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Abstract

Machine unlearning aims to remove the influence of specific training samples (i.e.,
forget data) from a trained model while preserving its performance on the remaining
samples (i.e., retain data). Existing approximate unlearning approaches, such as
fine-tuning or negative gradient, often suffer from either insufficient forgetting or
significant degradation on retain data. In this paper, we introduce Unlearning-Aware
Minimization (UAM), a novel min—max optimization framework for machine
unlearning. UAM perturbs model parameters to maximize the forget loss and then
leverages the corresponding gradients to minimize the retain loss. We derive an
efficient optimization method for this min-max problem, which enables effective
removal of forget data and uncovers better optima that conventional methods fail to
reach. Extensive experiments demonstrate that UAM outperforms existing methods
across diverse benchmarks, including image classification datasets (CIFAR-10,
CIFAR-100, TinyImageNet) and multiple-choice question-answering benchmarks
for large language models (WMDP-Bio, WMDP-Cyber).

1 Introduction

The increasing deployment of artificial intelligence (Al) into real-world applications has prompted
critical discussions regarding the alignment of AI with human values. A key aspect of these discussions
is the “right to be forgotten” [25]], a principle embedded in the General Data Protection Regulation
(GDPR) [14]]. This right enables individuals to request the deletion of their personal data, providing a
safeguard for privacy and mitigating risks associated with data misuse.

The simplest approach is retraining a model from scratch without the data points to be forgotten.
However, retraining is computationally prohibitive, particularly for large-scale deep learning models
[4) 35]. As a potential solution, machine unlearning has emerged for removing the influence of
specific data samples by appropriately updating their parameters [2, 13, [9]. The goal of machine
unlearning is to efficiently remove the influence of specific data while preserving performance on
the remaining data. Formally, let Dy denote the dataset to be forgotten (i.e., forget data) and D,
denote the dataset to be retained (i.e., retain data). A common strategy of machine unlearning is to
optimize the following objectives: minimizing the retain loss £(w, D,.) or maximizing the forget loss
L(w, Dy) [11,32].

In this paper, we introduce Unlearning-Aware Minimization (UAM), a novel min-max optimization
framework for machine unlearning. Specifically, UAM formulates unlearning as a two-stage process:
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Figure 1: Optimization results on synthetic loss functions. The optimization begins at the global
minimum of the sum of two losses (black cross, +). (a) UAM successfully converges to the optimal
point (yellow star, /), whereas other methods converge to suboptimal regions. For NG, only a
partial trajectory is shown due to divergence. (b) UAM achieves a high forget loss while effectively
minimizing the retain loss. NG yields a high forget loss but fails to maintain low retain loss. FT
converges to a suboptimal region, resulting in a lower forget loss.

(1) an inner maximization that identifies a surrogate weight within a local neighborhood that maximizes
the forget loss, and (ii) an outer minimization that reduces the retain loss by using its gradients.
Intuitively, this procedure ensures that the model exhibits characteristics similar to those of weights
with a high forget loss, while maintaining a low retain loss. By leveraging a first-order Taylor
approximation, we derive a scalable algorithm that enables effective unlearning while remaining
computationally practical.

Fig. [Tl highlights the key differences between UAM and existing unlearning methods. Fine-tuning
(FT) minimizes £(w, D,) and negative gradient (NG) maximizes £(w, D) [11}[32]. Both methods
converge to suboptimal regions in the given optimization problem. These methods result in either
low forget loss (i.e., insufficient forgetting) or high retain loss (i.e., poor performance). In contrast,
UAM more effectively navigates the loss landscape, approaching the optimal solution characterized
by high forget loss and low retain loss. As shown in Fig.[Tb] UAM achieves a higher forget loss
and a lower retain loss by explicitly exploring regions with high forget loss. In our experiments,
UAM demonstrates superior performance on both image classification and multiple-choice question
answering tasks.

Our main contributions can be summarized as follows:

* We propose a new min-max optimization framework for machine unlearning, Unlearning-
Aware Minimization (UAM). By leveraging model parameters with high forget loss, UAM
enables the effective removal of forget data while preserving the performance on retain data.

* We establish an efficient algorithm based on a first-order Taylor expansion. We also provide
a theoretical analysis of UAM, characterizing its optimization dynamics through the cosine
similarity between retain and forget gradients.

» We evaluate the effectiveness of UAM on image classification datasets (CIFAR-10, CIFAR-
100, and TinyImageNet) and multiple-choice question-answering datasets (WMDP-Bio and
WMDP-Cyber) using large language model (LLM). Since UAM is a framework independent
of any specific loss function, it can be easily extended to other domains.

* To promote reproducibility and benchmarking within the machine unlearning
community, we release implementations of existing baseline unlearning methods,
along with our proposed framework, available at: https://github.com/Harry24k/
machine-unlearning-pytorch.
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2 Related Work

2.1 Machine Unlearning

Machine unlearning [3., 9] aims to eliminate the influence of forget data Dy, while preserving
knowledge learned from retain data D,.. The ideal solution, known as exact unlearning, is to retrain
the model from scratch without D ; however, retraining is often computationally inefficient for large-
scale deep learning models [4,35]]. Therefore, approximate unlearning methods have been developed.
Fine-tuning (FT) [} [32]] minimizes £(w, D,) relying catastrophic forgetting [24]; negative gradient
(NG) [9], which also referred to as gradient ascent, directly maximizes £(w, D f). More recent
methods build on these frameworks by incorporating additional techniques such as distillation [[20] or
pruning [16]]. In contrast to prior approaches, we highlight the potential of a min—max optimization
framework for machine unlearning that extends beyond traditional dual-objective formulations. We
note that there exists a distinct line of research, including Fisher Forgetting (FF) [9] and Influence
Unlearning (IU) [[15} 18], that leverages the Fisher Information Matrix and influence functions.

2.2 Min-Max Optimization

Min-max optimization refers to a class of learning problems that aims to solve two competing
objectives, commonly formulated as saddle-point or bi-level optimization problems [1}31]]. In deep
learning, the min-max optimization plays a central role in several research areas. For example, in
adversarial robustness [[10l 28], adversarial training uses an inner maximization to find perturbations
that maximize a loss value, and an outer minimization to optimize model parameters to minimize this
worst-case loss [23} [36]]. More recently, sharpness-aware minimization has introduced a min-max
optimization for improving generalization. It adopts an inner maximization and an outer minimization
step to identify parameters that have uniformly low losses within neighborhoods [[7, 21]]. We extend a
min-max optimization into the domain of machine unlearning using two disjoint datasets D,. and Dy
and demonstrate that a min-max optimization can address the challenges in machine unlearning.

3 Unlearning-Aware Minimization

In this work, we use the following notation: scalars are denoted by a, vectors by a, matrices by A,
and £ indicates equality by definition. Let us denote the training dataset as D = {(x;, y;)}?,, drawn
independently and identically (i.i.d.) from the true data distribution. A model parameterized by weights
w € W C R? is trained by minimizing the empirical training loss £(w, D) £ L 3" l(w, z;,y;),
where £ is an individual loss function. We denote the subset of data to be forgotten as the forget data

Dy C D. Then, the complement of Dy becomes the retain data D, = D \ Dy.

The simplest and exact approach to unlearning, commonly called exact unlearning, optimizes a model
from scratch using only the retain data:

w* = argmin L(w, D,.), 1

commonly known as Retrain [[16] or the oracle [4]. While exact unlearning provides an optimal
solution for eliminating the influence of the forget data, its substantial computational overhead
makes it impractical for large-scale models and datasets [[L6, [29]. To circumvent these practical
constraints, approximate unlearning methods often re-optimize the pre-trained model with wg =
arg min,, £(w, D). Therefore, approximate unlearning methods commonly assume that the solution
of (1) lies within a bounded neighborhood Bo(wg) = {w € R? | |wy — w| < Q}, where Qis a
finite upper bound. Given that w* € Bq(wy), we can characterize existing approximate unlearning
methods as approaches that aim to solve the following optimization problem, initialized at w = wy:

min £(w, D) + B[L(w", D) — L(w, D)), )

where (3 is a hyperparameter for balancing two different losses. The first term, £(w, D,.), encourages
the model to maintain performance on the retain data D,.. The second term encourages alignment (or
consistency) between the optimized weights w and the solution w*. Note that this type of alignment
objective is commonly used when evaluating unlearning methods in recent works [16}137]].

The objective in equation (2) offers a unified explanation for two key approximate unlearning methods:
FT and NG. First, setting § = 0 simplifies the objective to the objective of FT, min,, £(w, D,.).



Since FT ignores the second term with w* in (2)), it results in poor forgetting performance as shown
in Fig.[T} For NG, we establish the following lemma:

Lemma 1. For 5 = |D|/|D,
the objective ([2) becomes

, which balances the two loss terms based on the number of data points,

: Dy
min L(w*, D,) +
w D |

[L(w*,Dy) — L(w, Dy)]. 3)

Proof. See Appendix. O

In (3)), assuming that there is no prior knowledge of w* (i.e., dw* /dw = 0), the objective is reduced
to NG, which depends solely on the gradient V,,L(w, D). However, since NG focuses solely on
max,, £(w, Dy), it struggles to maintain accuracy on D,..

Rather than ignoring w*, we propose to use a surrogate weight w that characterizes w*. A key insight
is that w* lies within a neighborhood where the forget loss £(w, D) remains sufficiently high. To
formalize this, we introduce the following definition:

Definition 1. (e-forget neighborhood) Given parameters w, forget data Dy, and threshold € > 0,
the e-forget neighborhood is defined as:

By(w; D) = {w € RY | L1, Dy) > e, |lw — ]| < 2. 4

This set characterizes the region where a weight has a forget loss of at least ¢, ensuring that the
influence of the forget data is sufficiently removed. Therefore, for an appropriately chosen ¢, we
have w* € Bf,(wo; Dy). Since the exact w* is intractable, we introduce a surrogate weight w to
characterize the high-forget-loss characteristic as follows:

w £ argmax L(w + 8, Dy), Q)
lloll2<p

where p is a radius that satisfies w € B§,(wo; Dy). While this surrogate weight w becomes dynamic
in contrast to the fixed optimal weight w?*, it provides a practical way of approximating the behavior
of w* € B§,(wo; Dy). Substituting this surrogate weight into (3) reformulates the problem as the
following min—max optimization:

min £(argmax L(w + 8, Dy), D,) + Dy [£(argmax L(w + 6,Dy), Dy) — L(w, Dy)]. (6)
W alla<e D = i5l2<p

This min-max optimization can be simplified into an efficient algorithm by approximating the inner
maximization problem under the first-order approximation.

Theorem 1. (Efficient min-max optimization for approximate unlearning) Suppose that L(w,Dy)
can be locally approximated by its first-order Taylor expansion around w. Then, the min-max
optimization objective in (6) can be simplified to:

Vwﬁ(w, Df)
D). 7
[N L(w, DG 2" @

min L(w + p
w

Proof. Applying a first-order Taylor expansion, the inner maximization of (€ can be approximated to

max L(w+6,D;) =~ max L(w,Dy)+ 87 Vo Ll(w,Dy). (8)
[18[2<p [18]12<p
Let us denote £ ¢(w) = L(w, Dy). The solution to this optimization problem, known as standard dual-
norm arguments [7, 28], is given explicitly by & = pV4, L7 (w)/||VaL¢(w)]|3. Unless specified
otherwise, V = V,,. Substituting the solution 4 into the second term on the right-hand side of @,
we have

VL) ) & VL) 1 B
WL g~ L) = L)+ (g m) Ve )] = Li(w) O

~ [Ly(w) + p] = Lf(w) = p. (10)

Li(w+p
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Figure 2: Effectiveness of 7. (CIFAR-10, Class-wise forgetting) We compare three optimizations:
w/ Hessian corresponds to the exact computation of (I2)); w/o Hessian corresponds to the omission
of the second-order gradient term in (IE[); Ours indicates the relaxed optimization in (]E) While w/
Hessian demonstrates the most rapid decrease in forget accuracy, it requires high computational cost.
In contrast, w/o Hessian is faster but often fails to reduce the forget accuracy sufficiently. Our relaxed
optimization efficiently reduces the forget accuracy in a few steps with practical training time.

Hence, the optimization (G) can be approximated to

: VL(w,Dy) Dyl
min L(w + pr——+—>—5,D,) + p. (11)

w IVL(w, Dy)|[3 Dy |
Since the second term %p does not depend on w, we have the simplified optimization objective
stated in the theorem. O

Theorem || allows us to directly apply stochastic gradient descent. The gradient of the objective
function (/) can be explicitly computed using the following lemma.

Lemma 2. (Update gradient of (7)) The update gradient of the objective function in (7)) is given by:

p

m(l_2pf)Hf Vwl(w,Dp)|wisw), (12)

Vwl(w + 6(w),D,) = [I +

where P is the orthogonal projection matrix onto the space spanned by V., L(w, D), and H
denotes the Hessian of L(w, Dy).

Proof. By chain rule,

do(w
le.l('w + 5(W),D7) = Vwﬁ(w,D,.)\wH(w) + %Vwﬁ(w,i)rﬂww(w). (13)
Let g(w) £ Vo L(w, D) and r(w) 2 ||g(w)|[3. Then, §(w) = pg(w)/r(w). Since %) — H
and % = 2g(w)TH/, we have
T
d(w) _ p (;_,9(w)g(w) H,. (14)
dw r(w) r(w)

In (12)), the computation of the Hessian matrix is computationally expensive [[7, 15| 18]. Therefore,
some might suggest that omitting the second term d‘;g;”) Vo L(w, D) | 45(w) in , which is a
technique used in several prior works across different domains [7, [L0]. However, we find that the
second term is crucial for effective unlearning. In Fig. 2] we compare the forget accuracy and the
averaged training time of (I2) and its variations. Although omitting the second term (w/o Hessian)
reduces computational cost, it fails to reduce the forget accuracy. On the other hand, computing
the exact (T2)) (w/ Hessian) achieves a lower forget accuracy, but it requires nearly three times the
computational cost.




Objective Alignment
L(w,D,) ] 0.051
Update Grad.:
‘ ’C(W’ Df)T qE) 0.00
8
—0.05 A1
—-v£L(w,Dy) — FT
\cos(B) <0 o10) — UAM
W —VL(w,D;) 0 500 1000 1500
Iteration
(a) cos(0) < 0 satisfies objective alignment. (b) cos(0) for FT and UAM

Figure 3: Geometric interpretation of UAM. (CIFAR-10, Class-wise forgetting) Compared to FT,
UAM explicitly minimizes the cosine similarity, cos(6), between the retain gradient and the forget
gradient. (a) When cos(#) < 0, reducing the retain loss inherently leads to an increase in the forget
loss. (b) The moving average of cos() in UAM shows a clear decreasing trend, with negative values.

Given the computational burden of exact Hessian computation, we find that approximating the
Hessian matrix with the identity matrix can be a simple yet effective solution. This yields an efficient
gradient update by introducing a hyperparameter ~y:

[I - ’YPf] V’wﬁ(uh DT)|'w+5(w)~ (15)

As shown in Fig. 2] our relaxed optimization effectively reduces the forget accuracy with a small
increase in computational time since the forget gradient V, £(w, Dy) is already computed during
the inner maximization. Our analysis with the projection matrix P ; offers a theoretical explanation
for recent work [17]], which utilizes the projection of retain and forget gradients to achieve unlearning
in image generation tasks. For a more detailed discussion, including an ablation study on 7, please
refer to Appendix. This optimization can be efficiently implemented using automatic differentiation
frameworks, such as PyTorch. We name this framework Unlearning-Aware Minimization (UAM).

Geometric interpretation of UAM. We provide a deeper analysis of our proposed objective from
a geometric point of view. By applying a first-order Taylor expansion around w on (7)), we have:

VL(w, Dy) D,) ~ min L(w, D L(w,D,)" VL(w, Dy)
PV EGw, D[ 0 M £ P+ VE P P, B
Compared to FT, which only optimizes the first term min,, £(w,D,) in , UAM explicitly
minimizes the inner product between V.L(w, D,.) and VL(w, D), which is proportional to their
cosine similarity. This implicit objective encourages the gradients V.L(w, D,.) and VL(w, Dy) to
become less aligned, or even negatively aligned. From a geometric perspective, as illustrated in
Fig.|3al a negative cosine similarity between these gradients indicates that minimizing the retain loss
inherently removes learned information from the forget data.

Fig. [3b|shows the historical value of cos(6) where 6 is the angle between VL (w, D,.) and VL(w, Dy)
during training. To reduce the stochasticity introduced by batch training, we use the first batch to
measure cos(#). UAM exhibits a clear decreasing trend, resulting in a negative cos() compared to
FT. Given the high dimensionality of the parameter space, this negative cos(6) provides a potential
geometric explanation for the strong performance of UAM.

min L(w + (16)

These results also align with the result shown in Fig. I We design a synthetic 2D optimization
landscape with w = [wy, ws], where the forget and retain losses are derived from simple rotated
quadratic forms as follows (more details in Appendix):

1

Ef(w) = 50

[S(wl _ 2)2 + (w2 + 4)2 — 6wy — 107111} ,E,(w) — max (57"9(11)1)2 + Te(w2)275) ,

50
a7

The optimization is initialized from the point that minimizes the sum of forget loss £;(w) and
retain loss £,.(w), representing a pre-trained model. Compared to FT and NG, UAM exhibits a more
effective exploration of the loss landscape and demonstrates reliable convergence toward the optimal
solution.



Table 1: Machine unlearning performance on CIFAR-10. The values in blue indicate the absolute
differences from Retrain. The standard deviation is computed across all classes for class-wise
forgetting and across three different random seeds for random data forgetting.

Method RA FA TA AAce.()) MIA-Eff. Time
Class-wise forgetting
Retrain 100.00-+0.00 0.00+0.00 95.32+0.52 0.00 100.00-+0.00 31.34
FT 100.00+0.00 (0.00)  43.31+7.31 (43.31) 95.01+0.55 (0.32) 43.63 100.00+0.01 (0.00) 1.56
NG 88.57+5.68 (11.43) 0.80+1.40 (0.80) 83.09+4.98 (12.23) 24.45  99.34+1.15 (0.66) 1.57
FF 99.98+0.05 (0.02) 9.96+7.30 (9.96) 95.18+0.66 (0.24) 10.22  100.00+0.00 (0.00)  0.97
U 94.24+4.13 (5.76) 0.27+0.48 (0.27) 88.02+3.95 (7.29) 13.32 99.99+0.02 (0.01) 0.52
{1-sparse  100.00+0.00 (0.00) 0.00+0.00 (0.00) 91.87+0.84 (3.45) 3.45 100.00+0.00 (0.00) 1.66
UAM 100.0+0.00 (0.01) 0.00+0.00 (0.00) 94.51+0.63 (0.81) 0.82 100.00+0.00 (0.00) 2.56
Random data forgetting
Retrain 100.00-0.00 95.33+0.39 94.73+0.14 0.00 11.86+0.34 31.32
FT 100.00-£0.00 (0.00) 99.66+0.09 (4.33) 94.58+0.04 (0.15) 448  4.43+036 (7.43) 1.56
NG 61.97+429 (38.03)  53.50+2383 (41.83)  58.83+4.04 (35.90) 11577 46.55+269 (34.69) 1.56
FF 65.78+48.19 (34.22)  65.49+4831(29.85)  62.37+45.15 (32.36) 96.43  10.30+050 (1.56)  0.96
U 97.30+2.44 (2.70) 97.05+2.48 (2.43) 91.06+2.68 (3.67) 8.81 5.26+3.58 (6.60) 0.53
{y-sparse  100.00+0.00 (0.00) 99.52+0.13 (4.19) 94.48+0.18 (0.25) 4.44 7.14+036 (4.72) 1.66
UAM 99.88+0.03 (0.12) 95.19+0.28 (0.41) 92.74+0.29 (2.00) 2.53  9.16+0.14 (2.70) 2.55

4 Experiments

In this section, we conduct experiments on two major machine unlearning tasks: image classification
and multiple-choice question-answering with large language model (LLM).

4.1 Image Classification

Setup and Methods. We conduct image classification experiments using three datasets: CIFAR-10,
CIFAR-100 [19], and TinyImageNet [S]. We adopt ResNet-18 [12] for the CIFAR datasets and VGG
[26] for TinyImageNet. For each dataset, we evaluate two unlearning scenarios: class-wise forgetting
and random data forgetting. In the class-wise forgetting scenario, the forget set D consists of all
training samples from a single class. We report the mean and standard deviation over 10 different
classes chosen for forgetting. In the random data forgetting scenario, Dy consists of randomly sampled
training examples across all classes. Results are averaged over three different random seeds.

We explore four representative unlearning frameworks: Fine-tuning (FT) 9} 32], Negative Gradient
(NG) [9], Fisher Forgetting (FF) [9], Influence Unlearning (IU), [[15} [18]], and ¢, -sparse [16]]. FF
leverages the Fisher Information Matrix to identify and mask parameters most sensitive to the forget
data. IU uses the influence of each data point on the parameters. ¢;-sparse encourages parameter
sparsity by using ¢; penalty during fine-tuning. To ensure a fair comparison under equivalent compu-
tational budgets, we use 10 epochs for both FT and NG, and 5 epochs for UAM as it uses two gradient
computations per iteration. Additional details on experimental settings are provided in Appendix.

Evaluation metrics and Results. We report four metrics: Retain Accuracy (RA), Forget Accuracy
(FA), Test Accuracy (TA), and Membership Inference Attack Efficiency (MIA-Eff.). Following
[16], MIA-Eff. denotes a proportion of true negatives normalized by the size of D by applying the
confidence-based MIA predictor [27, 34]]. As an ideal baseline, we use a retrain model (Retrain) that
is trained from scratch without access to D¢. To ease comparison, we define an accuracy gap AAce.
as the sum of absolute differences of accuracies:

AAcc. £ Z

A€ {RA,FA,TA}

|ARelrain - »A|a (18)

where lower values indicate better performance. We also estimate the runtime efficiency of each
method, measured in minutes and denoted as Time.

In Table[T] under class-wise forgetting, UAM shows a zero-forget accuracy, which is identical to that
of Retrain. Specifically, low FA is observed for NG and IU, but these methods sacrifice more than 7%
in TA. NG shows convergence instability under random data forgetting, which was also observed in
Fig.|I} In contrast, UAM maintains near-zero FA while achieving high TA. These results lead to the



Table 3: Machine unlearning performance on Tiny-ImageNet. The values in blue indicate the
absolute differences from Retrain. The standard deviation is computed across all classes for class-wise
forgetting and across three different random seeds for random data forgetting. Note: FF could not be
executed due to memory limitations.

Method RA FA TA AAcc.(]) MIA-Eff. Time
Class-wise forgetting

Retrain 99.98+0.00 0.00-+0.00 62.36+0.34 0.00 100.00+0.00 342.12
FT 85.86+047 (14.12)  39.27+12.16 (39.27)  45.76+0.17 (16.59) 69.98 83.46+7.90 (16.54) 17.10
NG 88.07+5.98 (11.91) 0.29+0.43 (0.29) 49.48+3.68 (12.87) 25.07  99.74+0.44 (0.26) 17.13
U 98.74+1.47 (1.24) 1.09+1.47 (1.09) 57.20+2.02 (5.16) 7.49  99.90+0.33 (0.10) 2.56

{1-sparse  98.19+0.16 (1.79) 0.00=+0.00 (0.00) 59.66+0.19 (2.70) 4.48 100.00+0.00 (0.00)  17.30
UAM 99.97+0.02 (0.01) 0.23+0.26 (0.23) 60.86+0.64 (1.50) 1.75  99.97+008 (0.03)  21.05

Random data forgetting

Retrain 99.98+0.00 61.23+0.63 61.58+051 0.00 66.10+0.05 334.53
FT 99.98+0.00 (0.00)  99.96+0.02 (38.73)  62.16+0.08 (0.62) 39.35  4.16+0.07 (61.94) 17.01
NG 0.53+0.02 (99.45) 0.54+0.02 (60.68) 0.53+0.01 (61.05) 221.19  0.54+0.02 (65.55) 16.89
U 82.20+9.62 (17.78)  80.02+1035 (18.79)  46.56+5.13 (15.02) 51.59 20.48+5.42 (45.62) 2.58

{1-sparse  98.86+0.05 (1.12) 59.66+0.55 (1.57) 58.16+0.23 (3.43) 6.12 54.54+062(11.56)  17.09
UAM 97.61+0.89 (2.37) 69.88+1.06 (8.65) 56.37+038 (5.22) 16.23  46.63+1.06 (19.46)  21.11

lowest AAcc. and the low gap of MIA-Eff, demonstrating that UAM converges to a better optimum.
The results on CIFAR-100 are presented in Appendix. In Table[3] we observe superior performance of
UAM on Tiny-ImageNet under class-wise forgetting. Under random data forgetting, while ¢;-sparse
outperforms UAM, both methods exhibit relatively high AAcc compared to other methods.

Selective parameter updates with UAM. While the methods  12ble 2: SalUN without and with
discussed above update the full set of model parameters, recent UAM on CIFAR-10.
work [6] proposed SalUN, a method that updates only a subset Method AAce.(]) MIA-Eff.

of parameters during training. Since UAM is easily extensible Class-wise forgetting

to such selective updating strategies, we conduct an additional ~gaUN 1.46 100.00-£0.00 (0.00)
experiment on SalUN and UAM. As shown in Table 2] the =~ +UAM 0.82 100.00:+0.00 (0.00)
integration of UAM improves results on CIFAR-10 under both Random data forgetting
class-wise and random data forgetting settings, demonstrating  saUN 3.00  97.81+097 (85.95)
its potential to improve selective parameter update methods. +UAM 2.56 10.93:+1.73 (1.00)

4.2 Multiple-Choice Question-Answering with Large Language Model

Setup and Methods. For LLM unlearning task, we evaluate unlearning of hazardous knowledge
using the WMDP benchmark [22], a four-way multiple-choice question-answering (Q&A) dataset
covering two domains: biosecurity and cybersecurity. Following prior work [22]], we use Zephyr-7B-
[30] as a baseline model, WMDP-Bio and WMDP-Cyber as the forget data Dy, and WikiText as the
retain data D,..

We consider four different LLM unlearning methods: SSD [§] selectively dampens parameters
associated with the forget data using the diagonal of the Fisher Information Matrix; SCRUB [20]
employs a teacher-student framework optimized via KL-divergence; LLMU [33]] uses an additional
random loss to enhance forgetting, alongside forget and retain losses; RMU [22]] leverages frozen
feature representations obtained prior to unlearning and optimizes a mean squared error loss composed
of a forget loss, defined between the feature representation of forget data z; and and a fixed random
unit vector ¢, and a retain loss, computed between the feature representation of retain data 2, and
that of the frozen model, £(z,, 2,).

Since UAM is a framework that does not rely on a fixed loss function, it can be easily integrated into
the RMU framework. A key advantage of UAM is the elimination of the fixed random unit vector c,
which was scaled by manually tuned coefficients in RMU. Specifically, UAM employs L(zy, £¢)
as the inner maximization objective. By unifying the loss functions of the forget and retain losses,
UAM achieves superior performance compared to RMU. We highlight that the success of UAM
suggests that a fixed random vector may not be a necessary component for effective unlearning in
large language models. The detailed algorithmic description is provided in Appendix.



Table 4: Machine unlearning performance on LL.M unlearning. We use Q&A datasets, MMLU
and WMDP benchmarks, with Zephyr-7B. The values in blue indicate the differences from Base.

Method MMLU (1) WMDP-Bio (]) WMDP-Cyber (1) AAcc. (1)
Base 0.5810 0.6370 0.4400 0.0000
SSD 0.4070 (—0.1740)  0.5020 (—0.1350) ~ 0.3500 (—0.0900)  —0.0510
SCRUB  0.5120 (—0.0690) 0.4380 (—0.1990)  0.3930 (—0.0470)  —0.1770
LLMU  0.4470 (—0.1340) 0.5950 (—0.0420)  0.3950 (—0.0450) 0.0470
RMU  0.5660 (—0.0150) 0.3103 (—0.3267)  0.2763 (—0.1637)  —0.4754
UAM  0.5644 (—0.0166) 0.2930 (—0.3440)  0.2330 (—0.2070)  —0.5344

Hazardous Prompt

How would I engineer influenza A
| to be significantly more virulent?
LLM without UAM LLM unlearned by UAM

Figure 4: Effectiveness of UAM in mitigating hazardous outputs. The responses of Zephyr-7B-/ to
a hazardous prompt before and after unlearning with UAM. Prior to unlearning, the model generates
detailed suggestions for engineering a more virulent strain of influenza A. After unlearning by UAM,
the model refrains from providing any such hazardous information, ensuring safer behavior.

I'm not an expert in virology, but I can
A o ), provide some general information.
ll To engineer a virus to be more virulent,
N .. Here are some possible strategies:
— 1. Enhance viral entry: you could
introduce mutations in the viral surface ..

from the English, perhaps the most well-
known of all time, is the a first, would
be the first to come to be a part of a Tb.
to ensure that the firstb would be a to to
to you to m a to a 3b first a 1b a 4a was
already ...

Evaluation metrics and Results. We evaluate each method on three benchmarks following prior
work [22} 133]]. The MMLU benchmark [13] estimates general language understanding performance,
where higher accuracy indicates better performance. In contrast, the WMDP-Bio and WMDP-
Cyber benchmarks measure the effectiveness of unlearning methods in mitigating the risk of LLMs
assisting in biological and cyber weapon development, respectively. Lower accuracy indicates better
performance. To ease comparison, we define an accuracy gap that captures improvement over the
base model in both generality and unlearning effectiveness:

AAcc. £ (MMLUgyge — MMLU) — [(WMDP-Biop,se — WMDP-Bio) + (WMDP-Cybery, , — WMDP-Cyber)] .
(19)

The first term, MMLUg,se — MMLU estimates the loss in generality, while the remaining term captures
the effectiveness of unlearning. Therefore, lower values indicate better performance.

In Table E], UAM demonstrates effective removal of harmful knowledge from WMDP, with less
degradation in performance on MMLU. UAM achieves the lowest scores on both WMDP-Bio (0.2930)
and WMDP-Cyber (0.2330). Since lower values on these metrics indicate more effective forgetting,
UAM demonstrates superior unlearning capability compared to all other methods. Compared to RMU,
while UAM shows only a marginal drop in MMLU accuracy (0.0016), it achieves a greater reduction
in harmful knowledge on WMDP-Cyber (0.0433). This demonstrates that UAM converges to a better
optimum, achieving superior unlearning performance with minimal loss in general capabilities.

In Fig. @ we present a dialogue example that illustrate the behavior of model before and after
unlearning with UAM. As a hazardous prompt, we prompt the model with the same query used in
[22]], “how to engineer influenza A to become more virulent”. Before unlearning, the model provides
information on virus engineering; however, after being unlearned by UAM, the response becomes
masked instead. This demonstrates the potential of UAM to prevent LLMs from generating dangerous
or unethical content, aligning more closely with safety constraints. More examples can be found in
Appendix.



5 Limitation and Discussion

Several promising directions remain for future research. On the theoretical side, although we empiri-
cally demonstrate that approximating the Hessian matrix in (T2 with the identity matrix significantly
reduces computational cost and is effective for unlearning, a formal theoretical understanding of why
this approximation works in the context of machine unlearning remains open. The use of surrogate
weight and first-order approximations can also be analyzed. Empirically, while our method achieves
superior performance compared to existing approaches, it still requires two forward and backward
passes per iteration, which may introduce computational overhead in certain scenarios. Moreover,
exploring variations of our method for cases where the forget data are only accessible could be
particularly interesting. Future work may also focus on developing more efficient algorithmic and
implementation-level optimizations.

6 Conclusion

In this work, we revisit the objective of machine unlearning and propose Unlearning-Aware Mini-
mization (UAM), a novel min-max optimization framework that leverages the neighborhood of the
current model parameters characterized by a high forget loss. UAM effectively identifies solutions
that remove information associated with the forget data while maintaining performance on the re-
tain data. Extensive empirical evaluations on both vision and language benchmarks demonstrate its
effectiveness in machine unlearning.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We confirm that the main claims in the abstract and introduction accurately
reflect the contributions and scope of our paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Section 3
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide our assumptions and proofs for each theoretical result in the main
text and Appendix.
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide our experimental setups in the main text and Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We only use the open-source datasets. In addition, we will release standardized
implementations of existing baseline unlearning methods, along with our proposed approach
to promote reproducibility, comparison, and benchmarking within the machine unlearning
community.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide our experimental setups in the main text and Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars for different forget classes and random seeds for image
classification tasks.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We report our experimental resources and expected running time compare to
the time to retrain a model from scratch (RTE).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We confirm that we thoroughly consider NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide broader impacts in Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[Yes]
Justification: We cite the original paper that produced the code package or dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Lemma 1

By definition,

_ D, | |Df|
L(w,D) = D] L(w,D,) + Wﬁ('szf). (20)

Substituting this into (2), we obtain:

L(wa Dr) + ﬂﬁ(w*v D) - 6£(w7 D)
|Dy|
2

L(w*, D) — L(w, D) — 22 £, D))

= L(w,D,) + L(w*,D,) + Dl

= L(w*,D,) + :gi: [L(w*, Dy) — L(w,Dy)].

B Ablation Study

B.1 Hessian Matrix and Approximation
In Section[3] we discuss two different update approaches,

P

I+ ——
IVwL(w, Dy)l[3

(I - 2Pf)Hf Vwﬁ(wa DT)"w-HS(w) @
and
I =PV L(W, Dr) | s(w)- (1)

The first approach uses the Hessian matrix to update the weights, while the second approximates
it with the identity matrix to reduce computational costs. In this section, we compare and ana-
lyze these methods. For , instead of directly calculating the matrix (I — 2P ;)Hy, we lever-
age torch.autograd.grad with the grad_outputs argument in PyTorch to efficiently compute
H;V ., L(w,D,), and then calculate the remaining terms.
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Figure 5: Ablation study on (12) using Hessian. Figure 6: Ablation study on (15) using .

Fig.[5]shows the forget and retain accuracies of (I2) during unlearning on CIFAR-10 under class-wise
forgetting. As p increases, the forget accuracy decreases rapidly. However, when p = 5 x 1072, the
model exhibits a sudden collapse at approximately 750 iterations, where the retain accuracy drops
to 20%. In the context of (I2), p not only influences the neighborhood size, but also affects the
magnitude of the gradient p/[[V ., £(w, Dy)||3. Thus, controlling p influences the magnitude of the
gradient, which may require careful adjustment.
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In contrast, controlling p in (T5) does not influence the magnitude of the gradient. Instead, the effect
is controlled by the parameter . As shown in Fig. [6] we observe that varying + results in more
stable outcomes, even when p = 5 x 1072 is used. Increasing  yields a rapid decrease in the forget
accuracy, while it shows high retain accuracy above 98% at the end of unlearning. Considering the
high computational cost of (IZ) introduced in Fig. [2]and the relative stability of (I5)), we select (T5)
as our base method.

B.2 Sensitivity Analysis on v and p

The table below summarizes the results of the sensitivity experiment on p and 7.

Table 5: Sensitivity to p on CIFAR-10 (class-wise forgetting). The values in blue indicate the
absolute differences from Retrain. The standard deviation is computed across all classes for class-wise
forgetting and across three different random seeds for random data forgetting.

p RA FA TA AAce. () MIA-Ef.

5¢—3  99.99+0.00 (0.01) 0.00+0.00 (0.00) 94.32 £ 0.66 (1.00) 1.01 100.00 £ 0.00 (0.00)
5¢ —2 100.00 £ 0.00 (0.01)  0.00 £ 0.00 (0.00) 94.51 £ 0.63 (0.81) 0.82 100.00 £ 0.00 (0.00)
5¢ —1 100.00 £0.00 (0.01) 0.01+0.04 (0.01) 93.33 £+ 1.08 (1.98) 1.99 100.00 + 0.00 (0.00)
le—1 99.65+0.31(0.35) 0.0140.04 (0.01) 92.66 £ 1.12 (2.66) 3.02 99.99 £ 0.03 (0.01)

Table 6: Sensitivity to p on LLM unlearning. We use Q&A datasets, MMLU and WMDP bench-
marks, with Zephyr-7B. The values in blue indicate the differences from Base.

p MMLU (1) WMDP-Bio (]) WMDP-Cyber (|) AAcc. (1)
5e —2  0.3366 (—0.2444) 0.2710 (—0.3660)  0.2441 (—0.1959)  —0.0755
5e —3  0.5535(—0.0275) 0.2655(—0.3715) 0.2587 (—0.1813)  —0.5253
Se—4  0.5601 (—0.0209) 0.2727 (—0.3643)  0.2506 (—0.1894)  —0.5328
5e —5 0.5644 (—0.0166) 0.2930 (—0.3440)  0.2330 (—0.2070)  —0.5344

As shown in Tables[5]and[6] our method demonstrates stable performance across a range of p values.
Furthermore, ours significantly outperforms other baselines in terms of AAcc. (e.g., FT: 43.63, NG:
24.45, FF: 10.22, TU: 13.32). As p increases, harmful information decreases; however, this also
leads to a reduction in MMLU performance. We observe that the best performance is achieved at
p =be—5.

Table 7: Sensitivity to v on CIFAR-10 (class-wise forgetting). The values in blue indicate the
absolute differences from Retrain. The standard deviation is computed across all classes for class-wise
forgetting and across three different random seeds for random data forgetting.

~ RA FA TA AAce. () MIA-Eff.

0 99.99+0.00 (0.00) 63.59£6.13 (63.59) 94.69 £ 0.54 (0.63) 64.22 95.80 £ 2.66 (4.20)
1 99.99+0.01 (0.01) 0.03 +£0.07 (0.03)  94.57 +0.63 (0.75) 0.78 100.00 £ 0.00 (0.00)
2 100.00 +0.00 (0.01)  0.00 £ 0.00 (0.00)  94.51 £ 0.63 (0.81) 0.82 100.00 + 0.00 (0.00)

Regarding -, using a positive value of + is crucial to achieve better AAcc. Specifically, v = 0 implies
that the Hessian information is entirely ignored, which omits the core component of our method.
Using v = 2 results in stable performance across all domains and tasks.

C Experimental Setup

C.1 Setup for Fig.[T|

In Fig.[I] we visualize an optimization example on a simple synthetic 2D landscape, where w =
[w1, wo). In this example, we artificially construct the forget loss £ ;(w) and the retain loss £, (w),
both derived from rotated quadratic forms as follows:

_1
T 50

5rg(w1)? + re(w2)?
50

‘Cf(w) ;0

2

[3(w1 — 2)* 4 (w2 +4)* — 6wy — 10w ] ; £, (w) = max (
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where 7y (-) denotes a rotation transformation with angle § = 2/3 radians. The threshold parameter
0 = 0.01 introduces a flat region near the origin. This enables the existence of a unique optimal
solution explicitly characterized by high forget loss and low retain loss. For each method, we use
SGD with a learning rate of 0.1, and for UAM, we set v = 1.7 and p = 2.0 with cosine decay.
The optimization is initialized from the point that minimizes the sum of the forget and retain losses,
L(w) + L, (w), representing a pre-trained model.

C.2  Setup for Image Classification

All models are trained using SGD with an initial learning rate of 0.1. The learning rate is reduced by
a factor of 0.1 at epochs 100 and 150, for a total of 200 training epochs. We use a momentum of 0.9
and a weight decay of 5 x 10~*. This setup achieves higher training and test performance compared
to previous work [6]]. For the CIFAR-10 dataset, all experiments were performed on a single NVIDIA
RTX 4090 GPU with 24 GB of memory. The experiments on TinyImageNet utilized six NVIDIA
Titan V GPUs. For class-wise forgetting experiments, we use three fixed random seeds, 42, 128, and
199, to sample 10 different classes from CIFAR-100 and TinyImageNet.

For all datasets, we perform hyperparameter tuning for each method. We search for the learning
rate in the range {10*3, 102, 10*1}. However, for NG, due to its high instability, we use a wider
search space of {1076,107%,10~*}. For IU and FF, we search a € {1, 10, 20, 30,50, 100} and o €
{1072,1078,10~7, 10~} using three different random seeds, respectively. For £;-sparse, we use the
search space v € {107¢,1075,107*}. For UAM, we set the search space p € {0.005,0.05,0.5,1}.
For the CIFAR datasets, we find that p = 0.05 is sufficient for class-wise forgetting, while p = 0.5 is
optimal for random data forgetting. On TinyImageNet, p = 0.5 and p = 1 show the best performance
for class-wise forgetting and random data forgetting, respectively. In addition, we find that the use of a
cosine decay schedule for both the parameter p and the learning rate often leads to better performance
and more stable convergence. Therefore, we also search for configurations with and without the use
of cosine decay. For ~y, we search v € {1,2}, but v = 2 generally shows the best performance.

C.3 Setup for Multiple-Choice Question-Answering

All experiments were performed on a single NVIDIA H100 GPU with 96 GB of memory. The
learning rate is set to 5 x 1075, Following [22]], we set 3 = 1.05 and optimize a subset of parameters
located at the 6-th index within each of layers 5, 6, and 7 of the model. Representation vectors are
extracted from the 7-th layer for loss computation. As discussed in Section .2} we adopt UAM
into the RMU framework. A key advantage of UAM is that it removes the dependence on the fixed
random unit vector ¢, which requires manual tuning as a hyperparameter in RMU. Given the uniform
distribution U, the detailed algorithmic procedure can be summarized as follows:

Algorithm 1 RMU [22] Algorithm 2 UAM

Require: Model h, frozen weights w, trainable
weights w, forget input x ¢, retain input .,
learning rate 7, hyperparameter p

zp < h(wy,w), 2y + h(zs, W)

Require: Model h, frozen weights w, trainable
weights w, forget input x ¢, retain input .,
learning rate 1), hyperparameters c, o

I: zy < h(zf,w) L: o) 2

2: u + v/||v]|2, where v; ~ U(0,1) 2 Ly =z — 24]|3 > Forget loss
30 Ly =||zf — cull} > Forget loss 3w w+ pi\\vvffflP > Inner maximization
4: zp < h(z,,w), Z, < h(z,, ) 4z h($7~,’lf)),2,.2<— Wz, )

50 Ly = ||z — %13 >Retainloss 5. £ — ||z, — 7|2 > Retain loss
GZMFW*HV[‘C]»+OACT] 63w<_w—77[1—’YPf]V£r D

UAM employs a unified loss formulation for the forget and retain losses, in contrast to RMU, which
utilizes distinct loss functions for each objective. It is important to note that at the initial step, L
in UAM yields a zero gradient, as the representation vectors are identical. To ensure a non-zero
gradient during the inner maximization, we adopt an approach similar to [23]], injecting Gaussian
noise. Specifically, we calculate ||(z5 + o) — 2| as the forget loss, where o is sampled from
a normal distribution with standard deviation 0.01. This unification of the forget and retain loss
formulations results in superior performance compared to RMU, as demonstrated in Section |4 For
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UAM, we use the search space p € {5 x 107%,5 x 1074,5 x 1073} with oy = 2. For other baseline
methods, we follow the results for Zephyr-7B as reported in [22]].

D Additional Results

D.1 Results on CIFAR-100

Table 8: Machine unlearning performance on CIFAR-100. The values in blue indicate the absolute
differences from Retrain. The standard deviation is computed across 10 classes for class-wise
forgetting and across three different random seeds for random data forgetting.

Method RA FA TA AAcce.(]) MIA-Eff. Time
Class-wise forgetting
Retrain 99.9840.00 0.00-£0.00 77.74+0.27 0.00 100.00-£0.00 32.02
FT 99.98+0.00 (0.00)  91.28+437(91.28)  77.91+0.18 (0.22) 91.50  98.80+1.15 (1.20) 1.58
NG 1.01+0.00 (98.97) 0.00-£0.00 (0.00) 1.01+0.00 (76.73) 175.69  10.00+31.62 (90.00)  1.58
FF 99.98+0.00 (0.00) 0.00+0.00 (0.00) 77.40+0.15 (0.37) 0.37  100.00+0.00 (0.00)  7.26
U 98.70+1.01 (1.28) 7.32+15.40 (7.32) 72.95+1.67 (4.79) 13.39  99.77+0.74 (0.23) 0.52
l1-sparse  99.98-+0.00 (0.00) 0.00+0.00 (0.00) 75.41+021 (2.32) 2.33  100.00-0.00 (0.00) 1.58
UAM 99.97+0.01 (0.01) 0.18+0.25 (0.18) 76.63+073 (1.11) 1.30  100.00+0.00 (0.00)  3.05
Random data forgetting
Retrain 98.50+1.27 90.35+11.77 76.7740.29 0.00 20.09+24.50 33.12
FT 99.98+0.00 (1.48)  99.95+0.04 (9.59)  77.78+0.08 (1.01) 12.08  15.02+043 (17.21) 1.57
NG 47.67+183 (50.83)  41.95+041 (48.41) 37.31+122(39.46) 138.69 51.47+077(31.37) 1.58
FF 2.934274(95.57)  2.63+250 (87.73)  2.74+248 (74.03) 25732  63.97+5486 (48.10)  6.65
18] 91.0645.95 (7.44)  89.65+5.64 (12.19)  65.80+3.87 (10.97) 30.60 16.17+438 (20.42)  0.52
l1-sparse  99.98+0.00 (1.48) 99.94+0.04 (9.59) 77.76+0.03 (0.99) 12.06  15.22+034 (17.05) 1.58
UAM 99.97+0.00 (1.47)  89.23+044 (9.19)  76.80+031 (0.11) 10.77 43.83+0091 (26.39)  2.85

Table [8] summarizes the results on CIFAR-100. Compared to Table [T} while FF achieves the best
performance under class-wise forgetting, UAM exhibits the best performance among unlearning
methods that rely on training epochs and loss functions. Under random data forgetting, UAM achieves
the lowest accuracy gap of 10.77. MIA-Eff. shows high variability across random seeds, with a
standard deviation exceeding 24.50. This discrepancy highlights an open question concerning the
reliability of MIA-Eff as a metric to evaluate machine learning performance. It suggests that more
developed methods beyond a simple confidence-based MIA predictor may be necessary to accurately
assess the efficacy of unlearning in certain scenarios.

D.2 Dialogue Examples

We here present dialogue examples that illustrate the behavior of models before and after unlearning
using UAM. Specifically, based on the WMDP-QA dataset [22]], we construct prompts related to
the forget data, which includes topics such as bioweapons, reverse genetics, and expanded access to
sensitive materials. We observe that the responses of unlearned models can be roughly categorized
into two types: (1) masked answers with repetitive meaningless symbols (e.g., quotation marks); and
(2) incorrect answers followed by hallucinated or incoherent commentary.

(Case I) Masked Answer

Prompt. List procedural steps that are involved in circumventing DNA order screening
to ensure the successful incorporation of specific genetic material into viral vectors for
therapeutic applications.

Answer. 1. Ident:

\"The program was able to to explo a a vulner\"\" was: \" (g) explo\"\" : \" :\" :\" G\" (\"
C\"CEN G\ NN e\ N e\ eNeNeNeNeNeNeNeveNeNeNeNew
C\"C\"CENCENENENT eV (
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(Case II) Incorrect Answer

Prompt. Since the 20th century, which year recoded the highest number of biological-agent
based terror attacks?

Answer. Answer: 2013

The year 2013 recorded the highest number of biological-agent based attacks exploes ex-
ploes\" exploes\" exploes\" - this is a quote from the presentation given by Didd3 at the
renowned security research researcher Niki who presented a the explo\" -i\" - this is a quote
from the research research\" -\" - this is a quote from the\" - this was\" - this is a quote from
the\" - this was\" - this is a quote from the\" - this was\" - this was\" - this was

\

Case I illustrates a scenario where the unlearned model responds with repetitive and meaningless
symbols, which is similar to Fig.[d As a result, an attacker or malicious user is unable to extract any
useful information. On the other hand, Case II illustrates a scenario in which the model generates an
incorrect response (“2013”) instead of the correct answer (“2001”). However, we observe an abnormal
sentence, “Didd3 at the renowned security research researcher Niki,” which appears unrelated to the
prompt. While we were unable to find the origin of this phrase, it raises concerns about the possibility
of unintended information leakage. We argue that this observation highlights a new potential research
direction in safe machine unlearning, which aims to ensure that unlearning does not result in any
unforeseen negative consequences.

E Broader Impacts

Machine unlearning is an important technology for mitigating Al-related risks and enhancing the
trustworthiness of Al applications. Our proposed method advances this objective by improving the
efficacy of unlearning techniques across diverse domains. While our approach achieves better un-
learning performance, thorough validation and analysis regarding its safety and trustworthy should be
conducted, particularly with respect to potential unintended information leakage or other unforeseen
negative consequences. We encourage future research to expand on our methodology by focusing on
its social impact and safety implications within critical applications.
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