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Abstract001

Chain-of-thoughts (CoT) instructs large lan-002
guage models (LLMs) to generate intermedi-003
ate steps before reaching the final answer, and004
has been proven effective to help LLMs solve005
complex reasoning tasks. However, the inner006
mechanism of CoT still remains largely un-007
clear. In this paper, we empirically study the008
role of CoT tokens in LLMs on two compo-009
sitional tasks: multi-digit multiplication and010
dynamic programming. While CoT is essen-011
tial for solving these problems, we find that012
preserving only tokens that store intermediate013
results would achieve comparable performance.014
Furthermore, we observe that storing intermedi-015
ate results in an alternative latent form will not016
affect model performance. We also randomly017
intervene some values in CoT, and notice that018
subsequent CoT tokens and the final answer019
would change correspondingly. These findings020
suggest that CoT tokens function like variables021
in computer programs, but with potential draw-022
backs like unintended shortcuts and computa-023
tional complexity limits between tokens.024

1 Introduction025

Chain-of-thoughts (CoT) (Wei et al., 2022) is a026

widely adopted technique that greatly boosts the027

capability of large language models (LLMs) in028

reasoning tasks like solving mathematical prob-029

lems (Shao et al., 2024; Wang et al., 2024) or gen-030

erating codes (Guo et al., 2025). By requiring lan-031

guage models to generate intermediate steps before032

reaching the final result, chain-of-thoughts enables033

LLMs to perform advanced reasoning, and thus sig-034

nificantly outperforms standard supervised learning035

methods. Various methods have been explored to036

unlock the ability of chain-of-thought reasoning in037

LLMs, for example designing prompts (Wei et al.,038

2022; Khot et al., 2022; Zhou et al., 2022), instruc-039

tion tuning (Yue et al., 2023; Yu et al., 2023) or040

reinforcement learning (Havrilla et al., 2024; Wang041

et al., 2024; Guo et al., 2025).042

Recent theoretical studies on the efficacy of 043

chain-of-thoughts (Deng et al., 2024; Li et al., 2024; 044

Chen et al., 2024) reveal that while it is exponen- 045

tially difficult for language models to solve com- 046

positional problems requiring serial computations, 047

CoT could help models solve problems under multi- 048

nominal complexity. More interestingly, CoT to- 049

kens do not need to fall in the “language space”, 050

using latent vectors could also enable language 051

models to perform complex reasoning (Hao et al., 052

2024), indicating that CoTs are more than mere 053

thought traces. However, the mechanism of how 054

CoT works, and the role of CoT tokens are still not 055

fully explored. 056

In this paper, we propose the hypothesis that 057

CoT tokens function like computer program 058

variables. To be specific, the tokens in CoT store 059

intermediate values that will be used in subsequent 060

computations, and these values are partially mu- 061

table to control the final output. As long as the 062

important intermediate values are calculated and 063

stored, the CoT that leads to the final answer could 064

be represented in different forms. 065

To verify the hypothesis, we conduct empirical 066

study on two types of problems that both require 067

long-chain serial computations: multi-digit multi- 068

plication and dynamic programming. By compar- 069

ing the performance of vanilla prompting with CoT 070

prompting, we confirm that CoT is crucial for these 071

problems. We also find that removing non-result 072

tokens would not bring significant performance 073

drops, which means that tokens storing intermedi- 074

ate values matter more in chain-of-thoughts. 075

We further explore whether intermediate values 076

could be represented in different forms. We attempt 077

to compress consequent number digits within a sin- 078

gle latent vector, and experimental results show that 079

it does not detriment the model performance. This 080

phenomenon indicates that the existence, rather 081

than the form, of intermediate values matters more 082

to language models. However, when the degree of 083
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compression exceeds a certain limit of language084

models’ capacity, it would lead to failure in reason-085

ing.086

To further confirm that the intermediate values087

are causally connected with the output, we inter-088

vene in some tokens in CoT, replacing them with089

random values. It can be observed that LLMs will090

ignore previous steps, and use the intervened value091

to perform subsequent computations, supporting092

that CoT tokens are causally related with the final093

result. We conclude that CoT tokens function like094

the variables in computer programs.095

To sum up, we empirically study the function of096

CoT tokens, and find that: (1) The role of CoT to-097

kens is similar to variables in computer programs as098

they store intermediate values used in subsequent099

computations; (2) The intermediate values could100

be stored in CoT tokens with different forms; (3)101

The values in CoT tokens are causally related to the102

final output and could be intervened like program103

variables. These findings are helpful in understand-104

ing alternative forms of CoT, and could assist in105

designing more concise CoTs.106

2 Preliminary107

2.1 Chain-of-Thoughts108

Chain-of-thoughts (CoT) (Wei et al., 2022) is a109

technique commonly used in decoder-only trans-110

formers. Given the input text x, CoT attempts111

to generate intermediate steps z prior to the fi-112

nal answer y. In other words, instead of model-113

ing the probability distribution P (y|x), CoT at-114

tempts to model the joint distribution P (y, z|x) =115

P (z|x)P (y|x, z).116

For convenience, we use two special tokens117

<COT> and </COT> to separate CoT tokens from118

the final result in our experiments.119

2.2 Compositional Tasks120

It has been noticed that LLMs may fail on seem-121

ingly trivial problems like multi-digit multiplica-122

tion. The commonality of these problems is that123

they need strict multi-hop reasoning to derive cor-124

rect predictions, which requires language models to125

perform step-to-step reasoning like human intelli-126

gence. In this paper, we choose two representative127

tasks to study the role of CoT tokens:128

Multi-digit Multiplication Calculating the mul-129

tiplication result of two multi-digit numbers (x, y)130

requires executing multiple operations based on131

procedural rules (Dziri et al., 2023). A commonly132

Algorithm 1 Digit-wise multiplication

Require: Integer a and b
Ensure: Value of a ∗ b

Partial = [ ]
for Digit b[i] in b do

carry← 0
for Digit a[i] in a do

x← a[i] ∗ b[i] + carry
digit← x/10
carry← x mod 10

end for
res← Combine digits and last carry
Add res to Partial

end for
while Len(Partial) > 1 do

x← Partial[0] + Partial[1]
Partial← [x] + Partial[2:]

end while
return Partial[0]

adopted solution is the long-form multiplication al- 133

gorithm, which iteratively calculates the digit-wise 134

multiplication result and adds them up to get the 135

final result. We describe the algorithm in Algo- 136

rithm 1, see Appendix B for prompt and dataset 137

construction details. 138

Algorithm 2 Maximum path sum in a grid

Require: A m ∗ n matrix W
Ensure: Maximum weight sum s on path

DP←m ∗ n matrix filled with 0
for i in range(m) do

for j in range(n) do
DP[i][j] = max(DP[i−1][j], DP[i][j−1])
+ W[i][j]

end for
end for
return DP[m− 1][n− 1]

Dynamic Programming Dynamic programming 139

(DP) is an algorithmic paradigm that breaks down 140

complicated problems into simpler sub-problems, 141

and then recursively solves these sub-problems. In 142

our experiments, we use the “Maximum Path Sum 143

in a Grid” problem: Given a m× n grid filled with 144

non-negative numbers where only moving down- 145

ward and rightward is allowed, find a path from 146

top left to bottom right which maximizes the sum of 147

all numbers along its path. This is a classic prob- 148

lem that can be solved with dynamic programming 149
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(d) CoT DP

Figure 1: Comparison on model accuracy between plain prompting and chain-of-thought prompting.
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Figure 2: Model performance when non-result tokens
are removed from CoT in multi-digit multiplication.
Removing these tokens has little impact.

in O(m×n) time. We describe the algorithm in Al-150

gorithm 2, see Appendix C for prompt and dataset151

construction details.152

3 CoT Tokens Store Intermediate Results153

Experimental Setup In all of our experiments,154

We use Qwen-2.5-1.5B (Yang et al., 2024) as155

the backbone model. On each task, we finetune156

the model on the corresponding training data and157

then evaluate whether the generated final answer158

matches the golden answer. The training stage goes159

under a learning rate of 1e-5 for 1 epoch. See Ap-160

pendix D for detailed hyperparameter settings.161

3.1 Necessity of Chain-of-Thoughts162

We start by examining the effectiveness of CoT163

by comparing the model performance under direct164

prompting and CoT settings. As illustrated in Fig-165

ure 1, training the model with direct prompts faces166

difficulty starting from 3*3 multiplication prob-167

lems, and completely fails on larger numbers. In168

contrast, the model could easily solve multiplica-169

tion problems with chain-of-thoughts, with near-170

perfect accuracy.171

The same applies to dynamic programming prob-172

lems. Direct prompting would fail as the number of173

intermediate states increases, while CoT maintains174

its competence. These results support the conclu- 175

sion that chain-of-thoughts is necessary for solving 176

inherent serial problems that require multi-step rea- 177

soning, just as previous research suggests (Li et al., 178

2024; Chen et al., 2024). 179

3.2 Removing Non-result Tokens 180

One of the concerns about CoT is whether it could 181

be compressed into a more concise form. An ob- 182

vious approach is to remove some less important 183

tokens. To be specific, we remove tokens that are 184

neither a number nor a symbol1, making CoT a 185

sequence consisting purely of intermediate results 186

to solve the task. 187

Figure 2 shows the model performances after 188

removing these tokens. While the removal would 189

make the CoT unreadable, models finetuned on 190

compressed CoT still achieve satisfying perfor- 191

mance. We can infer from this phenomenon that 192

intermediate results are more important than se- 193

mantic completeness in CoT. In other words, the 194

central function of CoT is to store the sequence of 195

intermediate results. 196

3.3 Merging Results into Latent Tokens 197

Another concern about CoT is whether intermedi- 198

ate results should be explicitly recorded. To test 199

this hypothesis, we try to merge some of the inter- 200

mediate results, and represent the merged results 201

with latent tokens. 202

Method Design As depicted in Figure 3, we use 203

latent tokens <LAT> to store intermediate results, 204

and each latent token stores the information of a 205

complete number. For simplicity, we use multi-hot 206

vectors l as the embedding of latent tokens: a one- 207

hot vector l = (l1, l2, . . . , ld) ∈ Rd consisting of d 208

dimensions could represent a number N of at most 209

1For example word ”carry“ in multiplication problems, see
Appendix D for details
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Figure 3: The model structure used to reason with latent tokens. We use one-hot vectors as the latent embedding of
latent tokens <LAT>. When the input token is a latent token, we use its projected latent embedding to replace the
original input embedding. Correspondingly, a latent output head is added to predict the latent embedding of the next
token from the last hidden state.
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(b) DP

Figure 4: Model performances when merging interme-
diate results into latent tokens.

n digits, where d = 10n.210

l10k+x =

{
1, ⌊ N

10k
⌋ mod 10 = x

0, ⌊ N
10k
⌋ mod 10 ̸= x

(1)211

We start by setting all values in l to 0. Assum-212

ing that the value of the k-th digit under the little-213

endian system is x, we set l10k+x = 1. In this way,214

we could represent a number with a single latent215

token instead of multiple tokens.216

To support reasoning with latent tokens, we aug-217

ment the Transformer structure by adding an input218

projection module Pin and a latent output head219

Pout. When the input token ct at position t is a220

latent token, we feed its latent embedding lt to the221

projection module Pin, and use the projected vec-222

tor as the input embedding; Correspondingly, the223

last hidden state ht is fed to the latent output head224

Pout aside from the default LM head to predict the225

latent embedding of the next token lt+1. 226

We use linear layers to implement Pin and Pout, 227

which can be described as: 228

Pin(lt) = Winlt + bin (2) 229

Pout(ht) = Woutht + bout (3) 230

where Win,bin,Wout,bout are trainable parame- 231

ters. We randomly initialize these parameters. 232

An additional latent loss Llat is introduced to 233

train the augmented model: 234

Llat =
1

Nl

∑
ct=<LAT>

BCE(σ(Pout(ht),y)) (4) 235

Where Nl is the number of latent tokens, y is the 236

golden latent embedding, BCE is the binary cross 237

entropy loss function, and σ is the Sigmoid func- 238

tion. 239

Experimental Setup For multiplication prob- 240

lems, we replace each digit-wise multiplication 241

step with a single latent token and set d = 20; For 242

DP problems, we replace each intermediate state 243

with a single latent token and set d = 50. We add 244

the latent loss Llat with the default LM head loss 245

as the final loss for training. 246

Figure 4 shows the model performances when 247

trained with latent tokens. Surprisingly, merging 248

digit tokens to a single latent token does not detri- 249

ment the performance: the model retains most of 250

its ability to solve problems. The accuracy of using 251
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Original CoT

8493*8877=<COT>
……
Calculate 8493*7
3*7=21, digit 1, carry 2
9*7=63, digit 5, carry 6
4*7=28, digit 4, carry 3
8*7=56, digit 9, carry 5
Result of 8493*7=59451
Calculate 8493*70
……
Add up partial results: 
59451+594510+…
……
</COT>

Result: 75392361

Intervened CoT

8493*8877=<COT>
……
Calculate 8493*7
3*7=21, digit 1, carry 4
9*7=63, digit 7, carry 6
4*7=28, digit 4, carry 3
8*7=56, digit 9, carry 5
Result of 8493*7=59471
Calculate 8493*70
……
Add up partial results: 
59471+594510+…
……
</COT>

Result: 75392381

(a) Successful intervention

Original CoT

7967*1083=<COT>
……
Calculate 7967*1000
7*1=7, digit 7, carry 0
6*1=6, digit 6, carry 0
9*1=9, digit 9, carry 0
7*1=7, digit 7, carry 0
Result of 7967*1000
=7967000

Add up partial results: 
23901…+7967000
……
</COT>

Result: 8628261

Intervened CoT

7967*1083=<COT>
……
Calculate 7967*1000
7*1=7, digit 7, carry 9
6*1=6, digit 5, carry 0
9*1=9, digit 9, carry 0
7*1=7, digit 7, carry 0
Result of 7967*1000
=7967000

Add up partial results: 
23901…+7967000
……
</COT>

Result: 8628261

(b) Intervention with a shortcut error

Figure 5: Examples of a successful intervention (left) and an intervention with a shortcut error (right). Blue numbers
refer to relevant values in the original CoT, red numbers refer to the intervention, green numbers refer to values that
change as expected, but purple numbers do not change due to a shortcut error.

latent tokens on multiplication problems is almost252

identical with the accuracy of using full CoT. On253

5*5 multiplication problems, using latent tokens254

even surpasses the original CoT, suggesting that255

the form of intermediate results does not matter.2256

However, it can also be observed that using la-257

tent tokens brings disadvantage on DP problems258

where latent tokens store larger numbers. For ex-259

ample, the accuracy reduces by 9% on 4*5 DP260

problems. This raises the hypothesis that the com-261

putation complexity should not exceed a certain262

limit, which we will discuss further in Section 4.2.263

4 CoT Tokens are Mutable Variables264

In the previous section, we find that while CoT is265

essential for solving complex problems (Section266

3.1), the tokens representing intermediate results267

are more important than others (Section 3.2). Mean-268

while, compressing intermediate results into latent269

tokens would not obviously harm model perfor-270

mance (Section 3.3), indicating that intermediate271

results could be stored in different forms.272

Here, we continue to discuss whether these273

stored intermediate results are causally related to274

the final prediction, and how the computation com-275

plexity between intermediate results affects model276

performance.277

2It may be controversial whether the latent embedding
used in this section is equal to vocabulary expansion, which
we will discuss in Appendix F.
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Figure 6: (a) Success rate of intervention. When the
intervened output is the same as simulated, we view
it as a successful intervention. (b) Error breakdown.
Shortcut error occupies a large percentage of the errors.

DP[i][j] DP[i][j+1] DP[i][j+2]

DP[i+1][j] DP[i+1][j+1] DP[i+1][j+2]

DP[i+2][j] DP[i+2][j+1] DP[i+2][i+2]

…

…

Figure 7: Demonstration of the alternative merging strat-
egy. Each line refers to the compare-then-add state trans-
fer function in the original setup. Nodes corresponding
to the dashed boxes will not appear in the new CoT. It
will cost at most 3 compare-then-add operations (red
lines) to transfer states between new matrix tokens.
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4.1 Intervening the Value of CoT Tokens278

An inherent problem is that while CoT is essential279

for reaching the right answer, some of the interme-280

diate results may only be correlational to the output,281

rather than having causal effects. To address this282

problem, we perform intervention experiments by283

replacing intermediate results and observe whether284

the final result would change as expected.285

For multiplication problems, we randomly286

choose a substep in CoT and replace its result with287

a different random number; For DP problems, we288

randomly choose an intermediate state and replace289

it with a different random number. For simplicity,290

we perform interventions on 4*4 problems, and291

only one number is replaced in each data entry.292

Details are described in Appendix G.293

As shown in Figure 6a, the intervention on both294

tasks achieves a decent success rate, clearly indi-295

cating that the intermediate values stored in CoT296

tokens are causally related to the final answer. We297

also notice that subsequent reasoning steps will298

change correspondingly. Take Figure 5a as an ex-299

ample, when we change the carry from 2 to 4, the300

model generates a result of 8493 ∗ 7 = 59471 in-301

stead of 59451, just as simulated. In other words,302

tokens in CoT not only store intermediate values,303

but they are also “variables” that would affect sub-304

sequent reasoning steps.305

Another interesting observation is that the suc-306

cess rate on multiplication problems is significantly307

lower than that on DP problems. We investigate308

the cause of unsuccessful interventions and cate-309

gorize them into 5 categories. (1) Addition error310

means that the model fails to add up partial multi-311

plication results; (2) Reconstruction error means312

that the partial multiplication result conflicts with313

digit-wise results; (3) Copy error means that par-314

tial multiplication results do not correctly appear315

in the addition step; (4) Shortcut error means that316

the model learns a “shortcut” on certain multiplica-317

tions (usually when one of the operands is 0 or 1);318

(5) Misc error covers the remaining errors.319

Figure 6b illustrates the distribution of error320

types. Among the 5 types, shortcut error occu-321

pies the largest portion. As shown in Figure 5b,322

while changing the carry from 0 to 9 will affect the323

next digit as intended, the model does not change324

its result in the substep 7967 ∗ 1000. When mul-325

tiplying a number x by 1, the model seems to be326

taking a shortcut of directly copying x, rather than327

collecting the digit-wise multiplication results.328

To sum up, language models use the value in 329

CoT tokens like treating program variables, but 330

models may develop shortcut on easy subproblems 331

that leave certain variables unused. 332
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Figure 8: Probing accuracy on different layers. Interme-
diate variable values can only be probed on late layers,
regardless of the overall accuracy.

4.2 Probing the Limit of CoT Tokens 333

In Section 3.3, we discover that intermediate values 334

can be compressed in latent tokens. This naturally 335

raises the question: to what extent could the val- 336

ues be compressed? To address this problem, we 337

adopt some aggressive compression strategies and 338

use linear probing classifiers to observe how the 339

compression affects the final output. 340

We choose 5*5 DP problems as the base prob- 341

lem and use the latent token setting in Section 3.3. 342

Specifically, we introduce an alternative strategy 343

that merges two adjacent latent tokens in a row to 344

one latent token (Figure 7). In this way, this strat- 345

egy yields a 3*3 CoT token matrix instead of a 5*5 346

matrix. However, the computational complexity 347

between CoT tokens also increases: it would cost 348

up to 3 times as much as in the original case. 349

For each CoT token <LAT>, we use a linear probe 350

P to probe its latent embedding l from the hidden 351

states hk on different layer k of the previous token. 352

We use a unique probe Pk for each layer: 353

Pk(hk) = Wkhk + bk (5) 354

where Wk and bk are trainable parameters. 355

After training the probes on the training set, we 356

evaluate them with two metrics: element accuracy 357

evaluates the ratio of correctly predicted individual 358

dimensions, and token accuracy evaluates the ratio 359

of correct latent tokens. 360

Figure 8 shows the result of probing CoT tokens. 361

Aggressively merging CoT tokens will significantly 362

lower both element accuracy and token accuracy, 363
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meaning that there exists a computation complexity364

limit, over which the LLM can no longer correctly365

calculate the next intermediate variable.366
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Figure 9: Accuracy breakdown by the scale of target
values. When computational complexity between tokens
exceeds a limit, the model will fail.

Figure 9 further breaks down the accuracy dis-367

tribution by the range of values stored in merged368

latent tokens. We can see that merging latent tokens369

has little impact on numbers with a digit length of370

1 or 2, but would decrease the accuracy to near 0371

on larger number values. This phenomenon can372

be explained as it is easier to calculate small num-373

bers, and thus the model could “afford” the extra374

computational cost of merging latent tokens.375

Another interesting point to notice is that two376

accuracy curves share a similar pattern: the token377

accuracy stays at 0 from early layers, and rapidly378

rises around layer 20. Previous work (Stolfo et al.,379

2023; Zhu et al., 2025) has concluded that LLMs380

tend to use early-mid layers to gather and process381

information from previous tokens, and determine382

the output only in mid-late layers. We may further383

assume that the role of layers will not change with384

computation complexity between CoT tokens.385

5 Discussion386

Explaining alternative forms of CoT. By view-387

ing CoTs as programs, we can explain alternative388

CoT forms in a novel way. For example, the suc-389

cess of internalizing CoT steps (Deng et al., 2024;390

Hao et al., 2024) could be viewed as compressing391

explicit step tokens into implicit latent tokens that392

cover all essential intermediate values. And the va-393

lidity of inserting meaningless filler tokens (Goyal394

et al., 2024; Pfau et al., 2024) comes from enabling395

LLMs to store intermediate results in the hidden396

states of filler tokens. By reserving space for com-397

plex reasoning steps and compressing simple rea-398

soning steps, we could design better CoTs in differ-399

ent forms. 400

Generalization of CoT “programs”. From the 401

experiments in previous sections, we can see that 402

CoT tokens store intermediate values, and their 403

values are subsequently used like the way vari- 404

ables function in computer programs. Theoretical 405

proof has been made that Transformer with a re- 406

current module is Turing complete (Pérez et al., 407

2021). However, there is also evidence that LLMs 408

may struggle to generalize on compositional prob- 409

lems (Dziri et al., 2023): models trained on easy 410

problems would fail on more complex problems. In 411

real-world settings, the type and complexity of de- 412

sired programs are unknown, and a general-purpose 413

LLM needs to first determine the type of program 414

to use, or in other words, generate a meta-program 415

first. It would be beneficial to explore the gen- 416

eralization ability of LLMs on different types of 417

program paradigms, like loop, search, etc. 418

Identification of intermediate variable tokens. 419

It is not surprising that the CoT generated by LLMs 420

is partially redundant and could be shortened. In 421

Section 3.2, we find that preserving value tokens 422

could retain most of the ability of language models. 423

While it is easy to judge whether a token stores 424

intermediate results in multiplication and DP prob- 425

lems, it is harder to identify variable tokens on 426

general tasks: Madaan and Yazdanbakhsh (2022) 427

finds that plain text helps LLMs elicit semantic 428

commonsense knowledge, which may be infused 429

into later CoT tokens. Developing an approach to 430

identifying variable tokens would benefit further 431

CoT compression. 432

Estimation of computational complexity be- 433

tween variable tokens. Section 4.2 shows that 434

LLMs would fail when the computational com- 435

plexity between variable tokens exceeds a certain 436

limit. However, it is difficult to estimate the ex- 437

act complexity limit for LLMs. It is possible to 438

calculate the theoretical bound of ability for finite- 439

precision Transformers (Chen et al., 2024), but 440

how LLMs process semantic information is still 441

largely opaque, and unexpected features may ap- 442

pear (Lindsey et al., 2025). Moreover, LLMs are 443

not guaranteed to solve similar subproblems in the 444

same way, they may take shortcuts (Section 4.1) 445

that would largely affect the computational com- 446

plexity between variable tokens. We hope that the 447

broader research community could help estimate 448

the computational complexity between variable to- 449
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kens in different types of questions.450

6 Related Work451

Chain-of-Thought (CoT) reasoning Chain-of-452

Thoughts (CoT) (Wei et al., 2022) is a commonly453

adopted technique in LLMs. Nowadays, CoT refers454

to a broad range of approaches that require LLMs455

to generate an intermediate reasoning process be-456

fore reaching the final answer. Typical approaches457

include designing the prompt (Wei et al., 2022;458

Khot et al., 2022; Zhou et al., 2022) and finetun-459

ing LLMs on existing chain-of-thoughts (Yue et al.,460

2023; Yu et al., 2023). Recently, reinforcement461

learning also reveals its great potential in enabling462

LLMs to perform complex reasoning without exten-463

sive human annotations (Havrilla et al., 2024; Wang464

et al., 2024; Shao et al., 2024; Guo et al., 2025).465

While the tokens in CoT can be classified into sym-466

bols, patterns, and text, which both contribute to the467

final answer (Madaan and Yazdanbakhsh, 2022),468

it seems that LLMs can still perform well with a469

small amount of CoT tokens (Xu et al., 2025).470

Aside from plain text, researchers have also471

explored alternative forms of CoT. Some works472

focus on search abilities, like tree-form thought473

traces (Yao et al., 2023; Xie et al., 2023) and Monte-474

Carlo Tree Search (MCTS) algorithms (Zhang475

et al., 2024; Guan et al., 2025). Another line of476

work attempts to reason in a latent space: Goyal477

et al. (2024) uses a pause token to help models478

process extra computation before reaching an an-479

swer, and Pfau et al. (2024) shows it is also possi-480

ble to replace CoT with meaningless filler tokens.481

On top of this, Deng et al. (2024) tries to train482

models with gradually shortened CoT, and CO-483

CONUT (Hao et al., 2024) proposes the continuous484

thought paradigm, where the last hidden state of a485

latent token is used as the next input embedding.486

Theoretical analysis on CoT It has been noticed487

that LLMs face difficulty in compositional prob-488

lems where combining multiple reasoning steps is489

strictly required, and it may be an intrinsic draw-490

back of the Transformer structure (Dziri et al.,491

2023). Feng et al. (2023) explains the phenomenon492

with the circuit complexity theory, and reaches the493

conclusion that it is impossible for a constant-depth494

log-precision transformer to solve certain math495

problems like linear equations. However, with the496

help of CoT, the model could solve these problems497

in polynomial complexity. Li et al. (2024) further498

extends the conclusion that constant-depth trans-499

formers using constant-bit precision could solve 500

any problems solvable by boolean circuits, as long 501

as they are equipped with CoT whose steps are 502

longer than the circuit size. Chen et al. (2024) ana- 503

lyzes the problem with a multi-party autoregressive 504

communication model, and finds that it is expo- 505

nentially harder for Transformer models to solve 506

composition tasks that require more steps than the 507

model layers, and CoT could make the problem 508

exponentially easier. 509

In fact, Transformer models are powerful enough 510

to represent finite-state automata (Liu et al., 511

2022), and could even be Turing-complete (Pérez 512

et al., 2021) to simulate computer programs when 513

equipped with loop modules (Giannou et al., 2023). 514

We hold the belief that these findings could also be 515

extended to chain-of-thoughts reasoning. 516

7 Conclusion 517

In this paper, we empirically explore the role CoT 518

tokens play in reasoning. By observing the model 519

performance on multi-digit multiplication prob- 520

lems and dynamic programming, we confirm that 521

CoT is essential for solving these compositional 522

problems. We further find that we could mostly 523

preserve model ability by only using tokens that 524

store intermediate results, and these intermediate 525

results could be stored in different forms. 526

To validate the causal connection between CoT 527

tokens and model output, we intervene values in 528

CoT and find that both the subsequent reasoning 529

process and the final result would change corre- 530

sponding to the intervention. The way CoT tokens 531

behave is similar to the function of computer pro- 532

gram variables. However, in easy subproblems 533

LLMs would learn shortcuts that are unfaithful to 534

the generated reasoning process, and the interven- 535

tion would fail under these scenarios. We also train 536

probing classifiers to probe variable values from 537

hidden states on different layers, and find that there 538

exists a computational complexity limit between 539

CoT tokens. Intermediate values could be com- 540

pressed within a single latent CoT token, but the 541

model would drastically fail when computational 542

complexity exceeds the limit. 543

Our work conducts preliminary experiments on 544

the function of CoT tokens, and there still exist 545

mysteries like generalization ability, variable iden- 546

tification and complexity limit estimation, which 547

we leave for future explorations. 548
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Limitations549

In this paper we empirically demonstrate that an550

important function of CoT tokens is to store in-551

termediate values, and these values function like552

program variables. However, currently we are not553

able to give a theoretical proof on this statement.554

Another limitation of our work is that the exper-555

iments are conducted on two synthetic tasks with556

Qwen-2.5-1.5B, as it is difficult to identify and ana-557

lyze intermediate results in real-world datasets like558

GSM8K and Math. Future experiments on other559

problems and models will be beneficial.560
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A Potential Risks 714

We mainly conduct experiments on multiplication 715

and DP problems, which are well-defined and struc- 716

tured. For real-world tasks like question answering 717

or chatting, the boundary of “intermediate results” 718

are more vague, and editing these results would 719

lead to unexpected behavior. 720

B Details on Multiplication Task 721

Dataset construction For each problem scale of 722

m × n that multiplies m-digit number a with n- 723

digit number b, we generate 100,000 data entries 724

by randomly sampling a and b. When the scale is 725

small (for example 1×2), we exhaustively generate 726

all number pairs instead. The generated data entries 727

are then divided into train and test splits with a ratio 728

of 90%/10%. 729

Prompt and CoT Formulation We use simple 730

multiplication expressions as prompts. Figure 10 731

shows an example prompt for querying the model 732

to perform multiplication. 733

For convenience, we use <tool_call> as the 734

start-of-CoT token <COT>, </tool_call> as the 735

end-of-CoT token </COT>, and <|fim_middle|> 736

as the latent token <LAT>, which already exist in 737

the tokenizer vocabulary. 738

We formulate the reasoning process with the al- 739

gorithm of digit-wise multiplication, whose exam- 740

ple is demonstrated in Figure 11. In the compressed 741

CoT setting, we remove all tokens that merely rep- 742

resent text semantics in CoT, namely “Calculate”, 743

“digit”, “carry”, “Result of” “Add up partial results:” 744

and “The final result is:”, whose example is demon- 745

strated in Figure 12. 746

Prompt example

3773*6821=

Figure 10: Example prompt for the multi-digit multipli-
cation task.

C Details on Dynamic Programming Task 747

Dataset construction Similar to the multiplica- 748

tion problems, we generate 100,000 data entries 749

for each problem scale of m × n (whose input 750

matrix has a shape of m rows, n columns), and 751
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Full CoT example

3773*6821=<tool_call>Calculate 3773*1
3*1=3, digit 3, carry 0
7*1=7, digit 7, carry 0
7*1=7, digit 7, carry 0
3*1=3, digit 3, carry 0
Result of 3773*1=3773
Calculate 3773*20
3*2=6, digit 6, carry 0
7*2=14, digit 4, carry 1
7*2=14, digit 5, carry 1
3*2=6, digit 7, carry 0
Result of 3773*20=75460
Calculate 3773*800
3*8=24, digit 4, carry 2
7*8=56, digit 8, carry 5
7*8=56, digit 1, carry 6
3*8=24, digit 0, carry 3
Result of 3773*800=3018400
Calculate 3773*6000
3*6=18, digit 8, carry 1
7*6=42, digit 3, carry 4
7*6=42, digit 6, carry 4
3*6=18, digit 2, carry 2
Result of 3773*6000=22638000

Add up partial results: 3773+75460+3018400+22638000
3773+75460+3018400+22638000=79233+3018400+22638000
79233+3018400+22638000=3097633+22638000
3097633+22638000=25735633

The final result is: 3773*6821=25735633</tool_call>

Result: 25735633

Figure 11: Example CoT for the multi-digit multiplication task.
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Compressed CoT example

3773*6821=<tool_call>3773*1
3*1 3 0
7*1 7 0
7*1 7 0
3*1 3 0
3773*1=3773
3773*20
3*2 6 0
7*2 4 1
7*2 5 1
3*2 7 0
3773*20=75460
3773*800
3*8 4 2
7*8 8 5
7*8 1 6
3*8 0 3
3773*800=3018400
3773*6000
3*6 8 1
7*6 3 4
7*6 6 4
3*6 2 2
3773*6000=22638000

3773+75460+3018400+22638000
3773+75460+3018400+22638000=79233+3018400+22638000
79233+3018400+22638000=3097633+22638000
3097633+22638000=25735633

3773*6821=25735633</tool_call>

Result: 25735633

Figure 12: Example CoT after compression for the multi-digit multiplication task.
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divide them into train and test splits with a ratio of752

90%/10%.753

To control the value of intermediate states within754

a reasonable range, we ensure all values x in the755

input matrix satisfy 1 < x < 100. In other words,756

each input value is a 2-digit number.757

Prompt formulation We use a matrix whose758

shape is the same as the input matrix to store in-759

termediate values. The choice of special tokens760

<COT>, </COT> and <LAT> are the same as those in761

multiplication problems.762

An example of the input prompt is shown in Fig-763

ure 14, and an example of the full prompt is shown764

in Figure 15. Notice that we do not have a com-765

pressed version of CoT in dynamic programming766

tasks.767

Plain Full Latent Expand
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Figure 13: Comparison between expanding the vocabu-
lary and other methods.

D Main Experiment Settings768

For all of our experiments, we use Qwen-2.5-769

1.5B (Yang et al., 2024) from the huggingface770

model hub as the base model. We use the model771

according to its license and intended use.772

We implement the experiments with the hug-773

gingface Transformers library. On each task, we774

finetune the model on the training set and then775

evaluate the model on the test set of the correspond-776

ing prompt type. We use the full-parameter super-777

vised finetuning setting and do not use parameter-778

efficient training techniques.779

During training, we use the AdamW optimizer780

with a learning rate of 1e− 5. The weight decay is781

set to 0 and the gradient clipping threshold is set to782

1. We train the model for 1 epoch with a training783

batch size of 4 by default. For small datasets like784

1× 2 digit multiplication, we change the epoch to785

10 to ensure convergence.786

The models on multiplication problems are 787

trained under BFloat16 precision, while models on 788

DP problems are trained under Float32 precision. 789

All experiments are trained on a single NVIDIA 790

A40 40GB GPU. Running experiments on multipli- 791

cation problems with a size of 5*5 costs about 60 792

GPU hours, and experiments on DP problems with 793

a size of 5*5 costs about 10 GPU hours. 794

During evaluation, we evaluate with a batch size 795

of 1. We only check the correctness of the final 796

result during evaluation. 797

E Latent Experiment Settings 798

The hyperparameters in latent experiments are the 799

same as the main experiment. For convenience, we 800

use <|fim_middle|> as the latent token <LAT>. 801

In multiplication problems, the dimension of 802

latent embeddings is set to 20 (10 for digit results 803

and 10 for carry results). In dynamic programming 804

problems, the dimension of latent embeddings is 805

set to 50 to store values no larger than 100,000. 806

The latent projection module Pin and the latent 807

output head Pout are trained with the backbone 808

model with the same learning rate. We simply add 809

the latent loss Llat with the original LM head loss 810

Llm as the final loss L = Llat + Llm. 811

Figure 16 shows an example of latent CoT in 812

multiplication problems, and Figure 17 shows an 813

example of latent CoT in dynamic programming 814

problems. 815

F Comparison with Vocabulary 816

Expansion 817

Our implementation of latent tokens in Section 818

3.3 is not exactly the same with the implementa- 819

tion in COCONUT (Hao et al., 2024). Instead of 820

using the last hidden state of the previous token 821

as the new input embedding, we manually design 822

multi-hot vectors to encode the value of intermedi- 823

ate results. This raises the question that given the 824

number of possible multi-hot vectors is countable 825

(though very large), is it equal to expanding the 826

vocabulary? 827

To address the problem, we expand the vocab- 828

ulary of the base model, giving each intermediate 829

result a unique token named “<x>”, where x is the 830

value of the result. We randomly initialize the em- 831

beddings of the new token, and train them on 5*5 832

DP problems. Figure 13 shows the comparison be- 833

tween not using CoT, using full CoT, using latent 834

CoT (Section 3.3) and expanding the vocabulary. 835
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Prompt example

Find a path in the given table from the top-left corner to the bottom-right corner that
maximizes the sum of the numbers on it. You can only move rightwards or downwards.

Table:
85 93 45 79 49
28 12 37 57 76
3 22 37 55 68
26 2 57 7 100
87 11 12 67 89

Figure 14: Example Prompt for the dynamic programming task.

Full CoT example

Find a path in the given table from the top-left corner to the bottom-right corner that
maximizes the sum of the numbers on it. You can only move rightwards or downwards.

Table:
15 5 59 62 22
41 61 7 12 27
98 60 34 94 24
45 40 12 77 11
56 94 46 34 45

<tool_call>15 20 79 141 163
56 117 124 153 190
154 214 248 342 366
199 254 266 419 430
255 349 395 453 498</tool_call>

Result: 498

Figure 15: Example CoT for the dynamic programming task.
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Latent CoT example

8493*8877=<tool_call>8493*7
<|fim_middle|><|fim_middle|><|fim_middle|><|fim_middle|>|59451
8493*70 <|fim_middle|><|fim_middle|><|fim_middle|><|fim_middle|>|594510
8493*800
<|fim_middle|><|fim_middle|><|fim_middle|><|fim_middle|>|6794400
8493*8000
<|fim_middle|><|fim_middle|><|fim_middle|><|fim_middle|>|67944000

59451+594510+6794400+67944000
59451+594510+6794400+67944000=653961+6794400+67944000
653961+6794400+67944000=7448361+67944000
7448361+67944000=75392361

8493*8877=75392361</tool_call>

Result: 75392361

Figure 16: Example latent CoT for the multi-digit multiplication task.

Latent CoT example

Find a path in the given table from the top-left corner to the bottom-right corner that
maximizes the sum of the numbers on it. You can only move rightwards or downwards.

Table:
15 5 59 62 22
41 61 7 12 27
98 60 34 94 24
45 40 12 77 11
56 94 46 34 45

<tool_call><|fim_middle|><|fim_middle|><|fim_middle|><|fim_middle|><|fim_middle|>
<|fim_middle|><|fim_middle|><|fim_middle|><|fim_middle|><|fim_middle|>
<|fim_middle|><|fim_middle|><|fim_middle|><|fim_middle|><|fim_middle|>
<|fim_middle|><|fim_middle|><|fim_middle|><|fim_middle|><|fim_middle|>
<|fim_middle|><|fim_middle|><|fim_middle|><|fim_middle|><|fim_middle|></tool_call>

Result: 498

Figure 17: Example latent CoT for the dynamic programming task.
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We can clearly see that expanding the vocabu-836

lary falls far behind using full CoT or latent CoT,837

indicating that the precise value in latent tokens838

makes core contribution to reasoning.839

G Intervention Experiment Details840

In the intervention experiments, we randomly sub-841

stitute a number value in the CoT generated by842

trained models on the test set. The interventions are843

performed on the full CoT texts. The substituted844

number has the same digit length as the original845

number, but with a different value. To prevent out-846

lier values, we keep the first digit to be the same847

as the original number when substituting numbers848

with 2 or more digits.849

We choose the number to substitute within the850

following range:851

Multiplication852

• x or y in “digit x, carry y” statements;853

• A random number x in “Add up partial results:”854

statements;855

• The first partial result x in “a1 + . . .+ an =856

x+ . . . statements;857

• The result x in the “The final result is: . . . = x”858

statement.859

Dynamic programming A random intermediate860

value in the CoT.861

After intervention, we truncate all tokens after862

the intervened value, and feed the partial CoT into863

trained models to complement the full CoT and get864

the final answer.865

The detailed breakdown of errors in multiplica-866

tion problems is shown in Table 1 (1 entry with867

deformed CoT is excluded):

Type Count
Total 9999

Success 7383
Error 2616

Addition error 767
Reconstruct error 496

Shortcut error 1291
Copy error 6
Misc error 56

Table 1: Intervention error breakdown in multiplication
problems.

868

H Probing Experiment Details 869

In the probing experiments, we probe on latent 870

CoT for simplicity. We first collect hidden states 871

of LLMs on different layers, and then train the 872

probe classifiers. The training set of hidden states 873

is collected by running the trained model on the 874

original training set, and so is the test set. 875

We use a learning rate of 1e− 3 and a gradient 876

clipping threshold of 1. We train the probe classi- 877

fiers for 4 epochs with a training batch size of 32, 878

and an evaluate batch size of 64. 879
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