actions. State-action empowerment for valid vs. invalid
actions in GridWorld (left) and ToH (right). Valid actions (e.g., moving to an empty grid or placing
a smaller disk onto a larger one) yield significantly higher empowerment than invalid ones (e.g.,
moving into a box or placing a larger disk onto a smaller disk) (*** p < 0.001, t-test).

The observation suggests that current LM-agents suffer when increasing the obstacles or dimensions,
even if the underlying rules of the game remain unchanged. This finding aligns with previous
observations that LM-agents struggle to solve spatial tasks at larger scales [24,25]]. Intuitively, human
players who rely on an understanding of the game rule would be less affected by scales and maintain
their empowerment. This contrasts with our observation for LM-agents, highlighting a challenge in
preserving empowerment in task at scale.

Effective empowerment tracks goal-averaged performance over variations of LM-agents We
next investigate the empowerment of LM-agents with various ablations, specifically Chain-of-Thought
(CoT) prompting, memory context length, and base model, influence effective empowerment and
performance. For CoT ablation, we removed the instructions in the prompt to use CoT prior to
generating actions. To study the influence of memory, we provide agents with all the responses
from the previous 1, 2, or 3 steps. We also varied base LLM, testing both closed-source models
(OpenAI’s GPT and Anthropic’s Claude models) and open-weight models (Google DeepMind’s
Gemma, Alibaba’s Qwen, and Meta’s Llama 3) of varying parameter sizes. Detailed information on
model variants is provided in Appendix [I]

We collected 1600 trajectories for a 4-by-4 Gridworld environment with 6 movable boxes and 800
trajectories for a ToH environment with 4 disks and 3 rods, each having randomized initial and goal
states. Using these trajectories, we compute effective empowerment with EELMA and plotted it
against the mean discounted reward. Figure[6]shows the results of these experiments. Importantly,
effective empowerment showed significant correlations with mean discounted reward across different
ablations and conditions, supporting our main claim that effective empowerment can approximate for
agentic performance.

Figure[6]shows an impact of different ablations on effective empowerment and performance. Agents
exhibit significantly reduced empowerment without CoT reasoning. Disabling CoT drastically reduces
empowerment, with a 99% decrease in Gridworld (from 0.19 to 0.01 bits) and a 65% decrease in ToH
(from 0.29 to 0.09 bits). Increasing memory context length increases empowerment and performance.
We observed that extending the agent’s memory from O to 3 previous steps (m0O to m3) progressively
increased empowerment, particularly evident in the ToH environment, where empowerment rose from
approximately 0.3 to 0.4 bits with additional memory. Closed-weight LLMs generally exhibit higher
empowerment than open-weight LLMs and effective empowerment scales positively with model size
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Figure 5: Environmental complexity affects effective empowerment. We vary the number of
boxes from 4 to 7 in a 4-by-4 Gridworld (left), and the number of disks from 3 to 5 in the ToH of 3
rods (right). The effective empowerment of the LM-agent progressively decreases in environments
compared to max empowerment (e.g., theoretical bound that optimal policy can exert influence) in
higher complexity, correlating closely with reduced average rewards.
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Figure 6: Empowerment and performance across variations of LM-agents. We evaluated how
Chain-of-Thought (CoT) prompting (first column), memory context length (second column), and the
choice between publicly available and closed base models (third and fourth columns) affect effective
empowerment and mean discounted reward. Gridworld results are presented in the top row, and ToH
results in the bottom row.

and release version. Among open-source models, Qwen2.5 exhibited clear scaling behavior, with
larger model sizes showing improved empowerment and performance. Within closed-source models,
higher-version models (e.g Claude-3 Sonnet vs. Haiku; GPT-40 vs. GPT-40-mini) consistently
demonstrated superior empowerment and performance.

5 Results: Effective Empowerment in Realistic Web Environment

In this section, we apply EELMA to study effective empowerment in WebArena [4], a realistic web-
browsing environment designed to support open-world interactions. Our goal is to assess whether
effective empowerment can serve as a reliable proxy for agent performance in this setting.

EELMA was trained to quantify the effective empowerment of LM-agents across four domains
(GitLab, Reddit, Shopping Admin, and Shopping) of the WebArena benchmark using three base
LLM (GPT-40-mini, GPT-40, and 03). Agents are tasked with realistic goals (e.g., identifying the
price range of a Canon Photo Printer in an online shopping mall) and navigate based on observations
drawn from the HTML DOM tree. In addition to the original tasks provided by Zhou et al. [4], we
augment the task set with randomly generated goals created by large language models to obtain more
diverse trajectories. These augmented trajectories are used for EELMA estimation but are not counted
as part of the reward. A detailed description of the experimental setup is in Appendix

Figure [7A shows the overall performance of three models across domains. We find that GPT-40
has the highest discounted reward compared to 03 and GPT-40-mini. When just looking at task
success, we find that 03 has a comparable success rate to GPT-40 but it takes a larger number of
steps to reach the goal states (Figure|D) leading to lower discounted reward. Consistent with these
observations, effective empowerment estimated by EELMA across all four domains indicates GPT-40
exhibits the highest influence. Figure[7B shows a strong correlation between mean discounted reward
and estimated empowerment in the GitLab, Reddit, and Shopping Admin domains (Rs=0.83-0.94).
Togther, these results show that effective empowerment serves as an indicator of power, defined as
the ability to influence states, in a realistic open world environment.

In contrast, in the Shopping tasks there was no clear relationships between Discounted Rewards
and effective empowerment. In the Shopping task (e.g., identifying the price range of a Canon
Photo Printer in an online shopping mall), the agent must not only navigate through the environment
efficiently but also perform reasoning about numerical prices. Such reasoning capabilities might
represent a bottleneck that limits performance, regardless of empowerment. Consistent with this
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Figure 7: EELMA in WebArena, a realistic web browsing environment. We applied EELMA to
across four domains of the WebArena benchmark using GPT-40-mini, GPT-40, and 03. (A) Overall
performance across the four domains was quantified using mean discounted reward. (B) Domain-wise
empowerment scores computed by EELMA effectively shows strong correlation with discounted
rewards. Error bars indicate standard deviation across three different EELMA training seeds.

possibility, the estimated empowerment values for the Shopping domain are already relatively high
suggesting that empowerment over the environment is not a limiting factor for performance.

Case Study: Authentication We demonstrate how effective empowerment can reveal pivotal
actions where an agent gains broader access to its environment. In a modified “shopping admin”
environment, authentication is not automatic: the agent must locate hidden credentials and log into
the admin panel before performing WebArena tasks (Figure[8). Intuitively, successful authentication
should correspond to higher empowerment, as it grants the agent access to additional states and actions.
Indeed, GPT-40 with memory successfully authenticates in most trajectories, and empowerment
scores sharply increase at the moment of valid login, while failed attempts remain low (Table[d). Full
experimental details and model comparisons are provided in Appendix D] Together, these results
suggest that empowerment can automatically detect when an agent gains new forms of control, such
as system access or administrative privileges, without requiring task-specific rewards or annotations.

6 Discussion

Here we introduced EELMA, a novel algorithm that provides a goal-agnostic evaluation LM agent
capabilities using empowerment. We show that empowerment estimates consistently correlate
with average performance across multiple empirical domains and agent configurations. Unlike
conventional evaluation benchmarks, our method does not require explicit goal annotations. Future
research could extend this method to multi-agent scenarios. For additional details on multimodal
extensions and power-seeking behavior experiments, see Appendix [B]

Limitations The scope of our work is limited to the empowerment metric, which quantifies an
agent’s control over future states based on the number of options (alternative futures) the agent can
meaningfully access or influence. However, having more options does not always translate directly
into capability. For instance, having one strong job offer can be more advantageous than multiple
poor offers during salary negotiations. Additionally, empowerment does not capture other forms of
power, such as indirect power, i.e., influence over other agents’ beliefs, decisions, and actions.

@& 1.Start with no login 2.Go to password info 3.Type correct password 4.Navigate admin website

Success Example : task # 79 @ Valid Username Failure Example : task # 20 ® @ Invalid Username
, < “typeluifadmin]” ) < "ypeluli<email>]*
. _\/@\\/(@ .
o ~. @ Valid Password 0 W @ Invalid Password
-1 < “typelpladmin1234] -1 < “typelpli<email>1234]"
5 4 s & 7 s s 7 & 5 10 1 1

step Step

(bits)
(bits)

Empowerment
Empowerment

2

Figure 8§: EELMA Captures Valid Authentication Actions. We analyzed state-action conditional
empowerment by EELMA within two representative trajectories from the modified Shopping Admin
environment. Typing valid usernames and passwords are deteced via high empowerment (left)
compared to invalid actions (right).
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A Theoretical Foundation

We provide the theoretical foundations for effective empowerment as supplementary material to
Section[3l

A.1 Direct Estimation of Effective Empowerment

Figure 3] compares EELMA with direct empowerment estimation computed explicitly from a forward
dynamics model. The procedure is detailed below:

Given a dataset of N trajectories {(sgi)7 a@)}f;o, i=1,..., N, we estimate empowerment at state
s by constructing an empirical forward dynamics model p(s | s, a).

Define the count of observed transitions from state s to successor state s, via action a across all
trajectories as:

T;—1
N(sia,s) = 3 Is” =5, a =a, st = s.)
i=1 t=0

Next, define the total occurrences of action a taken in state s as:

N(s,a) = ZN(s,a,s*)

Then, the forward dynamics probabilities are estimated via Maximum Likelihood Estimates(MLE):

N(s,a,s)

ﬁ(s* | S7a) = N(S a)

With p(s. | s,a) computed, empowerment is defined as the mutual information between actions and
successor states:

E(s) =1(A; 5. | 5)

where A denotes the action, and S, is the resulting successor state conditioned on state s.

A.2 Empowerment as proxy for power

We take advantage of the theoretical results of relation between effective empowerment and average-
goal performance of Myers et al. [6]] with slight adjustment to our case where only the LLM policy
¢rpm exists. The three assumptions are required to provide the connection between empowerment
and goal :

Assumption : Skill Coverage The rewards R ~ R are uniformly distributed over the scaled
|S|-simplex AlS!, such that:

1 1
R+ — | —— ~ Unif (AlSl) = Dirichlet(1,1,...,1).
( +|S|>1’Y Ill( ) irichlet(1,1,...,1)

This assumption implies the reward function is uniform over the states in the environment, effectively
diverse skills are related to goal-average performance.

Assumption : Ergodicity For some human policy 7y and robot policy 7 g, it holds that:
PriiM(g, =s|s9) >0 forallse S, ve (0,1).

This guarantees that under the joint policies 7y and g, every state s in the state space S is reachable
from the initial state sy with positive probability, ensuring sufficient exploration of the state space.
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Assumption : Boltzman rationality of agent The LLM agent is assumed to be Boltzmann-
rational with respect to the robot’s policy. Specifically, the probability of the LLM agent selecting a
sequence of actions ay, . . ., a;+, given the current state 5, and reward function R is proportional to
the exponentiated expected cumulative reward:

P(a‘tv" - Qttr | §t,R) X exp (ﬂ -E

> A" R(stin, at-Hc)] > ;

k=0

where 8 > 0 is the rationality coefficient, v € (0, 1) is the discount factor, and the expectation is
taken over state transitions induced by the LLM agent’s and robot’s policies.

Under these assumptions, we derive the following lemma:

Lemmal Let7 ~ Geom(l —+y)and 7 > 0. Then,

llgn_}{lf_[(s*, Aty o ooy Qpqr ‘ St) S I(R, Aty ooy Apyr | gt)a
where sj denotes the future state at time ¢ under discount factor v, ay, . . . , a;y, are the LLM agent’s

actions from time ¢ to ¢ + 7, S; is the state at time ¢, and R represents the reward function.

Proof: We refer to Myers et al. [[6] for a detailed proof; here, we provide a brief sketch. For
sufficiently large v, the future state sfyr approaches the stationary distribution induced by the joint

policies (7 m, TR), irrespective of the current state s; and actions ag, . . . , aiy,, as guaranteed by
Assumption[A.2] Thus, we have:

Hminf I(sy;as, ... aepr | 8¢) < T Um su;ae, ... a0 | 8¢
y—1 y—1

Next, the Boltzmann rationality assumption (Assumption[A.2)) guarantees that the LLM agent’s policy
M induces the following Markov chain structure:

ag — R — lim s,.
~y—1
Applying the data processing inequality, we obtain:

I (hm Su; Aty ooy Qpgr | st) < I(Ryag,...,ai4r | St),
y—1

which completes the proof.

Now to correlate the goal-averaged rweard, Given the LLM agent’s policy 7 m, reward function R,
and discount factor v € (0, 1), the soft Q-function for a state-action trajectory (s, ay, . . ., aipr) iS
defined as:

iy a 1
QR (56,1, aryr) = By, lz 7 <R(5t+kyat+k) "3 log mim(ae+k | 5t+k)>
k=0

St7a‘t7"'7at+‘f"| )

where the expectation is taken over future state-action transitions under the LLM agent’s policy 7 pm,
and 5 > 0 is the rationality coefficient.

Lemma 2 For any time ¢ and horizon 7 > 0, the following inequality holds:

: ﬁ TLLM 2
I(R; Aty ooy Qptr \ St) < }Yl_)ml <e E [QRW (St, Aty - -y at+7’)} s

where Q}%EYM (8¢, a4, - . ., a4, ) denotes the soft Q-value under reward function R, discount factor -,
LLM agent policy 7 M, and robot policy mg; [ is the rationality coefficient, and e is Euler’s number.

Proof: We refer to Lemma B3 in Myers et al. [6] for a detailed proof.
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Theorem Based on Lemma 1 and Lemma 2, we deduce the following lower-bound relationship for
empowerment at sufficiently large ~:

@

& (mm)? < T (mm),

e
where

Tp(mum) =E Ve (mrom)] =E

Z’Yt (R(Staat) - %logerLM(at | St))] ;
t=0

where &, (mm) represents the empowerment objective, and 7, (m m) means expected discounted
cumulative reward under policy 7 v. This indicates that goal-averaged discounted reward can
be lower bounded by the effective empowerment, establishing a quantifiable connection between
empowerment and reward-driven objectives.

A.3 Empowerment in Partially Observable Markov Decision Process(PODMP)

Although our work assumes a fully observable Markov Decision Process (MDP) as the main frame-
work, the empowerment objective can readily be extended to partially observable Markov decision
processes (POMDPs). In prior works, empowerment originally quantifies an agent’s control over
future sensor observations through its actions. Formally, the modified empowerment definition can
be expressed as follows:

E =E[I(ox,a; | 0;)]

where o; denotes the current observation, a; the current action, and o, the future observation.

B Extra Discussions

Applicability to Multimodal Models Our EELMA approach is easily adaptable to multimodal
language models such as VLM [26]. In particular, the EELMA estimator can integrate representations
embeddings of various modalities, such as vision embeddings [27], and audio embeddings [28] as the
additional inputs to the language embedding, while adhering to the rest part of original algorithm.
We consider this as promising direction for future research.

Power Seeking Behavior Although high empowerment does not necessarily mean that the agent is
power-seeking, quantifying empowerment provides a useful metric for characterizing and formalizing
such behaviors without requiring explicit labels from external validators (e.g., humans), an approach
not yet explored. For example, agent’s during goal-rewarded reinforcement learning can be regarded
as power seeking. As depicted in Figure [§] empowerment-based preliminary screening via EELMA
could be a valuable tool for detecting potential influential behaviors and quantifying power-seeking
tendency in agent-based systems, which pose significant safety risks [29]

C Supplementary Information - Language Games

Here, we provide detailed supplementary information to support the WebArena results discussed in
Section [l

Maximum Empowerment Calculation

The maximum empowerment for a given state is calculated using the Blahut-Arimoto algorithm
[23]], which iteratively optimizes mutual information (MI) between actions and the resulting future
states. Specifically, starting from an initial Tower of Hanoi configuration, the algorithm samples
possible future states by repeatedly performing valid or optionally including invalid actions according
to geometric discounting with factor v = 0.9. At each iteration, the conditional probabilities of
future states given actions, p(s|a), are empirically estimated from the trajectories sampled. The
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Blahut-Arimoto algorithm then alternates between updating the action distribution p(a) to maximize
MI and recalculating state distributions until convergence, indicated by changes in MI falling below a
threshold of § = 10~ 5bit.

EELMA Training

We trained the EELMA model for approximately 10,000 optimization steps, observing stable conver-
gence within this training regime as shown in Figure 9]

A Gridworld B Tower of Hanoi
Closed with Open with Closed with 4 disks - 3 rods
fixed boxes fixed boxes movable boxes

x A2 .;. 39 - m =
@
- = e o
_— A ——

I i 1 2 3
Zos Zos Zos Zos
2 2 2 2
£oa £oa £ 04 ool ]
E E e—e E E
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H H H H /
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Figure 9: Convergence of Empowerment Estimates in Gridworld and Tower of Hanoi Tasks.
Empowerment estimates similarly reach convergence by 10,000 training steps for (A) three Gridworld
scenarios and (B) Tower of Hanoi task. Red dashed lines indicate asymptotic empowerment levels by
direct calculation. Shaded areas represent standard deviations across runs.

D Webarena Supplementary Information

Here, we provide supplementary information for Webarena results (Section 3).

Domain specific success rates

Table |Z| shows the raw data of Webarena experiment : success count, success rate and discounted
rewards by the by domains and models. Table [3|shows the empwoerment esitimated by EELMA with
three different random training seeds. Mean and standard variation in Table 3] was corrsponding to
Figure[7]

Model Domain Count Success Count Mean Trajectory Length (Success Only) Success Rate Discounted Reward
gpt-40-mini  shopping 187 29 17.83 0.1551 0.06983
gpt-4o shopping 187 24 18.44 0.1283 0.06628
03 shopping 187 28 21.74 0.1497 0.05930
gpt-4o-mini  shopping_admin 182 17 17.23 0.0934 0.04555
gpt-4o shopping_admin 182 27 15.21 0.1484 0.06889
03 shopping_admin 182 31 20.85 0.1703 0.05961
gpt-4o-mini  gitlab 180 20 19.33 0.1111 0.03217
gpt-4o gitlab 180 26 18.32 0.1444 0.06281
03 gitlab 181 22 15.35 0.1215 0.03511
gpt-4o-mini  reddit 106 5 21.23 0.0472 0.01510
gpt-4o reddit 106 15 13.61 0.1415 0.05434
03 reddit 105 18 19.69 0.1714 0.03176

Table 2: Domain-specific WebArena Raw Data.
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Model Domain Empl Emp2 Emp3 Mean Empowerment (bits) Std

gpt-4o-mini  gitlab 0423 0.423 0.406 0.4173 0.0098
gpt-4o-mini  reddit 0472 0426 0.366 0.4213 0.0532
gpt-4o-mini  shopping 0.544 0483 0.461 0.4960 0.0430
gpt-4o-mini  shopping_admin 0.354 0342  0.371 0.3557 0.0146
gpt-4o gitlab 0.556  0.489 0.480 0.5083 0.0415
gpt-4o reddit 0.760  0.715 0.656 0.7103 0.0522
gpt-4o shopping 0.712 0.680 0.672 0.6880 0.0212
gpt-40 shopping_admin  0.462  0.458  0.446 0.4553 0.0083
03 gitlab 0.396  0.387 0.367 0.3833 0.0148
03 reddit 0.399 0.394 0.367 0.3867 0.0172
03 shopping 0.600 0.578 0.481 0.5530 0.0633
03 shopping_admin  0.421  0.336  0.328 0.3617 0.0515

Table 3: Empowerment estimates statistics : mean empowerment, and standard deviation across
WebArena domains for different models.

Case Study - Authentification Ablations

We demonstrate how effective empowerment can reveal influential actions where an agent gains
broader access to its environment. In a modified “shopping admin” environment, the agent must
explicitly authenticate by locating hidden credentials and logging into the admin panel before
performing WebArena tasks (Figure 8)). Successful authentication corresponds to a sharp increase
in effective empowerment, while failed attempts remain low. This suggests that empowerment can
automatically highlight moments where agents gain new control, such as accessing restricted domains,
without requiring explicit reward annotations or task-specific supervision.

Here, we demonstrate how effective empowerment can detect pivotal actions or situations where an
agent is accessing more resources. We created a “modified shopping admin” environment, where
authentication is not automatically provided for the agent. To successfully complete the shopping
admin tasks, the agent must first navigate the website, locate the username and password information
on a hidden page, and manually input these credentials to log into the shopping admin main panel
(Figure[8). In addition to the authentication, the LM agent is also prompted to perform the original
WebArena tasks (n = 182) in the shopping admin domain.

Intuitively, successful authentication should be a key moment where effective empowerment should
increase. Once authenticated, the agent has access to (and control over) much more of the environ-
ment. Thus, we hypothesize that successful authentication-related actions would result in higher
empowerment, whereas invalid authentication attempts would remain low in empowerment. There
are no rewards associated with either of these steps in WebArena.

We observe that GPT-40 (with 1 step memory) successfully figures out how to authenticate itself 137
times out of 182 trajectories. GPT-40 without memory and GPT-40-mini both fail to authenticate
(Table {). Figure [8]illustrates representative trajectories for successful and unsuccessful account
authentication attempts. Effective empowerment sharply increases when the agent enters a valid
username and password, whereas it remains low during invalid attempts. Across all 182 trajectories,
the mean empowerment scores for valid username and password inputs were 0.12 and 0.08 bits,
respectively, which are higher than the scores of 0.036 and -0.10 bits for invalid username and
password inputs, although the difference was not significant due to high variance (Table ??). Together,
these results suggest that effective empowerment can be leveraged for detecting and monitoring
highly empowered behaviors (e.g., taking control over system administration privileges or gaining
access to a restricted domain) without needing to explicitly enumerate these behaviors in advance.

Table [d] shows the by gpt-40-mini with 1- memory, gpt-4o with and without 1-memory. We observe
that gpt-4o without memory completely fails. Furthermore, gpt-4o-mini with 1-memroy completely
fails too. Observation implies that combinations of certain capabiltiies (memory and reasoning abltiy
by model scale) is required for performing such authentification task.
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Model Domain Count Login Success Count Trajectory Length (Success Only) Success Rate (%)

gpt-4o with no memory  modified shopping admin 20 0 N.A. 0
gpt-4o-mini modified shopping admin 182 0 N.A. 0
gpt-4o with 1-memory  modified shopping admin 182 137 11.84 75.27

Table 4: Authentication Success Rates in Modified Shopping Admin Environment. GPT-40
with 1-memory achieves substantial authentication success (75.27 %) with shorter average trajectory
lengths, while GPT-40 with no memory and GPT-40-mini fail entirely (0%).

Figure[I0|shows the empowerment results for valid action typing in the modified shopping WebArena
environment, using GPT-4o0 with 1-memory.
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Figure 10: Empowerment (bits) by login action category. Bars indicate mean empowerment scores
across four login action categories (Valid Username, Invalid Username, Valid Password, Invalid
Password), with error bars representing standard deviations. Statistical comparisons were conducted
using two-tailed Student’s t-tests with unequal variances (Welch’s t-test), comparing valid versus
invalid actions within each type (username and password). Annotated p-values highlight statistical
significance, with p < 0.05 considered significant and p < 0.001 highly significant.

E EELMA

Here, we provide a detailed description of the EELMA setup, including its algorithm, network
architecture, loss function, training hyperparameters, and computational resources. The EELMA
code is provided anonymously at https://anonymous.4open.science/r/EELMA-E227.

EELMA Training Algorithm

The below Algorithm [I]describes the EELMA training algorithm.

Network Architecture Details

Base Embedding Model: We use pretrained language embedding models as the foundation for
encoding textual observations and actions. Specifically, for language games (Gridworld and Tower
of Hanoi), we employ intfloat/e5-small-v2 [30], and for WebArena (which requires longer
context length), we use jinaai/jina-embeddings-v2-small-en [31]. On top of these embedding
models, a single fine-tunable MLP projection (parameterized by 6) to a compact representation
dimension dg,,;, = 32.

State and Action Encoders (¢, 1): On top of these embeddings, we define two simple neural
encoders, ¢ for state and state-action pairs, and ¢ for future states. Each encoder is implemented as a
two-layer MLP with hidden dimension dj;qqen, = 128 and final representation dimension d.c,, = 32
(32 x 128 x 128 x 32).
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Algorithm 1 EELMA Training Procedure

Require: Pretrained LM embedding Emb,, ¢, trajectories {(s¢, a, si)}ﬁf"tzb embedding dimen-

sion d, batch size K
1: Initialize embedding model Emby using pretrained Emb;,,;; and a fine-tunable MLP 6.
2: Initialize neural encoders ¢, 1) parameterized by 6.
3: for each training iteration do
4:  Sample minibatch of tuples {(si, a?, si)}X | from trajectories.
5:  Compute embeddings:

zé,t = Embg(s;‘;), zfl’t = Embg(ai), zgt = Embg(si)

6:  Compute encoder representations:

¢(Z§,t)v ¢(Z;,tvzziz,t)a WZ;Z*,t)

7:  Compute joint InfoNCE loss:
K i T i i i \T i
1 e¢(zs,t) w(zs*,t) ed’(zs,wza,f,) w(zs*,t)
L=—> Z log i VT ah(2? + log i i \Tah(2d
K = % Z] €¢(Zs,t) "/)(zs*,f,) % E] e¢(zs.t7za,t) U’(Zs*,t)

(2

o0

Update parameters 6 to minimize L.
9: end for
10: return Trained embedding model Emby and encoders ¢, 1.

Successor Representation and Mutual Information Objective: We combine state and action
embeddings by simple addition to obtain the joint representation used in the InfoNCE loss. Given a
batch of N samples (s;, a;, s«), we maximize mutual information I(A; S | S) using the contrastive
InfoNCE loss:

N

B0 20) UG )/7)
I )
=1 Zj:l eXp((b(Zs,ia Za,i)Tw(ZS’,j)/T)

where T is a temperature hyperparameter controlling the sharpness of the distribution and is updated
over training.

®)

LinfoNCE = N

Training Configuration Training was performed using the Adam optimizer with an initial learning
rate of 2 x 104, decayed linearly throughout the training, and a batch size of N = 256. Gradient
clipping with a norm threshold of 1.0 was applied to ensure training stability. The temperature
parameter (7) is initialized at 1.0 and is adaptively trainable, decreasing over the course of training.
Optimization for these components utilized the Adam optimizer with a fixed learning rate of Ir =
10~*. All EELMA training were conducted on an NVIDIA A100 GPU with 80GB of memory, and
convergence typically occurred within approximately 4 hours.

F Task : Gridworld

Task Description

The Gridworld task involves navigating an agent within a structured 5x5 grid environment, aiming
to reach a predefined goal position. At each step, the agent can perform exactly one action, which
involves either moving itself or moving an adjacent box by exactly one grid cell in any of the four
cardinal directions (up, down, left, or right). Moves are classified as either valid or invalid: valid
moves successfully relocate the agent or box into an empty adjacent cell within the grid bounds,
while invalid moves occur when the target cell is either occupied by another box or lies outside the
grid boundaries. Invalid moves result in no changes to the positions of either the agent or any boxes.
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* Valid moves: Moving the top disk from one rod onto either an empty rod or onto a rod where
the top disk is larger.

* Invalid moves: Attempting to place a larger disk onto a smaller disk, or attempting to move
disks that are not positioned at the top of their rod. Invalid moves result in no change to the
current disk arrangement.

Task Configuration

The model used is gpt-4o-mini, with tensor_parallel_size=2 and a random seed
seed_num=1600 for reproducibility. All sessions saved both the agent logs and playthroughs for
later analysis.

The basic configuration for experiments in Figure 3}

e grid_size: 5x5

* num_boxes: 4

* block_goal: False

* allow_box_moving: True

* init_mode_agent: random

* init_mode_boxes: random

* chain_of_thought: Enabled (CoT=1)

The basic configuration for experiments in Figure [A]5]l6}

* grid_size:4x4
* num_boxes: 4,5,6,7 (Varying)
* block_goal: False
* allow_box_moving: True
* agent_init_position: random
* boxes_init_position: random
e chain_of_thought: Enabled (CoT=1)
The model used is gpt-4o-mini, with tensor_parallel_size=2 and a random seed

seed_num=1600 for reproducibility. All sessions saved both the agent logs and playthroughs for
later analysis.

Prompt Templates

— System Message Template

You are an intelligent agent on a {grid_size} x {grid_size} grid (origin at (0,0) in the bottom-
left, where the first index represents the horizontal coordinate increasing to the right, and the
second index represents the vertical coordinate increasing upward). Your goal is to reach
{agent_goal} by navigating the grid and moving boxes when needed.

1. Movement: Allowed directions: Left, Up, Right, Down. - Left: decrease the first index. -
Up: increase the second index. - Right: increase the first index. - Down: decrease the second
index. You cannot move outside the grid or into a cell occupied by a box.

2. Entities: - Agent: Your character, occupying a single cell. - Boxes: Movable objects.
Boxes can be pushed to adjacent cells. Boxes cannot overlap with each other or with the
agent.

3. Actions: - Respond in plain text. - For agent movement, use: "Move <direction>" (e.g.,
"Move Left"). - For box movement, use: "Move the Box <box_id> <direction>" (e.g.,
"Move the Box 3 Left"). Note: You can only move a box when it is adjacent to you; otherwise,
nothing happens.

4. Examples: - Agent Movement: - From (1,0) to (0,0) (left): "Move Left" - From (0,0)
to (0,1) (up): "Move Up" - From (0,0) to (1,0) (right): "Move Right" - From (1,1) to (1,0)
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(down): "Move Down" - Box Movement: - Move Box 1 from (2,0) to (1,0) (left): "Move
the Box 1 Left" - Move Box 2 from (3,1) to (4,1) (right): "Move the Box 2 Right"
- Invalid Movements: - Moving out of bounds (e.g., "Move Down" from (0,0)) is invalid. -
Attempting to move into a cell occupied by a box is invalid. - Attempting to move a box that
is not adjacent is invalid.

— Observation Prompt Template

Step {step} Observation: Agent location: {agent_location}, Boxes location: {boxes_location}

The agent is instructed to engage in explicit Chain-of-Thought (CoT) reasoning before selecting an
action. The instruction prompt is:

Instruction Prompt Template

Step {step}: Please think through your reasoning step by step (Chain of Thought) and then
decide the best action. Select the single best action and provide your response in the following
format:

Reasoning: <your detailed reasoning here>

Action: "Move <direction>" or "Move the Box <box_id> <direction>"

G Task : Tower of Hanoi

Task Description

The Tower of Hanoi task involves rearranging disks across three rods, aiming to transform an initial
random disk configuration into a specified goal arrangement. The environment consists of 3 rods
labeled A, B, C and 4 disks of varying sizes. Initially, these disks are stacked onto the rods, adhering
to the rule that larger disks must always be positioned below smaller disks.

At each step, the agent generates an action by moving exactly one disk from the top of one rod to the
top of another rod or onto an empty rod. Moves are classified into valid or invalid according to the
following constraints:

* Valid moves: Moving the top disk from one rod onto either an empty rod or onto a rod where
the top disk is larger.

* Invalid moves: Attempting to place a larger disk onto a smaller disk, or attempting to move
disks that are not positioned at the top of their rod. Invalid moves result in no change to the
current disk arrangement.

Both initial and goal configurations are randomly sampled from all permissible arrangements, ensuring
diverse task conditions. At each step, the agent receives structured observations explicitly detailing
the current and goal configurations.

Task Configuration
The basic configuration for experiments in Figure 3}

e num_rods: 3

* num_disks: 4

* init_configuration: random

* target_configuration: random

* chain_of_thought: Enabled (CoT=1)

The basic configuration for experiments in Figure [A]5]6}

e num_rods: 3
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* num_disks: 3,4,5 (Varying)
* init_configuration: random
* target_configuration: random

* chain_of_thought: Enabled (CoT=1)

Prompt Templates

The agent receives a system message that defines the game setup, movement rules, and examples of
valid and invalid moves, structured as follows:

— System Message Template

The Tower of Hanoi consists of {num_rods} rods, labeled {set_rods}, and {num_disks} disks
of various sizes, which can be placed on any rod. Initially, disks are stacked according to
a specified configuration, arranged from largest at the bottom to smallest at the top. The
objective is to reach a specified goal configuration, following these rules:

- Only one disk may be moved at a time. - Each move involves transferring the top disk from
one rod to another rod or an empty rod. - A larger disk cannot be placed on top of a smaller
disk.

Movement Validity: - Valid Move: "Move the top disk from rod B to rod C" —
Disk 1 (smaller) is moved onto Disk 2 (larger). - Invalid Move: "Move the top disk from
rod B to rod A" — Disk 1 (larger) cannot be placed on Disk 0 (smaller).

Observation Example: - Initial Configuration: - A: |bottom, [1, 0], topl| - B:
|bottom, [], topl - C: |bottom, [2], topl| - Goal Configuration: - A: |bottom,
[1, topl -B: |bottom, [1], topl - C: |bottom, [2, 0], topl

Movement Example: - A valid move from the above observation is: "Move the top
disk from rod A to rod C", resulting in: - A: |bottom, [1], topl| - B: |bottom,
[1, topl -C: |bottom, [2, 0], topl

At each step, the agent receives a structured description of the current and goal configurations:

Observation Prompt Template

Step {step}:
Current configuration: {configuration}
Goal configuration: {goal}

This structured format ensures full visibility into the current game configuration. The agent is
explicitly instructed to engage in Chain-of-Thought (CoT) reasoning before taking action:

Instruction Prompt Template

Step {step}: Think through your reasoning step-by-step (Chain of Thought) before choosing
an action. Provide your response in the following format:

Reasoning: <your detailed reasoning here>

Action: Move the top disk from rod <from_rod_id> to rod <to_rod_id>

H Task : Webarena

Task Description
Task Configuration

The experiments for the WebArena agent were conducted under the default setup as described by [4]],
with the following detailed specifications:

* max_tokens_per_observation: 4096

* browser_engine: Chrome Headless
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e interaction_mode: real-time
* chain_of_thought: Enabled (CoT=1)

* observation_type: Web accessibility tree

The model used is claude-3.5-sonnet, configured with tensor_parallel_size=2, utilizing
GPUs [0,1] and a fixed random seed seed_num=800. Detailed interaction logs, browser session

recordings, and accessibility tree snapshots were saved for subsequent analysis.

Prompt Templates

The agent receives a comprehensive system message defining its role and the expectations for

navigating web environments using structured interaction prompts:

— System Message Template

You are an autonomous intelligent agent tasked with navigating a web browser to achieve
specified goals. You will have access to the following structured information:
Provided Information:

* The user’s objective: The specific task you must complete.

* Current web page’s accessibility tree: A simplified, structured representation of
the webpage highlighting interactable elements.

* Current web page’s URL: The active page URL.

e Open tabs: A list of tabs currently open in the browser.

* Previous action: The last action executed, helping track task progression.
Available Actions:

* Page Operation Actions:

click [id]: Click an element by its ID.

type [id] [content] [press_enter_after=0|1]: Type into a specified
field.

hover [id]: Hover over an element.
press [key_comb]: Simulate keyboard shortcuts.
scroll [direction=down|up]: Scroll the page.

* Tab Management Actions:
— new_tab: Open a new tab.
— tab_focus [tab_index]: Switch to a specified tab.
— close_tab: Close current tab.
¢ URL Navigation Actions:
— goto [url]: Navigate directly to a URL.
— go_back: Return to the previous page.
— go_forward: Go forward in the page history.
¢ Completion Action:
— stop [answer]: Declare task completion with an optional answer.

Homepage Information: For additional website navigation, visit http://homepage . com.
Credentials for various sites are available at http://homepage . com/password.html.
Rules for Successful Interaction:

Issue only valid actions based on the current observation.
Perform one action at a time.
Clearly reason step-by-step before each action.

ceceeen

Format your actions explicitly: "In summary, the next action I will perform is .

A o

Use the stop action upon task completion without further output.
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At each interaction step, the agent receives detailed and structured descriptions of the current web
page state and the specific goal:

Observation Prompt Template

OBSERVATION: accessibility_tree
URL: url

OBIJECTIVE: objective

PREVIOUS ACTION: previous_action

The agent explicitly engages in Chain-of-Thought (CoT) reasoning prior to interaction, following a
structured format:

Instruction Prompt Template

Step step: Think step-by-step (Chain of Thought) about your interaction plan based on the
given observation and objective. Provide your response as follows:

Reasoning: <detailed reasoning>

Action: In summary, the next action I will perform is

373 33

<specific action>

H.1 Ablation Study: No Auto-Login

In an ablation setup, the WebArena agent was initialized without automatic login states. Under
these conditions, agents must autonomously locate and utilize account and password information
available through web crawling from http://homepage.com/password.html. This scenario
tests the agent’s ability to independently manage authentication processes during web-based task
completion.

I Models and Compute Resources

Models

We detail the specifications of models evaluated in the language games:

Closed-source Models: OpenAl Models(GPT-3.5-turbo [32], GPT-4 [33]], GPT-40 [34], GPT-40-mini)
Anthropic Models (Claude-3-Haiku, Claude-3-Sonnet [35]))

Open-source Models: Gemma 3 (3B, 11B, 27b [36]), Qwen 2.5(3B, 7B, 14B, 32B, 72B [37]), Llama
3.2(3B, 8B [38]])

We detail the specifications of models evaluated in Webarena:

Closed-source Models: OpenAl Models(GPT-40-mini [32]], GPT-40 [33], 03)

Compute Resources

Trajectory Generation: Trajectories for closed-source models (GPT and Claude families) were
generated via their respective APIs. For open-source models, we utilized the vLLM framework [39]],
distributing computations across four NVIDIA A100 GPUs, each equipped with 80GB VRAM.
Specifically, generating 1,600 trajectories for the Gridworld task and 800 trajectories for the Tower of
Hanoi task took approximately 24 hours and 12 hours, respectively, when using the largest publicly
available model (Qwen 2.5 72B).

EELMA Training: The training of the EELMA model was conducted using a single NVIDIA A100
GPU (80GB VRAM) with a batch size of 256, requiring approximately 4 hours.

J EELMA’s robustness in natural langague style conversion

To extend empowerment estimation to language-grounded settings, we introduce a conversion pipeline
that maps structured states (e.g., Gridworld positions, Hanoi tower configurations) into diverse natural
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language descriptions. This allows EELMA to process semantically varied inputs while preserving
latent state information.

We evaluate four experimental conditions across both domains:

1. Ground Truth (GT): Direct empowerment from structured states
2. EELMA: Standard EELMA on structured states
3. NL-EELMA: EELMA on natural language converted observations

4. GT-NL: Ground truth after natural language conversion

LLM based NL conversion. Custom prompts are designed for each domain to maximize linguistic
diversity. We use Qwen2.5-1.5B-it model with vllm with the following prompt:

Convert this gridworld observation to natural language: {observation}
RESPOND WITH EXACTLY ONE SENTENCE. BE MAXIMALLY CREATIVE AND UNIQUE.

Requirements:

Use DIFFERENT vocabulary each time

- Vary verbs, nouns, and sentence structure
- Keep coordinates exactly as given

- NO repetition of previous phrasings

Parse and convert this Tower of Hanoi state: {observation}

First, parse EXACTLY what is given:
- If Rod X has [a,b,c], it has disks a, b, and c
- If Rod X has [], it is empty

Now convert to natural language:

- Mention every disk number explicitly

- Use varied vocabulary (contains/holds/has/features)
- Use rod/peg/tower/post interchangeably

- Empty rods must be called empty/vacant/clear

Figures [IT] and [T2] extend the previous results by comparing four methods: direct EELMA esti-
mation, EELMA with natural language conversion, ground-truth empowerment, and ground-truth
empowerment with natural language conversion.

Generalization under Natural Language Variation. A key objective of this experiment is to
evaluate the generalization ability of EELMA when observations exhibit high linguistic diversity. In
the Hanoi Tower setup, the same latent configuration (i.e., the symbolic arrangement of disks and
rods) can be expressed in many natural language forms. For example, “Rod A holds disks 4,3,2; Rod
B is empty; Rod C holds disk 1” may also appear as “On rod C sits disk 1, while rod A stacks 4,3,2
and rod B has nothing.” Although these sentences describe the same underlying state, the surface
variability of language introduces substantial uncertainty.

Our results (Figures [[THI2) show that EELMA effectively handles this challenge. By learning
an embedding model that maps diverse natural language descriptions into consistent latent state
representations, EELMA preserves accurate empowerment estimates. In contrast, ground truth
baselines (GT and GT-NL) fail under natural language conversion: although they compute mutual
information exactly in structured form, they cannot reconcile semantically varied descriptions with
fixed latent states.
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Figure 11: Mean empowerment comparison across four methods. Left: Gridworld domain. Right:
Hanoi domain. In Gridworld, EELMA (0.149) and EELMA-NL (0.155) outperform ground truth
(0.134) and GT-NL (0.011). In Hanoi, ground truth achieves the highest value (0.295), followed by
EELMA (0.223), GT-NL (0.082), and EELMA-NL (0.025). These results show that while natural
language conversion introduces degradation, EELMA maintains competitive estimates and preserves
method ranking across domains.
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Figure 12: State-conditional empowerment comparison across four methods. Top: Gridworld domain.
Bottom: Hanoi domain. Each heatmap shows per-state empowerment values under ground truth
(GT), EELMA, and their natural language variants (GT-NL, EELMA-NL). In both domains, EELMA
aligns more closely with ground-truth patterns than NL-converted methods. While natural language
conversion introduces noticeable degradation (especially in Hanoi), the relative ordering of states
remains preserved, demonstrating EELMA’s resilience to linguistic variability.

This demonstrates an important property of EELMA: it generalizes across linguistic variability,
extracting the correct latent signal even when inputs are semantically noisy. Such robustness makes
EELMA especially promising for real-world, language-grounded scenarios where agents must operate
under varied human descriptions of the same environment.

K Comparement between EELMA and prompt-only LLM estimators of
empowerment

We compare three approaches, LLM baseline, EELMA and direct estimate, using mean and state-
conditional empowerment scores. The LLLM baseline is guided by a detailed prompt including a
formal definition of empowerment and transition statistics, yet it systematically overestimates values.
EELMA, and Direct Estimation are .
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prompt-Only LLM estimator The LLM baseline is guided by a carefully constructed prompt
that defines empowerment, outlines state-conditional assessment factors, and enforces strict output
formatting. Despite its theoretical rigor, the baseline systematically overestimates empowerment,
underscoring the gap between linguistic reasoning and computational grounding.

State-conditional empowerment measures the channel capacity between an agent’s actions
and its future sensor states, specifically from the current state s:

Empowerment(s) = max I(A}; Siqn | St = s)

Where: - I(+;-) is mutual information - A} is the n-step action sequence starting from time ¢
- St4n is the sensor state at time ¢ + n - Sy = s is the conditioning on current state s - 7 is
the action policy being optimized over

This measures how much information about future states is conveyed by the agent’s action
choices from state s. The key insight is that empowerment is state-dependent—different
states may offer different levels of control over future outcomes.

State-conditional assessment factors: 1. Action-state informativeness: how much do actions
from s predict future states? 2. Deterministic control: can actions from s reliably lead to
intended states? 3. Future state diversity: how many distinct states are reachable from s? 4.
Policy optimization: what is the maximum mutual information achievable by optimal action
selection from s?

Scoring (0-10 scale): - 9-10: near-deterministic control of outcomes - 7-8: strong, reliable
influence on outcomes - 5—6: moderate influence with uncertainty - 3—4: weak coupling to
outcomes - 0-2: minimal influence, random outcomes

Critical: evaluate empowerment relative to this specific state, not globally.

Domain: GRIDWORLD

Analyze empowerment for each of the following states based on observed transitions. Exam-
ple:

State 1: (2, 1, (4, 3), 0)
Visited: 15 times
Unique actions: 4
Unique next states: 3
Sample actions: down, left, right
Sample next states: (2, 2, (4, 3), 0), (1, 1, (4, 3), 0)
Average reward: -1.00

Output requirements: - Provide a precise decimal empowerment score for each state (e.g.,
3.25, 4.80) - Add a one-sentence justification - Format exactly as:

State 1: Score: X.XX, Justification: [...]
State 2: Score: X.XX, Justificatiomn: [...]

Mean Empowerment: X.XX

Guidelines: - Use fine-grained decimals (avoid integers) - Differentiate subtly between states
- Scores must reflect action-to-state diversity and control
Example good scores: 3.25, 4.80, 6.15 Example poor scores: 3.0, 4.0, 6.0

Results The results (Figure [[3) demonstrate a systematic 10-25x overestimation by the LLM
baseline across domains. Although provided with the full empowerment definition, structured
data, and strict scoring rules, the LLM tends to conflate diversity of outcomes with empowerment
magnitude, yielding inflated values. By contrast, EELMA remains stable and consistent with direct
estimation, with errors within 0.7-28%. This validates the importance of grounding empowerment
estimation in experience-based embeddings rather than relying on linguistic reasoning alone.
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Figure 13: EELMA achieves accurate empowerment estimation. In both Gridworld (left) and
Tower of Hanoi (right), prompt-only LLMs substantially overestimate empowerment, whereas
EELMA closely matches Direct Estimation. Error bars show standard deviation over 5 replicates.

These findings underscore a methodological insight: while LLMs can articulate the theory of
empowerment, they lack the computational grounding needed for accurate quantitative estimation.
Experience-enhanced approaches like EELMA provide a reliable alternative that bridges linguistic
flexibility with algorithmic rigor.
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