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Abstract
Unmeasured confounding is a major challenge for identifying causal relationships from non-
experimental data. Here, we propose a method that can accommodate unmeasured discrete confound-
ing. Extending recent identifiability results in deep latent variable models, we show theoretically
that confounding can be detected and corrected under the assumption that the observed data is a
piecewise affine transformation of a latent Gaussian mixture model and that the identity of the
mixture components is confounded. We provide a flow-based algorithm to estimate this model and
perform deconfounding. Experimental results on synthetic and real-world data provide support for
the effectiveness of our approach.

1. Introduction

One of the fundamental challenges of causal inference is the separation of the causal effect from
confounding, that is, from statistical dependencies that arise from common causes of the candidate
cause and effect. In Pearl’s notation (Pearl, 2009), this difference is captured by the key contrast
between the merely predictive conditional probability P (Y |X) and the causal effect P (Y |do(X)).
When confounding variables are observed, confounding can be controlled for by a variety of covariate
adjustment techniques (Imbens and Rubin, 2015; Chernozhukov et al., 2018). The ability to also
deconfound the causal effect in the case of unobserved confounding is one of the motivations for the
use of randomized controlled trials. The challenge of how to deconfound the causal effect without
experimentation has given rise to a variety of approaches that require different assumptions for
identification. These include instrumental variable approaches (Imbens and Rubin, 2015), approaches
based on parametric assumptions (such as in additive noise models (Tashiro et al., 2014; Hoyer et al.,
2008), linear models (Janzing and Schölkopf, 2018a,b) or binary Gaussian mixture models (Gordon
et al., 2023)), or settings where observed confounding is assumed to be representative of unobserved
confounding (Cinelli and Hazlett, 2020).

In this paper, we contribute to the effort to address unmeasured confounding in purely obser-
vational settings by imposing restrictions on the model class. Unlike previous work, we do this
by reformulating a confounded cause-effect model as an equivalent latent variable model with a
Gaussian mixture prior (see Figure 1). We then leverage the results of Kivva et al. (2022) that assure
identification (up to an affine transformation) of the latent Gaussian mixtures under the assumption of
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Figure 1: On the left, X causes Y and is confounded by H . On the right, observed variables
W = (X,Y ) are generated by latent variables Z, whose identifiability up to affine
transformation under model restrictions is shown by Kivva et al. (2022). We combine
knowledge of causal structure with identifiability results for latent variable models to
estimate causal effects despite unmeasured confounding (middle).

a piecewise affine mapping between latent and observed variables. We show that further constraints
on this model specific to our setting (notably causal order) allow to identify causal effects despite
(discrete) unobserved confounding. Implementing this approach with a flow-based deep generative
model, we show on both synthetic and real data how to estimate the desired causal effects despite
unmeasured confounding.

Notation. We will use uppercase letters for random variables (e.g. X) and lowercase for
deterministic ones (e.g. a realization x of X). Functions and variables that may be vector-valued will
be denoted in bold (e.g. X, f , ...), and ⊤ denotes transposition. We will use non-bold capital letters
for (deterministic) matrices, e.g. A. P (.) denotes a probability distribution, while p(.) denotes the
corresponding density with respect to the Lebesgue measure.

2. Background

Canonical cause-effect model in causal inference. In causal inference, the canonical cause-effect
model “X causes Y ” can be represented by a pair of so-called structural equations (Pearl, 2009):

X := fX(ZX) , Y := fY (X,ZY ) , with (ZX ,ZY ) ∼ PZ(ZX ,ZY ) , (2.1)

where the exogenous variables (ZX ,ZY ) are idiosyncratic error terms representing the influence
of external factors on the system, and (fX ,fY ) are the causal mechanisms associated with each
variable. Causal effects of interests are entailed by the mechanism fY that describes the influence
of X on Y . Confounding then posits the existence of a common cause H that influences both
idiosyncratic error terms, such that they become dependent when marginalizing with respect to H ,
leading to

PZ(ZX ,ZY ) =
∑

h P (ZX |H = h)P (ZY |H = h)P (H = h) ̸= PZX
(ZX)PZY

(ZY ) ,
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as depicted in the causal diagram of Figure 1a. Accounting for this dependence is necessary for the
unbiased estimation of the causal effect, but is difficult as ZX , ZY and H are typically unobserved.1

Identifiability of latent variable models. The field of latent variable models (LVM) (Kingma
et al., 2019; Papamakarios et al., 2021) addresses the learnability of models mapping latent variables
Z to observations W using a so-called mixing function Ψ such that W = Ψ(Z), using only
samples from the observational distribution P (W ). Identifiability results provide guaranties that,
given infinite data, the ground truth (Ψ,Z) can be recovered from P (W ) in the large sample limit,
up to well-characterized ambiguities. We build on results presented by Kivva et al. (2022), who
consider a generative model for observed variables W of the form:

H ∼ Cat(KH ,π) ,

Z | H = h ∼ N (µh,Σh) ,

W = Ψ(Z),

where Cat(K,π) denotes a categorical distribution with K categories and an associated vector
of event probabilities π. Assuming that Ψ is a piecewise affine injective function (which can be
implemented by ReLU networks), Kivva et al. (2022) show identifiability of Ψ and Z up to an affine
transformation (Kivva et al., 2022, Theorem 3.2). This model is depicted in Figure 1c.

3. Theoretical framework for discrete decounfounding

3.1. General setting

Mapping cause-effect models to LVMs. We consider the above cause-effect model in a setting
where an observed n-dimensional vector X causes an observed m-dimensional effect vector Y ,
and where, as commonly assumed, exogenous variables have matching dimensions, i.e. ZX ∈ Rn

and ZY ∈ Rm.2 We show that exogenous variables ZX ,ZY and mechanisms fX ,fY can be used
to construct a corresponding LVM, from which we can then leverage the identifiability results to
address unmeasured confounding. The key ideas are the following: We can replace the generative
mechanism of Y based on X by one based on ZX by rewriting

Y := fY (X,ZY ) = fY
(
fX(ZX),ZY

)
≜ ΨY (ZX ,ZY ). (3.1)

If we additionally introduce ΨX(ZX ,ZY ) ≜ fX(ZX) and concatenate the exogenous variables into
the latent vector Z=(ZX ,ZY ), we can build a well-defined mapping Ψ : Rm+n 7→ Rm+n from
exogenous latent variables to observed variables W =(X,Y ) such that Ψ(Z)=

(
ΨX(Z),ΨY (Z)

)
.

This corresponds to the LVM diagram of Figure 1c. Analogous to the causal model in Figure 1a,
confounding is induced by a latent variable H that causes both ZX and ZY .

Leveraging LVM identifiability to address confounding. Concretely, to connect LVM identifi-
ability to causal deconfounding, we introduce the following assumptions on the cause-effect model.

Assumption 1 The function fY : Rn × Rm → Rm is Continuous Deterministic Piecewise Affine
(CDPA)3 and for all x ∈ Rn, zY 7→ fY (x, zY ) is injective.

1. We provide a brief description of the formalism of structural causal models in Appendix D.
2. The special cases of scalar cause and/or effect are included.
3. CDPA functions can be easily implemented by feedforward neural networks with ReLU activation functions.
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Additionally, we make an assumption about the relation between ZX and X:

Assumption 2 fX : Rn → Rn is CDPA and invertible.

In combination, these two assumptions will ensure the mapping Ψ belongs to the function class
analyzed in Kivva et al. (2022). The final key to identifiability is a Gaussian mixture model of the
exogenous variables and their confounding induced by H .

Assumption 3 The exogenous variables are generated according to the following model:

H ∼ Cat(KH ,π) , (3.2)

L|H ∼ Cat(KL,πL|H) , Q|H ∼ Cat(KQ,πQ|H) , (3.3)

ZX |L= l ∼ N
(
µX
l ,ΣX

l

)
, ZY |Q=q ∼ N

(
µY
q ,Σ

Y
q

)
, (3.4)

where πL|H and πQ|H are conditional probability mass functions. Moreover, we assume there exists
at least one mixture component l occurring with non-zero probability has a positive definite ΣX

l .

Note that, without loss of generality, we make the separation of the effect of H on the cause vs.
the effect side explicit with Eq. (3.3). We now turn to proving that this model setup and the discussed
assumptions allow us to identify causal quantities.

3.2. Identifiability

Theorem 4 Under Assumptions 1, 2, and 3 the mixture components and the causal mechanism for
the effect (ZY ,fY ) in Eq. (3.1) are identifiable up to an invertible affine reparameterization of ZY .
More precisely, let (Z̃Y , f̃Y ) be the latent variable and mechanism obtained by fitting the model to
the observation distribution P (X,Y ), then we have, for some (m ×m) invertible matrix S and
some (m× 1) vector b

fY (x, zY ) = f̃Y (x, SzY + b) , and Z̃Y = SZY + b .

Proof [Sketch of the proof (see Appendix A for the complete version).] We will consider a latent
variable model solution Ψ̃ : Z → W satisfying all assumptions and fitting the observational
distribution P (X,Y ) perfectly. We study its relationship to the corresponding ground truth mapping
Ψ which generates the observations. This will then be linked to the cause-effect model solution f̃Y
and its associated ground truth model fY . The proof can be decomposed into three parts:

(1) The identifiability theory in (Kivva et al., 2022, Theorem 3.2) implies that the latents Z can
be recovered up to an affine transformation; more formally, the map Ψ̃−1 ◦Ψ associating ground
truth latents Z to recovered ones Z̃ is an affine transformation with its linear map represented by a
square matrix A. In addition, the constraint on the causal order enforces that ΨX is not dependent on
ZY , which imposes a block triangular structure on A, encoding that the true ZY does not influence
the recovered Z̃X .

(2) By Assumption 3 the mixture components’ cross-covariance matrices between ZX and
ZY coordinates is zero for both the ground truth Z and recovered Z̃. Identification up to affine
transformation and permutation of these mixture components further constrains the relation between
ground truth and recovered latents by forcing the matrix A to be block diagonal.

(3) The final relation between ground truth and recovered cause-effect model is deduced from
the shared structure of Ψ̃ and Ψ, and the block diagonality of A.
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Note that the results by Kivva et al. (2022) alone allow the ambiguity of the identifiability results
to be a general affine transformation without any restriction, which precludes the separation of the
causal and the confounded variation in the observed Y and consequently prevents the identification
of the causal effect.

Provided the data generating process fits our assumptions, then our result guarantees that, in the
infinite sample limit, we retrieve the ground truth causal mechanism up to some ambiguities. We
now show that these remaining ambiguities do not affect our ability to estimate causal quantities such
as the average treatment effect.

Estimation of causal effects. We now show that Theorem 4 implies that the average treatment
effect is identifiabile, even though P (L,H,Q) may remain unidentified. Given the graph in Figure 1b,
we can see that ZY satisfies the backdoor criterion (Pearl, 2009), such that we can estimate the
following interventional quantities by the adjustment formula:

E
[
Y |do(X = x)

]
=

∫
y p

(
y|do(X = x)

)
dy =

∫ ∫
y p

(
y|X = x, zY

)
p(zY )dzY dy .

(3.5)
That is, Theorem 4 provides the basis to deconfound the causal effect:

Proposition 5 Under the assumptions of Theorem 4, assume additionally strict positivity of p(x, zY )
for almost all zY . Then, for any x in the support of P (X), E

[
Y |do(X = x)

]
is identifiable from

the observation of P (X,Y ) with adjustment formula

E
[
Y |do(X = x)

]
= EZY ∼P (ZY )

[
f̃Y (x, SZY + b)

]
= EZ̃Y ∼P (Z̃Y )

[
f̃Y (x, Z̃Y )

]
, (3.6)

where P (Z̃Y ) and f̃Y is the solution identified in Theorem 4.

See Appendix A for the proof. Importantly, we cannot rely on ZX as an adjustment variable, as it
violates positivity by construction of our model (it is deterministically related to X), in line with the
point made by D’Amour (2019). Positivity of p(x, zY ) is achieved under mild assumptions: it only
requires the occurrence of one non-degenerate mixture component of Z in the observational setting.

Proposition 6 If there exists (l, q) such that P (L = l, Q = q) > 0 and both ΣX
l and ΣY

q are
positive definite, then the positivity assumption on p(x, zY ) in Proposition 5 is satisfied.

See Appendix A for the proof. Overall, the positive definite assumptions required on covariance
matrices in Theorem 4 and Proposition 6 emphasize the importance for identification of having, for
at least one value of the confounder, mutually independent exogenous variations injected in both
mechanisms fX and fY .

Identification of counterfactuals. In addition to interventional quantities, it is also possible
to identify counterfactual quantities for Y in the same setting. More precisely, consider the setting
where we observe “factual” values (X(z),Y (z)), where z is a particular value of the exogenous
variable, corresponding to the characteristics of the so-called individual “unit” (e.g. a patient) (see
(Pearl, 2009, Chapter 4). Then, as shown in Proposition 9 of Appendix B, we can estimate the
counterfactual value Yx(z) of Y , when intervention do(X = x) is performed.
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Figure 2: (Flow model implementation) The sequence of transformations that make up one block
are composed of an additive coupling bijection from layer l to l + 1, see lines 5 and 6, a
causal transformation with a block-triangular structure (ZY node does not influence other
nodes), see line 7, from l + 1 to l + 2, and a permutation layer from l + 2 to l + 3. Line
numbers refer to Algorithm 1.

4. Flow-based implementation

Algorithm 1 One DeconFlow transfor-
mation block, from layer l to l + 3

1: Input: z(l)

2: Output: z(l+3)

3: z
(l)
x , z

(l)
y ← split(z(l))

4: z
(l)
a , z

(l)
b ← split(z(l)

x )

5: t(l) ← ft(z
(l)
a )

6: z
(l+1)
b ← z

(l)
b + t

(additive coupling)
7: z(l+2) ← Bz(l+1)

(causal transformation: zx → zy)
8: z

(l+3)
x ← Pz

(l+2)
x

9: z
(l+3)
y ← z

(l+2)
y

We use flow-based models (Papamakarios et al., 2021)
to estimate the discrete confounding model.4 Flow-
based models learn the (possibly complex) distribution
of observed data by using successive transformations
of a simpler base distribution. The trained model can
then be used to sample from the data distribution. This
generative aspect of flow-based models lends itself to
our deconfounding application as it allows us to sample
from P (Z̃Y ), which is the latent variable that blocks
the backdoor path and is used in Eq. (3.6). Unlike other
generative models, such as Variational Autoencoders
(VAE), flow-based models allow optimizing the exact
likelihood of the data, which seems to be critical for
their use to estimate causal quantities precisely. Indeed,
VAEs trained with a Gaussian mixture prior (Jiang et al.,
2017), as used in the experimental section of Kivva
et al. (2022), have proven not to perform as well as
flow-based models for the use of deconfounding.5

In flow-based models, observed variables w := (x,y) ∈ Rm+n are expressed as a transformation
T of z, w = T (z), where z follows a base distribution p(z). Requiring T to be differentiable and
invertible licences the use of the change of variables formula to express the log-likelihood of the data

4. Code is available at https://github.com/pburauel/DeconFlow/.
5. We have implemented VAEs with appropriate architectural restrictions in experiments (not reported here) that did not

recover the true causal effects well even in the simple m = n = 1 linear case.
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as log pw(w) = log pz(z) + log |det JT (z)|−1 or, using that z = T−1(w) and swapping inverse
and determinant,

log pw(w) = log pz(T
−1(w)) + log |det JT−1(w)|. (4.1)

The log-likelihood of the data can thus be expressed by evaluating the base distribution at the
transformed w and accounting for the resulting change in volume by adding the log determinant
of the inverse Jacobian of that transformation. To represent the Gaussian mixture structure of the
latent variables in our generative model, see Eq. (3.4), we use a Gaussian mixture model as a base
distribution.6 The GMM is characterized by mixture weights (πk), means (µk) and covariances (Σk):

p(z) =
∑K

k=1 πkN (z;µk,Σk), (4.2)

where K is the number of mixture components, πk are the mixture weights, and N (z;µk,Σk) with
diagonal covariance matrix denotes the Gaussian distribution for component k. All µk, Σk, πk as
well as the parameters of the transformation T are optimized.

In our causal inference setting, only transformations that respect the causal order of observed
variables w are admissible. To ensure that information flows only in the causal direction from x to y,
we need to restrict the transformations to be lower-triangular. We first introduce a simple one-layer,
linear flow, which allows us to introduce the required restriction. The subsequent section introduces
a more expressive multi-layered model.

4.1. One-layer linear flow

In the simplest proof-of-concept model, we assume we observe 2D Gaussian mixtures in w generated
by linear transformations of the latent variables. In order to satisfy the constraints of our causal
model, transformation T is then a block lower triangular matrix,

A =

[
a11 0
a21 a22

]
. (4.3)

The log-likelihood then reduces to log pw(w) = log pz(A
−1w) +

∑2
i=1 log |aii|. We spell out the

relation between z and w in detail to draw attention to how the causal restriction is implemented
through a lower triangular matrix as in Eq. (4.3),

w =

[
x
y

]
= Az , (4.4)

=

[
a11 0
a21 a22

][
zx
zy

]
. (4.5)

Note that x is only influenced by zx while y is influenced by both zx and zy, which reflects the
causal structure of our model. We apply this simple model to simulated data with a one-dimensional
cause and discuss the results below.

6. A GMM base distibution in flow-based models has previously been used by e.g. Stimper et al. (2022).
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4.2. Additive coupling bijection

Figure 3: With one-dimensional
cause and effect
(m = n = 1), perfor-
mance can be evaluated
by comparing the
DeconFlow-adjusted
slope parameter esti-
mates (orange crosses)
to the ground truth
(green circles). Red
triangles are naive esti-
mates, obtained without
addressing confounding.

To model more complex distributions of w, we propose a
flow-based model applying successive invertible transforma-
tion blocks to the latent variables. One transformation block
is composed of an additive coupling layer (Dinh et al., 2014)
and a “causal transformation” akin to a masked autoregressive
layer (Papamakarios et al., 2017). Specifically, the transforma-
tions in one block are described in Algorithm 1. Superscript (l)
denotes layer index, line 3 splits zX into the first n/2 (rounded
up if necessary) dimensions (subscript a) and the remaining
dimensions (subscript b). The function ft in line 5 is parame-
terized by a neural network with ReLU activation function, the
transformation matrix in line 7 has a partly-diagonal form,

B =

[
diag(a1,1) 0

a2,1 ad,d

]

with a1,1 =
[
a1,1 · · · ad−1,d−1

]
and a2,1 =[

ad,1 · · · ad,d−1

]
, and P (only acting on zX , not zY ) in

line 8 is a permutation matrix. By restricting B in this way
and permuting only zX , we ensure that x influences y (but
not vice versa), which reflects the assumed causal structure.
Note that lines 5 and 6 differ from widely-used coupling bijec-
tions (which would additionally multiply z

(l)
b by a factor that

is learned by ft, as proposed by Dinh et al. (2016)) to ensure
that the transformation is piecewise affine, which we require for
identifiability. In practice, NB of such blocks are concatenated
as depicted in Figure 2.

We can write the log-likelihood of w given these transfor-
mations as

log pw(w) = log pz(z
(0)) +

∑L
l=1

∑d
i=1 log |a

(l)
ii | (4.6)

where z(0) = T
−1

w with T = T(l=0) ◦ . . . ◦ T(l=L) denoting the composition of the transformations

performed by each layer, as described above (similarly for its inverse, T−1) and pz being the density
of a Gaussian mixture model with diagonal covariances, as in Eq. (4.2). The transformation in line 6,
as well as the partial permutation of lines 8-9, have a unit Jacobian determinant. Therefore, they
do not appear in the above log likelihood. We then optimize the log-likelihood in Eq. (4.6) using
backpropagation.

4.3. Estimation of interventional quantites

Given our model structure, conditioning on ZY blocks the backdoor path between X and Y . This
motivates the following strategy to estimate E[Y |do(X = x)] from observed data. We transform the
observed samples of w to z by inverting Ψ using our trained model. We then sample Np times from
the empirical distribution of Z̃Y to compute

8
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w = (x,y)⊤ = 1
Np

∑Np

z̃y∼P (Z̃Y )
T (z̃x, z̃y) , (4.7)

where x=x because fX is invertible. This yields the empirical counterpart to Eq. (3.6),

E[Y |do(X = x)] ≈ y =: θ̂(x). (4.8)

5. Simulation Study

5.1. Data Generation

Given the generative model, we simulate data from a Generalized Additive Model (GAM, Hastie
et al. (2009)) as follows, focusing on the case m = 1, a scalar effect. First, we randomly generate
parameters of the joint distribution P (L,Q) such that there is a correlation between L and Q.
Second, we generate mixture parameters for ZX |{L = l} ∼ N (µX

l ,ΣX
l ) and ZY |{Q = q} ∼

N
(
µY
q ,

(
σY
q

)2
)

where µX
l ∼ U(1, 4) and µY

q ∼ U(0, 1), ΣX
l = I × 0.01 and

(
σY
q

)2
= 0.01.

Figure 4: DeconFlow controls un-
measured confounding,
see Section 5.2 for de-
tails.

To generate X and Y , we then parameterize the influence
of ZX on X and Y as well as the influence of ZY on Y with
random CDPA functions τ1, τ2, τ3:

X=τ1(ZX) , and Y =βτ2(ZX) + τ3(ZY ) + ε , (5.1)

where β is the true causal effect, which is drawn from U [−1, 1],
and ε ∼ N (0, 0.01). Inspired by He et al. (2016), the functions
τ1, τ2, and τ3 are randomly initialized residual-flow type neural
networks designed to generate an invertible piecewise affine
transformation of data. The architecture consists of an initial
linear layer, followed by a series of five ResNet blocks, and
concludes with a final linear layer to produce the transformed
output. Each ResNet block contains two linear layers with
LeakyReLU activations and a skip connection, which adds the
input of the block to its output. Note that the model class
described in Eq. 5.1 does not cover the whole set of models
considered in the theory. Notably, the effects of ZX and ZY on
Y are not required to be additive for our theoretical results to
hold.

Evaluation metric in linear case with n = m = 1. When
τ1, τ2, and τ3 are identity mappings, we evaluate the ability of
our method to deconfound by comparing the estimated slope
parameter with the true causal effect β. In the linear case,
the estimated parameter can be read off the estimate of the
transformation matrix A in (4.3): β̂ = a21

a11
.

Evaluation metric in the nonlinear case. When τ1, τ2,
and τ3 are random injective mappings, we evaluate the ground truth θ∗(x) := E[Y |do(X = x)]
using Eq. (3.6) but for the ground truth model, in particular we use the (known since simulated)

9
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ground truth τ3 and ZY to average out the confounding effect. We compare θ∗(x) with the estimate
defined in Eq. (4.8):

RMSE =

√
Ex∼P (X)

[(
θ̂(x)− θ∗(x)

)2
]

(5.2)

For comparison, we report a baseline RMSE that is obtained when an estimate of the conditional
density is erroneously used as a causal effect estimate:

RMSEnaive =

√
Ex∼P (X)

[(
E(Y |x)− θ∗(x)

)2]
, (5.3)

where for E(Y |x) we plug in the observed y associated with x.

5.2. Results

Figure 5: Recovered unmea-
sured confounder
correlates with true
confounder, see
Section 5.2, part 2
for details.

Linear one-layer, identity mapping. First we generate 10,000
samples for the simple setting when n = m = 1, and τ1, τ2, τ3 all
being identity mappings, with KL = KQ = 2, and apply the simple
one-layer linear flow described in Section 4.1. In this case, the
observed data is a Gaussian mixture. Therefore, we have a setting
in which the estimation procedure focuses solely on disentangling
causal from confounded variation without additionally learning the
mapping from observed data to a Gaussian mixture model. This
setting serves as proof-of-concept of the deconfounding strategy.
Results are shown in Figure 3. It can be seen that the naive parameter
estimates that are obtained by regressing observed Y on observed
X are biased in arbitrary directions. Using DeconFlow, we recover
estimates of E[Y |do(X = x)], which we regress on x to compute
the deconfounded parameter estimates that almost perfectly match
the ground truth.7

Nonlinear, invertible piecewise affine transformations. Next
we generate data with n = 5, m = 1 and τ1, τ2, τ3 random invertible
piecewise affine functions (as described in Section 5.1) and KL =
KQ = k for k ∈ {2, 3}, 10,000 observations. Figure 4 shows
RMSE, see Eq. (5.2), and RMSEnaive, see Eq. (5.3). The x-axis
shows mutual information between discrete variables L and Q as a
measure for the strength of confounding. DeconFlow substantially
decreases the error incurred when estimating E[Y |do(X = x)]
without observing the discrete confounder. What we achieve here
is the estimation of a nonlinear causal quantity, E[Y |do(X = x)],
without observing the latent quantity that induces the discrepancy
between it and E[Y |x].8

To corroborate these empirical results, we compute the (absolute) correlation between the ground
truth ZY (which DeconFlow never has access to) and its recovered version Z̃Y in Figure 5. Note

7. Experiments are run on AWS Deep Learning AMI, with 36 vCPUs, runtime about 3 hours.
8. Experiments are run on AWS Deep Learning AMI, with 96 vCPUs, runtime about 20 hours.
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that ZY is the critical variable whose recovered distribution we sample from to deconfound. The
correlation between recovered and true ZY is large and almost always very close to 1, which lends
support to the efficacy of our method. The instances depicted in Figure 5 correspond to those depicted
in Figure 4.

In Appendix C, we provide additional simulation results that show the good performance of the
method for smaller sample sizes (Figure 8) and higher dimensions (Figure 10), as well as robustness
of the method to misspecified number of clusters (Figure 9).

In Appendix B we provide simulation results for the estimation of counterfactual quantities,
based on Proposition 9. Specifically Figure 7 in Appendix B shows a much better estimation of
individual effects using DeconFlow than when using a naive approach that just uses the value of Y
matching x in the empirical distribution of the observations.

6. Application

We use data on twin births in the USA collected around 1990, which has been used before by Louizos
et al. (2017) to illustrate causal inference methods. It contains measures of birth weight of newborn
twins with about two dozen additional control covariates, such as parental education, number of
prenatal visits, etc. for about 32,000 twins (and their parents). See Appendix E for a complete list
of variables. The dataset lends itself to our setting because most of the variables are discrete and
can serve as confounders that we can toggle between being observed or not. We treat the only three
ordinal variables in the dataset as causes of interest, since we can approximate them with continuous
variables by adding uniformly distributed noise. In this way we satisfy our model requirements of
continuous cause variables and discrete confounding variables.

From the set of covariates {X1, . . . , XK} we select the three ordinal variables that are directly
related to the mother as observed causes:9 mother’s age, gestation type, and mother’s education, and
denote them by X = {X1, X2, X3}. We use birth weight of the first-born twin as target variable,
Y , and treat all remaining covariates as confounders, denoted by V = {X4, . . . , XK}. This allows
us to estimate “true” causal effects when we treat the confounders as observed, and test whether
DeconFlow can recover these given only the data about X and Y .

Predicting Y using least-squares regression, we estimate the parameter vector for X once when
controlling for V (denoted β∗) and once when not controlling for V (denoted β̂). We run our
deconfounding approach as described in Section 4.3 using only {X, Y }, which yields our estimate
of θ̂(x) = E[Y |do(X = x)]. We then regress θ̂(x) on X to estimate our debiased parameter vector,
β̃. We can evaluate whether our method can account for the confounders V (that are unobserved
from its perspective) by comparing β∗ with β̂ and β̃.

We run DeconFlow for multiple seeds and hyperparameters. In Figure 6, for each of the three
cause variables (mother’s age, gestation type, and mother’s education), we report i) the slope
parameter of that cause variable in a regression of Y on the three causes (red triangle), ii) the slope
parameter of that cause variable in a regression of Y on the three causes and the observed confounders
(green dot), iii) the average slope parameter of that cause in a regression of the DeconFlow-adjusted
target variable Ỹ on the three causes for 32 runs of DeconFlow (orange cross), as well as a boxplot
of the underlying distribution of this parameter. For causes mother’s age and mother’s education, we

9. We do not use ‘dtotord_min’ (total number of births before twins) and ‘dlivord_min’ (number of live births before
twins), technically also ordinal variables, as causes because these variables have a massively skewed empirical
distribution.
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observe that our method yields mean parameter estimates that are closer to β∗ than β̂. For gestation
type, we find β̃ to be lower than both β∗ and β̂.

Figure 6: Estimated con-
founder adjust-
ment in empirical
application, see
Section 6 for
details.

While we consider similar β∗ and β̃ as evidence that our method
accounts for V without observing it, we stress that β∗ might in fact
differ from the true parameter vector because of residual confounding
that is not captured by V . That is, a discrepancy between β∗ and β̃
might indicate the existence of additional confounders unmeasured
in the dataset, rather than a shortcoming of our method. For instance,
the discrepancy between β̃ and β∗ for gestation type could be due to
additional unmeasured confounders.

7. Discussion

While there is a large literature on using measured confounders to
deconfound causal effect estimates (see e.g. Chernozhukov et al.
(2018)), or to gauge the sensitivity to unmeasured confounders by
benchmarking against measured confounders in treatment effect esti-
mation (Cinelli and Hazlett, 2020) or policy learning (Kallus and Zhou,
2021; Marmarelis et al., 2024), work on accounting for unmeasured
confounders without such benchmarks is scarce. In the following we
provide a brief overview of related work that addresses unmeasured
confounding without access to observed confounders.

One way to tackle unmeasured confounding is to make assump-
tions on the independence of causal mechanisms (ICM) (Peters et al.,
2017; Janzing and Schölkopf, 2010). For instance, Janzing and
Schölkopf (2018a,b) formalize ICM in multivariate linear models
to estimate a degree of confounding. ICM can also be seen as moti-
vating additive noise models as used by Janzing et al. (2012), which is
similar to our approach in the sense that a latent confounder is learned
from observed variables. However, that method did not allow for both
a causal and a confounding effect between the two variables.

Even without implicit or explicit motivation through ICM, restric-
ing model classes can help to address unmeasured confounding. For
instance, assuming linear relations and non-Gaussian variables yields
identifiability of a number of causal properties (Shimizu et al., 2006). In this model class, Hoyer et al.
(2008) show how independent component analysis (ICA) with an overcomplete basis (recovering
more source variables than there are observed signals), can help to theoretically identify, up to some
remaining ambiguity, the latent confounder and causal effect. However, practical algorithms that
reliably estimate an overcomplete basis are lacking and require additional assumptions (such as
sparsity of the mixing matrix). Methods for (nonlinear) ICA with equal number of sources and
signals include e.g. Khemakhem et al. (2020) and Hyvarinen and Morioka (2017) but these require
observed auxiliary information (such as environment variables) or assumptions like ICM (Gresele
et al., 2021). None of these methods are specifically designed to address unmeasured confounding in
a principled way, which is the goal of our proposed method.

12
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Limitations. As all causal inference techniques, the proposed methodology relies on assumptions
that, if not satisfied, can cast doubt on causal effect estimates that are produced using the method.
While the discrete nature of the confounding we are considering has applications in a variety of
domains (e.g., controlling for batch effects in high-throughput sequencing data (Leek et al., 2010)), it
is a substantial assumption that needs to be taken into account by practitioners. Furthermore, we
restrict the latent variables to follow a Gaussian mixture model and the function mapping from latent
to observed variables to be piecewise affine and injective. While this is a very flexible model class,
how our causal effect identification result generalizes to the case where the ground truth model does
not strictly belong to this class remains an open question. In addition, one practical limitation to
the methodology is the fact that GMM parameters are increasingly challenging to estimate as the
variance of the mixture components increases relative to the squared distance between components’
means. The method is thus likely to work best when the clusters formed by the discrete confounding
variable have limited overlap.

8. Conclusion

We propose a method to address unmeasured discrete confounding in (non-)linear cause-effect
models. By mapping a confounded causal model to an equivalent latent variable model, we can
leverage identifiability results in the literature on such models. We prove that under a specific set of
assumptions it is possible to identify causal effects despite the presence of unmeasured confounders.
We introduce a flow-based algorithm that can correct for this type of unmeasured confounding. The
empirical results on both synthetic and real-world data provide evidence of the effectiveness of our
approach. Given the success of deep latent variable models in a variety of applications, there has
been much interest in understanding their identifiability properties. Our results contribute to this
effort by building a bridge to techniques of handling unmeasured confounding in causal inference.
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Appendices

Appendix A. Proof of main text results

Theorem 4 Under Assumptions 1, 2, and 3 the mixture components and the causal mechanism for
the effect (ZY ,fY ) in Eq. (3.1) are identifiable up to an invertible affine reparameterization of ZY .
More precisely, let (Z̃Y , f̃Y ) be the latent variable and mechanism obtained by fitting the model to
the observation distribution P (X,Y ), then we have, for some (m ×m) invertible matrix S and
some (m× 1) vector b

fY (x, zY ) = f̃Y (x, SzY + b) , and Z̃Y = SZY + b .

Proof We follow the steps of the sketch from main test in more detail.
Step 1a: Affine identifiability.
The above model can be rewritten as a piecewise affine injective mapping

Ψ : Z → X × Y , (A.1)[
zX
zY

]
7→

[
fX(zX)

fY (fX(zX), zY )

]
. (A.2)

Therefore we get affine identifiability from (Kivva et al., 2022, Theorem 3.2).
Step 1b: Form restriction on the affine transformation due to causal structure.10 Assume another

solution f̃ , it can also be rewritten as an injective mapping

Ψ̃ : Z → X × Y , (A.3)[
zX
zY

]
7→

[
f̃X(zX)

f̃Y (fX(zX), zY )

]
. (A.4)

By affine identifiability, Ψ̃−1 ◦Ψ is an affine map z 7→ Az + b. From the components’ dependency
structure of these maps, we deduce that11

A =

[
T 0
U S

]
. (A.5)

where U is an m × n row vector, T an invertible matrix and S a non-vanishing scalar (due to
invertibility of both functions).

Step 2: Further form restriction due to non-degeneracy of intra-mixture component covariances.
Let us consider the ground truth distribution of Z: due to Assumption 3 it is a Gaussian mixture,
whose mixture components are indexed by {(l, q)}l=1..KL;q=1..KQ

and whose associated covariances
are of block diagonal of the form

Σl,q =

[
ΣX
l 0
0 ΣY

q

]
.

10. We only recover Ψ up to an ambiguity, namely up to an affine transformation. The point here is that it is a special
ambiguity: one where the linear component of the transformation is block-lower triangular.

11. This is because Ψ and Ψ̃ are block-lower triangular by assumption (in the sense that the matrix indicating dependency
between input and output variables is block-lower triangular, which also results in a lower triangular Jacobian matrices
wherever defined), therefore Ψ̃−1 is also block-lower triangular, and therefore Ψ̃−1 ◦Ψ is block-lower triangular.
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Moreover, this is the same for the retrieved latent Z̃, up a permutation of indices (l, q) 7→ σ(l, q) and
the affine transformation introduced above (e.g. using Theorem C.2 in Kivva et al. (2022), stating
that the mixture components are identified up to a permutation and affine transformation). As a
consequence, for any index (l, q), the corresponding mixture component covariance matrix Σ̃σ(l,q)

corresponds to Σl,q up to linear transformation via the blocks of matrix A, i.e.

Σ̃σ(l,q) = AΣl,qA
⊤ =

[
T 0
U S

][
ΣX
l 0
0 ΣY

q

][
T⊤ U⊤

0 S⊤

]
(A.6)

=

[
T 0
U S

][
ΣX
l T⊤ ΣX

l U⊤

0 ΣY
q S

⊤

]
(A.7)

=

[
TΣX

l T⊤ TΣX
l U⊤

UΣX
l T⊤ SΣY

q S
⊤ + UΣX

l U⊤

]
. (A.8)

where the off diagonal blocks must again be equal to zero by Assumption 3 applied to the covariance
of the mixture component of the obtained solution Σ̃σ(l,q). Exploiting this assumption further, let us
choose l such that ΣX

l is positive definite. In that case, we can write for the off-diagonal block

UΣX
l T⊤ = 0 (A.9)

UΣX
l = 0 because T⊤ is invertible (A.10)

U = 0 because ΣX
l is positive definite and therefore invertible. (A.11)

Consequently,

A =

[
T 0
0 S

]
, (A.12)

which entails identifiability up to scalar affine reparametrization of Z2 and affine invertible transfor-
mation of Z1.

Step 3: Detailed ambiguity relation. More precisely, for all z1, z2, the composition of Ψ̃−1 with
Ψ is ambiguous up to a diagonal affine transformation:[

z̃X
z̃Y

]
= Ψ̃−1 ◦Ψ(zX , zY ) =

[
TzX + b1
SzY + b2

]
,

leading to
Ψ(zX , zY ) = Ψ̃(TzX + bX , SzY + bY ) .

For the X component this gives

fX(zX) = f̃X(TzX + bX) ,

such that
f−1
X (x) = T−1

(
f̃−1
X (x)− bX

)
,

because (f ◦ g)−1 = g−1 ◦ f−1. And for the Y component this gives,

fY (fX(zX), zY ) = f̃Y (f̃X(TzX + bX), SzY + bY ) .
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Finally we get the following relation for the causal mechanism

fY (x, zY ) = f̃Y (fX(zX), SzY + bY ) = f̃Y (x, SzY + bY ) .

Proposition 7 Under the assumptions of Theorem 4, assume additionally strict positivity of p(x, zY )
for almost all zY . Then, for any x in the support of P (X), E

[
Y |do(X = x)

]
is identifiable from

the observation of P (X,Y ) with adjustment formula

E
[
Y |do(X = x)

]
= EZY ∼P (ZY )

[
f̃Y (x, SZY + b)

]
= EZ̃Y ∼P (Z̃Y )

[
f̃Y (x, Z̃Y )

]
, (3.6)

where P (Z̃Y ) and f̃Y is the solution identified in Theorem 4.

Proof Consider a given x in the support of p(X), the above backdoor adjustment requires p(y|X =
x, zY ) to be well-defined for almost any zY . Given our generative model of Section 5.1, this amounts
to having f unambiguously defined for almost any zY . As fY is only unambiguously identified on
the support of the observational distribution p(x, zY ), it is necessary and sufficient to have strict
positivity of p(x, zY ) for almost all zY . The adjustment formula using ZY is given by

E
[
Y |do(X = x)

]
= EZ2∼P (ZY )

[
f(x,ZY )

]
Using Theorem 4 we can rewrite the expression of function f such that

E
[
Y |do(X = x)

]
= EZY ∼P (ZY )

[
f̃Y (x, SZY + b)

]
.

Moreover, we can replace the (unknown) latent variable distribution P (Z2) with the estimated latent
variable distribution P (Z̃2) to obtain the result

E
[
Y |do(X = x)

]
= EZ̃Y ∼P (Z̃Y )

[
f̃Y (x, Z̃Y )

]
. (A.13)

Proposition 8 If there exists (l, q) such that P (L = l, Q = q) > 0 and both ΣX
l and ΣY

q are
positive definite, then the positivity assumption on p(x, zY ) in Proposition 5 is satisfied.

Proof As p(x, zY ) is the pushforward of p(zX , zY ) by an invertible, continuous, differentiable
almost everywhere, function Ψ defined in the proof of Theorem 4, it follows that p(x, zY ) is strictly
positive if and only if p(zX = f−1

X (x), zY ) is strictly positive. Since p(zX , zY ) is a Gaussian
mixture, it is sufficient to have at least one non-degenearate mixture component occurring with
non-zero probability strict positivity (see Assumption 3).
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Appendix B. Identification of counterfactual quantities

Proposition 9 Under the assumptions of Theorem 4, assume additionally strict positivity of p(x, zY )
for almost all zY . Then, for any x in the support of P (X), the counterfactual value Yz(z) for an
individual unit with exogenous values z is identifiable from the observation of P (X,Y ) and the
factual values (X(z),Y (z)) with adjustment formula

Yx(z) = f̃Y (x, SzY + b2) = f̃Y (x, z̃Y ) , (B.1)

where (z̃X , z̃Y ) = Ψ̃−1(X(z),Y (z)) are the latents corresponding to the factual observation
under the identified latent variable model in Theorem 4, and f̃Y is the corresponding component
function of this model.

Proof Given the assumptions, the results of Theorem 4 hold and we can use the following intermediate
result of its proof to establish the link between the realizations of ground truth latent variables
z = (zX , zY ) and realization of latent variables of the identified model, which we apply to the
realization of the variables corresponding to factual observations:[

z̃X
z̃Y

]
= Ψ̃−1 ◦Ψ(zX , zY ) =

[
TzX + b1
SzY + b2

]

where Ψ̃ and Ψ follow the definition of Eq. (A.4) and Eq. (A.2), respectively.
Given Ψ(zX , zY ) correspond to the factual observations, this leads to[

z̃X
z̃Y

]
= Ψ̃−1(X(z),Y (z)) =

[
TzX + b1
SzY + b2

]

Additionally, given our SCM, the counterfactual for this unit writes

Yx(z) = fY (x, zY )

Using the result of Theorem 4 this leads to

Yx(z) = f̃Y (x, SzY + b2)

On replacing by the above expression for the latent we get

Yx(z) = f̃Y (x, z̃Y )
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Appendix C. Additional simulation results

Figure 7: Estimation of individual treatment effects in synthetic data: We show the empirical
performance of DeconFlow for estimating counterfactual individual effects. For given
factual values (X(z),Y (z)) for a unit with associated exogenous value z, we choose
a random counterfactual x̌ from the marginal distribution of X(z). As naive estimate
for the counterfactual, we use the prediction of the estimated model for x̌ without any
adjustment for confounding. We plot the naive and estimated individual counterfactual
effects against the true individual effects. m = 4, n = 1, KL = KQ = 2, no of layers of
DeconFlow = 50.
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Figure 8: Finite sample performance: This figure shows the performance of our algorithm for
smaller sample sizes than used in the experimental results discussed in the main paper.
The sample size increases from left (N = 1, 000) to right (N = 10, 000, as in the main
paper). The performance deteriorates slightly when the number of samples is 1, 000, but
the method generally performs well also with lower sample sizes. Note that the column
‘.0-.1’ is empty in the bottom row because the degree of mutual information between
discrete variable L and Q (which is what is plotted here on the x-axis) is chosen at random
and happens to lie above 0.1 in these instances. m = 5, n = 1.
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Figure 9: Robustness to misspecified number of clusters: Results for experimental setup with
true KL = KQ = 3, implying a ground truth number of classes equal to 9. One can see
that the performance of the algorithm does not degrade substantially when the number
of components in the Gaussian mixture prior in the latent space (indicated by individual
figure titles) is misspecified. m = 5, n = 1.
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Figure 10: Robust performance in high-dimensional space: We run the algorithm in a higher-
dimensional setting, specifically for m = 10, n = 1, all other parameters as in Figure 4
in the main text. Performance does not degrade relative to lower-dimensional problem.
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Appendix D. Structural causal models

Causal dependencies between variables can be described using Structural Causal Models (SCM) (Pearl,
2009).

Definition 10 (SCM) An n-variable SCM is a tripletM = (G, S, PU ) consisting of:

• a directed acyclic graph G with n vertices,

• a set S = {Vj := fj(Paj ,Zj), j = 1, . . . , n} of structural equations, where Paj are the
variables indexed by the set of parents of vertex j in G,

• a joint distribution PZ over the exogenous variables {Zj}j≤n.

Due to the directed acyclic structure of G, for each value of the exogenous variables, S leads to
a unique solution for the vector of so-called endogenous variables V = [V1, . . . ,Vn]

⊤, such that
the distribution PZ entails a well-defined joint distribution over the endogenous variables P (V ).
For the purpose of the present work, we adopt a very general setting by: (1) not enforcing joint
independence between the exogenous variables, allowing them to encode hidden confounding,
(2) allowing endogenous and exogenous variables to be vector-valued.

do-interventions in SCMs involve replacing one or more structural equation by a constant
and modifying G accordingly such that parents of the intervened equations are removed. An
intervention transforms the original modelM = (G, S, PZ) into an intervened modelMdo(Vk=vk) =(
Gdo(Vk=vk),Sdo(Vk=vk), P

do(Vk=vk)
Z

)
, where vk is the constant parameterizing the intervention.

D.1. Unmeasured confounding and backdoor criterion

In the standard setting of causal effect estimation, one focuses on a graph comprising a pair of
endogenous variables (X,Y ) such that G contains the edge X → Y . Hidden counfounding can
then be encoded by non-independence of the respective exogenous variables ZX and ZY of these
nodes, which we represent by the unobserved common cause H in Figure 1a. Our framework amounts
to constraining the structure of this hidden confounding, which is assumed to be representable as an
hidden discrete common cause of two hidden latent variables ZX and ZY . If these variables were to
be observed, they could be used to estimate the interventional probability P (Y |do(X = x)) because
they satisfy the so-called backdoor criterion (Pearl, 2009): they block all backdoor paths between
X and Y , i.e. those going through a parent of X . Although the latent variables are unobserved,
additional assumptions permit their identification from observational data. In particular, one way
is to formulate the observations as a function of the latents, which can be done by introducing an
invertible mapping ϕ : ZX →X , leading to the causal diagram of Figure 1c.

We focus on a case where it can be shown that we can infer and use ZY as a backdoor adjustment
variable, which leads to the following formula for the interventional distribution

P (Y |do(X))] =

∫
P (y|x, zy)p(zy)dzy .
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CONTROLLING FOR UNMEASURED DISCRETE CONFOUNDING

Appendix E. Twins dataset

cause variables (ordinal): ‘mother’s age’, ‘gestation type’, and ‘mother’s education’
effect variable of interest (continuous): ‘birth weight of the first-born twin’
remaining confounding variables (discrete): ‘risk factor, Lung’, ‘risk factor Hemoglobinopathy’,
‘risk factor, Incompetent cervix’, ‘mom place of birth’, ‘race of child’, ‘total number of births before
twins’, ‘trimester prenatal care begun, 4 is none’, ‘number of live births before twins’, ‘married’,
‘risk factor, Anemia’, ‘risk factor, Hypertension, chronic’, ‘risk factor, RH sensitization’, ‘num
of cigarettes /day, quantiled’, ‘risk factor, tobacco use’, ‘education category’, ‘state of occurence
FIPB’, ‘medical person attending birth’, ‘quintile number of prenatal visits’, ‘US census region of
mplbir’, ‘dad race’, ‘place of delivery’, ‘risk factor, Renal disease’, ‘mom race’, ‘risk factor, Cardiac’,
‘US census region of stoccfipb’, ‘risk factor, Previous infant 4000+ grams’, ‘US census region of
brstate’, ‘birth month Jan-Dec’, ‘risk factor, Eclampsia’, ‘risk factor, Other Medical Risk Factors’,
‘octile age of father’, ‘risk factor, alcohol use’, ‘dad hispanic’, ‘num of drinks /week, quantiled’,
‘risk factor, Herpes’, ‘mom hispanic’, ‘risk factor, Hypertension, preqnancy-associated’, ‘state of
residence NCHS’, ‘risk factor, Uterine bleeding’, ‘risk factor, Diabetes’, ‘sex of child’, ‘risk factor
Hvdramnios/Oliqohvdramnios’, ‘risk factor, Previos pre-term or small’, ‘adequacy of care’.
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