
Under review as a conference paper at ICLR 2023

INSTANCE–SPECIFIC AUGMENTATION: CAPTURING
LOCAL INVARIANCES

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce InstaAug, a method for automatically learning input-specific augmen-
tations from data. Previous data augmentation methods have generally assumed
independence between the original input and the transformation applied to that
input. This can be highly restrictive, as the invariances that the augmentations are
based on are themselves often highly input dependent; e.g., we can change a leaf
from green to yellow while maintaining its label, but not a lime. InstaAug instead
allows for input dependency by introducing an invariance module that maps inputs
to tailored transformation distributions. It can be simultaneously trained alongside
the downstream model in a fully end-to-end manner, or separately learned for a
pre-trained model. We empirically demonstrate that InstaAug learns meaningful
input-dependent augmentations for a wide range of transformation classes, which
in turn provides better performance on both supervised and self-supervised tasks.

1 INTRODUCTION

Data augmentation is an important tool in deep learning (Shorten & Khoshgoftaar, 2019). It allows
one to incorporate inductive biases and invariances into models (Chen et al., 2019; Lyle et al.,
2020), providing a highly effective regularization technique that aids generalization (Goodfellow
et al., 2016). It has proved particularly successful for computer vision tasks, forming an essential
component of many modern supervised (Perez & Wang, 2017; Krizhevsky et al., 2012; Cubuk et al.,
2020; Mikołajczyk & Grochowski, 2018) and self-supervised (Bachman et al., 2019; Chen et al.,
2020; Tian et al., 2020; Foster et al., 2021) approaches.

Algorithmically, data augmentations apply a random transformation τ : X → X , τ ∼ p(τ), to each
input data point x ∈ X , before feeding this augmented data into the downstream model. These
transformations are resampled each time the data point is used (e.g. at each training epoch), effectively
populating the training set with additional samples. Augmentation is also sometimes used at test time
by ensembling predictions from multiple transformations of the input. A particular augmentation is
defined by the choice of the transformation distribution p(τ), whose construction thus forms the key
design choice. Good transformation distributions induce substantial and wide-ranging changes to the
input, while preserving the information relevant to the task at hand.

Data augmentation necessarily relies on exploiting problem-specific expertise: though aspects of
p(τ) can be learned from data (Benton et al., 2020), trying to learn p(τ) from the set of all possible
transformation distributions is not only unrealistic, but actively at odds with the core motivations of
introducing inductive biases and capturing invariances. One, therefore, restricts τ to transformations
that reflect how we desire our model to generalize, such as cropping and color jitter for image data.

Current approaches (Cubuk et al., 2018; Lim et al., 2019; Benton et al., 2020) are generally limited
to learning augmentations where the transformation is sampled independently from the input it is
applied to, such that p(τ) has no dependence on x. This means that they are only able to learn global
invariances, severely limiting their flexibility and potential impact. For example, when using color
jittering, changing the color of a leaf from yellow to green would likely preserve its label, but the
same transformation would change a lemon to a lime (see Figure 1b). This transformation cannot be
usefully applied as a global augmentation, even though it is a useful invariance for the specific input
instance of a leaf. Similar examples regularly occur for other transformations, as shown in Figure 1.

To address this shortfall, we introduce InstaAug, a new approach that allows one to learn instance-
specific augmentations that encapsulate local invariances of the underlying data generating process,
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(a) Rotation (b) Color jittering (c) Cropping

Figure 1: Different inputs require different augmentations. In (a), the digit ‘0’ is invariant to any
rotation, but rotating the digit ‘6’ by more 90◦ makes it a ‘9’. In (b), a similar phenomenon is
observed for color jittering applied to a leaf and a lemon/lime. The red dashed lines in (a) and (b) are
boundaries between different classes. In (c), the same effect is shown for cropping. Solid rectangles
represent the patches that preserve the labels of the original images ([left] grass, [right] cattle), while
dashed rectangles represent patches with different labels to the original images.

that is invariances specific to a particular region of the input space. InstaAug is based on using a
transformation distribution of the form p(τ ;ϕ(x)), where ϕ is a deep neural network that maps inputs
to transformation distribution parameters. We refer to ϕ as an invariance module. It can be trained
simultaneously with the downstream model in a fully end-to-end manner, or using a fixed pre-trained
model. Both cases only require access to training data and a single objective function that minimizes
the training error while maintaining augmentation diversity. As such, InstaAug allows one to directly
learn powerful and general augmentations, without requiring access to additional annotations.

We evaluate InstaAug in both supervised and self-supervised settings, focusing on image classification
and contrastive learning respectively. Our experimental results show that InstaAug is able to uncover
meaningful invariances that are consistent with human cognition, and improve model performance
for various tasks compared with global augmentations. While we primarily focus on the case where
the invariance module is trained alongside the downstream model (to allow data augmentation during
training), we find that InstaAug can also provide substantial performance gains when used as a
mechanism for learning test-time augmentations for large pre-trained models.

2 BACKGROUND

Data augmentation methods operate as a wrapper algorithm around some downstream model, f ,
randomly transforming the inputs x ∈ X before they are passed to the model. The outputs of the
augmented model are given by f(τ(x)), where τ : X 7→ X represents the transformation, sampled
from some transformation distribution p(τ). The aim of this augmentation is to instil inductive biases
into the learned model, leading to improved generalization by capturing invariances of the problem.
It can be used both during training to provide additional synthetic training data, and/or at test-time,
where ensembling the predictions from multiple transformations can provide a useful regularization
that often improves performance (Shanmugam et al., 2021).

Some approaches look to learn aspects of the augmentation (Cubuk et al., 2018; 2020; Lim et al.,
2019; Ho et al., 2019; Hataya et al., 2020; Li et al., 2020; Zheng et al., 2022). These approaches
can be viewed as learning parameters of p(τ), helping to automate its construction and tuning. Of
particular relevance, Augerino (Benton et al., 2020) provides a mechanism for learning augmentations
using a simple end-to-end training scheme, where the parameters of the downstream model and
transformation distribution are learned simultaneously using the (empirical) risk minimization

minf,θ Ex,y∼pdata

[
Eτ∼pθ(τ) [L(f(τ(x)), y)]

]
+ λR(θ), (1)

where L is a loss function and λR(θ) is a regularization term that encourages large transformations.

All of these approaches can be thought of global augmentation schemes, in that transformations are
sampled independently to the input. For an unrestricted, universal, class of transformations, this
assumption can be justified through the noise outsourcing lemma (Kallenberg & Kallenberg, 1997):
any conditional distribution Y |X = x can be expressed as a deterministic function g : X ×Rn →
Y of the input and some independent noise ε ∼ N (0, I). Thus, using reparameterization, the
dependency on x can, in principle, be entirely dealt with by the transformation itself. However, in
practice, the transformation class must be restricted to provide the desired inductive biases, meaning
this result no longer holds and so the independence assumption can cause severe restrictions. For
example, sampling rotations independently to the input is equivalent to the unrealistic assumption
that the labels of all images x are invariant to the same range of angles (cf. Figure 1a).
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3 INSTANCE-SPECIFIC AUGMENTATION: CAPTURING LOCAL INVARIANCES

In order to remedy the problems of global augmentations, we propose InstaAug. InstaAug learns
an input dependent distribution p(τ ;ϕ(x)) of information-preserving transformations that actively
makes use of the input x via the invariance module ϕ, as opposed to learning a global transforma-
tion distribution pθ(τ). This generalizes the hypothesis class of transformation distributions, and
significantly increases the flexibility and expressivity of the augmentations we can learn, without un-
dermining our ability to carefully control the inductive biases that are imparted. It can also informally
be viewed as a mechanism for learning invariances which are local to the specific input.

We argue that a good augmentation strategy needs to fulfill two properties. First, the transformations
should preserve the information in x that is necessary for the task at hand. For example, in classifica-
tion, transformations must preserve sufficient information to correctly classify τ(x). Second, the set
of transformations needs to have sufficient ‘diversity’ to effectively augment the data; we quantify
this as the entropy of the transformation distribution p(τ ;ϕ(x)). In addition to their intuitive nature,
in Appendix A we provide theoretical analysis that shows these requirements naturally originate from
a decomposition of the generalization error that results from using ϕ when training f . For simplicity,
we describe InstaAug on the task of classification in the remainder of this section.

3.1 MODEL STRUCTURE

Figure 2: Summary of InstaAug.

InstaAug is based around using a simple plug-in
invariance module, ϕ, between the input x and the
classifier f , as shown in Figure 2. We assume
a parametric family of distributions p(τ ; ·) over
some transformation space, then use ϕ, which is a
trainable neural network, to predicts its parameters
for a given input. During training, we sample a
transformation τ ∼ p(τ ;ϕ(x)), which is applied to
x to generate an augmented sample τ(x), before feeding this into the classifier f .

3.2 TRAINING

(a) Global augmentation (b) InstaAug

Figure 3: InstaAug learns more diverse augmentations
that also preserve labels compared to global augmenta-
tions. ⋆ and are samples from two different classes.
Blue and green shades represent label-preserving aug-
mentations for each class. In (a), the upper ⋆ should be
further augmented, but some of the augmented samples
for the lower ⋆ are already over-augmented and indis-
tinguishable from another class (see the red intersection).
InstaAug solves this problem by learning a different aug-
mentation for each instance, as shown in (b).

Good augmentations should induce sub-
stantial changes to the input x while pro-
viding all necessary information of the
task at hand, thereby capturing the maxi-
mum possible invariance. Figure 3a illus-
trates the tension between these two objec-
tives experienced by global augmentation
schemes. Wider-ranging transformations
are generally beneficial for generalization,
but ‘excessive’ transformations will gen-
erate samples that will be incorrectly clas-
sified. In Figure 3a we see this in the
red area, where the augmentations for a
pair of data points have started to overlap,
creating ambiguity and inevitably misclas-
sifications. Using instance-specific aug-
mentations (Figure 3b) allows for a bet-
ter trade-off of these needs. However, to
achieve this we need our objective to en-
courage diversity in augmentations, not
just low training error. It should also let the level of diversity vary between inputs, as some points
will be able to support larger transformations than others.

Based on these needs, training is done by simultaneously minimizing a conventional expected loss
with respect to both ϕ and f (or just ϕ if f is a fixed pre-trained classifier as per Section 5.3), while
placing a hard constraint on the average entropy of the transformations, Ex∼pdata [H[p(τ ;ϕ(x))]].
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The core motivation for this setup is that minimizing the expected loss will naturally encourage the
information needed for prediction to be preserved, but the constraints on the entropy are needed to
enforce diversity. Further motivation is provided by the theoretical analysis of Appendix A.

By appropriately parameterizing p(τ ;ϕ(x)) (see Section 3.3), we can write down its entropy in closed
form. We can then formulate the problem as the following constrained optimization problem:

min
f,ϕ

Ex,y∼pdata

[
Eτ∼p(τ ;ϕ(x)) [L(f(τ(x)), y)]

]
, (2a)

s.t. Ex,y∼pdata [H[p(τ ;ϕ(x))]] ∈ [Hmin,Hmax], (2b)

where L is the loss, for which we will generally use the cross-entropy. Here the lower bound
p(τ ;ϕ(x)) enforces the desired diversity. We typically expect this constraint to be active at the true
optimal solution, so Hmin can be thought of as a hyperparameter that controls the desired level of
diversity. The upper bound prevents p(τ ;ϕ(x)) exploding at the start of training when the classifier
is weak: without this we empirically find that the augmented samples from different classes tend to
overlap in the initial phase of training, hindering the training of f .

The Lagrangian function, Ex,y∼pdata

[
Eτ∼p(τ ;ϕ(x)) [L(f(τ(x)), y)]

]
− λEx,y∼pdata [H[p(τ ;ϕ(x))]],

can be used to solve this constrained optimization, where λ is the Lagrangian multiplier. In practice,
we initialize λ with a small positive value, and increase (decrease) λ when the average entropy
drops below Hmin (exceeds Hmax). The invariance module and downstream model can thus be
trained simultaneously using end-to-end gradient descent, utilizing the reparameterization trick to
deal with the stochasticity of τ when possible (Kingma & Welling, 2014), and the REINFORCE
estimator (Williams, 1992) otherwise. The approach can also be extended to regression or self-
supervised learning by substituting the loss function L (cf. Appendix C).

3.3 PARAMETERIZATION OF AUGMENTATIONS

We focus on parameterizing transformations that are frequently used in computer vision, though our
framework can easily be extended to other domains. Due to the varied characteristics of different
image transformations, we design two different parameterization methods for p(τ ;ϕ(x)).

Uniform parameterization. For rotation and color jittering, we find that a uniform distribution
is suitable for parameterizing p(τ ;ϕ(x)), such that ϕ(x) returns a pair (θmin, θmax) representing
extrema of the possible transformations. For example, for rotations these represent the maximum
and minimum rotation angles, such that τ(x) = R(θ) · x, where θ ∼ U(θmin, θmax). To compose
multiple transformations (such as hue, saturation and brightness in color jittering), we simply sample
them independently, such that p(τ1, . . . , τK ;ϕ(x)) =

∏K
k=1 p(τk;ϕk(x)). This provides a similar

parameterization to (Benton et al., 2020), but where (θmin, θmax) now critically varies with the input
x and there is no symmetry assumption on the transformation ranges.

Figure 4: Location-related parameterization of crops by a
CNN. The shaded area (bottom right) shows a simplified
3-layer CNN, and squares represent units at different con-
volutional layers. Each units defines a patch in the input
image (shown in the same color) through its receptive field.
The value of the activation then gives the corresponding
unnormalized log probability for that patch.

Location-related parameterization.
Using this uniform parameterization is
unfortunately not appropriate for crop-
ping. Firstly, the distribution on crop
centers may be multi-modal, since im-
portant information may exist in dif-
ferent parts of an image. Secondly,
the desired crop size and center are of-
ten highly correlated so cannot be sam-
pled independently. Finally, we encoun-
tered significant practical training issues
when using the uniform parameteriza-
tion for cropping, with ϕ often becom-
ing trapped in local optima with little
transformation diversity.

We therefore propose an alternative
location-related parameterization (LRP)
for cropping, which is based on defining a large fixed set of allowable crops then constructing ϕ to
map from inputs to a vector of probabilities over this set. As shown in Figure 4, this is achieved using
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a CNN where each hidden unit corresponds to a one possible crop. The units from all layers are
utilized, with those of earlier layers representing smaller crops. This parametrization proved more
effective than simply outputting the probabilities from a conventional network, due to the greater
parameter sharing between related crops. We note that it can also be directly extended to other
transformations, such as masking, local blurring, pixel-wise perturbation, and local color jittering.

3.4 TEST-TIME AUGMENTATION

Besides augmenting data during training, the learned invariance can also be applied to test-time
augmentation. Given a test image x, we sample n different transformations τi from p(τ ;ϕ(x)) and
apply them to x to generate n different views τi(x). After feeding these views to the classifier, f , we
use the mean logit 1

n

∑n
i=1 f(τi(x)) to predict x’s label. When only learning invariance for test-time

augmentation, InstaAug can be trained with a fixed pre-trained classifier at a lower computation cost.

4 RELATED WORK

Hard-coded invariance. Much recent work has been devoted to hard-coding global invariance in neu-
ral networks. For example, various models have been designed to be invariant to translation (Chaman
& Dokmanic, 2021; Zhang, 2019), rotation (Worrall et al., 2017; Zhou et al., 2017; Marcos et al.,
2017), scaling (Worrall & Welling, 2019; Sosnovik et al., 2019) or other group actions (Cohen &
Welling, 2016; Xu et al., 2021). Unfortunately, they require the set of invariant transformations to be
closed under composition, leaving out many practical transformations that do not form a group.

Learning augmentations. There have been numerous prior works that automatically learn global
augmentations and invariance from data. As discussed in Section 2, Augerino (Benton et al.,
2020) is perhaps the mostly closely linked such approach to InstaAug as it also relies on end-to-
end training (see Appendix B for further discussion on its similarities and differences to InstaAug).
AutoAugment (Cubuk et al., 2018) instead uses reinforcement learning to find augmentation strategies
that increase accuracy on a separate validation set. Various follow-up works have improved its
efficiency and/or performance (Lim et al., 2019; Ho et al., 2019; Hataya et al., 2020; Li et al., 2020;
Cubuk et al., 2020; Tang et al., 2019; Zheng et al., 2022). A small number of works have further
looked to learn augmentation policies that have some dependency on the input or just the class
label (Zhou et al., 2021; Cheung & Yeung, 2022). These approaches focus on choosing which type(s)
of transformation to apply from a fixed list—e.g. choosing from crop, blur, or color jitter—which may
include a small number of discrete options for transformation strength. By comparison, InstaAug
keeps the type of transformation fixed and learns instance-specific parameter for the transform
distribution, such as the positions and sizes of patches for cropping. In principle, it should be possible
to combine these complementary approaches with InstaAug, though we note they require a separate
validation dataset and cannot be used in unsupervised settings, unlike InstaAug.

Other related work. The spatial transformer (Jaderberg et al., 2015) aims to learn instance-specific
transformations, but only applies a single transformation to each input rather than a distribution
of transformations, making it distinct from data augmentation. Luo et al. (2020) and Kim et al.
(2020) both also learn instance-specific augmentations. However, the latter consider only test-time
augmentation, while the former introduces an approach that is highly specialized to test recognition
and cannot be applied in more general settings we consider. Tamkin et al. (2020) and (Chen
et al., 2021) both utilize adversarial augmentations to increase robustness. Zhou et al. (2020) learn
symmetries shared across several datasets through a meta-learning scheme.

5 SUPERVISED LEARNING EXPERIMENTS

5.1 ROTATED 2D IMAGES

We first consider a toy synthetic dataset proposed in Benton et al. (2020). The dataset contains
four categories, (1) upright Mario; (2) upside-down Mario; (3) upright Iggy; and (4) upside-down
Iggy. Each of the four base images is randomly rotated in the interval of [−π/4, π/4] to form the
training dataset. The task is to predict the correct character (Mario vs Iggy) and the orientation (up vs
down). We assess whether InstaAug is able to learn the ‘best’ rotation range for each sample—i.e.
the maximum range that avoids ‘up’ and ‘down’ classes from overlapping.
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(a) Augerino (b) InstaAug (Ours)

Figure 5: Learned invariances for the Mario and
Iggy dataset. The blue arcs show the training data
range, while the green arcs show the learned trans-
formation distributions for some examples.

Figure 5 shows that InstaAug effectively recov-
ers the broadest range of rotations for each im-
age while preserving labels, while Augerino
only learns a subset of these ranges. This can
be most easily seen by the fact that the trans-
formation distributions (shown in green) always
extend to very close to the true class boundary
for InstaAug, but not for Augerino. These gains
are because Augerino learns a single global
augmentation distribution shared across all im-
ages (note the shared transformation distribution
arcs), which are inevitably limited for any given
input.

5.2 CROPPING

We now move to more realistic images and to the most common and effective form of image
augmentation: cropping. We first evaluate the performance of jointly training InstaAug and the
classifier on Tiny-Imagenet (TinyIN, 64× 64), as it inherits the image complexity of ImageNet whilst
being within our computational budget. TinyIN is a standard testbed for data augmentations that
contains 100k images divided into 200 classes. Full experiment details are given in Appendix D.1.

We benchmark InstaAug alongside several augmentation baselines, including Augerino, no augmen-
tation, and random crops (random augmentation). The latter uniformly samples patch sizes and then
randomly selects a patch inside the image. Since the effect of cropping crucially relies on scales of
patches, we carefully tune this baseline by sweeping over all possible scale intervals between [0, 1]
with a stride of 0.1. We further compare to other prior works that have obtained competitive results
on TinyIN (Ramé et al., 2021; Yun et al., 2019; Zhang et al., 2018).

Table 1: InstaAug improves generalization on Tiny-
ImageNet by learning instance-specific cropping. ‘Instance’
and ‘LRP’ refer respectively to ‘instance-specific’ and
‘location-related parameterization’. Statistics are computed
over 10 runs, except for MixMo, CutMix and Mixup, whose
results are from Ramé et al. (2021). Other learnable augmen-
tation methods are actually learning the size ranges of crop-
ping. We leave their results out because we are already per-
forming this learning in the random cropping results through
our hyperparameter tuning.

Method Instance LRP Accuracy (%)

MixMo (Ramé et al., 2021) — — 64.80
CutMix (Yun et al., 2019) — — 65.09
Mixup (Zhang et al., 2018) — — 63.74

No augmentation ✗ ✗ 55.06±0.10

Random crop ✗ ✗ 64.49±0.12

Augerino (Benton et al., 2020) ✗ ✗ 55.02±0.29

InstaAug (without LRP) ✓ ✗ 55.39±0.19

InstaAug (without input) ✗ ✓ 63.20±0.12

InstaAug (class specific) ✗/✓ ✓ 60.55±0.50

InstaAug ✓ ✓ 66.02±0.18

In order to ablate the effects of input-
dependency and location-related pa-
rameterization on InstaAug, we ad-
ditionally assess the performance of
InstaAug (without LRP) which re-
lies on the same uniform parameter-
ization as Augerino rather than our
location-related parametrization (LRP,
described in Figure 4); InstaAug (with-
out input) that uses the LRP and gen-
eral InstaAug setup, but shares the
transformation distribution across all
inputs rather than learning an input-
specific augmentation; and InstaAug
(class specific), which takes train-
ing labels instead of images as in-
puts. Test-time augmentation using 50
transformation samples is deployed
for all variants of InstaAug, along
with the Augerino and random aug-
mentation baselines. For InstaAug
(class specific), this test-time augmen-
tation is based on random cropping,
due to the lack of class information being available at test-time and this approach performing better
than simply omitting test-time augmentation. Following prior works, we choose the PreActResNet-18
architecture (He et al., 2016b) with width = 1 as the classifier for all methods.

Table 1 shows the top-1 accuracy for each method. In agreement with prior works, we find that random
cropping increases top-1 accuracy by 9.4% over no augmentation, which is achieved where cropping
scale = [0.1, 1]. InstaAug outperforms random cropping and its own global version without input by
1.5% and 2.8% respectively, highlighting the effect of learning instance-specific augmentation.
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(A) InstaAug (w/o input) (B) InstaAug

(a) (b) (c) (d) (e) (f)

Figure 6: InstaAug (B) learns more sensible crops
compared to random and learned global (A) aug-
mentations. Columns (a, d) show examples of
sampled crops, with red edges indicating higher
probability. Columns (b, e) show density maps
for the crop centres, with brighter color meaning
higher probability. Columns (c, f) give the propor-
tion of crops (red) above a particular size threshold,
showing that InstaAug produces fewer large crops.

Allowing only for class dependence actually pro-
duces even worse performance than just ignor-
ing the input completely, presumably because of
the inevitable resulting mismatch in the augmen-
tations used in training and testing. Methods
with mean-field uniform parameterization (in-
cluding Augerino and InstaAug without LRP)
performed extremely poorly, noticeably worse
than just random cropping. This is because they
were found to become easily stuck at local min-
ima with low cropping diversity, leading to sim-
ilar performance as no augmentation. Note that
the potentially unexpectedly good performance
of the random cropping baseline compared to
the other global baselines stems from the careful
hyperparameter sweep used to tune its crop size,
which proved more effective than these more
direct training mechanisms. See Appendix E.3
for more discussion.

Figure 6 shows example crops and learned
transformation distributions for InstaAug and
a global augmentation scheme (InstaAug with-
out input). We see that InstaAug is able to learn
a cropping scheme that focuses on the key aspect of the input image, while the baselines cannot.

5.3 APPLYING INSTAAUG TO A FIXED CLASSIFIER

InstaAug can also be used to learn suitable augmentations for a fixed pre-trained classifier. This can
most notably be useful as a means to learn test-time augmentations. As the invariance module is itself
only a small network, it can be done relatively cheaply, even when the dataset and downstream model
are very large. We exploit this on the larger Imagenet dataset (224× 224) (Deng et al., 2009), again
focusing on cropping augmentations and utilizing the LRP parameterization from Section 3.3.

Training the invariance module in this setting is done in exactly the same way as elsewhere, using the
training procedure of Section 3.2 with the normal training data. The only thing that is changed is
that f is now fixed to a pre-trained classifier—specifically, the ResNet-50 (He et al., 2016a) from
Wightman (2019) (which did not use an invariance module during training)—rather than being
simultaneously learned. We are thus simply learning invariances, without affecting the training of f .

Table 2: InstaAug boosts the test accuracy (%) with test-time
augmentation on Imagenet. Invariance modules learned on
ResNet-50 can also be directly applied to other models such
as ResNet-18 and XCiT to improve generalization without
fine-tuning. By contrast, we see that global augmentation
schemes are actually detrimental to test-time augmentation.

Method #Sample ResNet50 ResNet18 XCiT

No aug 1 80.43 69.73 86.34

Random crop 4 78.45±0.04 66.13±0.04 82.05±0.01

AutoAug 4 77.84±0.05 59.50±0.01 81.40±0.00

FastAutoAug 4 77.87±0.06 61.43±0.02 81.42±0.01

InstaAug 4 80.92±0.04 70.59±0.05 86.43±0.04

Random crop 10 79.60±0.01 67.87±0.01 82.84±0.00

AutoAug 10 79.20±0.04 63.96±0.03 82.43±0.02

FastAutoAug 10 79.28±0.01 65.65±0.02 82.45±0.02

InstaAug 10 81.18±0.02 70.96±0.03 86.47±0.02

In Table 2 we show the effect of using
the learned invariance module for test-
time augmentation, finding that it is
able to noticeably improve accuracy,
unlike the baseline test-time augmen-
tations of random cropping, AutoAug-
ment (Cubuk et al., 2018), and Fast
AutoAugment (Lim et al., 2019). In
order to evaluate the generalization
performance of our learned augmen-
tation module, we further apply the
augmentation trained on ResNet-50 to
two different models with zero fine-
tuning: ResNet-18 (He et al., 2016a)
and XCiT (Ali et al., 2021). We find
that the learned augmentation trans-
fers very effectively to these different models, which implies that the local invariances InstaAug
learns reflect the natural invariances of the underlying classification problem, rather than being
specific to the model that was used to train the augmentation module.

7



Under review as a conference paper at ICLR 2023

5.4 COLOR JITTERING ON TEXTURES

Color jittering is another important type of data augmentation, which can help models generalize to
different lighting conditions. We benchmark on the texture classification dataset RawFooT (Bianco
et al., 2017). RawFooT includes 68 different samples of raw food and each sample has an image
taken under each of 46 different lighting conditions (see Figure D.1 for some examples). We crop
the original images to create the train set and test set. For each original image with a resolution of
800× 800, we randomly sample 200 different 200× 200 patches in the upper half as training images.
The same procedure is taken on the lower half to produce test images, giving a train set and a test
set for each different lighting condition. To evaluate the generalization ability of each method to a
broader range of lighting conditions, we evenly mix test images from all lighting conditions to form a
general test set, while controlling the lighting conditions present during training.

Table 3: InstaAug achieves higher general accuracy
than baseline methods when trained on D45 (Day-
light, 4500K).

Method Test aug? Accuracy (%)

No aug ✗ 72.87±0.10

Random aug ✗ 79.99±0.13

Augerino ✗ 78.97±0.10

InstaAug ✗ 81.11±0.20

Random aug ✓ 80.55±0.16

Augerino ✓ 79.34±0.14

InstaAug ✓ 81.35±0.19

We first train on a single lighting condition
D45 (4500K, daylight) resembling natural light.
Table 3 shows that InstaAug outperforms all
baselines with and without test-time augmenta-
tion. In this task, we find that Augerino (with re-
laxed symmetry restrictions on learned intervals)
underperforms random augmentation because
its parameters ϕ are often stuck in a neighbor-
hood around their initial values. We believe this
is due to the conservative nature of using global
augmentations (cf. Figure 3), where even a small
change in the parameters may largely increase
the training loss, which prohibits wide-ranging
augmentations.

Figure 7: In-distribution and out-of-distribution
test accuracy for models trained on RawFooT D45.
The round dots are random augmentation with
different hyperparameter settings. The colors of
dots change from yellow to red as hue jittering
increases; more saturated dots indicate higher satu-
ration jittering; larger dots mean higher brightness
jittering. Each thick line connects dots with the
same hue and brightness jitter and thin lines link
dots with the same hue and saturation jitter.

We also compare in-distribution and out-of-
distribution generalization by splitting the 46
test sets into two groups, according to the sim-
ilarity of their lighting conditions to D45—see
Appendix D.2 for the details on the splitting
method. In Figure 7 we can see that above a
certain in-distribution performance, there exists
a trade-off for random augmentation between
in-distribution accuracy and out-of-distribution
generalization, controlled through the hyperpa-
rameter settings. InstaAug, meanwhile, delivers
higher out-of-distribution performance than any
of the hyperparameter configurations, while also
simultaneously giving better in-distribution ac-
curacy to the vast majority of them as well.

We can further vary the difficulty of the classi-
fication task by using different numbers of light-
ing conditions in the training data. In Table 4,
we randomly select a set number of lighting con-
ditions to use as the training set for each base-
line. As expected, the accuracy increases with
the number of lighting conditions for all meth-
ods. However, the effect of random augmentation saturates: it performs similarly to no augmentation
with 8 lighting conditions. By contrast, InstaAug always provides improvements. In Appendix D, we
show that these gains come at very little computational overhead at both train and test time.

6 INSTAAUG FOR CONTRASTIVE LEARNING

Contrastive learning aims to learn features that are approximately invariant to certain augmentations.
Typical contrastive learning methods, such as SimCLR (Chen et al., 2020; Ermolov et al., 2021),
first sample two independent transformations, τ1, τ2 ∼ p(τ), and apply them to an input image x,

8



Under review as a conference paper at ICLR 2023

Table 4: InstaAug significantly outperforms baseline methods in general test accuracy (%) on different
difficulty levels. For each difficulty level, we randomly sample lighting conditions used for training
and repeat each experiment 10 times. Test-time augmentation is included for random and InstaAug.

Method / #Lighting conditions for training 1 2 4 8

No aug 68.5±2.6 78.1±1.8 84.8±0.7 87.8±0.5

Random augmentation 72.7±2.7 80.8±1.3 85.9±0.6 87.3±0.3

InstaAug 76.0±2.5 83.6±1.1 88.2±0.5 89.6±0.3

generating two views x1 and x2. They then feed the transformed images to a neural encoder f , which
is trained to maximize the similarity between f(x1) and f(x2), measured with a contrastive loss.

As the choice of augmentations directly influences the learned invariance of the encoder, it is a
crucial ingredient of contrastive learning (Bachman et al., 2019; Chen et al., 2020; Tian et al., 2020).
However, existing schemes use global augmentations which often introduce unrealistic assumptions.
For example, if there are multiple entities in an image, such as grass and cattle in Figure 1c, random
cropping will pull features for different entities closer to each other. Consequently, we propose
InstaAug as a more flexible instance-specific augmentation method for contrastive learning.

(a) (b) (c)
Figure 8: Some examples (bird houses) of learned
cropping in contrastive learning.

Applying InstaAug to contrastive learning is
similar to the supervised case shown in Sec-
tion 3. The main difference is, given an in-
put x, we sample two τ independently from
the input-specific distribution p(τ ;ϕ(x)), before
they are applied to x. The training objective
is correspondingly changed to minimizing the
contrastive loss while keeping the diversity in a
reasonable range.

We again consider TinyIN and evaluate three methods: InstaAug, InstaAug (without input), and
random crop. We exclude methods with uniform parameterization, because of their poor performance
in the simpler supervised setting. All experiments are based on the SimCLR framework and use the
PreActResNet-18 network as the encoder. We train each model with a batch size of 512 for 500 epochs.
We then train a linear classifier to evaluate feature quality. We use test-time augmentation—with 10
sampled crops—as it has been shown to improve performance (Foster et al., 2021).

Table 5: Representations learned by InstaAug per-
form better in the downstream linear classification
task than baselines. ∗Results of Un-Mix are di-
rectly taken from Shen et al. (2022), which has
the same network structure (ResNet-18), training
algorithms (SimCLR) and linear classifier as ours.

Method Accuracy (%)

Un-Mix (Shen et al., 2022) 49.58∗

Random crop 51.63±0.30

InstaAug (without input) 54.20±0.23

InstaAug 55.05±0.21

From Table 5, we see that InstaAug outperforms
the random and global augmentation schemes as
well as Un-Mix (Shen et al., 2022), which is a
recent variant of MixUp methods on contrastive
learning. We observe from the examples shown
in Figure 8 that InstaAug focuses on the salient
features containing important information. We
also notice that the sizes of learned patches are
correlated to the sizes of the main objects in
images. Thus, InstaAug is able to learn sensi-
ble instance-specific augmentations in a fully
unsupervised setting.

7 DISCUSSION

In this paper we introduced InstaAug, a method for learning instance-specific data augmentations
that capture local invariances of the underlying data generating process. This is achieved by training
an augmentation module that parametrizes an input-dependent distribution over transformations,
whose samples are used to augment the training data on the fly and/or for test-time augmentation.
The main benefits of InstaAug stem from its applicability to a wide range of settings, its ease of
use, and crucially its capacity to learn meaningful augmentations that in turn improve performance.
Empirically, we demonstrated these benefits for both classification and contrastive learning problems,
considering several classes of transformations—rotation, color jittering, and cropping.
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APPENDIX A THEORETICAL ANALYSIS OF GENERALIZATION ERROR

We now provide a decomposition of the generalization error—i.e. the difference between the true
risk and the training risk—when using ϕ during training of the downstream classifier f . Here we can
view the objective of augmentation as adjusting the training objective to encourage the learned model
to have a low true risk. As such, the generalization error provides a measure of the effectiveness of
the augmentation for the training of f ; by analysing the behaviour of the generalization error as a
function of the augmentation module, we can derive a characterization of the desirable properties of
the latter.

To start our analysis, we first define the true risk of the downstream model, f , as

R(f) := E[L(f(X), Y )] (A.1)

where (X,Y ) ∼ ptrue(X,Y ) are drawn from the true data generating distribution. In practice, one
might also perform test-time augmentation, implying a different predictive function and thus different
true risk, but for the purposes of our analysis, we will assume that this is not done, as this allows us
to focus on the impact the invariance module has on f during training.

One the other hand, the implied training risk (i.e. our objective for training f ) when using an
invariance module is the augmented empirical risk

R̂(f, ϕ) := E[L(f(τ(xi)), yi)] (A.2)

where i ∼ Uniform{1, . . . , N} is a uniformly sampled index for a point in the original training
dataset {xn, yn}Nn=1 and τ |i ∼ p(τ ;ϕ(xi)) is the sampled transformation. Note that the expectation
in Equation (A.2) is only over i and τ , with the datapoints themselves not considered random variables
for our purposes, because we are only provided with a single fixed training dataset.

The generalization error can now be defined as R̂(f, ϕ)−R(f). At a high level, we are interested
in finding a ϕ that ensures this has a low magnitude. More precisely, we want ϕ to ensure that the
minimizer of the training risk, f̂∗ := argminf R̂(f, ϕ), gives as low a true risk, R(f̂∗), as possible.
Therefore, we want to keep the generalization error magnitude small across different f (relative to
the corresponding variations in R̂(f, ϕ) itself), so that the optima of the training and true risks are
as similar as possible. In other words, we want a ϕ that ensures R̂(f, ϕ)− R(f) is small for all f ,
especially those close to f̂∗. If we do hypothetically drive the generalization error to zero for all f ,
we will have a mechanism for directly training to the true risk using a finite original training dataset.

To aid with decomposing the generalization error, it is convenient to further define the following
random variables through their conditional distributions:

Ŷ |i ∼ ptrue(Y = Ŷ |X = xi) with Ŷ ⊥⊥ τ, (A.3)

Ỹ |i, τ ∼ ptrue(Y = Ỹ |X = τ(xi)). (A.4)

We can now write down our decomposition as follows:

R̂(f, ϕ)−R(f) = E[L(f(τ(xi)), Ŷ )− L(f(τ(xi)), Ỹ )]︸ ︷︷ ︸
(A)

+ E[L(f(τ(xi)), Ỹ )− L(f(X), Y )]︸ ︷︷ ︸
(B)

+E[L(f(τ(xi)), yi)− L(f(τ(xi)), Ŷ )]︸ ︷︷ ︸
(C)

.
(A.5)

From this, we see that if the magnitude of (A), (B), and (C) are all small, then our generalization
error magnitude will be small as well. Moreover, if we can construct a ϕ such that these terms are
small for all f , then we can ensure effective generalization performance. We will now look at each
term individually.

(A) provides a precise characterisation of how well our transformation preserves the label distribution;
it is the difference between the expected loss under the true label distribution of the untransformed
inputs and the expected loss under the true label distribution of the transformed inputs, making
predictions using the transformed inputs in both cases. In particular, by noting that we have

(A) = E
[
E
[
L(f(τ(xi)), Ŷ )− L(f(τ(xi)), Ỹ )

∣∣∣i, τ]] (A.6)
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where f(τ(xi)) is deterministic given τ and i, we have that Ỹ |i, τ, d
= Ŷ |i,∀i, τ is a sufficient (but

not necessary) condition to ensure (A) = 0 for all f .1 That is, it is zero for all f if the conditional
distribution on the labels is the same for both the original and transformed inputs for all possible pairs
(i, τ), i.e. all possible original inputs and sampled transformations. One simple way to ensure this is
to have τ always be equal to the identity mapping, so this term prefers limited transformations.

By contrast, if the transformation destroys information about the label, Ŷ |i and Ỹ |i, τ will now differ,
such that, in general, (A) ̸= 0 and, moreover, it will vary with f . Here we typically expect that
(A) ≥ 0,2 as we are making predictions using the transformed inputs, so the expected loss under
the true label distribution for the transformed inputs will tend to be less than that when labels are
generated using the untransformed input. To keep the magnitude of (A) low, we need to ensure that
transformations maintain the conditional label distribution as well as possible, i.e. that transformations
preserve all input information that is salient for predicting labels.

Conveniently, minimizing R̂(f, ϕ) with respect to ϕ, as done by the InstaAug training setup of Sec-
tion 3.2, will naturally try to reduce (A). Given we expect the term to typically be positive, this
provides an explanation for why InstaAug can be effective without any separate consideration in the
objective for the need for transformations to maintain the class label distribution.

(B) represents how well our transformation captures the true input distribution. Here we can utilize
the fact that, by the definition of Ỹ ,

E
[
L(f(τ(xi)), Ỹ )

∣∣∣τ(xi) = x
]
= E [L(f(X), Y )|X = x] =: r(x) (A.7)

to write it as
(B) = E[r(τ(xi))]− E[r(X)], (A.8)

where r : X 7→ R+ maps inputs to their true expected loss. We thus see that τ(xi)
d
= X is a sufficient

(but not necessary) condition to ensure that (B) = 0 for all f . That is (B) is always 0 if the process
of choosing one of the training inputs at random followed by applying a sampled transformation
to that input produces samples distributed exactly according to the true input distribution. Unlike
for (A), there is no simple scenario in which we can ensure this is true, with the use of the identity
transformation now likely to give significant discrepancies by failing to provide sufficient coverage
of the input space: though the xi may originally have been sampled from ptrue(X), there is only a
finite set of them, such that repeated sampling from this finite set represents a substantially different
distribution to ptrue(X). In fact, (B) nicely encapsulates the desire to perform augmentation in the
first place, by showing how it can be used to increase the coverage of the input space.

How to best manage Term (B) will vary depending on the type of model used and the form of our
transformations. In some situations, it may be that no matter how diverse our transformations are
within the class of those allowable, τ(xi) will still only cover a subset of the support of X . Here the
most important factor for keeping (B) small will be to maximize the diversity of the transformations,
e.g. by maximizing their entropy, to ensure the best possible coverage of the true input space. In
other cases, it might also be possible to “over–diversify” the inputs, such that τ(xi) can become more
diffuse than X for some choices of ϕ, potentially causing training to lack focus on the particular
test-time input distribution we care about. Here we may need to ensure that the entropy of the
transformation does not become so large as to cause such over-diversification, creating a more
complex trade-off with the need to ensure sufficient coverage. These two scenarios respectively
motivate the lower and upper bounds on the transformation distribution entropy used when training
the augmentation module.3

For augmentation of high-dimensional data, the former, coverage-limited, scenario is expected to
be significantly more likely, as our original training data will generally provide quite poor coverage

1Note that Ŷ d
= Ỹ alone is not generally sufficient, as matching in marginal distribution does not ensure that

the joint distributions with i and τ also match, in turn yielding different expectations.
2Note, though, that this is not formally guaranteed, even for the cross entropy loss and an f that exactly

captures the true distribution. This is because, while Gibbs’ inequality ensures the optimal q given p for a
cross-validation expected loss Ep(Y )[− log q(Y )] is q = p, in general, the optimal p given q is not p = q.

3Note here that the bounds in Equation (2b) are on are on the entropy on the parameters of τ , rather than
τ(xi) itself. This is because it is difficult to directly control the latter during the training, with the former
providing a more practical proxy that is expected to generally be representative.
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of the true input distribution, while our transformations will not generally be sufficiently powerful
to produce unrepresentative inputs. Moreover, when working with large deep learning models,
prediction in one region of the input space is rarely harmed by the addition of data in another input
region. Thus, for the typical scenarios, we expect InstaAug to be deployed in, increasing the entropy
of the transformations will directly relate to reducing the magnitude of (B). Note here that it will
typically be the case that (B) < 0 provided that the transformations maintain the label distribution, as
the accuracy of the downstream model will typically be higher for the transformations of the original
training data that for the test data.

Term (C) is the error from the fact that we only have one sample of the label for each original
training input, rather than the full label distribution. As Ŷ ⊥⊥ τ , we have limited ability to reduce it
through controlling ϕ; it essentially represents the irreducible noise in R̂(f, ϕ) from only having a
finite number of true labels. Note that it is not related to the model’s ability to generalize to unseen
inputs, as it is based on variability in other possible labels we might have seen for our training inputs
themselves; if Y |X is actually deterministic, it is exactly zero. As such, it is of limited interest for
our analysis, while it will thankfully generally be much smaller than the other terms for practical
problems unless we have both a very small dataset and a very noisy true label distribution.

Putting everything together, we see that (A) and (B) respectively encapsulate the competing needs of
the invariance module to maintain the conditional label distribution (i.e. preserve the label information)
and maximize coverage of the input space. We have also seen that the former is typically naturally
taken care of by minimizing R̂(f, ϕ) with respect to ϕ, motivating the objective used by InstaAug
in Equation (2a), but the latter requires separate consideration, which we deal with through our
constraints on the entropy in Equation (2b).

APPENDIX B DETAILS OF AUGERINO

As a method to learn invariance, Augerino (Benton et al., 2020) is quite different from the previous
approaches, which usually require an extra validation set. The basic idea behind Augerino is to
use a few parameters (θ) to control the transformation distribution on input images and learn these
parameters with the training loss of the classifier. Specifically, it minimizes the loss

Lλ(x; y) ≜ E[L(x; y)] + λ · R(θ), (B.1a)

where L(x; y) is the cross-entropy loss and R(θ) is a regularization function on the volume of the
support of the distribution weighted by the hyper-parameter λ.

Comparison with InstaAug. InstaAug shares with Augerino the ideas of tuning augmentation
parameters by the classifier loss and using test time augmentation to boost performance, but they are
different in the following aspects. The most significant difference is that InstaAug is instance-specific,
while Augerino learns global augmentations. Besides, Augerino uses a single scalar θ to parameterize
a symmetric uniform distribution (U [−θ, θ]) over each type of transformations, which lacks the
flexibility to model more complex augmentations, such as cropping.

In addition, Augerino uses a fixed weight λ to balance the training loss and augmentation diversity.
However, we find that, in more complicated settings, this is quite impractical. Specifically, we need
different λ in different stages of training. If we use a large λ from the start of training, the diversity
will quickly diverge to maximum, because the classifier is very weak and the loss is consequently
dominated by the diversity term. This will block the training of the classifier because transformed
samples from different classes are quite mixed with each other. Otherwise, if we choose a small λ,
the diversity will converge to zero after a few epochs, yielding similar results as the vanilla model
without augmentation. In neither of the case can we learn a useful augmentation. Consequently,
InstaAug directly constrains the diversity to keep it stable during training.

APPENDIX C METHOD DETAILS

C.1 REGRESSION AND SELF-SUPERVISED LEARNING

In Section 3, we use classification as an example to introduce InstaAug. However, InstaAug can
be easily applied to other tasks including regression and self-supervised learning. For regression,
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the classifier (see Figure 2) is replaced by a regressor and the loss function L in Equation (2a) is
changed accordingly to absolute or square error. For self-supervised contrastive learning, we replace
the classifier and cross-entropy loss with the feature extractor and contrastive loss (such as SimCLR
loss (Chen et al., 2020)), respectively. In addition, the sampler samples 2 rather than 1 transformations
to generate multiple views for an input x.

C.2 IMPLEMENTATION OF LOCATION-RELATED PARAMETERIZATION

As an example, we show how to implement location-related parameterization with a basic CNN
structure in the following algorithm,.

Algorithm 1: Location related parameterization
Input: Image x, channel numbers Mi, and layer number n_layer
Output: Probability of patches p
F

′

0 = x;
for ( i = 1; i ≤ n_layer; i = i+ 1 )

Fi = Conv2d(F
′

i−1, kernel=2, stride=1, output_channel=Mi) ; // CNN Operation

F
′

i = Pooling(Fi, kernel=2) ; // CNN Operation

F
′′

i = Conv2d(F
′

i, kernel=1, stride=1, output_channel=1) ; // To a single channel

logiti = Flatten(F
′′

i ) ; // Logit vector at each level
logits = Concat([logiti]) ; // Logit vector at all levels
p = Normalize(Exp(logits)) ; // Probability after normalization

C.3 OTHER PARAMETRIZATION METHODS

Besides the uniform and location-related parameterization, we also tried VAE-like methods to pa-
rameterize augmentations, such as cropping. The main idea is to have a Gaussian latent variable
and a neural decoder to map the latent Gaussian distributions to a continuous distribution on trans-
formation parameters (in this case, the centers and sizes of crops). However, similar to the uniform
parameterization, we find the VAE-like parameterization unstable and easily stuck at local minima.

APPENDIX D EXPERIMENTAL DETAILS

D.1 CROPPING

Supervised training Based on the Mixmo codebase4 (Ramé et al., 2021), we use stochastic gradient
descent (SGD) optimizer to train baselines and InstaAug. For the classifier, the initial learning rate is
set to 0.2 (with momentum 0.9 and weight decay 1e−4). A scheduler is used to decrease the learning
rate by a factor of 0.9 once validation accuracy doesn’t increase for 10 epochs. The learning rate of
the augmentation module ϕ is fixed at 1e− 5. Batch size is set to 100 and we pre-train InstaAug for
10 epochs without augmentation. We train the model until convergence and the maximum epoch is
set to 150.

Contrastive training We directly apply InstaAug on the codebase5 from Ermolov et al. (2021).
Because of the characteristics of contrastive learning, we set the batch size to 512. Same as the
supervised case, we use SGD optimizer to train the augmentation module ϕ. Differently, we use
Adam optimizer (Kingma & Ba, 2015) (with learning rate 1e− 3 and weight decay 1e− 6) to train
the base model. We train each model for 500 epochs and decrease the learning rate by a factor of 0.8
at step 450 and 475.

D.2 COLOR JITTERING ON TEXTURES

Training. We use PreActResNet-18 (width = 1) on texture recognition task on RawFooT and
train it with SGD optimizer. The learning rate is 0.02 (with momentum 0.9 and weight decay 1e− 4)

4https://github.com/alexrame/mixmo-pytorch.git, under Apache License v2.0.
5https://github.com/htdt/self-supervised.git, under Apache License v2.0.
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D45 D50 D55 D60 D65 (I=1) D65 (I=0.75) D27 (A=90) D65+D95 D65+D27 D95+D27 Red Green

Figure D.1: Examples of RawFooT data. Each row contains images in the same class (corn, candies,
floor, red cabbage) under different lighting conditions. The left and right half of lighting conditions
are in the easy and hard group, respectively.

for the classifier and 1e− 5 for the augmentation module ϕ. We train each model for 50 epochs and
learning rate schedulers are not necessary in this task.

Random augmentation baseline. We sweep over the variation range on each channel to find the
best hyperparameters for the random augmentation baseline. For hue (h-jittering), we sweep between
[0, 0.5] with stride 0.1, and for saturation (s-jittering) as well as brightness value (v-jittering), we
sweep between [0, 1.0] with stride 0.2, which yields 216 different settings in total. The best accuracy
shown in Table 3 is achieved where h,s,v= 0.0, 0.2, 0.8.

Table D.1: Splitting of Lighting conditions.

Group Lighting id

Easy (1) 1-4,10,14-31
Hard (2) 5-9, 11-13, 32-46

In-distribution vs. out-of-distribution generaliza-
tion. To further investigate the effect of each aug-
mentation method, we additionally split the 46 test
sets into two equally-sized groups. The first group
contains lighting conditions similar to D45, such as
daylight with different temperatures, for which the
vanilla model without augmentation trained on D45 has high test accuracy. The second group
contains lighting conditions that are dramatically different from D45, for example, pure red light,
which are more difficult for the vanilla method. Then the average accuracy on the first group can
be regarded as a measure of in-distribution generalization, while the accuracy on the second group
reflects out-of-distribution generalization.

D.3 TIME COMPLEXITY

We notice that InstaAug on color jittering has a similar training speed (0.37s/iter) as random aug-
mentation (0.40s/iter) on a single Nvidia 1080Ti GPU, though it takes more epochs (about 40)
compared with random augmentation, which usually converges after 25 epochs. We also find the
speed for evaluation is very fast even with test time augmentation (sample number =10), which is
about 0.004s/sample. However, the training speed of InstaAug on cropping (0.25s/iter) is slower than
random augmentation (0.15s/iter) due to optimization issues on the more complex parameterization
method. Training InstaAug alone takes a similar amount of time for each epoch compared with joint
training, but it requires fewer epochs (less than 30) to converge and we can cache the outputs of the
classifier for faster training. The evaluation speed is 0.011s/sample when sample number is set to 50
for test-time augmentation.

APPENDIX E ADDITIONAL RESULTS AND DISCUSSION

E.1 RAWFOOT

Figure E.1 shows some examples of learned color jittering. Though it’s not easy to fully understand
them, we can still find some patterns. For example, InstaAug tends to increase the brightness of
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Figure E.1: Examples of learned color jittering. (a) Original image; (b, f) Average hue (H) of
original image (blue dot) and learned hue jittering (red arc) for InstaAug and Augerino; (c,g) learned
saturation (S) and brightness value (V) of original image (blue dot) and learned hue jittering (red line
segment) for InstaAug and Augerino; (d,e) examples of images transformed by InstaAug.

darker images (row 1 and 3) and decrease the brightness of brighter images (row 4). Also InstaAug
is more likely to change saturation compared with hue and brightness, which is consistent with the
common belief that saturation contains less information than hue and brightness.

Table E.1: Model performance with
different choice of Hmin and Hmax on
supervised cropping.

Hmin Hmax Accuracy (%)

0.0 0.5 52.12
0.5 1.0 61.28
1.0 1.5 62.91
1.5 2.0 64.39
2.0 2.5 65.04
2.5 3.0 65.05
3.0 3.5 66.03
3.5 4.5 65.60
4.0 4.5 64.35
4.5 5.0 64.17

0.0 1.0 51.78
1.0 2.0 63.96
2.0 3.0 65.25
3.0 4.0 65.78
4.0 5.0 64.23

InstaAug’s behavior is quite different on different samples.
It even decides not to augment the H and V channels of the
image in the second row. In comparison, Augerino adds or
multiplies noise to each channel with the same distribution
across all samples, which is harmful in many cases. For
example, the input image in the last row is already very bright.
but Augerino allows further increasing its brightness. Then
brightness values of many pixels will be capped at 1.0, which
leads to loss of information.

E.2 HYPERPARAMETER ABLATION

The two hyperparameters of InstaAug are Hmin and Hmax,
which reflect human preference on augmentation diversity. To
investigate how Hmin and Hmax influence model performance
and provide a guide on how to choose them, we perform an
ablation study for the experiment of Section 5.2, wherein we
sweep over possible intervals of length 0.5 and 1.0. From
Table E.1, we find that the best accuracy is achieved when
[Hmin,Hmax] is set to [3, 3.5], while any sub-interval of [2, 4]
produces significantly better results compared with random
augmentation.

E.3 WHY IS THE RANDOM AUGMENTATION BASELINE SO STRONG?

It is perhaps initially surprising that the Random Augmentation baseline in 5.2 is so strong compared
to the other global augmentation schemes. In short, this occurs because the extensive hyperparameter
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sweep used for it turns out to be a more effective tuning mechanism than directly training global
parameters simultaneously to the model. To be more precise, for any global cropping scheme (which
includes random crop, Augerino, and InstaAug without input), there is little to be gained from using
a non-uniform distribution on the position of the crops. As such, the only thing that can be usefully
learned is the distribution on the size of the crops themselves. For the random crop baseline, we
do an exhaustive sweep to establish the best distribution on crop sizes, meaning that this baseline
represents a near-optimal global cropping augmentation. By comparison, InstaAug (without input)
must still learn the optimal cropping size distribution during training, and the results suggest that it
does not always manage to do this perfectly, tending to prefer under-diverse transformations. This is
perhaps not surprising, as it does not have access to a validation set, unlike the hyperparameter sweep
implicitly being deployed for the random crop baseline. The problem is seen even more starkly for
Augerino, where the lack of LRP causes training to become stuck in highly sub-optimal local optima
that yield very little transformation diversity.
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