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Large Language Models Empowered Personalized Web Agents
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Abstract
Web agents have emerged as a promising direction to automate
Web task completion based on user instructions, significantly en-
hancing user experience. Recently, Web agents have evolved from
traditional agents to Large Language Models (LLMs)-based Web
agents. Despite their success, existing LLM-based Web agents over-
look the importance of personalized data (e.g., user profiles and
historical Web behaviors) in assisting the understanding of users’
personalized instructions and executing customized actions.

To overcome the limitation, we first formulate the task of LLM-
empowered personalized Web agents, which integrate personal-
ized data and user instructions to personalize instruction compre-
hension and action execution. To address the absence of a com-
prehensive evaluation benchmark, we construct a Personalized
Web Agent Benchmark (PersonalWAB), featuring user instruc-
tions, personalized user data, Web functions, and two evaluation
paradigms across three personalized Web tasks. Moreover, we pro-
pose a Personalized UserMemory-enhanced Alignment (PUMA)
framework to adapt LLMs to the personalized Web agent task.
PUMA utilizes a memory bank with a task-specific retrieval strat-
egy to filter relevant historical Web behaviors. Based on the be-
haviors, PUMA then aligns LLMs for personalized action execu-
tion through fine-tuning and direct preference optimization. Ex-
tensive experiments validate the superiority of PUMA over ex-
isting Web agents on PersonalWAB. We release code and data at
https://anonymous.4open.science/r/PersonalWAB-CDBF/.

CCS Concepts
• Information systems → Web applications; Personalization.
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1 Introduction
TheWorldWideWeb has evolved into a fundamental infrastructure
in the information age, with diverse Web services integrated into
users’ daily lives, including information retrieval, online shopping,
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Figure 1: Comparison between traditional Web agents (a) and
personalized Web agents (b). Personalized Web agents adopt
personalized data to infer implicit user preferences, assisting
in understanding user instructions and performing person-
alized actions, leading to more intelligent Web services.

and social engagement. However, the unprecedented scale and com-
plexity of modern Web services also present new challenges. Users,
particularly the elderly groups, are overwhelmed with vast amounts
of unstructured data and intricate interactions, complicating task
completion on the Web [49]. To alleviate the burden of complex
Web operations, Web agents have emerged as a promising solu-
tion [36] to bridge users and Web services as shown in Figure 1(a).
Based on user instructions, Web agents autonomously interact with
the Web to complete tasks such as information retrieval and online
shopping [50], offering a convenient way to enhance efficiency and
intelligence with extensive Web services.

The evolution of Web agents has undergone a significant transi-
tion from traditional agents to those powered by Large Language
Models (LLMs). Traditional agents typically optimize Web naviga-
tion tasks by reinforcement learning techniques [23, 36, 50], while
their context understanding and reasoning capabilities are limited,
failing to generalize to complex and out-of-distribution scenar-
ios [4]. In recent years, LLMs have demonstrated extensive world
knowledge along with strong understanding, planning, and reason-
ing capabilities, making LLM-based Web agents a rapidly evolving
direction [8, 29]. Related research has leveraged techniques such
as in-context learning [17, 40, 54, 55], fine-tuning [4, 10], and re-
inforcement learning [30] to enhance the instruction-following
capabilities of LLMs in various Web agent tasks. Notably, in addi-
tion to single-turn user instructions, some studies have explored
utilizing the powerful interactive capabilities of LLMs to enable
multi-turn interactions with users, facilitating conversational Web
navigation and task execution [5, 25, 41].

Despite the significant success of LLM-based Web agents, they
overlook the critical role of personalized data in enhancing user
experience, as illustrated in Figure 1. Personalized data, such as user
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Table 1: Comparison between existing benchmarks and Per-
sonalWAB from three key aspects: interaction type with
users, Web environment type for agent interactions, and
utilization of personalized data.

Benchmark Interaction
Type

Environment
Type Personalization

MiniWoB++ [23] Single-turn Mobile Web UI ✗

RUSS [49] Multi-turn Web UI ✗

META-GUI [41] Multi-turn Mobile apps ✗

WebShop [50] Single-turn Shopping Web UI ✗

Mind2Web [4] Single-turn Web UI ✗

WebArena [57] Single-turn Web UI ✗

VWA [19] Single-turn Web UI ✗

WebVoyager [11] Single-turn Web UI ✗

WorkArena [7] Multi-turn Web UI ✗

WebLINX [25] Multi-turn Web UI ✗

MT-Mind2Web [5] Multi-turn Web UI ✗

MMInA [53] Single-turn Web UI ✗

Turking [48] Single-turn Web UI ✗

ChatShop [2] Multi-turn Web function ✗

PersonalWAB Single-turn
& Multi-turn Web function ✓

profiles and historical Web behaviors, reveals implicit user prefer-
ence, which can facilitate the understanding of user instructions and
enable personalized action execution. Specifically, 1) personalized
data can supplement user context for personalized instruction
comprehension. For example, when users search for a product,
their behavior history may reveal implicit preferences for product
attributes (e.g., price) that are not explicitly stated in user instruc-
tions. Besides, 2) personalized data enables personalized action ex-
ecution, where actions can be formulated as various Web function
calls fromWeb services [19, 50, 53, 57]. In this work, we abstract the
Web services from various websites (e.g., , Amazon shopping web-
site) as a diverse set of “Web functions1” ; for example, the “search”
action can be executed by passing a textual query as function pa-
rameters to the search API of a website. Users have varying habits
and preferences for Web services, leading to personalized function
calls with customized parameters.

In this light, we formulate the task of LLM-empowered per-
sonalized Web agents, which integrate personalized user data
for personalized instruction comprehension and action execution,
aiming to align with explicit user instructions and implicit user
preferences derived from personalized data. Formally, given user
instructions alongside personalized user data (e.g., profiles and
historical Web behaviors), LLMs must infer personalized user re-
quirements and preferences to determine which Web function to
call and formulate the corresponding function parameters. Subse-
quently, the results of these function calls are returned to users.
However, to advance this task, the primary challenge is the lack of
a comprehensive benchmark for training and evaluation.

To bridge this gap, we construct the first Personalized Web
Agent Benchmark (PersonalWAB). PersonalWAB focuses on three
representative tasks for personalized Web agents: personalized
search, recommendation, and review generation on Web platforms,

1“Web APIs” and “Web tools” are also used to convey similar meanings in agents. For
convenience, we unify these terms as “Web functions” below.

which require LLMs to infer user preferences for task completion.
Specifically, PersonalWAB is constructed by the following steps:
1) Personalized Data Construction: PersonalWAB adopts Amazon re-

view dataset [12] to construct 1,000 diverse users with simulated
profiles and real Web behaviors (e.g., purchase and rating).

2) User Instruction Creation: For the three tasks, PersonalWAB uti-
lizes users’ genuinely liked items as the ground truth for search
and recommendation, and real reviews as the ground truth for
review generation. PersonalWAB then uses ground truth items
and reviews to synthesize corresponding user instructions.

3) Web Environment Implementation: To interact with the Web en-
vironment, PersonalWAB develops a series of Web functions for
the three tasks.

4) Evaluation: PersonalWAB utilizes the ground truth in Step 2 to
assess the three tasks. Notably, it not only supports single-turn
evaluation but also develops an LLM-based user simulator for
real-time multi-turn interaction and evaluation with users.

Extensive analysis in Section 4 validates that PersonalWAB offers a
set of users with diverse profiles and behaviors, and the simulated
user profiles closely align with the actual behaviors by empirical
evaluation. The comparison with existing benchmarks is in Table 1.

To enable LLM-empowered personalized Web agents, we pro-
pose a Personalized UserMemory-enhanced Alignment (PUMA)
framework. PUMA stores users’ long-term Web behaviors into a
memory bank and utilizes a task-specific retrieval strategy to filter
out irrelevant information, focusing only on behaviors and features
relevant to the current instruction. Given the retrieved behaviors
and features, PUMA then combines them with user instructions
to call appropriate Web functions and generate optimal function
parameters to enhance the returned results. However, the large
parameter space challenges LLMs in producing high-reward param-
eters. To address this, PUMA designs several heuristic strategies
to construct pseudo-label parameters for supervised fine-tuning
(SFT) [31], enabling LLMs to generate reasonable function parame-
ters. PUMA then uses Direct Preference Optimization (DPO) [32]
to sample multiple function parameters for pair-wise optimization,
better aligning with personalized user preferences. Experimental
results demonstrate that PUMA significantly outperforms existing
Web agents in single-turn and multi-turn personalized Web tasks,
showcasing the potential of personalized Web agents to deliver
more intelligent, customized, and user-centered Web services.

The key contributions in this work are as follows:

• We are the first to formulate the task of LLM-empowered per-
sonalized Web agents, which incorporate personalized user data
to achieve personalized instruction understanding and action
execution, bridging users with customized Web services.

• We construct the first benchmark for LLM-empowered person-
alized Web agents, featuring a diverse set of users with vary-
ing profiles and behaviors, the instructions across three tasks,
callable Web functions, and two evaluation paradigms.

• We propose PUMA, a novel personalized alignment framework
with a user memory bank and optimization strategies to align
LLMs with the task of personalized Web agents.

• We conduct extensive experiments on PersonalWAB, showing
that PUMA consistently surpasses existing Web agents, aligning
better with personalized user instructions and preferences.

2
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2 Related Work
•Web agents.Web agents are designed to automate a variety of
complex Web-based tasks. Some studies focus on directly respond-
ing to users’ instructions in a single turn. MiniWoB++ [23] estab-
lished a platform of website widgets where agents can complete
online tasks through keyboard andmouse.Webshop [50] introduced
a simulated e-commerce environment with human-written task in-
structions. Recent studies investigate automating Web tasks under
more practical and complex settings, including multi-domain [4],
multi-hop [53], real-time interactions with Web [57], and visual UI
understanding [11, 19]. Numerous efforts have been made to solve
these problems, including fine-tuning [9, 10, 28] and prompting
LLMs [37, 51, 54]. 2) Another research direction involves integrating
user interactions into the agent’s execution process. META-GUI [41]
introduced a dataset focused on automating actions in mobile apps
following conversational user instructions. RUSS [49] designed a
dataset to boost dialogue-centric Web navigation. Recent works
also focus on conversational Web navigation [5, 25] and interactive
information-seeking problems [2].

Despite advancements, prior research overlooks the dimension of
personalization in Web agents. A recent study simulates users with
distinct roles, permissions, and interaction histories [57], but these
roles are predefined per platform and do not require understand-
ing user preferences nor demand the agent to adjust the execution
strategy according to user preferences. In this work, we first fo-
cus on LLM-empowered personalized Web agents and propose a
novel framework along with a benchmark for the optimization and
evaluation of LLM-empowered personalized Web agents.
• Personalized LLMs. Personalized LLMs are designed to handle
user personas (e.g., , background information or historical behav-
iors) to meet individualized needs, adapting to distinct users [43].
Research in this field falls into two main categories: personalized
content generation and user-facing applications. 1) Personalized
content generation focuses on the core challenges of generating
personalized content. They have used openly available user data
on Reddit [45], Facebook, Twitter [38], and other blogging web-
sites [18] to pre-train LLMs. Key tasks include stance classification,
demographic inference [39], and personalized sentiment predic-
tion [27]. Benchmarks like LaMP [34] and LongLaMP [20] further
provide datasets for evaluating personalized text classification and
content generation. 2) Another research direction is the practical
applications in real-world scenarios, starting with personalized dia-
logue systems. Studies have built dialogue datasets by promoting
crowd-workers to author dialogues based on specific personas [52],
and by extracting user attributes from Reddit [26] and Weibo [56].
Apollonion [3] dynamically updates user profiles for personalized
responses. Additionally, memory mechanisms [21, 24, 47] help mod-
els recall past conversations and important events. Personalized
LLMs are also applied in healthcare [1, 15], education [6, 35], and
robotics [46] to enhance services.

However, previous studies have not explored personalized func-
tion calls to user-specific needs. Our work bridges this gap by
emphasizing adapting agents’ actions to different users by utilizing
personalized user data and enabling a comprehensive assessment
of agents’ ability to complete several personalized tasks in Web
environments.

3 Task and Benchmark
In this section, we formulate the task of LLM-empowered Web
agents in Section 3.1, detail the construction of PersonalWAB in
Section 3.2, and present the evaluation paradigms in Section 3.3.

3.1 Task Formulation
LLM-empowered personalized Web agents act as intermediaries
between users and Web services, and we formulate the following
elements in this task:

• User. Each user 𝑢 ∈ U has a distinct profile 𝑃𝑢 and the historical
Web behaviors 𝐻𝑢 . The profile 𝑃𝑢 includes static attributes such
as demographics, and 𝐻𝑢 records the user’s past Web behaviors,
represented as a time-ordered sequence, {ℎ1𝑢 , ℎ2𝑢 , . . . , ℎ𝑁𝑢 }. Each
ℎ𝑖𝑢 denotes one Web behavior, such as a purchase or a review.

• Instruction. The user’s instruction 𝑖𝑢 is a natural language sen-
tence that expresses their needs and requirements.

• Web environment. It is abstracted as a series of Web functions,
denoted by T . Each function 𝑓 ∈ T can be invoked with an input
parameter 𝑝 , returning the corresponding result 𝑂 𝑓𝑝 . Notably,
different input parameters will yield different function results.

Given the user instruction 𝑖𝑢 and the personalized data 𝑃𝑢 and
𝐻𝑢 , LLM-empowered personalized Web agents aim to select the
appreciate Web function 𝑓 and determine the optimal parameter 𝑝
to invoke personalized results 𝑂 𝑓𝑝 from the Web environment.

3.2 Benchmark Construction
It is challenging to gather a set of users to collect the real data on
Web agent applications. Therefore, we chose to develop the bench-
mark using existing datasets of users’ Web behaviors. Specifically,
we selected the Amazon Review [12] dataset as the foundation for
our benchmark, as it provides a large-scale collection of users’ Web
behaviors, including purchase and product rating across various
categories of products. The overall pipeline for constructing Per-
sonalWAB is illustrated in Figure A.3, which consists of three steps:
personalized data construction, user instruction creation, and Web
environment implementation.

3.2.1 Personalized Data Construction. This section consists of user
sampling and user profile generation steps.
• User sampling. We randomly selected 1,000 users from the
Amazon Review across five distinct product categories: Electronics,
Home and Kitchen, Grocery and Gourmet Food, Clothing, Shoes, and
Jewelry, and Health and Household. For each user, we collected
all their interactions across the five categories, each containing
detailed purchased product information (such as product title, price,
rating, and store) and user evaluations (including ratings, titles, and
comments).

To simulate realistic user behavior, we first arranged all user
interactions chronologically and divided them based on timestamps
into three segments: 80% as historical data, 10% for the training set,
and the final 10% for the test set.
• User profile generation. We generated unique profiles for each
of the 1,000 users based on their entire history of behaviors, using
the language model to infer and summarize their potential profiles

3
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Figure 2: Overall pipeline for constructing PersonalWAB benchmark with a real example for recommendation instruction.

(see prompt in Figure 9). Each user profile is structured to reflect
the following key dimensions (see details in Figure10):

• Basic information. This includes fundamental personal attributes
such as gender, age, and occupation, inferred from the user’s
product categories and purchasing behaviors.

• Shopping preferences. This dimension captures the user’s pur-
chasing tendencies, including 1) price sensitivity (whether the
user gravitates towards budget, mid-range, or premium prod-
ucts), 2) shopping interests (the types of products the user is most
frequently drawn to), and 3) brand preferences (the brands most
commonly referenced in the user’s purchase history).

• Behavioral tendencies. We summarize the characteristics of each
user’s shopping behavior using LLM from the following aspects.
1) Diversity preference indicates whether the user favors trying
new products or sticking with familiar ones; 2) Interaction com-
plexity describes whether the user prefers concise or detailed
interactions based on their review patterns; 3)Tone and style
capture the emotional tone and expressive style of the user’s re-
views, which may affect how they engage with systems. 4) Item
reference examines how often the user refers to specific products
or brands in their reviews; and 5) focus aspects highlight which
product features (e.g., price, average rating, brand) the user tends
to prioritize in their reviews.

The user profiles will support the following personalized instruc-
tion generation (§ 3.2.2) and multi-turn evaluation (§ 3.3).

3.2.2 User Instruction Creation. As previously mentioned, orga-
nizing thousands of users to collect their real instructions poses
significant challenges. To address this, we prompt the LLM to gen-
erate personalized instructions based on each user’s profile and real
Web behaviors. These instructions encompass three task scenarios:
search, recommendation, and review.

• Search instructions: We provide the language model with a de-
tailed user profile and product information, including key at-
tributes like brand, category, and features, to generate instruc-
tions for searching products. The prompt is detailed in Figure 11.
Depending on the profile, the generated search instructions vary
in length, tone, level of detail regarding the product, and the
specific product aspects mentioned.

• Recommendation instructions: The recommendation instruction
requests generated tend to be shorter, more general, and less
specific, leaving room for broader exploration. We prompt the

LLM to generate recommendation tasks with the prompt (see
Figure 12), user profile, and the user’s integrated products.

• Review instructions: The LLM receives both the user profile,
target product information, and actual review text to generate
user instructions for writing the review with users’ personalized
requirements. The prompt details are shown in Figure 13.

3.2.3 Web Environment Implementation. We choose to abstract
and simplify the Web environment as a series of Web functions [2]
rather than Web GUIs [48], as we believe GUIs are primarily user-
friendly interfaces for humans and not essential for agents. The
following web functions have been developed to help the agent
complete users’ instructions:

• search_product_by_query. This function takes a textual query
as input and returns detailed information on the 10 most similar
products based on the query. We facilitate this function using
BM25 with Pyserini [22] to enable fast retrieval from a database
of all products.

• get_recommendations_by_history. This function accepts a
sequence of product IDs and returns 10 recommended products.
To implement this, we trained the SASRec model [16] on our
conducted benchmark, with cold-start products removed.

• add_produc_review.Designed to simplify the process of adding
a product review, the only parameter this function requires is
the review text. We assume the review is posted on the website
once this function is successfully invoked.

• respond. This function allows the agent to engage in dialogue
with the user, enabling clarification or gathering of additional
information.

• stop. The stop function signals the termination of the current
task. When invoked, it indicates that the agent decided to end
the task, and no further actions are required.

3.3 Evaluation
To thoroughly evaluate the capabilities of Web agents, we estab-
lished two distinct evaluation tracks: the single-turn track and the
multi-turn track.
• Single-turn track. In this track, the agent is given only one
opportunity to execute the user’s instruction. The Web agent is
expected to invoke the appropriate Web functions and deliver accu-
rate results by configuring these functions with optimal parameters.
Therefore, we define two metrics as follows:
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Table 2: Statistics of the PersonalWAB Benchmark.

items Train Test

User

# Users 939 1,000
# Avg. profile tokens 247
# Avg. behavior length 32 38
# Avg. behavior tokens 7,597 9,270

Instruction # Instructions 6,896 2,174
# Avg. tokens 46 45

Product # Products 8,236
# Avg. tokens 665

• Function accuracy (function acc): This metric assesses the
agent’s ability to select the correct function and provide parame-
ters in the correct format. If the agent selects the appropriate tool
for the task and the input parameters are correctly formatted, it
receives a score of 1 for that task; otherwise, the score is 0.

• Result accuracy (res acc): For search and recommendation in-
structions, we leverage the rank 𝑟 of the target product within
the returned product list from the tool as the metric, formulated
as:

Res Acc =

{
1 − 𝑟−1

10 , if 𝑟 ≤ 10,
0, if 𝑟 > 10.

with 𝑟 ∈ N+ (1)

For review instructions, we assess the similarity between the
agent’s generated review and the user’s actual review. We em-
ploy the sentence-transformer [33] model to compute the cosine
similarity, yielding a res acc between 0 and 1.

• Multi-turn track. We believe it is crucial for Web agents to
interact with users to receive feedback and continuously adjust
their actions. Since using real humans for benchmark evaluation
is impractical, we conduct user simulators based on LLMs to
give real-time feedback. Specifically, we provide the LLM with user
profiles, target product information, or ground-truth reviews to
facilitate high-quality interactions between user simulators and
Web agents. Please refer to Figure 14 for the details of the user
simulator prompt.

In addition to the two metrics used in the single-turn track, we
introduce an additional evaluation metric: average steps. This
metric measures efficiency by counting the total number of actions
taken to complete the task, encouraging the agent to accomplish
users’ tasks with minimal attempts.

4 Benchmark Analysis
4.1 Statistic Analysis
We present the basic statistical information of our conducted Per-
sonalWAB in Table 2. Since user profiles are generated in our bench-
mark, we analyze the diversity of all users and the consistency of
each user’s profile, to verify the reliability of PersonalWAB.
• User statistics. In Figure 3, we present the basic attributes of
user profiles to illustrate the distribution. The data shows a rea-
sonable spread across gender and age groups, while occupation
categories cover a wide range of fields, ensuring diverse profes-
sional backgrounds in the dataset. The statistics in Figure 4 (a)
highlight additional diversity in behavioral attributes such as Price
Sensitivity, Diversity Preference, and Interaction Complexity. Most

(a) Gender (b) Age (c) Occupation

25-34

35-44

56+
46-49

Female

Male
Writer

Homemaker

Retired

Self-employed
…

Figure 3: Distribution of users by gender, age, and occupation.
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.

Figure 4: (a) Distribution of behaviors by Price Sensitivity,
Diversity Preference, and Interaction Complexity; (b) Statis-
tics of the instructions on different tasks.
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Profile-product
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↑18.3%

↑13.3%
↑25.8%

Figure 5: Results of profile consistency evaluation experi-
ments. Our generated profiles align better with users’ actual
Web behaviors and interested products than Apollonion [3].

users fall into the “medium” category across these behavioral as-
pects, and the “high” and “low” categories are less frequent, which
allows for testing both typical and edge cases in personalized tasks.
• Instruction statistics. We examined the number and average
token length of different instructions in Figure 4 (b). It is observed
that the recommendation instructions have the smallest number
of tokens because the recommendation is an exploratory task and
doesn’t contain many user information requirements. The review
instructions show slightly higher complexity compared to search
and recommendation instructions, as they include many words for
users to express their initial evaluations.

4.2 Profile Consistency Evaluation
Following [3], we conducted experiments on profile-behavior con-
sistency and profile-product consistency to verify how well the
generated profiles align with users’ actual past Web behaviors and
potentially interesting products. 1) Profile-behavior consistency
evaluation. The task was to match a user profile with the user’s
past Web behaviors among those of other users. 2) Profile-product
consistency evaluation. The task involved ranking a mixture of
previously interacted (positive) and randomly sampled (negative)
items for a user, based on their profile. The results in Figure 5 show
that our constructed profiles provide substantial improvements in
both profile-product and profile-behavior consistency evaluations

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

compared to Apollonion [3], showcasing the enhanced distinctive-
ness and alignment of the profiles with the actual user behaviors.
More details are in § A.1.

5 PUMA Framework
To enable theWeb agent to effectively complete tasks following user
instructions, we propose a novel PUMA framework, which consists
of two key steps: Web function identification and function parame-
ter generation. First, we fine-tune an LLM (e.g., LLaMa-2-7b [42])
with “instruction-function” pairs in the training set to identify the
correct Web functions given a user instruction. Then, we generate
the appropriate parameters for the identified function. To achieve
this, PUMA first adopts a memory bank to store the users’ long-
term Web behaviors and utilizes a task-specific retrieval strategy to
obtain the most relevant ones from the memory bank. With the ob-
tained user behaviors and features, we instruct the LLM to generate
the corresponding parameters. However, generating the appropriate
parameters for the identified function poses a significant challenge
due to the vast parameter space. To address this challenge, PUMA
applies heuristic methods to construct pseudo-labels to further fine-
tune the LLM and optimize parameter generation using DPO [32],
ensuring superior alignment with user preferences.

5.1 Task-specific Memory Retrieval
• Long-term memory bank. The long-term memory bank is a
storage system where we maintain a detailed record of each user’s
historical Web behaviors. For a user 𝑢, we store detailed informa-
tion about their purchased products ℎ𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 and the associated
reviews ℎ𝑟𝑒𝑣𝑖𝑒𝑤 , collectively denoted as𝑚. Specifically, the product
details include attributes such as “title”, “price”, “store”, and other
relevant metadata, while the review details encompass the “rating”,
“review title”, and “comment” provided by the user. Formally, if
the user 𝑢 has purchased 𝑛 products, the long-term memory𝑀 is
represented as:𝑀 = {𝑚𝑖 | 𝑖 = 1, 2, ..., 𝑛}.
• Task-specific memory retrieval strategy. The task-specific
memory retrieval strategy is designed to extract relevant informa-
tion from the long-term memory bank based on the user’s current
instruction and the identified function. When the user 𝑢 provides
an instruction 𝑖 and the Web function 𝑓 is determined, we first
retrieve the top 𝐾 memory entries by computing the cosine similar-
ity between the instruction 𝑖 and each memory𝑚 𝑗 in the bank𝑀 .
Then, based on the specific function 𝑓 , we extract more targeted
features from the retrieved memory. 1) If the Web function is re-
lated to search, we extract product details including the “product
title”, “category”, “price”, and “store”. 2) If the function pertains to
the recommendation, we retain the product “title”, “category”, and
“parent ASIN” (product ID). 3) For review functions, only the user’s
past ratings and comments are kept. This process can be formally
defined as:

𝑀𝑖 = Extract
(
TopK

(
𝑀, sim(𝑖,𝑚 𝑗 ), 𝐾

)
, 𝑓

)
. (2)

𝑀𝑖 represents the task-specific memory constructed for instruction
𝑖 . Extract(·, 𝑓 ) represents extracting targeted features based on the
identified Web function 𝑓 . The similarity sim(𝑖,𝑚 𝑗 ) is the cosine
similarity between the instruction 𝑖 and memory entry𝑚 𝑗 .

5.2 Function Parameter Optimization
Given the task-specific memory𝑀𝑖 , the next step involves utilizing
this memory to generate the Web function parameters. We begin
by using SFT to equip the model with a foundational ability to
generate reasonable parameters.
• Heuristic fine-tuning for parameter generation. The inputs
for SFT are structured as a combination of the user instruction 𝑖 , the
task-specific memory𝑀𝑖 , and the identified Web function 𝑓 . The
labels are the Web function parameters, constructed using heuristic
methods tailored to each Web function. 1) For the search function,
we leverage ChatGPT [29] to generate textual queries based on
the instruction, and memory. 2) For recommendations, the output
consists of the most recent product ASINs from the same category
found in the memory𝑀𝑖 . 3) For review functions, we use the actual
review text provided by the dataset as the labels. These heuristics
help construct meaningful pseudo-labels for parameter generation,
ensuring that the model learns to generate function parameters that
are plausible and contextually appropriate for each Web function.
• Diverse parameter sampling for pair-wise optimization.
After SFT equips the model with fundamental ability, we further
enhance the model’s performance through DPO [32] over diverse
parameter candidates. We first generate a diverse set of function pa-
rameters with high-temperature sampling and beam search. These
candidate parameters are then evaluated based on their result ac-
curacy for instruction completion. For instruction 𝑖 , we collect
best-performing (𝑝b

𝑖
) and worst-performing (𝑝w

𝑖
) parameter pairs

to construct the pair-wise preference data, which is formally defined
as DDPO:

DDPO =

{(
𝑝b𝑖 , 𝑝

w
𝑖 , 𝑥𝑖

)}
, (3)

where 𝑥𝑖 represents the input, which includes the user instruction
𝑖 , task-specific memory𝑀𝑖 , and Web function 𝑓 .

We then apply DPO to optimize the fine-tuned model 𝜋ref by
encouraging it to generate function parameters similar to 𝑝b

𝑖
and

discouraging it from generating function parameters similar to 𝑝w
𝑖
.

The DPO loss is given by:

LDPO = −E
[
log𝜎

(
𝛽 log

𝜋𝜃 (𝑝b | 𝑥)
𝜋ref (𝑝b | 𝑥)

− 𝛽 log 𝜋𝜃 (𝑝w | 𝑥)
𝜋ref (𝑝w | 𝑥)

)]
,

(4)
where 𝜎 (·) is the sigmoid function, and 𝛽 is a temperature-like pa-
rameter that controls the sensitivity of the model’s preference to the
log-ratio difference between the policy model 𝜋𝜃 for optimization
and reference model 𝜋ref derived from the SFT stage.

6 Experiments
We evaluate a range of baselines that employ different strategies for
selecting and utilizing user history. These baselines are categorized
into three groups: Memory Retrieval based Methods (No Memory,
Random Memory, Last Memory, Relevant Memory), Enhanced Rea-
soningMethods (ReAct [51], Reflection [37]), and Recommendation-
Specific Memory Frameworks (Recmind [44], InteRecAgent [14]).
The implementation details of baselines and our method are illus-
trated in § A.2 and § A.3.
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Table 3: Performance comparison between our proposed method, PUMA, and baselines in single-turn track. Bold numbers
indicate the best performance in each column, while underlined numbers indicate the second-best performance.

Method (backbone) Search Recommendation Review Overall
Function Acc Res Acc Function Acc Res Acc Function Acc Res Acc Function Acc Res Acc

No Memory (gpt-4o) 1.000 0.647 0.092 0.000 1.000 0.444 0.684 0.355
Random Memory (gpt-4o) 0.974 0.640 0.296 0.018 0.996 0.442 0.745 0.357
Last Memory (gpt-4o) 0.937 0.626 0.432 0.028 1.000 0.442 0.782 0.357

Relevant Memory (gpt-4o) 0.928 0.622 0.492 0.030 1.000 0.443 0.800 0.356
ReAct [51] (gpt-4o) 0.903 0.605 0.560 0.027 0.996 0.444 0.815 0.350

RecMind [44] (gpt-4o) 0.981 0.645 0.226 0.017 0.990 0.442 0.721 0.359
PUMA(gpt-4o) 1.000 0.649 0.939 0.048 1.000 0.449 0.979 0.373

PUMA( LLaMA-7B ) 0.996 0.652 0.987 0.054 1.000 0.538 0.994 0.406

Table 4: Performance comparison between our proposed method, PUMA, and baselines in multi-turn track. F. Acc represents
function accuracy, R. Acc stands for result accuracy, and Avg. Steps indicate the average number of steps taken by the agent to
complete each instruction.

Method Search Recommendation Review Overall
F. Acc R. Acc Avg. Steps F. Acc R. Acc Avg. Steps F. Acc R. Acc Avg. Steps F. Acc R. Acc Avg. Steps

No Memory 0.996 0.656 2.398 0.096 0.000 2.420 1.000 0.446 2.019 0.685 0.358 2.280
Random Memory 0.999 0.680 4.193 0.703 0.042 4.474 1.000 0.448 2.007 0.896 0.380 3.564
Last Memory 0.996 0.676 4.229 0.708 0.045 4.252 1.000 0.449 2.007 0.897 0.381 3.498

Relevant Memory 0.996 0.686 4.233 0.715 0.042 4.564 0.999 0.448 2.008 0.899 0.383 3.609
ReAct [51] 0.996 0.674 4.657 0.218 0.013 5.468 0.974 0.448 2.129 0.718 0.369 4.098

Reflection [37] 1.000 0.686 5.406 0.281 0.014 6.145 0.976 0.449 2.145 0.741 0.373 4.579
RecMind [44] 0.997 0.642 6.728 0.347 0.026 6.003 0.997 0.451 2.107 0.771 0.364 4.938

InteRecAgent [14] 0.999 0.642 3.110 0.618 0.022 3.008 1.000 0.447 2.001 0.867 0.362 2.706
PUMA (gpt-4o) 0.999 0.720 5.082 0.984 0.052 3.791 1.000 0.453 2.002 0.994 0.399 3.608

6.1 Main Results
We evaluated baselines and our framework on both single-turn and
multi-turn evaluation tracks.

6.1.1 Single-turn Track. The results on the single-turn track are
shown in Table 3, highlighting several key insights: 1) It was ob-
served that while search instructions had high function accuracy,
the performance for recommendation instructions was poor. Fur-
ther analysis revealed that many recommendation instructions were
incorrectly assigned to the search function, as visualized in Figure 7
(b), indicating the great difficulty in function selection. 2) Methods
incorporating relevant memory and ReAct show improved func-
tion accuracy, suggesting that retrieving relevant information and
incorporating reasoning improve function selection. 3) The result
accuracy for all baselines remains similar to the naive “No Memory”
baseline, implying these methods fail to significantly enhance per-
sonalized task execution. 4) In contrast, PUMA achieves the highest
function accuracy across tasks, with task-specific memory enabling
the agent to focus on relevant behaviors and features, leading to
higher result accuracy. Additionally, PUMA delivers the best over-
all performance while using shorter memory and a smaller LLM,
highlighting the efficiency and effectiveness of our approach.

6.1.2 Multi-turn Track. The multi-turn track results (Table 4) of-
fer valuable insights into how different methods handle complex
interactions. 1) First, baselines perform better in search and recom-
mendation tasks compared to the single-turn track, benefiting from

multiple attempts and user feedback, while review tasks show min-
imal improvement, as the agents typically follow a straightforward
flow with limited feedback opportunities. 2) The memory retrieval
baselines follow similar trends to the single-turn track, with rel-
evant memory improving function accuracy and result accuracy,
but at the cost of additional steps. 3) ReAct and Reflection perform
worse than memory retrieval methods, requiring more steps and
yielding lower accuracy. The complexity of these methods, which
include reasoning and self-reflection, seems to hinder task efficiency
and accuracy with extra input token length. 4) RecMind also re-
quires a higher number of steps, as it performs additional function
calls, but struggles with instruction identification. InteRecAgent
uses fewer steps due to its streamlined memory, but this simplifica-
tion results in lower result accuracy. 5) Our Task-specific Memory
method performs strongly, particularly in search and recommen-
dation tasks. By effectively extracting relevant information and
filtering out redundant data, it enables more informed decisions
with fewer steps. Although we did not evaluate the full PUMA ap-
proach due to model limitations in multi-turn settings, the results
highlight the importance of task-specific memory in enhancing
both efficiency and accuracy.

6.2 In-depth Analysis
We performed a comprehensive analysis of PUMA on ablation
study, memory length, efficiency, action transitions, and multi-turn
performance variation. The results for the first two are provided in
§ A.4 due to the limited scope.
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Figure 6: Comparison between the average task completion
time (in seconds) for different methods.

6.2.1 Analysis on efficiency. In real-world applications, task com-
pletion time is crucial for delivering a smooth user experience. To
evaluate it, we measured the time taken to complete the user in-
struction in the single-turn track. Each method was tested on 100
randomly selected tasks, and the average completion time was cal-
culated. The results in Figure 6 show that GPT-based methods have
similar completion times, ranging from 6.5 to 6.9 seconds, due to
memory processing overhead. In contrast, our PUMA framework
significantly outperforms all baselines, with an average time of 2.8
seconds. This efficiency gain stems from PUMA’s smaller model
and compact memory structure, minimizing inference time, mak-
ing it highly effective for real-world Web applications where quick
response times are essential.

6.2.2 Analysis on action transitions. We collected PUMA’s actions
in each interaction turn within the multi-turn track. Review in-
structions were removed, as the agent typically completes them
in just two steps. The results, visualized in Figure 7, provided the
following insights. 1) For search instructions, the agent tends to
alternately call “search” and “respond” functions. It is reasonable
as the agent could receive user feedback via the “respond” function
and thus adjust its search action. 2) The bond for the recommen-
dation instructions is more entangled in Figure 7 (b), indicating a
more complex action transition. This underlines the challenge in
multi-turn recommendation tasks, where correctly identifying user
intent and dynamically adjusting actions are more difficult than in
straightforward tasks like search.

6.2.3 Analysis of multi-turn performance variation. We evaluated
the agent’s performance over multiple attempts in the multi-turn
track. For each instruction, we measured the “Res Acc,” and the
number of solved tasks as the number of attempt steps increased.
The results are shown in Figure 8, and we had the following ob-
servations. 1) The high task count within the first five attempts
indicates that most tasks are completed early on. The “review” task
is typically finished within the first two attempts, as there’s little
need for the agent to interact with users about the review require-
ments. 2) “Res Acc” is high during the initial attempts and declines
with each subsequent attempt. This is because the easier tasks can
be solved in a few attempts, leaving the more difficult tasks for later.
3) There are a few outliers where tasks achieve higher “Res Acc”
in later steps. However, these cases are rare, involving only one
or two tasks that result in the outlier. 4) The declined “Res ACC”
also suggested that the agent struggles to leverage user feedback in
later attempts effectively. This may be due to the lack of multi-turn
training data, preventing us from tuning the agent accordingly.

search_product_by_query respond

stop

1 2 3 4 5

get_recommendations_by_history

(a) Search (b) Recommendation

1 2 3 4 5
(Steps) (Steps)

Figure 7: Transitions of the agent’s actions in multi-turn
interactions for search and recommendation instructions,
respectively.
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Figure 8: Analysis of the agent’s performance across multiple
attempts in multi-turn track.

7 Conclusion and Future Work
In this paper, we advanced general LLM-based Web agents into the
era of personalized Web agents, aiming to offer users tailored and
customized services. We formulated the task of LLM-empowered
personalized Web agents and identified the goal of leveraging per-
sonalized user data to achieve personalized instruction understand-
ing and action execution (Web function call). For training and eval-
uation, we constructed the first PersonalWAB benchmark on three
personalized Web tasks. We proposed PUMA, a novel personalized
alignment framework with task-specific memory and function pa-
rameter optimization strategies, to adapt LLMs to personalizedWeb
agents. Extensive experiments on PersonalWAB demonstrate that
PUMA consistently surpasses existing Web agents, aligning better
with personalized user instructions and preferences. We believe
that the task, benchmark, and framework for LLM-empowered per-
sonalized Web agents will broaden the research scope, introduce
new challenges, and inspire novel methods in Web agent scenarios.

While our research lays the groundwork for personalized Web
agents, several avenues for future exploration remain. First, we
plan to extend PersonalWAB by incorporating more diverse task
scenarios to further challenge and evaluate Web agents’ person-
alization capabilities. Second, integrating more sophisticated user
modeling techniques, such as dynamic preference learning, could
enhance agents’ adaptability to evolving user needs. Third, explor-
ing user-in-the-loop settings presents an exciting opportunity to
improve task execution by actively involving users in the process.
This includes developing agents that can better integrate user feed-
back, proactively identify missing information, and engage with
users to request necessary details, thereby enhancing the overall
effectiveness and efficiency of task completion.
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A Details
A.1 Details of Profile Evaluation Experiments
Profile-behavior consistency evaluation. Given a specific user
profile, the task is to identify the correct user from a group of can-
didate users, consisting of the true user and several negative users.
Each candidate user is represented by their behavior sequence, and
the objective is to determine which candidate aligns best with the
given profile. The evaluation metric used is top-1 accuracy, indicat-
ing the ability of the profile to distinctly and accurately match the
correct user based on their behaviors.

Profile-product consistency evaluation. In this task, a given
user profile is used to rank a set of candidate items, which include
a mixture of positive items (previously interacted with by the user)
and negative items (randomly sampled from an item pool). The
objective is to prioritize positive items over negative items, lever-
aging the user profile for accurate ranking. The task is evaluated

with NDCG@5 and Recall@5, which measure the profile’s ability
to reflect the user’s preferences.

We adopt the same setting with [3], set the number of positive
samples to 1 and 3, and negative samples to 4 and 7 in the user
prediction and recommendation tasks, respectively. Experiments
are conducted with gpt-4o-mini-2024-07-18, and results in Fig-
ure 5 show our profile exhibits significant improvements across
both tasks, indicating that our profiles are more distinct and better
aligned with user behaviors.

A.2 Details of Baselines
We evaluate a range of baselines that employ different strategies
for selecting and utilizing user Web behavioral history. These base-
lines are categorized into three groups: Memory Retrieval Methods,
Enhanced ReasoningMethods, and Recommendation-SpecificMem-
ory Frameworks.

Memory Retrieval Methods. We include various simple mem-
ory mechanisms as baselines, aiming to explore different strategies
for selecting and utilizing user history. This helps us understand
how each memory selection technique impacts task performance.
1) No Memory: The agent performs tasks without accessing any
user history, relying solely on the current instruction. 2) Random
Memory: This approach randomly selects behaviors from the user’s
history. 3) Last Memory: Uses only the most recent behaviors from
the user’s history, focusing on the assumption that recent context is
more relevant for current instruction. 4) Relevant Memory: Selects
past behaviors based on cosine similarity with the current instruc-
tion, aiming to filter out the most contextually relevant details for
the task.

Enhanced Reasoning Methods. We also tested frameworks
designed to enhance the agent’s reasoning and decision-making
capabilities. 1) ReAct: Proposed by [51], this framework instructs
the language model to think before taking an action and gener-
ate “Thought: some reasoning Action: some JSON format action
argument” to interact, enabling the model to deliberate over the
information available and decide on the most appropriate action. 2)
Reflection: Reflection [37] builds on frameworks of ReAct by adding
a self-evaluation phase, where the agent reviews and analyzes its
previous actions and outcomes before proceeding. This process al-
lows the agent to recognize mistakes, reassess decisions, and refine
its strategy in subsequent interactions. We tested this baseline only
in the multi-turn track, where the agent treats each user message
as feedback for reflection and adjustment.

Recommendation-Specific Memory Frameworks. Recom-
mendation tasks are inherently personalized, as they rely on a deep
understanding of user preferences and behaviors. Given this, we
include baselines that leverage memory mechanisms developed
for recommendation agents, assessing their ability to enhance per-
sonalization in our context. 1) RecMind: An LLM-powered agent
designed for general recommendation purposes [44], consists of two
parts of memory, personalized memory, and world knowledge. Per-
sonalized Memory includes individualized user information, such
as their reviews or ratings for a particular item. World Knowledge
consists of item metadata information and real-time information
accessed with a Web search function. In our setup, we retain the
personalized memory containing user reviews and ratings, and we
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Table 5: Alation study on key components of PUMA in single-turn track.

Method Search Recommendation Review Overall
Function Acc Result Acc Function Acc Result Acc Function Acc Result Acc Function Acc Result Acc

PUMA 0.996 0.652 0.987 0.054 1.000 0.538 0.994 0.406
w/o Task-specific Memory 0.990 0.643 0.992 0.008 1.000 0.496 0.994 0.373

w/o SFT 1.000 0.000 0.983 0.000 1.000 0.160 0.994 0.054
w/o DPO 0.996 0.648 0.987 0.047 1.000 0.529 0.994 0.399

Table 6: Performance comparison of different memory token lengths in PUMA.

Memory Length Search Recommendation Review Overall
Function Acc Result Acc Function Acc Result Acc Function Acc Result Acc Function Acc Result Acc

256 0.997 0.651 0.985 0.019 1.000 0.530 0.994 0.391
512 0.991 0.648 0.988 0.032 1.000 0.531 0.993 0.395
768 0.996 0.652 0.987 0.054 1.000 0.538 0.994 0.406

incorporate an additional function to enable RecMind to access de-
tailed product information. 2) InteRecAgent: Proposed by [14], this
framework uses LLMs as the core reasoning engine while utilizing
recommender models as functions for interactive recommendations.
Its memory structure includes a candidate bus (which stores current
item candidates) and a user profile that captures three facets of user
preferences: “like”, “dislike”, and “expect”. We adopt the user profile
memory in our experiments and allow the agent to update this
profile at the end of each task. As the user profile is synthesized
by LLMs based on conversation history with the user, we evaluate
this method only in the multi-turn setting, where ongoing dialogue
allows for continuous adaptation of the user profile.

A.3 Implementation Details
Benchmark.We utilize gpt-4o-mini-2024-07-18 for generating
user profiles, as it excels at extracting detailed user preferences,
particularly in capturing brand preferences. For user instruction
creation, we employ claude-3-5-sonnet@20240620, selected for
its ability to produce instructions in a natural and human-like
tone. In multi-turn track, gpt-4o-mini-2024-07-18 is also used
to simulate user messages, as it follows the instructions better to
give user messages.

Baselines. We use gpt-4o-mini-2024-07-18 as the base lan-
guage model across all baseline methods. For memory retrieval
baselines, we set the memory length to 50 behaviors for the single-
turn track and 20 behaviors for the multi-turn track, allowing ad-
ditional input length for user messages and function results. For
the Relevant Memory method, we calculate cosine similarity us-
ing the sentence-transformer [33] to identify relevant behaviors.
The ReAct baseline is combined with the Last Memory approach
to ensure that reasoning processes have recent context, and we
further extend this with a Reflection mechanism for multi-turn
scenarios. For RecMind, the memory length is set to 400 behaviors,
as it only contains user reviews and ratings, and we added an extra
“get_product_details_by_asin” function for the agent to retrieve
detailed product information. In the InteRecAgent setup, we first
construct the memory using historical behaviors and the training
dataset before evaluating performance on the test set.

PUMA.We collect the search function parameters of gpt-4o-mini
(2024-07-18) as the initial SFT data. In the function parameter
optimization phase, we fine-tune the LLaMA2-7B [42] model with
LoRA [13] using 4 × 24GB NVIDIA A5000 GPUs. The learning rate
is set to 4e-3 for the SFT and 5e-5 during the DPO stage, with a
batch size of 1 per GPU. Due to the maximum sequence length
we can afford during training is limited, we constrain the mem-
ory token length to 256, 512, and 768 tokens. To generate diverse
function parameters, we set a temperature of 1.5 to increase output
variability and use a beam search with a beam size of 10.

A.4 More Analysis
Ablation study.We conducted an ablation study (Table 5) to as-
sess the impact of PUMA’s key components. First, removing the
memory leads to a significant drop in result accuracy across all
tasks, highlighting the importance of memory in retaining rele-
vant information for function parameter generation. Second, when
memory is retained but the SFT phase is removed, result accuracy
dramatically declines. This indicates that without fine-tuning, the
model struggles to generate function parameters that align with
user needs. Finally, removing the DPO phase results in a slight
performance decrease, suggesting that DPO plays a crucial role
in aligning the model with user preferences, and improving the
quality of function parameters.

Analysis onmemory length.We evaluated the impact of differ-
ent memory token lengths on our framework’s performance across
tasks. The experiment measured both function accuracy and result
accuracy with varying memory sizes. The results (Table 6) indicate
that increasing memory length has minimal impact on function ac-
curacy, with the model maintaining similar performance regardless
of memory size. However, memory length has a significant effect
on result accuracy, particularly in recommendation tasks. Shorter
memory lengths reduce the number of stored products, limiting the
model’s ability to select appropriate product IDs, which leads to a
noticeable drop in recommendation accuracy. In contrast, search
and review tasks are less sensitive to memory length changes, as
the agent relies more on information from the instruction rather
than the memory. This reduced dependence on memory in these
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tasks may also limit the model’s potential to improve performance
further.

B Prompting Details
The prompt template for profile generation is shown in Figure 9
and Figure 10. And prompt template for instruction generation

is shown in Figure 11, Figure 12, and Figure 13. Last, the prompt
template for the user simulator is shown in Figure 14.
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User Profile Generation

You will act as an online shopper.
Given your time-series historical purchase information and corresponding reviews, you need to summarize and choose the most
accurate and relevant option best describing you.
During summarizing you should obey the following procedures:
First, summarize your basic information, and choose or fill the most accurate and relevant option for each category.
The categories and options are as follows:
• Gender: <GENDER>.
• Age: <AGE>.
• Occupation:<OCCUPATION>.
• Price Sensitivity: <PRICE SENSITIVITY>.
• Shopping Interest: Summarize the product information.
• Brand Preference: Choose from the product information, and only keep brand names.
Second, summarize your personal preferences across the following aspects:
• Diversity Preference:

Do you prefer trying new things or sticking to familiar products? Choose from <DIVERSITY>.
• Interaction Complexity

Do you prefer simple and concise interactions, or do you enjoy detailed and thorough exchanges? Choose from <INTERACTION>..
• Tone and Style

Summarize your overall emotional tone, speaking style, and expressive characteristics when giving reviews. Keep keywords.
• Item Reference

Summarize your tendency to refer to specific products or brands in your reviews, like purchase history, shopping cart, or recommen-
dations from friends. Keep keywords.

• Focus Aspect
What aspects of products do you pay more attention to? Choose from <FOCUS ASPECT> or summarize others from reviews. Keep
keywords.

In the end, arrange all the above aspects using the JSON format, with each aspect as an individual key.
Do not include any additional information or explanations and stay grounded.
Your History:
<HISTORY>

Figure 9: User profile generation.
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Details of Choices in Profile Generation

• <Gender>:
[Female, Male].

• <AGE>:
[Under 18, 18-24, 25-34 , 35-44 , 45-49 , 50-55 , 56+].

• <OCCUPATION>:
[Academic/Educator, Artist, Clerical/admin, College/grad student, Customer service, Doctor/health care, Executive/managerial,
Farmer, Homemaker, K-12 student, Lawyer, Programmer, Retired, Sales/Marketing, Scientist, Self-employed, Technician/Engineer,
Tradesman/Craftsman, Unemployed, Writer, Other].

• <PRICE SENSITIVITY>:
["High": "A Price-Conscious Shopper who is very sensitive to cost and seeks the best deals.",
"Medium": "A Balanced Buyer who considers price but also values quality and features.",
"Low": "A Value-Driven Consumer who prioritizes quality and features over price."].

• <DIVERSITY>:
[ "High": "A Highly Adventurous Explorer eager to discover diverse products across categories. They often seek recommendations,
and purchase a wide variety of items with varying ratings, and the user’s own ratings may often differ from the average. Their
reviews are detailed and enthusiastic, reflecting their unique tastes and enjoyment of variety.",
"Medium": "A Balanced Seeker who enjoys trying new products but also values familiarity. They appreciate targeted recommendations,
purchase a moderate number of items with solid ratings and a reasonable number of ratings, and their reviews balance detailed
feedback with concise, practical comments.",
"Low": "A Meticulously Selective Buyer who sticks to tried-and-true products, showing little interest in new options. They purchase
fewer items, favoring those with high ratings and a large number of ratings. Their own ratings are often very close to or slightly
above the average, and their reviews are thoughtful and focused on familiar products." ].

• <INTERACTION>:
[ "High": "A Thorough Conversationalist who enjoys detailed discussions, exploring all aspects of a product or service. They provide
extensive reviews and value comprehensive support, engaging in multiple rounds of communication.",
"Medium": "A Moderate Engager who balances simplicity with detail. They prefer clear communication but can engage in detailed
exchanges when necessary. They provide reviews that are a mix of concise observations and some detailed insights, especially if they
have strong feelings about a product.",
"Low": "A Minimalist Interactor who values simplicity and efficiency. They prefer quick, straightforward interactions and leave brief,
to-the-point reviews, focusing only on essential product aspects." ].

• <FOCUS ASPECT>:
["Average Rating", "Number of Ratings", "Price", "Store", "Material", "Size", "Weight", "Brand"].

Figure 10: Details of choices in user profile generation.
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Search Instruction Generation

You will act as an online shopper.
Your Profile:
<PROFILE>
You are looking for a product similar to the following product:
<PRODUCT>
You want to find a similar product, but you are not looking for an exact match.
Generate a search request that is somewhat vague, reflecting your preferences and personalities without revealing the complete details
of the target product.
Rules:
• <DIVERSITY>.
• <INTERACTION>.
• You pay more attention to <FOCUS_ASPECT> of products, make sure to include some of them in the search request.
• Ensure the search request aligns with your overall tone and style: <TONE_AND_STYLE>.
• Do not repeat the exact information in your profile or product. Instead, use your own words to convey the same information.
• Try to make the request as natural as possible and stick to the personalities in your profile.
• Do not include any additional information or explanations and stay grounded.
• Do not hallucinate information that is not provided,
• No more than <NUM> words.

Figure 11: Search instruction generation.

Recommendation Instruction Generation

You will act as an online shopper.
Your Profile:
<PROFILE>
You have recently shown interest in the following type of product:
<PRODUCT>
Now, you’re exploring options that could match your overall tastes, but you’re not sure exactly what you’re looking for.
Generate a recommendation request that reflects your general preferences and style, but leaves room for flexibility and discovery.
Rules:
• <DIVERSITY>.
• <INTERACTION>.
• You value <FOCUS_ASPECT> of products, but keep the request open-ended to allow for a variety of recommendations.
• Ensure the recommendation request aligns with your overall tone and style: <TONE_AND_STYLE>.
• Do not restate your profile or the product. Use different words or hints to convey your preferences.
• Avoid being too specific or precise in your request.
• Try to make the request as natural as possible and stick to the personalities in your profile.
• Do not include any additional information or explanations and stay grounded.
• Do not hallucinate information that is not provided,
• No more than <NUM> words.

Figure 12: Recommendation instruction generation.
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Review Instruction Generation

You will act as an online shopper.
Your Profile:
<PROFILE>,
You have recently purchased the following product:
<PRODUCT>,
Your feelings about the product are:
<REVIEW>,
Now, You want to write a review.
Generate a review request to ask for assistance to create a complete review that reflects your preferences and typical review style.
Rules:
• <INTERACTION>.
• You value <FOCUS_ASPECT> of products, but keep the request open-ended to allow for a variety of recommendations.
• Ensure the review request aligns with your overall tone and style: <TONE_AND_STYLE>.
• Do not simply restate your profile or feedback verbatim. Instead, paraphrase and expand to reflect a more comprehensive review.
• Try to make the request as natural as possible and stick to the personalities in your profile.
• Do not include any additional information or explanations and stay grounded.
• Do not hallucinate information that is not provided.
• No more than <NUM> words.

Figure 13: Review instruction generation.

User Simulation Instruction

You are a user interacting with a personalized shopping agent.
Your Profile:
<PROFILE>
You have purchased the following product:
<PRODUCT>
(In review tasks:) Your review is as follows:
<REVIEW>
The shopping agent will help you complete your shopping requests.
Rules:
• Just generate one line at a time to simulate the user’s message.
• Do not hallucinate information that is not provided.
• Do not give additional instructions or ask questions, only respond to the agent’s questions.
• Do not provide any specific product details.
• Do not repeat the exact information in your profile or product. Instead, use your own words to convey the same information.
• Try to make the conversation as natural as possible and stick to the personalities in your profile.
• If the result is not satisfactory, you can express your dissatisfaction and provide clues to help the agent understand your preferences.

Figure 14: User simulation instruction.
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