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Abstract

Chain-of-thoughts (CoT) instructs large lan-
guage models (LLMs) to generate intermedi-
ate steps before reaching the final answer, and
has been proven effective to help LLMs solve
complex reasoning tasks. However, the inner
mechanism of CoT still remains largely un-
clear. In this paper, we empirically study the
role of CoT tokens in LLMs on two compo-
sitional tasks: multi-digit multiplication and
dynamic programming. While CoT is essen-
tial for solving these problems, we find that
preserving only tokens that store intermediate
results would achieve comparable performance.
Furthermore, we observe that storing intermedi-
ate results in an alternative latent form will not
affect model performance. We also randomly
intervene some values in CoT, and notice that
subsequent CoT tokens and the final answer
would change correspondingly. These findings
suggest that CoT tokens function like variables
in computer programs, but with potential draw-
backs like unintended shortcuts and computa-
tional complexity limits between tokens.

1 Introduction

Chain-of-thoughts (CoT) (Wei et al., 2022) is a
widely adopted technique that greatly boosts the
capability of large language models (LLMs) in
reasoning tasks like solving mathematical prob-
lems (Shao et al., 2024; Wang et al., 2024) or gen-
erating codes (Guo et al., 2025). By requiring lan-
guage models to generate intermediate steps before
reaching the final result, chain-of-thoughts enables
LLMs to perform advanced reasoning, and thus sig-
nificantly outperforms standard supervised learning
methods. Various methods have been explored to
unlock the ability of chain-of-thought reasoning in
LLMs, for example designing prompts (Wei et al.,
2022; Khot et al., 2022; Zhou et al., 2022), instruc-
tion tuning (Yue et al., 2023; Yu et al., 2023) or
reinforcement learning (Havrilla et al., 2024; Wang
et al., 2024; Guo et al., 2025).

Recent theoretical studies on the efficacy of
chain-of-thoughts (Deng et al., 2024; Li et al., 2024;
Chen et al., 2024) reveal that while it is exponen-
tially difficult for language models to solve com-
positional problems requiring serial computations,
CoT could help models solve problems under multi-
nominal complexity. More interestingly, CoT to-
kens do not need to fall in the “language space”,
using latent vectors could also enable language
models to perform complex reasoning (Hao et al.,
2024), indicating that CoTs are more than mere
thought traces. However, the mechanism of how
CoT works, and the role of CoT tokens are still not
fully explored.

In this paper, we propose the hypothesis that
CoT tokens function like computer program
variables. To be specific, the tokens in CoT store
intermediate values that will be used in subsequent
computations, and these values are partially mu-
table to control the final output. As long as the
important intermediate values are calculated and
stored, the CoT that leads to the final answer could
be represented in different forms.

To verify the hypothesis, we conduct empirical
study on two types of problems that both require
long-chain serial computations: multi-digit multi-
plication and dynamic programming. By compar-
ing the performance of vanilla prompting with CoT
prompting, we confirm that CoT is crucial for these
problems. We also find that removing non-result
tokens would not bring significant performance
drops, which means that tokens storing intermedi-
ate values matter more in chain-of-thoughts.

We further explore whether intermediate values
could be represented in different forms. We attempt
to compress consequent number digits within a sin-
gle latent vector, and experimental results show that
it does not detriment the model performance. This
phenomenon indicates that the existence, rather
than the form, of intermediate values matters more
to language models. However, when the degree of



compression exceeds a certain limit of language
models’ capacity, it would lead to failure in reason-
ing.

To further confirm that the intermediate values
are causally connected with the output, we inter-
vene in some tokens in CoT, replacing them with
random values. It can be observed that LLMs will
ignore previous steps, and use the intervened value
to perform subsequent computations, supporting
that CoT tokens are causally related with the final
result. We conclude that CoT tokens function like
the variables in computer programs.

To sum up, we empirically study the function of
CoT tokens, and find that: (1) The role of CoT to-
kens is similar to variables in computer programs as
they store intermediate values used in subsequent
computations; (2) The intermediate values could
be stored in CoT tokens with different forms; (3)
The values in CoT tokens are causally related to the
final output and could be intervened like program
variables. These findings are helpful in understand-
ing alternative forms of CoT, and could assist in
designing more concise CoTs.

2 Preliminary

2.1 Chain-of-Thoughts

Chain-of-thoughts (CoT) (Wei et al., 2022) is a
technique commonly used in decoder-only trans-
formers. Given the input text x, CoT attempts
to generate intermediate steps z prior to the fi-
nal answer y. In other words, instead of model-
ing the probability distribution P(y|x), CoT at-
tempts to model the joint distribution P(y, z|z) =
P(z|x)P(y|x, 2).

For convenience, we use two special tokens
<COT> and </COT> to separate CoT tokens from
the final result in our experiments.

2.2 Compositional Tasks

It has been noticed that LLMs may fail on seem-
ingly trivial problems like multi-digit multiplica-
tion. The commonality of these problems is that
they need strict multi-hop reasoning to derive cor-
rect predictions, which requires language models to
perform step-to-step reasoning like human intelli-
gence. In this paper, we choose two representative
tasks to study the role of CoT tokens:

Multi-digit Multiplication Calculating the mul-
tiplication result of two multi-digit numbers (z, y)
requires executing multiple operations based on
procedural rules (Dziri et al., 2023). A commonly

Algorithm 1 Digit-wise multiplication

Require: Integer a and b
Ensure: Value of a * b
Partial = [ ]
for Digit b[i] in b do
carry < 0
for Digit a[i] in a do
X < ali] * b[i] + carry
digit + x/10
carry <— x mod 10
end for
res <— Combine digits and last carry
Add res to Partial
end for
while Len(Partial) > 1 do
X < Partial[0] + Partial[1]
Partial < [x] + Partial[2:]
end while
return Partial[0]

adopted solution is the long-form multiplication al-
gorithm, which iteratively calculates the digit-wise
multiplication result and adds them up to get the
final result. We describe the algorithm in Algo-
rithm 1, see Appendix B for prompt and dataset
construction details.

Algorithm 2 Maximum path sum in a grid

Require: A m x n matrix W
Ensure: Maximum weight sum s on path
DP < m * n matrix filled with O
for ¢ in range(m) do
for j in range(n) do
DP[i][j] = max(DP[i —1][j], DP[][j — 1])
+ WIi[j]
end for
end for
return DP[m — 1][n — 1]

Dynamic Programming Dynamic programming
(DP) is an algorithmic paradigm that breaks down
complicated problems into simpler sub-problems,
and then recursively solves these sub-problems. In
our experiments, we use the “Maximum Path Sum
in a Grid” problem: Given a m x n grid filled with
non-negative numbers where only moving down-
ward and rightward is allowed, find a path from
top left to bottom right which maximizes the sum of
all numbers along its path. This is a classic prob-
lem that can be solved with dynamic programming
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Figure 1: Comparison on model accuracy between plain prompting and chain-of-thought prompting.
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Figure 2: Model performance when non-result tokens
are removed from CoT in multi-digit multiplication.
Removing these tokens has little impact.

in O(m x n) time. We describe the algorithm in Al-
gorithm 2, see Appendix C for prompt and dataset
construction details.

3 CoT Tokens Store Intermediate Results

Experimental Setup In all of our experiments,
We use Qwen-2.5-1.5B (Yang et al., 2024) as
the backbone model. On each task, we finetune
the model on the corresponding training data and
then evaluate whether the generated final answer
matches the golden answer. The training stage goes
under a learning rate of le-5 for 1 epoch. See Ap-
pendix D for detailed hyperparameter settings.

3.1 Necessity of Chain-of-Thoughts

We start by examining the effectiveness of CoT
by comparing the model performance under direct
prompting and CoT settings. As illustrated in Fig-
ure 1, training the model with direct prompts faces
difficulty starting from 3*3 multiplication prob-
lems, and completely fails on larger numbers. In
contrast, the model could easily solve multiplica-
tion problems with chain-of-thoughts, with near-
perfect accuracy.

The same applies to dynamic programming prob-
lems. Direct prompting would fail as the number of
intermediate states increases, while CoT maintains

its competence. These results support the conclu-
sion that chain-of-thoughts is necessary for solving
inherent serial problems that require multi-step rea-
soning, just as previous research suggests (Li et al.,
2024; Chen et al., 2024).

3.2 Removing Non-result Tokens

One of the concerns about CoT is whether it could
be compressed into a more concise form. An ob-
vious approach is to remove some less important
tokens. To be specific, we remove tokens that are
neither a number nor a symbol', making CoT a
sequence consisting purely of intermediate results
to solve the task.

Figure 2 shows the model performances after
removing these tokens. While the removal would
make the CoT unreadable, models finetuned on
compressed CoT still achieve satisfying perfor-
mance. We can infer from this phenomenon that
intermediate results are more important than se-
mantic completeness in CoT. In other words, the
central function of CoT is to store the sequence of
intermediate results.

3.3 Merging Results into Latent Tokens

Another concern about CoT is whether intermedi-
ate results should be explicitly recorded. To test
this hypothesis, we try to merge some of the inter-
mediate results, and represent the merged results
with latent tokens.

Method Design As depicted in Figure 3, we use
latent tokens <LAT> to store intermediate results,
and each latent token stores the information of a
complete number. For simplicity, we use multi-hot
vectors 1 as the embedding of latent tokens: a one-
hot vector 1 = (Iy, 1, ..., 1q) € R? consisting of d
dimensions could represent a number /N of at most

"For example word “carry* in multiplication problems, see
Appendix D for details
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Figure 4: Model performances when merging interme-
diate results into latent tokens.

n digits, where d = 10n.

1, || mod 10 =z
Liok+a = Ll})v” (1)

We start by setting all values in 1 to 0. Assum-
ing that the value of the k-th digit under the little-
endian system is x, we set ljgx4, = 1. In this way,
we could represent a number with a single latent
token instead of multiple tokens.

To support reasoning with latent tokens, we aug-
ment the Transformer structure by adding an input
projection module P;, and a latent output head
P,u:. When the input token c; at position ¢ is a
latent token, we feed its latent embedding 1, to the
projection module F;,, and use the projected vec-
tor as the input embedding; Correspondingly, the
last hidden state h, is fed to the latent output head
P, aside from the default LM head to predict the

latent embedding of the next token 1y 1.
We use linear layers to implement P;,, and P,,;,
which can be described as:

Pout (ht) = Woutht + bout (3)

where W, bin, Wout, by are trainable parame-
ters. We randomly initialize these parameters.

An additional latent loss £;,; is introduced to
train the augmented model:

Liat = Ni Z

Ct :<LAT>

BCE(U(Pout(ht)a Y)) (4)

Where N is the number of latent tokens, y is the
golden latent embedding, BCE is the binary cross
entropy loss function, and o is the Sigmoid func-
tion.

Experimental Setup For multiplication prob-
lems, we replace each digit-wise multiplication
step with a single latent token and set d = 20; For
DP problems, we replace each intermediate state
with a single latent token and set d = 50. We add
the latent loss £;,; with the default LM head loss
as the final loss for training.

Figure 4 shows the model performances when
trained with latent tokens. Surprisingly, merging
digit tokens to a single latent token does not detri-
ment the performance: the model retains most of
its ability to solve problems. The accuracy of using



Original CoT

8493*8877=<COT>
Calculate 8493*7
3*7=21, digit 1, carry 2
9*7=63, digit 5, carry 6
4*7=28, digit 4, carry 3
8*7=56, digit 9, carry 5
Result of 8493*7=59451

Intervened CoT

8493*8877=<COT>
Calculate 8493*7
3*7=21, digit 1, carry 4
9*7=63, digit 7, carry 6
4*7=28, digit 4, carry 3
8*7=56, digit 9, carry 5
Result of 8493*7=59471

Calculate 8493*70
Add up partial results:
59451+594510+...

</COT>

Result: 75392361

Calculate 8493*70
Add up partial results:
59471+594510+-...

</COT>

Result: 75392381

Original CoT

7967*1083=<COT>
Calculate 7967*1000
7*1=7, digit 7, carry 0
6*1=6, digit 6, carry 0
9*1=9, digit 9, carry 0
7*1=7, digit 7, carry O
Result of 7967*1000

Intervened CoT

7967*1083=<COT>

Calculate 7967*1000
7*1=7, digit 7, carry 9
6*1=6, digit 5, carry 0
9*1=9, digit 9, carry 0
7*1=7, digit 7, carry 0
Result of 7967*1000

=7967000

Add up partial results:
23901...+7967000

</COT>

Result: 8628261

=7967000

Add up partial results:
23901...+7967000

</COT>

Result: 8628261
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Figure 5: Examples of a successful intervention (left) and an intervention with a shortcut error (right). Blue numbers
refer to relevant values in the original CoT, red numbers refer to the intervention, green numbers refer to values that
change as expected, but purple numbers do not change due to a shortcut error.

latent tokens on multiplication problems is almost
identical with the accuracy of using full CoT. On
5*5 multiplication problems, using latent tokens
even surpasses the original CoT, suggesting that
the form of intermediate results does not matter.
However, it can also be observed that using la-
tent tokens brings disadvantage on DP problems
where latent tokens store larger numbers. For ex-
ample, the accuracy reduces by 9% on 4*5 DP
problems. This raises the hypothesis that the com-
putation complexity should not exceed a certain
limit, which we will discuss further in Section 4.2.

4 CoT Tokens are Mutable Variables

In the previous section, we find that while CoT is
essential for solving complex problems (Section
3.1), the tokens representing intermediate results
are more important than others (Section 3.2). Mean-
while, compressing intermediate results into latent
tokens would not obviously harm model perfor-
mance (Section 3.3), indicating that intermediate
results could be stored in different forms.

Here, we continue to discuss whether these
stored intermediate results are causally related to
the final prediction, and how the computation com-
plexity between intermediate results affects model
performance.

’It may be controversial whether the latent embedding
used in this section is equal to vocabulary expansion, which
we will discuss in Appendix F.
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Figure 6: (a) Success rate of intervention. When the
intervened output is the same as simulated, we view
it as a successful intervention. (b) Error breakdown.
Shortcut error occupies a large percentage of the errors.
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Figure 7: Demonstration of the alternative merging strat-
egy. Each line refers to the compare-then-add state trans-
fer function in the original setup. Nodes corresponding
to the dashed boxes will not appear in the new CoT. It
will cost at most 3 compare-then-add operations (red
lines) to transfer states between new matrix tokens.



4.1 Intervening the Value of CoT Tokens

An inherent problem is that while CoT is essential
for reaching the right answer, some of the interme-
diate results may only be correlational to the output,
rather than having causal effects. To address this
problem, we perform intervention experiments by
replacing intermediate results and observe whether
the final result would change as expected.

For multiplication problems, we randomly
choose a substep in CoT and replace its result with
a different random number; For DP problems, we
randomly choose an intermediate state and replace
it with a different random number. For simplicity,
we perform interventions on 4*4 problems, and
only one number is replaced in each data entry.
Details are described in Appendix G.

As shown in Figure 6a, the intervention on both
tasks achieves a decent success rate, clearly indi-
cating that the intermediate values stored in CoT
tokens are causally related to the final answer. We
also notice that subsequent reasoning steps will
change correspondingly. Take Figure 5a as an ex-
ample, when we change the carry from 2 to 4, the
model generates a result of 8493 % 7 = 59471 in-
stead of 59451, just as simulated. In other words,
tokens in CoT not only store intermediate values,
but they are also “variables” that would affect sub-
sequent reasoning steps.

Another interesting observation is that the suc-
cess rate on multiplication problems is significantly
lower than that on DP problems. We investigate
the cause of unsuccessful interventions and cate-
gorize them into 5 categories. (1) Addition error
means that the model fails to add up partial multi-
plication results; (2) Reconstruction error means
that the partial multiplication result conflicts with
digit-wise results; (3) Copy error means that par-
tial multiplication results do not correctly appear
in the addition step; (4) Shortcut error means that
the model learns a “shortcut” on certain multiplica-
tions (usually when one of the operands is 0 or 1);
(5) Misc error covers the remaining errors.

Figure 6b illustrates the distribution of error
types. Among the 5 types, shortcut error occu-
pies the largest portion. As shown in Figure 5b,
while changing the carry from 0 to 9 will affect the
next digit as intended, the model does not change
its result in the substep 7967 * 1000. When mul-
tiplying a number x by 1, the model seems to be
taking a shortcut of directly copying z, rather than
collecting the digit-wise multiplication results.

To sum up, language models use the value in
CoT tokens like treating program variables, but
models may develop shortcut on easy subproblems
that leave certain variables unused.
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Figure 8: Probing accuracy on different layers. Interme-
diate variable values can only be probed on late layers,
regardless of the overall accuracy.

4.2 Probing the Limit of CoT Tokens

In Section 3.3, we discover that intermediate values
can be compressed in latent tokens. This naturally
raises the question: to what extent could the val-
ues be compressed? To address this problem, we
adopt some aggressive compression strategies and
use linear probing classifiers to observe how the
compression affects the final output.

We choose 5*5 DP problems as the base prob-
lem and use the latent token setting in Section 3.3.
Specifically, we introduce an alternative strategy
that merges two adjacent latent tokens in a row to
one latent token (Figure 7). In this way, this strat-
egy yields a 3*3 CoT token matrix instead of a 5*5
matrix. However, the computational complexity
between CoT tokens also increases: it would cost
up to 3 times as much as in the original case.

For each CoT token <LAT>, we use a linear probe
P to probe its latent embedding 1 from the hidden
states hy, on different layer k of the previous token.
We use a unique probe P for each layer:

Py(hy) = Wihy, + by (5)

where W, and by, are trainable parameters.

After training the probes on the training set, we
evaluate them with two metrics: element accuracy
evaluates the ratio of correctly predicted individual
dimensions, and token accuracy evaluates the ratio
of correct latent tokens.

Figure 8 shows the result of probing CoT tokens.
Aggressively merging CoT tokens will significantly
lower both element accuracy and token accuracy,



meaning that there exists a computation complexity
limit, over which the LLM can no longer correctly
calculate the next intermediate variable.
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Figure 9: Accuracy breakdown by the scale of target
values. When computational complexity between tokens
exceeds a limit, the model will fail.

Figure 9 further breaks down the accuracy dis-
tribution by the range of values stored in merged
latent tokens. We can see that merging latent tokens
has little impact on numbers with a digit length of
1 or 2, but would decrease the accuracy to near 0
on larger number values. This phenomenon can
be explained as it is easier to calculate small num-
bers, and thus the model could “afford” the extra
computational cost of merging latent tokens.

Another interesting point to notice is that two
accuracy curves share a similar pattern: the token
accuracy stays at 0 from early layers, and rapidly
rises around layer 20. Previous work (Stolfo et al.,
2023; Zhu et al., 2025) has concluded that LLMs
tend to use early-mid layers to gather and process
information from previous tokens, and determine
the output only in mid-late layers. We may further
assume that the role of layers will not change with
computation complexity between CoT tokens.

5 Discussion

Explaining alternative forms of CoT. By view-
ing CoTs as programs, we can explain alternative
CoT forms in a novel way. For example, the suc-
cess of internalizing CoT steps (Deng et al., 2024;
Hao et al., 2024) could be viewed as compressing
explicit step tokens into implicit latent tokens that
cover all essential intermediate values. And the va-
lidity of inserting meaningless filler tokens (Goyal
et al., 2024; Pfau et al., 2024) comes from enabling
LLMs to store intermediate results in the hidden
states of filler tokens. By reserving space for com-
plex reasoning steps and compressing simple rea-
soning steps, we could design better CoTs in differ-

ent forms.

Generalization of CoT “programs”. From the
experiments in previous sections, we can see that
CoT tokens store intermediate values, and their
values are subsequently used like the way vari-
ables function in computer programs. Theoretical
proof has been made that Transformer with a re-
current module is Turing complete (Pérez et al.,
2021). However, there is also evidence that LLMs
may struggle to generalize on compositional prob-
lems (Dziri et al., 2023): models trained on easy
problems would fail on more complex problems. In
real-world settings, the type and complexity of de-
sired programs are unknown, and a general-purpose
LLM needs to first determine the type of program
to use, or in other words, generate a meta-program
first. It would be beneficial to explore the gen-
eralization ability of LLMs on different types of
program paradigms, like loop, search, etc.

Identification of intermediate variable tokens.
It is not surprising that the CoT generated by LLMs
is partially redundant and could be shortened. In
Section 3.2, we find that preserving value tokens
could retain most of the ability of language models.
While it is easy to judge whether a token stores
intermediate results in multiplication and DP prob-
lems, it is harder to identify variable tokens on
general tasks: Madaan and Yazdanbakhsh (2022)
finds that plain text helps LLMs elicit semantic
commonsense knowledge, which may be infused
into later CoT tokens. Developing an approach to
identifying variable tokens would benefit further
CoT compression.

Estimation of computational complexity be-
tween variable tokens. Section 4.2 shows that
LLMs would fail when the computational com-
plexity between variable tokens exceeds a certain
limit. However, it is difficult to estimate the ex-
act complexity limit for LLMs. It is possible to
calculate the theoretical bound of ability for finite-
precision Transformers (Chen et al., 2024), but
how LLMs process semantic information is still
largely opaque, and unexpected features may ap-
pear (Lindsey et al., 2025). Moreover, LLMs are
not guaranteed to solve similar subproblems in the
same way, they may take shortcuts (Section 4.1)
that would largely affect the computational com-
plexity between variable tokens. We hope that the
broader research community could help estimate
the computational complexity between variable to-



kens in different types of questions.

6 Related Work

Chain-of-Thought (CoT) reasoning Chain-of-
Thoughts (CoT) (Wei et al., 2022) is a commonly
adopted technique in LLLMs. Nowadays, CoT refers
to a broad range of approaches that require LLMs
to generate an intermediate reasoning process be-
fore reaching the final answer. Typical approaches
include designing the prompt (Wei et al., 2022;
Khot et al., 2022; Zhou et al., 2022) and finetun-
ing LLMs on existing chain-of-thoughts (Yue et al.,
2023; Yu et al., 2023). Recently, reinforcement
learning also reveals its great potential in enabling
LLM:s to perform complex reasoning without exten-
sive human annotations (Havrilla et al., 2024; Wang
et al., 2024; Shao et al., 2024; Guo et al., 2025).
While the tokens in CoT can be classified into sym-
bols, patterns, and text, which both contribute to the
final answer (Madaan and Yazdanbakhsh, 2022),
it seems that LLMs can still perform well with a
small amount of CoT tokens (Xu et al., 2025).
Aside from plain text, researchers have also
explored alternative forms of CoT. Some works
focus on search abilities, like tree-form thought
traces (Yao et al., 2023; Xie et al., 2023) and Monte-
Carlo Tree Search (MCTS) algorithms (Zhang
et al., 2024; Guan et al., 2025). Another line of
work attempts to reason in a latent space: Goyal
et al. (2024) uses a pause token to help models
process extra computation before reaching an an-
swer, and Pfau et al. (2024) shows it is also possi-
ble to replace CoT with meaningless filler tokens.
On top of this, Deng et al. (2024) tries to train
models with gradually shortened CoT, and CO-
CONUT (Hao et al., 2024) proposes the continuous
thought paradigm, where the last hidden state of a
latent token is used as the next input embedding.

Theoretical analysis on CoT It has been noticed
that LL.Ms face difficulty in compositional prob-
lems where combining multiple reasoning steps is
strictly required, and it may be an intrinsic draw-
back of the Transformer structure (Dziri et al.,
2023). Feng et al. (2023) explains the phenomenon
with the circuit complexity theory, and reaches the
conclusion that it is impossible for a constant-depth
log-precision transformer to solve certain math
problems like linear equations. However, with the
help of CoT, the model could solve these problems
in polynomial complexity. Li et al. (2024) further
extends the conclusion that constant-depth trans-

formers using constant-bit precision could solve
any problems solvable by boolean circuits, as long
as they are equipped with CoT whose steps are
longer than the circuit size. Chen et al. (2024) ana-
lyzes the problem with a multi-party autoregressive
communication model, and finds that it is expo-
nentially harder for Transformer models to solve
composition tasks that require more steps than the
model layers, and CoT could make the problem
exponentially easier.

In fact, Transformer models are powerful enough
to represent finite-state automata (Liu et al.,
2022), and could even be Turing-complete (Pérez
et al., 2021) to simulate computer programs when
equipped with loop modules (Giannou et al., 2023).
We hold the belief that these findings could also be
extended to chain-of-thoughts reasoning.

7 Conclusion

In this paper, we empirically explore the role CoT
tokens play in reasoning. By observing the model
performance on multi-digit multiplication prob-
lems and dynamic programming, we confirm that
CoT is essential for solving these compositional
problems. We further find that we could mostly
preserve model ability by only using tokens that
store intermediate results, and these intermediate
results could be stored in different forms.

To validate the causal connection between CoT
tokens and model output, we intervene values in
CoT and find that both the subsequent reasoning
process and the final result would change corre-
sponding to the intervention. The way CoT tokens
behave is similar to the function of computer pro-
gram variables. However, in easy subproblems
LLMs would learn shortcuts that are unfaithful to
the generated reasoning process, and the interven-
tion would fail under these scenarios. We also train
probing classifiers to probe variable values from
hidden states on different layers, and find that there
exists a computational complexity limit between
CoT tokens. Intermediate values could be com-
pressed within a single latent CoT token, but the
model would drastically fail when computational
complexity exceeds the limit.

Our work conducts preliminary experiments on
the function of CoT tokens, and there still exist
mysteries like generalization ability, variable iden-
tification and complexity limit estimation, which
we leave for future explorations.



Limitations

In this paper we empirically demonstrate that an
important function of CoT tokens is to store in-
termediate values, and these values function like
program variables. However, currently we are not
able to give a theoretical proof on this statement.

Another limitation of our work is that the exper-
iments are conducted on two synthetic tasks with
Qwen-2.5-1.5B, as it is difficult to identify and ana-
lyze intermediate results in real-world datasets like
GSMBS8K and Math. Future experiments on other
problems and models will be beneficial.
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A Potential Risks

We mainly conduct experiments on multiplication
and DP problems, which are well-defined and struc-
tured. For real-world tasks like question answering
or chatting, the boundary of “intermediate results”
are more vague, and editing these results would
lead to unexpected behavior.

B Details on Multiplication Task

Dataset construction For each problem scale of
m X n that multiplies m-digit number a with n-
digit number b, we generate 100,000 data entries
by randomly sampling a and b. When the scale is
small (for example 1 x 2), we exhaustively generate
all number pairs instead. The generated data entries
are then divided into train and test splits with a ratio
of 90%/10%.

Prompt and CoT Formulation We use simple
multiplication expressions as prompts. Figure 10
shows an example prompt for querying the model
to perform multiplication.

For convenience, we use <tool_call> as the
start-of-CoT token <COT>, </tool_call> as the
end-of-CoT token </COT>, and <|fim_middle|>
as the latent token <LAT>, which already exist in
the tokenizer vocabulary.

We formulate the reasoning process with the al-
gorithm of digit-wise multiplication, whose exam-
ple is demonstrated in Figure 11. In the compressed
CoT setting, we remove all tokens that merely rep-
resent text semantics in CoT, namely “Calculate”,
“digit”, “carry”, “Result of” “Add up partial results:”
and “The final result is:”, whose example is demon-
strated in Figure 12.

Prompt example

3773*6821=

Figure 10: Example prompt for the multi-digit multipli-
cation task.

C Details on Dynamic Programming Task

Dataset construction Similar to the multiplica-
tion problems, we generate 100,000 data entries
for each problem scale of m x n (whose input
matrix has a shape of m rows, n columns), and



Full CoT example

3773*6821=<tool_call>Calculate 3773*1
3*1=3, digit 3, carry 0
7*1=17, digit 7, carry O
7*1=7, digit 7, carry O
3*1=3, digit 3, carry 0

Result of 3773*1=3773
Calculate 3773*20

3*2=6, digit 6, carry 0
7*2=14, digit 4, carry 1
7%2=14, digit 5, carry 1
3*2=6, digit 7, carry 0

Result of 3773*20=75460
Calculate 3773*800

3*8=24, digit 4, carry 2
7%8=56, digit 8, carry 5
7%8=56, digit 1, carry 6
3*8=24, digit 0, carry 3
Result of 3773*800=3018400
Calculate 3773*6000
3*6=18, digit 8, carry 1
7*6=42, digit 3, carry 4
7*6=42, digit 6, carry 4
3*6=18, digit 2, carry 2
Result of 3773*%6000=22638000

Add up partial results: 3773+75460+3018400+22638000
3773+75460+3018400+22638000=79233+3018400+22638000
79233+3018400+22638000=3097633+22638000
3097633+22638000=25735633

The final result is: 3773*%6821=25735633</tool_call>

Result: 25735633

Figure 11: Example CoT for the multi-digit multiplication task.
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Compressed CoT example

3773*%6821=<tool_call>3773*1
3*130

7*170

7*¥170

3*130
3773%1=3773
3773*20

3%260

7*241

7%¥251

3*270
3773%20=75460
3773*800

3%842

7*8 85

7*816

3*803
3773*800=3018400
3773*6000

3*6 8 1

76 3 4

7%6 6 4

3%622
3773*%6000=22638000

3773+75460+3018400+22638000
3773+75460+3018400+22638000=79233+3018400+22638000
7923343018400+22638000=3097633+22638000
3097633+22638000=25735633
3773*6821=25735633</tool_call>

Result: 25735633

Figure 12: Example CoT after compression for the multi-digit multiplication task.
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divide them into train and test splits with a ratio of
90%/10%.

To control the value of intermediate states within
a reasonable range, we ensure all values x in the
input matrix satisfy 1 < z < 100. In other words,
each input value is a 2-digit number.

Prompt formulation We use a matrix whose
shape is the same as the input matrix to store in-
termediate values. The choice of special tokens
<COT>, </COT> and <LAT> are the same as those in
multiplication problems.

An example of the input prompt is shown in Fig-
ure 14, and an example of the full prompt is shown
in Figure 15. Notice that we do not have a com-
pressed version of CoT in dynamic programming
tasks.

accuracy
° °
b ®

o
IS

o
N}

0.0-

Full

method

Plain Latent Expand

Figure 13: Comparison between expanding the vocabu-
lary and other methods.

D Main Experiment Settings

For all of our experiments, we use Qwen-2.5-
1.5B (Yang et al., 2024) from the huggingface
model hub as the base model. We use the model
according to its license and intended use.

We implement the experiments with the hug-
gingface Transformers library. On each task, we
finetune the model on the training set and then
evaluate the model on the test set of the correspond-
ing prompt type. We use the full-parameter super-
vised finetuning setting and do not use parameter-
efficient training techniques.

During training, we use the AdamW optimizer
with a learning rate of 1e — 5. The weight decay is
set to 0 and the gradient clipping threshold is set to
1. We train the model for 1 epoch with a training
batch size of 4 by default. For small datasets like
1 x 2 digit multiplication, we change the epoch to
10 to ensure convergence.

13

The models on multiplication problems are
trained under BFloat16 precision, while models on
DP problems are trained under Float32 precision.
All experiments are trained on a single NVIDIA
A40 40GB GPU. Running experiments on multipli-
cation problems with a size of 5*5 costs about 60
GPU hours, and experiments on DP problems with
a size of 5*5 costs about 10 GPU hours.

During evaluation, we evaluate with a batch size
of 1. We only check the correctness of the final
result during evaluation.

E Latent Experiment Settings

The hyperparameters in latent experiments are the
same as the main experiment. For convenience, we
use <|fim_middle|> as the latent token <LAT>.

In multiplication problems, the dimension of
latent embeddings is set to 20 (10 for digit results
and 10 for carry results). In dynamic programming
problems, the dimension of latent embeddings is
set to 50 to store values no larger than 100,000.
The latent projection module FP;, and the latent
output head P,,; are trained with the backbone
model with the same learning rate. We simply add
the latent loss £;,; with the original LM head loss
L.y as the final loss £ = Ly, + Lim,.

Figure 16 shows an example of latent CoT in
multiplication problems, and Figure 17 shows an
example of latent CoT in dynamic programming
problems.

F Comparison with Vocabulary
Expansion

Our implementation of latent tokens in Section
3.3 is not exactly the same with the implementa-
tion in COCONUT (Hao et al., 2024). Instead of
using the last hidden state of the previous token
as the new input embedding, we manually design
multi-hot vectors to encode the value of intermedi-
ate results. This raises the question that given the
number of possible multi-hot vectors is countable
(though very large), is it equal to expanding the
vocabulary?

To address the problem, we expand the vocab-
ulary of the base model, giving each intermediate
result a unique token named “<z>", where z is the
value of the result. We randomly initialize the em-
beddings of the new token, and train them on 5*5
DP problems. Figure 13 shows the comparison be-
tween not using CoT, using full CoT, using latent
CoT (Section 3.3) and expanding the vocabulary.



Prompt example

Find a path in the given table from the top-left corner to the bottom-right corner that
maximizes the sum of the numbers on it. You can only move rightwards or downwards.

Table:
85934579 49
2812375776
322375568
262577100
8711126789

Figure 14: Example Prompt for the dynamic programming task.

Full CoT example

Find a path in the given table from the top-left corner to the bottom-right corner that
maximizes the sum of the numbers on it. You can only move rightwards or downwards.

Table:
155596222
416171227
98 60 34 94 24
45401277 11
56 94 46 34 45

<tool_call>152079 141 163

56 117 124 153 190

154 214 248 342 366

199 254 266 419 430

255 349 395 453 498</tool_call>

Result: 498

Figure 15: Example CoT for the dynamic programming task.
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Latent CoT example

8493*8877=<tool_call>8493*7
<lfim_middlel><lfim_middlel><Ifim_middlel><Ifim_middlel>I59451

8493*70 <Ifim_middlel><lfim_middlel><Ifim_middlel><I/fim_middlel>I594510
8493*800
<lfim_middlel><Ifim_middlel><Ifim_middlel><Ifim_middlel>6794400
8493*8000
<lfim_middlel><Ifim_middlel><Ifim_middlel><Ifim_middlel>67944000

59451+594510+6794400+67944000
59451+594510+6794400+67944000=653961+6794400+67944000
653961+6794400+67944000=7448361+67944000
7448361+67944000=75392361

8493*8877=75392361</tool_call>

Result: 75392361

Figure 16: Example latent CoT for the multi-digit multiplication task.

Latent CoT example

Find a path in the given table from the top-left corner to the bottom-right corner that
maximizes the sum of the numbers on it. You can only move rightwards or downwards.

Table:
155596222
416171227
98 60 34 94 24
45401277 11
56 94 46 34 45

<tool_call><Ifim_middlel><Ifim_middlel><Ifim_middlel><Ifim_middlel><Ifim_middlel>
<lfim_middlel><Ilfim_middlel><Ifim_middlel><Ifim_middlel><Ifim_middlel>
<Ifim_middlel><lfim_middlel><Ifim_middlel></fim_middlel><|fim_middlel>
<lfim_middlel><Ilfim_middlel><Ifim_middlel><|fim_middlel><Ifim_middlel>
<Ifim_middlel><Ifim_middlel><Ifim_middlel></fim_middlel><Ifim_middlel></tool_call>

Result: 498

Figure 17: Example latent CoT for the dynamic programming task.
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We can clearly see that expanding the vocabu-
lary falls far behind using full CoT or latent CoT,
indicating that the precise value in latent tokens
makes core contribution to reasoning.

G Intervention Experiment Details

In the intervention experiments, we randomly sub-
stitute a number value in the CoT generated by
trained models on the test set. The interventions are
performed on the full CoT texts. The substituted
number has the same digit length as the original
number, but with a different value. To prevent out-
lier values, we keep the first digit to be the same
as the original number when substituting numbers
with 2 or more digits.

We choose the number to substitute within the
following range:

Multiplication
e x or y in “digit z, carry ¥ statements;

* A random number x in “Add up partial results:”
statements;

e The first partial result z in “a; + ... + a, =
x + ... statements;

E3]

¢ The result z in the “The final resultis: ... = x
statement.

Dynamic programming A random intermediate
value in the CoT.

After intervention, we truncate all tokens after
the intervened value, and feed the partial CoT into
trained models to complement the full CoT and get
the final answer.

The detailed breakdown of errors in multiplica-
tion problems is shown in Table 1 (1 entry with
deformed CoT is excluded):

Type Count
Total 9999
Success 7383
Error 2616
Addition error 767
Reconstruct error | 496
Shortcut error 1291
Copy error 6
Misc error 56

Table 1: Intervention error breakdown in multiplication
problems.
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H Probing Experiment Details

In the probing experiments, we probe on latent
CoT for simplicity. We first collect hidden states
of LLMs on different layers, and then train the
probe classifiers. The training set of hidden states
is collected by running the trained model on the
original training set, and so is the test set.

We use a learning rate of 1e — 3 and a gradient
clipping threshold of 1. We train the probe classi-
fiers for 4 epochs with a training batch size of 32,
and an evaluate batch size of 64.
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