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Abstract

Diffusion models (DMs) have demonstrated re-
markable ability to generate diverse and high-
quality images by efficiently modeling complex
data distributions. They have also been explored
as powerful generative priors for signal recovery,
resulting in a substantial improvement in the qual-
ity of reconstructed signals. However, existing
research on signal recovery with diffusion mod-
els either focuses on specific reconstruction prob-
lems or is unable to handle nonlinear measure-
ment models with discontinuous or unknown link
functions. In this work, we focus on using DMs to
achieve accurate recovery from semi-parametric
single index models, which encompass a vari-
ety of popular nonlinear models that may have
discontinuous and unknown link functions. We
propose an efficient reconstruction method that
only requires one round of unconditional sam-
pling and (partial) inversion of DMs. Theoretical
analysis on the effectiveness of the proposed meth-
ods has been established under appropriate condi-
tions. We perform numerical experiments on im-
age datasets for different nonlinear measurement
models. We observe that compared to competing
methods, our approach can yield more accurate
reconstructions while utilizing significantly fewer
neural function evaluations.

1. Introduction
The objective of compressed sensing is to accurately re-
cover the underlying high-dimensional sparse signal from
a small number of linear measurements, with the measure-
ment model as follows (Candes & Wakin, 2008; Foucart &
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Rauhut, 2013; Scarlett & Cevher, 2021):

y = Ax∗ + e, (1)

where A ∈ Rm×n is the measurement matrix, x∗ ∈ Rn

is the signal to be recovered, e ∈ Rm is the additive noise
vector, and y ∈ Rm is the observed vector.

Although the linear measurement model utilized in com-
pressed sensing can serve as a good testbed for demonstrat-
ing conceptual phenomena, in many real-world problems,
it may not be justifiable or even feasible. For instance, the
binary measurement model employed in 1-bit compressed
sensing (Boufounos & Baraniuk, 2008) has attracted sub-
stantial interest. This is due to its cost-effective and efficient
hardware. It has also been shown that 1-bit compressed sens-
ing is robust against certain nonlinear distortions (Laska &
Baraniuk, 2012). The limitations of the linear data model
have prompted the study of general nonlinear measurement
models. Among these, the semi-parametric single index
model (SIM) is arguably the most popular (Horowitz, 2009).
The SIM models the observations as follows:

y = f(Ax∗), (2)

where A consists of i.i.d. standard Gaussian entries, and f :
R → R is an unknown and possibly random nonlinear link
function that is applied element-wise. The aim is to estimate
the signal x∗ using the knowledge of A and y, despite
the unknown nonlinear link f . It is well-known that in the
SIM, x∗ is generally not identifiable (Plan & Vershynin,
2016), since any scaling of x∗ can be incorporated into
the unknown f . Consequently, it is common to impose the
identifiability constraint ∥x∗∥2 = 1.

To enable efficient and reliable recovery of the underlying
signal x∗, the predominant approach is to introduce struc-
tural modeling assumptions, such as sparse and conventional
generative priors. For instance, the research works following
(Bora et al., 2017) typically achieve signal reconstruction
under the assumption that the underlying signal lies within
the range of a variational autoencoder (VAE) or a generative
adversarial network (GAN) (Van Veen et al., 2018; Hand
et al., 2018; Heckel & Hand, 2019; Wu et al., 2019; Asim
et al., 2020; Ongie et al., 2020; Whang et al., 2020; Jalal
et al., 2021b; Nguyen et al., 2021; Liu et al., 2021b; 2022a;
Genzel et al., 2022; Liu et al., 2024).
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Compared to conventional generative models like VAEs and
GANs, diffusion models (DMs) (Sohl-Dickstein et al., 2015;
Song & Ermon, 2019; Ho et al., 2020) have recently demon-
strated their superiority in terms of robust generative capa-
bilities and learning complex data distributions (Dhariwal &
Nichol, 2021). DMs have been integrated into a wide variety
of domains, leading to transformative progress and reshap-
ing traditional approaches in areas such as vision and audio
generation (Saharia et al., 2022b; Kong et al., 2021), and
reinforcement learning (Chi et al., 2023; Hansen-Estruch
et al., 2023). In particular, when it comes to addressing
signal recovery problems, diffusion models offer a more
flexible and robust solution, facilitating high-quality recon-
structions and improved performance (Kawar et al., 2022;
Whang et al., 2022; Saharia et al., 2022c;a; Alkan et al.,
2023; Chung et al., 2023a; Cardoso et al., 2023; Wang et al.,
2023; Chung et al., 2023b; Feng & Bouman, 2023; Rout
et al., 2023; Wu et al., 2023; Aali et al., 2024; Chung et al.,
2024; Dou & Song, 2024; Song et al., 2024; Wu et al., 2024;
Sun et al., 2024).

Inspired by the strong capabilities of DMs in diverse real-
world applications, in this study, we investigate the applica-
tion of DMs to learn SIMs.

1.1. Related Work

Relevant works on signal recovery with conventional gen-
erative models (such as GANs and VAEs) have shown that
learned priors can drastically reduce sample complexity in
compressed sensing and related problems. A comprehensive
discussion of diffusion-based and conventional generative
approaches is provided in Appendix A. In the following, we
highlight diffusion-based signal recovery methods.

Signal recovery with diffusion models: Diffusion mod-
els (DMs) have advanced signal recovery by modeling com-
plex data distributions, with two main paradigms: task-
specific and pre-trained approaches. Task-specific DMs are
trained for particular problems, such as super-resolution (Sa-
haria et al., 2022c) or deblurring (Ren et al., 2023). Pre-
trained DMs, used without task-specific training, guide re-
construction via score estimation (e.g., (Feng et al., 2023))
or adapt frameworks like DDPM for linear measurements
(e.g., DDRM (Kawar et al., 2022)). MCG (Chung et al.,
2022a) and ΠGDM (Song et al., 2023) are mainly designed
for the linear setting. Additionally, ΠGDM can be extended
to certain nonlinear settings (where the link function is
known) by leveraging a combination of pseudoinverse op-
erations and nonlinear transformations. DPS (Chung et al.,
2023b) and DAPS (Zhang et al., 2024a) are applicable in
nonlinear settings as well, also primarily under the assump-
tion that the link function is known.

However, the works mentioned above either concentrate on

specific linear signal recovery problems or are incapable of
handling nonlinear measurement models with discontinuous
or unknown link functions. Perhaps most relevant to the
present paper, the work (Meng & Kabashima, 2022) uses
SGMs to learn the underlying distribution of natural signals.
By estimating the conditional score function, it enables
better reconstruction quality when dealing with quantized
compressed sensing problems. Nevertheless, the approach
in (Meng & Kabashima, 2022) is restricted to quantized
measurements and is relatively slow in reconstruction. Even
if utilizing the knowledge of the link function, it requires
thousands of neural function evaluations (NFEs) to achieve
a reasonably accurate recovery.

1.2. Contributions

The main contributions of this paper are threefold:

• We propose an efficient method for accurately recover-
ing the underlying signal from nonlinear observations
of SIMs by utilizing diffusion priors. Our approach
does not require the knowledge of the link function, and
it only requires one round of unconditional sampling
and (partial) inversion of DMs, resulting in a relatively
small number of NFEs for the entire process.

• Based on heuristic theoretical results, we opt to initiate
the inversion of DMs from an intermediate time rather
than performing the full inversion of DMs. Under suit-
able conditions, we provide a theoretical analysis on
the effectiveness of the corresponding approach. Ad-
ditionally, we empirically observe that carrying out
partial inversion results in significantly better recon-
structions compared to performing full inversion.

• To validate the effectiveness of our method, we con-
duct numerical experiments on image datasets under
distinct nonlinear measurement models. Notably, in
the noisy 1-bit measurement setting, our approach not
only achieves substantially faster computational per-
formance but also outperforms competing methods in
reconstruction accuracy, even when these methods ex-
plicitly incorporate knowledge of the link function.

1.3. Notation

We use upper and lower case boldface letters to denote
matrices and vectors respectively. For any M ∈ N, we
use the shorthand notation [M ] = {1, 2, . . . ,M}, and we
use IM to denote the identity matrix in RM×M . Given two
sequences of real values {ai} and {bi}, we write ai = O(bi)
if there exists an absolute constant C1 and a positive integer
i1 such that for any i > i1, |ai| ≤ C1bi. We use Sn−1

to denote the unit sphere in Rn, i.e., Sn−1 = {s ∈ Rn :
∥s∥2 = 1}. For a generator G : Rn → Rn, we use R(G)
to denote the range of G, i.e., R(G) = {G(z) : z ∈ Rn}.
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2. Preliminaries for Diffusion Models
Diffusion Models (DMs) define a forward process
{xt}t∈[0,T ] starting from t = 0 and x0. For any t ∈ [0, T ],
the distribution of xt conditioned on x0 satisfies the follow-
ing equation:

q0t(xt|x0) = N (αtx0, σ
2
t In). (3)

Here, αt and σt are non-negative, differentiable functions
possessing bounded derivatives. Moreover, αt is monoton-
ically non-increasing with α0 = 1, while σt is monotoni-
cally increasing. It has been demonstrated that the following
stochastic differential equation (SDE) has the same transi-
tion distribution q0t(xt|x0) for any t ∈ [0, T ] (Song et al.,
2021b; Kingma et al., 2021):

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ q0(x0), (4)

where wt ∈ Rn is the standard Wiener process, and qt
represents the marginal distribution of xt. Moreover, f(t)
is a scalar function known as the drift coefficient and g(t) is
a scalar function called the diffusion coefficient, which are
specified as follows:

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t . (5)

Under certain regularity conditions, Song et al. (2021b)
demonstrate that the forward process in Eq. (4) has an equiv-
alent reverse process running from time T to 0, which starts
with the marginal distribution qT (xT ):

dxt = [f(t)xt − g2(t)∇x log qt(xt)]dt+ g(t)dw̄t, (6)

where w̄t ∈ Rn represents the Wiener process in reverse
time, and ∇x log qt(xt) stands for the time-varying score
function.

For more efficient sampling, Song et al. (2021b) further
show that the following probability flow ordinary differen-
tial equation (ODE) possesses the same marginal distribu-
tion at each time t as that of reverse SDE in Eq. (6):

dxt

dt
= f(t)xt −

1

2
g2(t)∇x log qt(xt), xT ∼ qT (xT ).

(7)
The only unknown term in Eq. (7) is the time-varying score
function ∇x log qt(xt). In practice, DMs typically estimate
the scaled score function −σt∇x log qt(xt) by using a noise
prediction network ϵθ(xt, t), and optimizes the parameter
θ through minimizing the following objective:∫ T

0

Ex0∼q0Eϵ∼N (0,In)

[
∥ϵθ(αtx0 + σtϵ, t)− ϵ∥22

]
dt.

(8)

By substituting ∇x log pt(xt) = −ϵθ(xt, t)/σt into Eq. (7)
and taking advantage of its semi-linear structure, we ob-
tain the following numerical integration formula (Lu et al.,
2022a; Zhang & Chen, 2022):

xt = e
∫ t
s
f(τ)dτxs+

∫ t

s

(
e
∫ t
τ
f(r)dr · g

2(τ)

2στ
· ϵθ(xτ , τ)

)
dτ.

(9)

Alternatively, we can use a data prediction network
xθ(xt, t) that satisfies the condition ϵθ(xt, t) = (xt −
αtxθ(xt, t))/σt (Kingma et al., 2021; Salimans & Ho,
2022). By substituting Eq. (5) into Eq. (9) and using the
transition between ϵθ and xθ , we obtain the following inte-
gration formula (Lu et al., 2022b):

xt =
σt

σs
xs + σt

∫ λt

λs

eλx̂θ(x̂λ, λ)dλ, (10)

where λt := log(αt/σt) is strictly decreasing with respect
to t and has an inverse function tλ(·). Thus, xθ(xt, t) can
be written as xθ

(
xtλ(λ), tλ(λ)

)
= x̂θ(x̂λ, λ).

2.1. The Sampling Process of Diffusion Models

The sampling process in DMs gradually denoises a noise
vector to an image vector that approximately follows the
same distribution as the training data. More precisely, if
we divide the time interval [ϵ, T ]1 into N sub-intervals with
ϵ = tN < tN−1 < . . . < t1 < t0 = T , and use a first-order
numerical scheme for Eq. (10), for i ∈ [N ], we can derive
the following iterative formula for the transition from time
ti−1 to ti:

x̃ti =
σti

σti−1

x̃ti−1
+σti

(
αti

σti

−
αti−1

σti−1

)
·xθ(x̃ti−1

, ti−1),

(11)
which is in line with the widely-used DDIM sampling
method (Song et al., 2021a).

Moreover, second- or third-order numerical schemes can be
employed to enhance the sampling efficiency further (Lu
et al., 2022b; Zhao et al., 2024). Specifically, the second-
order multi-step numerical solver for Eq. (10) yields the
following iterative formula for i ≥ 2 (Lu et al., 2022b):

x̃ti =
σti

σti−1

x̃ti−1
− αti

(
e−hi − 1

)
×
((

1 +
1

2ri

)
xθ

(
x̃ti−1

, ti−1

)
− 1

2ri
xθ

(
x̃ti−2

, ti−2

))
,

(12)

where hi = λti − λti−1
and ri = hi−1/hi. We refer to the

corresponding sampling method as DM2M for brevity.

1In practice, it is common to set the end time of sampling as a
small ϵ > 0 instead of 0 to avoid numerical instability, as described
in (Lu et al., 2022a, Appendix D.1).
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Let κi be the function corresponding to the i-th sampling
step. For instance, for the DDIM sampling method in
Eq. (11),2 we have

κi(x) :=
σti

σti−1

x+ σti

(
αti

σti

−
αti−1

σti−1

)
· xθ(x, ti−1).

(13)
Then, the entire sampling process can be expressed as
x̃ϵ = G(x̃T ), where the generator G : Rn → Rn is the
composition of of κ1, κ2, . . . , κN , i.e.,

G(x) = κN ◦ · · · ◦ κ2 ◦ κ1(x). (14)

In addition, for convenience, for any t ∈ (ϵ, T ], we use Gt to
denote the sampling process from t to ϵ (and thus GT = G).
Specifically, if letting it = max{i ∈ [N ] : ti−1 ≥ t}, we
have that Gt is the composition of κit , κit+1, . . . , κN , i.e.,

Gt(x) = κN ◦ · · · ◦ κit+1 ◦ κit(x). (15)

2.2. The Inversion of Diffusion Models

The inversion in DMs retraces the ODE sampling process
with the aim of identifying the specific noise vector that gen-
erates a given image vector. This inversion is a crucial aspect
in various applications, including image editing (Hertz et al.,
2023; Kim et al., 2022; Wallace et al., 2023; Patashnik et al.,
2023), watermark detection (Wen et al., 2023), and image-
to-image translation (Kawar et al., 2022; Su et al., 2023).
Recently, the inversion of DMs has attracted increasing at-
tention, and several relevant methods have emerged (Pan
et al., 2023; Zhang et al., 2024b; Wallace et al., 2023; Hong
et al., 2024; Wang et al., 2024).

For example, the naive DDIM inversion method (Hertz et al.,
2023; Kim et al., 2022) has the following iterative proce-
dure:3

x̂ti−1 =
σti−1

σti

x̂ti + σti−1

(
αti−1

σti−1

− αti

σti

)
xθ

(
x̂ti , ti−1

)
.

(16)
The naive DDIM inversion method circumvents the compu-
tational overhead of the implicit numerical scheme by sub-
stituting xθ

(
x̂ti−1 , ti−1

)
with xθ

(
x̂ti , ti−1

)
. It has been

widely used in imaging applications like image editing. Al-
ternatively, by taking into account the first-order numeri-
cal discretization of Eq. (10) from t = ϵ to t = T , it is
straightforward to derive an iterative formula that is slightly

2For higher-order sampling methods, we can derive analogous
representations for G in Eq. (14) and Gt in Eq. (15) using a re-
cursive formula. An illustration of this process can be found in
Lemma 5 within Appendix C.

3For brevity, we assume that the sampling and inversion of
DMs utilize the same time steps. In practice, they might employ
different time steps and have a varying number of steps.

different from Eq. (16):

x̂ti−1
=

σti−1

σti

x̂ti + σti−1

(
αti−1

σti−1

− αti

σti

)
xθ

(
x̂ti , ti

)
.

(17)
Furthermore, similar to DM2M in Eq. (12), by considering
the second-order numerical discretization of Eq. (10) from
t = ϵ to t = T , we can obtain the corresponding iterative
formula for the inversion of DMs.

Letting vi be the function corresponding to the i-th inversion
step. Then, the entire inversion procedure can be written as
x̂T = G†(x̂ϵ), where the inversion operator G† : Rn →
Rn is the composition of v1, v2, . . . , vN , i.e.,

G†(x) = v1 ◦ v2 ◦ · · · ◦ vN (x). (18)

In addition, for convenience, for any t ∈ [ϵ, T ), we use G†
t

to denote the inversion from t to T (and thus G†
ϵ = G†).

Specifically, if letting jt = min{j ∈ [M ] : tj ≤ t}, we
have that G†

t is the composition of of vjt , vjt−1, . . . , v1, i.e.,

G†
t(x) = v1 ◦ v2 ◦ · · · ◦ vjt(x). (19)

3. Setup and Approaches
Recall that the nonlinear observation vector y ∈ Rm is
assumed to be generated in accordance with the SIM in
Eq. (2), where x∗ ∈ Sn−1 is the signal to be estimated. We
follow (Liu & Liu, 2022) to assume that the unknown link
function f satisfies the following conditions:

µ := Ea∼N (0,In)

[
f
(
aTx∗)aTx∗] ̸= 0, (20)

Ea∼N (0,In)

[
f
(
aTx∗)4] < ∞. (21)

The conditions in Eqs. (20) and (21) are mild and hold
true for various forms of f , such as f(x) = sign(x) for
1-bit measurements and f(x) = x3 for cubic measurements.
However, as noted in prior works such as (Liu & Scar-
lett, 2020a; Liu & Liu, 2022), the condition in Eq. (20) is
not satisfied for phase retrieval models with f(x) = x2 or
f(x) = |x| (or their noisy versions).
Remark 1. The condition in Eq. (20) is a classic and crucial
condition for SIMs. For example, it is (albeit implicitly)
assumed in the seminal work (Plan & Vershynin, 2016) and
in subsequent research that builds upon it. If this condi-
tion fails to hold, specifically when µ = 0, the recovery
of µx∗ as (Plan & Vershynin, 2016) and in our Eq. (24)
below becomes meaningless. Additionally, we follow (Liu
& Liu, 2022) to assume the condition in Eq. (21), which
generalizes the assumption that f(aTx∗) is sub-Gaussian
(which is satisfied by quantized measurement models), and
accommodates more general nonlinear measurement mod-
els such as cubic measurements with f(x) = x3 and their
noisy counterparts.
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We utilize a generator G : Rn → Rn that corresponds to
the sampling process of DMs (cf. Eq. (14)) to model the un-
derlying signal. Specifically, we assume that x∗ ∈ R(G),4

where R(G) denotes the range of G. This assumption is
standard for nonlinear measurement models with generative
priors and has also been made in prior works such as (Wei
et al., 2019; Liu & Scarlett, 2020a).

Let G† : Rn → Rn be an operator corresponding to an
inversion method for DMs (cf. Eq. (18)). The work (Liu
& Liu, 2022) sets the estimated vector as PG(A

Ty/m),
where PG denotes the projection operator onto the range
of G. Since performing the projection step can be time-
consuming even for conventional generative models like
GANs, the authors of (Raj et al., 2019) use the composition
of the pseudoinverse of the generator and the generator itself
to approximate the projection operator. Building on these
works, to reconstruct the direction of the signal x∗ from the
knowledge of the measurement matrix A ∈ Rm×n and the
observed vector y ∈ Rm (despite the unknown link f ), a
natural idea is to set the estimated vector x̂ as follows:

x̂ = G ◦G†
(

1

m
ATy

)
. (22)

However, such a simple idea does not fully exploit the re-
lationship between 1

mATy and the underlying signal x∗,
and it leads to unsatisfactory empirical results for diffusion
models, as we will see in Section 5. In particular, in the
approach corresponding to Eq. (22), the inversion step starts
from time ϵ (for an ϵ close to 0; see Section 2.1), and this
implicitly assumes that 1

mATy approximately follows the
target data distribution q0. However, based on the following
lemmas, we observe that 1

mATy should instead be regarded
as a noisy version of x∗ ∼ q0, especially when the number
of samples m is relatively small compared to the ambient
dimension n. First, it is easy to obtain the following lemma.

Lemma 1. If ϵ ∼ N (0, In), then we have that the following
holds with high probability5

∥ϵ∥∞ ≤ C
√
log(2n), (23)

where C is a sufficiently large positive constant.

Furthermore, we have the following lemma, which demon-
strates that 1

mATy is a noisy version of µx∗ (see Eq. (20)
for the definition of µ) and approximately characterizes the
noise level. The proofs of Lemmas 1 and 2 are placed in
Appendix B.

4This assumption can also be approximately expressed as x∗ ∼
q0 when G corresponds to an excellent diffusion modeling of
the target data distribution q0. The assumption that x∗ ∼ q0 is
typically implicitly assumed by works that utilize diffusion models
to solve compressed sensing problems.

5Here and in the rest of the paper, a statement is said to hold
with high probability (w.h.p.) if it holds with probability at least
0.99.

Lemma 2. Under conditions for the link function f in
Eqs. (20) and (21), we have the following holds w.h.p.:∥∥∥∥ 1

m
ATy − µx∗

∥∥∥∥
∞

≤
C ′
√
log(2n)√
m

, (24)

where C ′ is a sufficiently large positive constant.

The comparison between Lemmas 1 and 2 inspires us to
express 1

mµA
Ty as

1

mµ
ATy ≈ x∗ +

C ′

Cµ
√
m
ϵ (25)

for ϵ ∼ N (0, In). Additionally, from Eq. (3), we know
that xt can be written as xt = αtx0 + σtϵt = αt(x0 +
(σt/αt)ϵt) with ϵt ∼ N (0, In). Since the nonlinear link
function f is unknown (and consequently, µ is also un-
known), and C,C ′ are undetermined positive constants, we
employ a tuning parameter Cs and find a time t∗ such that6

σt∗

αt∗
=

Cs√
m
, (26)

and start the inversion from time t∗ with the input vector
being αt∗C

′
sA

Ty/m, where C ′
s > 0 is a tuning parameter.

Remark 2. Unlike prior works such as (Chung et al., 2022b;
Fabian et al., 2024; Wu et al., 2024) that identify an inter-
mediate time for sampling, we seek an intermediate time
mainly for the inversion of DMs. Moreover, this intermedi-
ate time is computed using theoretical findings in Lemma 2.

Then, the corresponding estimated vector is

x̂ = G ◦G†
t∗

(
αt∗C

′
s

m
ATy

)
, (27)

where G†
t∗ denotes the partial inversion operator (from t∗

to T ; see Eq. (19)). One may also notice that since 1
mATy

can be regarded as a noisy version of x∗ and the sampling
process has a denoising effect, we can simply sample from
t∗ to ϵ without taking the inversion step. In this case, the
corresponding estimated vector is

x̂ = Gt∗

(
αt∗C

′
s

m
ATy

)
, (28)

where Gt∗ denotes the partial sampling operator (from t∗

to ϵ; see Eq. (15)). Indeed, such a simple and efficient
approach can also lead to reasonably good reconstructions,
although its performance is inferior to that of the approach
corresponding to Eq. (27).

We refer to the approach for Eq. (22) as SIM-DMFIS (SIMs
using diffusion models with full inversion and sampling

6If Cs√
m

> σT
αT

, set t∗ to T , and if Cs√
m

< σϵ
αϵ

, set t∗ to ϵ.
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procedures), the approach for Eq. (28) as SIM-DMS since
it only performs a (partial) sampling procedure, and the
approach for Eq. (27) as SIM-DMIS. We illustrate the dif-
ferences among these three approaches in Figure 1. For
convenience, we present the SIM-DMIS approach in Algo-
rithm 1.

Figure 1. An illustration of our three approaches. For SIM-DMS,
we only perform the sampling from t∗ to ϵ. For SIM-DMFIS,
we perform the full inversion and sampling procedures. For SIM-
DMIS, we first perform the inversion from t∗ to T , and then
perform the sampling from T to ϵ.

Algorithm 1 The SIM-DMIS approach
Input: A ∈ Rm×n, y ∈ Rm, xθ, time steps ϵ = tN <
tN−1 < . . . < t1 < t0 = T , generator G corresponding
to the sampling process as in Eq. (14), partial inversion
operator G†

t as in Eq. (19), tuning parameters Cs and C ′
s

1: Calculate t∗ ∈ [ϵ, T ] as in Eq. (26).
2: Calculate the estimated vector x̂ as in Eq. (27).
Output: x̂

4. Theoretical Analysis
In this section, we provide a theoretical analysis of the ef-
fectiveness of our proposed SIM-DMIS approach. Before
presenting the analysis, we first present some preliminary
results. Firstly, the following assumption states that the neu-
ral function xθ(x, t) is Lipschitz continuous with respect to
its first argument. This assumption has been widely adopted
in relevant works such as (Lu et al., 2022a; Chen et al.,
2023a;c; 2024; 2023d; Bortoli, 2022; Lee et al., 2022; Li
et al., 2023).
Assumption 1 (Lipschitz Continuity of the Neural Func-
tion). For any t ∈ [0, T ], there exists a positive con-
stant Lt > 0 such that the neural function xθ(x, t) is
Lt-Lipschitz continuous with respect to its first param-
eter x. That is, it holds for all x1,x2 ∈ Rn that
∥xθ(x1, t)− xθ(x2, t)∥2 ≤ Lt∥x1 − x2∥2.

Based on Assumption 1, it can be easily demonstrated that
the generator corresponding to popular sampling methods
such as DDIM and DM2M (cf. Sec. 2.1) is Lipschitz contin-
uous. Specifically, we have the following lemma.
Lemma 3. Suppose that the data prediction network xθ

satisfies Assumption 1. Then, if G : Rn → Rn is the
generator as in Eq. (14), we have that G is L-Lipschitz
continuous with with L > 0 being dependent on {αti}N−1

i=0 ,
{σti}N−1

i=0 , and {Lti}N−1
i=0 .

Lemma 3 shows that it is reasonable to assume that G is
Lipschitz continuous. The proof of Lemma 3 and the precise
characterization of the Lipschitz constant L for DDIM and
DM2M are deferred to Appendix C.

Then, we have the following theorem regarding the effective-
ness of the SIM-DMIS approach as presented in Eq. (27).
Specifically, for t ∈ [ϵ, T ], it offers an upper bound for the
distance between G ◦G†

t(x̄t) and x̄ϵ, where x̄t is a sample
of qt and x̄ϵ is on the same ODE trajectory as x̄t. When ϵ is
sufficiently small and the (scaled) data prediction network
xθ provides a good approximation to the ground-truth score
∇ log qt (Chen et al., 2023d; Li et al., 2023), x̄ϵ will be
close to the ground-truth data following q0 that corresponds
to x̄t. Additionally, it has been demonstrated in (Lu et al.,
2022a;b) that under certain regularity conditions, DDIM
and DM2M are first- and second-order numerical sampling
methods for Eq. (10), respectively. Moreover, by consider-
ing the first- and second-order numerical discretization of
Eq. (10) from t = ϵ to t = T , we similarly obtain the first-
and second-order numerical inversion methods for Eq. (10)
respectively (for instance, the inversion method in Eq. (17)
is a first-order numerical inversion method).

Therefore, based on Theorem 3, if the term αt∗C
′
sA

Ty/m
in Eq. (27) can be approximately expressed as αt∗x

∗ +
σt∗ϵ with ϵ being a standard normal vector, x̂ := G ◦
G†

t∗
(
αt∗C

′
sA

Ty/m
)

is close to x∗ under appropriate condi-
tions. The proof of Theorem 3 can be found in Appendix C.

Theorem 3. For t ∈ [ϵ, T ], let x̄t ∈ Rn be a sample of qt,
and let x̄ϵ =

σϵ

σt
x̄t + σϵ

∫ λϵ

λt
eλx̂θ(x̂λ, λ)dλ, which is the

analytic solution of Eq. (10) with respect to the initial vector
x̄t. For k1, k2 ∈ {1, 2, 3}, suppose that G† corresponds to
a k1-th order numerical inversion method for Eq. (10), and
G†

t denotes the partial inversion operator from t to T (see
Eq. (19)). Suppose that the generator G corresponds to a
k2-th order numerical sampling method for Eq. (10) and G
is L-Lipschitz continuous. Then, under certain regularity
conditions,7 we have the following:

∥x̄ϵ −G ◦G†
t(x̄t)∥2 = O

(√
n
(
hk2
max + Lhk1

max

))
, (29)

where hmax = maxi∈[N ](λti − λti−1
).

5. Experiments
In this section, we conduct a series of experiments to vali-
date the effectiveness of the proposed SIM-DMIS approach
(see Algorithm 1). Specifically, we evaluate our method on
two datasets: FFHQ 256×256 (Karras et al., 2019), Ima-
geNet 256×256 (Deng et al., 2009).8 For FFHQ and Im-

7These conditions are similar to those in (Lu et al., 2022a,
Appendix B.1) and are listed in Appendix C.

8Due to the page limit, the results of CIFAR-10 (Krizhevsky &
Hinton, 2009) are included in Appendix D.
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ageNet, the ambient dimension is n = 3 × 256 × 256 =
196608.

We perform experiments on nonlinear measurement mod-
els with 1-bit and cubic measurements, for which we have
y = sign(Ax∗ + e) and y = (Ax∗)3 + e respectively,
where e ∼ N (0, σ2Im). We compare SIM-DMIS with
QCS-SGM proposed in (Meng & Kabashima, 2022), which
uses DMs to handle quantized compressed sensing prob-
lems. We also compare our approach with the posterior
sampling methods DPS (Chung et al., 2023b) and DAPS
(Zhang et al., 2024a). DPS is a popular baseline for general
signal recovery problems, and DAPS has shown excellent
performance in nonlinear signal recovery problems. When
DPS and DAPS utilize the knowledge of the link function
f ,9 the corresponding methods are denoted as DPS-N and
DAPS-N respectively. In addition, we compare with DPS
and DAPS for the linear operator without using the knowl-
edge of f , and the corresponding methods are denoted as
DPS-L and DAPS-L respectively.

For the QCS-SGM method, we adhere to the experimen-
tal settings specified in (Meng & Kabashima, 2022) to en-
sure a fair comparison. Additionally, we compare with
SIM-DMFIS and SIM-DMS (see Eqs. (22) and (28)),
which are two variants of SIM-DMIS. We employ three
metrics to assess the performance of these methods: Peak
signal-to-noise ratio (PSNR), structural similarity index
measure (SSIM), and learned perceptual image patch sim-
ilarity (LPIPS). The reported quantitative results are av-
eraged over 100 testing images. In the experimental pro-
cess, we use DDIM for sampling and the DM2M inversion
method (refer to Sec. 2.1 for details). The reported NFEs rep-
resent the total number of NFEs utilized by each approach.
For instance, in the case of SIM-DMIS and SIM-DMFIS,
the reported NFE is the sum of the number of steps in the
inversion process and the number of steps in the sampling
process. We adopt the variance preserving (VP) schedule
with βmin = 0.1 and βmax = 20. For SIM-DMS, we use 50
NFEs, while for SIM-DMIS and SIM-DMFIS, we use 150
NFEs.10 The remaining parameters are set as ϵ = 0.001,
T = 1, and σ = 0.05. For the detailed parameter settings
of Cs and C ′

s in SIM-DMS and SIM-DMIS, please refer to
Appendices F and G.

Results for FFHQ (256×256) Since the experiments for
FFHQ are time-consuming, we only report the results for
m = n/8 = 24576. For the QCS-SGM method, we lever-
age a pre-trained unconditional Score-SDE model with the

9For 1-bit measurements where f is not always differentiable,
PyTorch can still enforce automatic differentiation.

10The same number of NFEs is used for the inversion process
of SIM-DMIS and SIM-DMFIS. As demonstrated in Appendices
F and G, this choice has a negligible impact on the experimental
results.

variance exploding (VE) schedule11 for the FFHQ dataset.
As for the other methods, we employ the model from DPS,
which has been trained on 49,000 FFHQ 256×256 images
and validated on the first 1,000 images.

It is evident from Table 1 and Figure 2 that SIM-DMIS ex-
hibits superior reconstruction performance with 1-bit mea-
surements. Notably, SIM-DMIS requires only 150 NFEs, in
contrast to QCS-SGM, which demands a significantly higher
11,555 NFEs. Additionally, both DPS and DAPS utilize
1,000 NFEs. The results for cubic measurements presented
in Table 2 and Figure 3 further demonstrate the effectiveness
of our proposed methods. In particular, SIM-DMIS consis-
tently achieves the highest reconstruction quality across all
evaluated metrics while requiring only 150 NFEs, demon-
strating both the efficiency and robustness of our approach
under the cubic measurement setting on the FFHQ dataset.

Note that in 1-bit measurements, even in the noiseless sce-
nario, the link function f(x) = sign(x) is non-differentiable
at x = 0 (though as mentioned in Footnote 9, Py-
Torch can still enforce automatic differentiation). The
non-differentiability also poses challenges for DPS-N and
DAPS-N as they rely on f in gradient based updates. This
can lead to inaccurate gradients and ultimately resulting
in subpar performance.12 For cubic measurements, since
we have observed from the results for 1-bit measurements
that SIM-DMFIS, DPS-L, and DAPS-L do not perform
well, we do not compare against them. Furthermore, we do
not include comparisons with DAPS-N since although the
link function for cubic measurements is differentiable, its
pronounced non-linearity produces unstable gradient direc-
tions that make optimization with DAPS-N unreliable and
significantly degrade reconstruction performance.

Table 1. Quantitative results for FFHQ with 1-bit measurements
(m = n/8 = 24576). We mark bold the best scores, and
underline the second best scores.

Method NFE PSNR (↑) SSIM (↑) LPIPS (↓)

QCS-SGM 11555 12.91±2.36 0.51±0.07 0.50±0.08
DPS-N 1000 11.14±1.46 0.37±0.09 0.69± 0.05
DPS-L 1000 8.57±2.05 0.22±0.08 0.69±0.09
DAPS-N 1000 16.59±0.54 0.33±0.05 0.48±0.05
DAPS-L 1000 5.63±0.71 0.04±0.03 0.61±0.03
SIM-DMS 50 17.14±2.41 0.44±0.07 0.48±0.05

SIM-DMFIS 150 8.48±0.13 0.03±0.00 0.90±0.02
SIM-DMIS 150 19.87±2.77 0.60±0.09 0.37±0.05

11https://huggingface.co/google/ncsnpp-ffhq-256
12The supplementary material of DAPS suggests using Metropo-

lis Hasting for non-differentiable forward operators, but it is also
mentioned to have inferior performance and low efficiency, with
results only in the supplementary material.
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Table 2. Quantitative results on the FFHQ with cubic measure-
ments (m = n/8 = 24576). We mark bold the best scores, and
underline the second best scores.

Method NFE PSNR (↑) SSIM (↑) LPIPS (↓)

DPS-N 1000 15.41±1.38 0.37±0.08 0.50±0.07
SIM-DMS 50 14.44±2.13 0.51±0.10 0.47±0.08
SIM-DMIS 150 17.56±2.56 0.57±0.10 0.40±0.07

Figure 2. Examples of 1-bit reconstructed images for FFHQ.

Figure 3. Examples of cubic reconstructed images for FFHQ.

Results for ImageNet (256×256) For ImageNet, we re-
port the results for m = n/16 = 12288. We utilize a pre-
trained conditional ImageNet 256×256 model along with
its corresponding classifier sourced from ADM (Dhariwal
& Nichol, 2021). We adhere to the default recommended
configuration settings of these models, substituting the un-
conditional ImageNet 256×256 model initially provided
by DPS.13 The tests are conducted on 100 images selected
from the Validation1K Set.14 Given that QCS-SGM lacks
pre-trained models for ImageNet, we do not compare with
it.

Table 3 and Figure 4 demonstrate that SIM-DMIS achieves
superior reconstruction with 1-bit measurements compared
to DPS and DAPS variants, while requiring only 150 NFEs.
The results with cubic measurements, summarized in Ta-
ble 4 and Figure 5, further validate the advantages of our
methods. Notably, SIM-DMIS achieves the best perfor-
mance across all metrics while maintaining a low compu-
tational cost of only 150 NFEs. These results underscore
the effectiveness and efficiency of our approach in handling
cubic measurement settings on the ImageNet dataset.

Table 3. Quantitative results for ImageNet with 1-bit measurements
(m = n/16 = 12288). We mark bold the best scores, and
underline the second best scores.

Method NFE PSNR (↑) SSIM (↑) LPIPS (↓)

DPS-N 1000 11.57±2.63 0.24±0.11 0.64±0.04
DPS-L 1000 12.67±3.43 0.11±0.16 0.81±0.12
DAPS-N 1000 14.62±1.20 0.12±0.01 0.61±0.04
DAPS-L 1000 6.20±1.66 0.08±0.14 0.64±0.02
SIM-DMS 50 16.93±3.16 0.32±0.09 0.54±0.09

SIM-DMFIS 150 11.89±2.24 0.08±0.02 0.76±0.06
SIM-DMIS 150 18.06±3.16 0.45±0.13 0.46±0.08

Table 4. Quantitative results on the ImageNet with cubic measure-
ments (m = n/16 = 12288). We mark bold the best scores, and
underline the second best scores.

Method NFE PSNR (↑) SSIM (↑) LPIPS (↓)

DPS-N 1000 11.47±2.97 0.22±0.08 0.62±0.06
SIM-DMS 50 14.99±2.82 0.33±0.06 0.59±0.08
SIM-DMIS 150 16.28±3.38 0.40±0.15 0.55±0.10

13For DAPS, we follow the settings described in the origi-
nal paper and employ a pre-trained unconditional model from
ADM (Dhariwal & Nichol, 2021).

14https://github.com/XingangPan/deep-generative-prior/

8



Learning Single Index Models with Diffusion Priors

Figure 4. Examples of 1-bit reconstructed images for ImageNet.

Figure 5. Examples of cubic reconstructed images for ImageNet.

6. Conclusion
In this paper, we present approaches for learning SIMs
by making use of the sampling and inversion methods for
pre-trained unconditional DMs. Theoretical analysis and
numerical results are provided to illustrate the effectiveness
of the proposed approaches.

Impact Statement
This paper presents work aimed at advancing the field of
Machine Learning, particularly in the area of signal recov-
ery using diffusion models (DMs). The proposed method
applies DMs to enhance the recovery of signals from Single
Index Models (SIMs), offering more flexible and robust solu-
tions for complex signal reconstruction tasks. It could have
broad applications in fields such as imaging, signal process-
ing, and data reconstruction, with potential to improve the
efficiency and accuracy of various real-world tasks. While
no direct ethical concerns are associated with the method-
ology, the potential societal impacts of this work include
improvements in computational efficiency and the enhance-
ment of technologies reliant on image reconstruction and
signal recovery.
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A. Extended Related Work
In this subsection, we summarize some relevant works, which can roughly be divided into (i) nonlinear signal recovery with
conventional generative models, and (ii) signal recovery with diffusion models.

Nonlinear signal recovery with conventional generative models: The seminal work (Bora et al., 2017) studies linear
compressed sensing with conventional generative priors (such as GANs and VAEs) and demonstrates via numerical
experiments on image datasets that using a pre-trained generative prior can significantly reduce the number of required
measurements (compared to that of using the sparse prior) for accurate signal recovery. This has led to a significant volume
of follow-up works in (Dhar et al., 2018; Hand et al., 2018; Shah & Hegde, 2018; Jagatap & Hegde, 2019; Asim et al.,
2020; Ongie et al., 2020; Daras et al., 2021; Liu & Scarlett, 2020b; Jalal et al., 2021b;a), which explore various aspects of
high-dimensional signal recovery with generative priors. A literature review in this area can be found in (Scarlett et al.,
2022).

In particular, under conventional generative priors, there have been several studies on 1-bit compressed sensing (Qiu et al.,
2020; Liu et al., 2020; 2021a) and phase retrieval (Hand et al., 2018; Hyder et al., 2019; Jagatap & Hegde, 2019; Aubin
et al., 2020; Shamshad & Ahmed, 2020; Liu et al., 2021b; Killedar & Seelamantula, 2022; Liu et al., 2022b), among others.
Moreover, SIMs that account for unknown nonlinearity and conventional generative priors have been explored in several
studies, including (Wei et al., 2019; Liu & Scarlett, 2020a; Liu & Liu, 2022; Chen et al., 2023b). More specifically, the
works (Liu & Scarlett, 2020a; Liu & Liu, 2022; Chen et al., 2023b) provide recovery guarantees for the generalized Lasso
approach and practical algorithms under the assumption of Gaussian sensing vectors. In (Wei et al., 2019), under the extra
assumption that the link function is differentiable, SIMs with link functions of first- and second-orders are studied through
Stein’s identity, allowing for general non-Gaussian sensing vectors.

Signal recovery with diffusion models: Due to the ability to model complex distributions, DMs have demonstrated
remarkable performance in a variety of applications. The seminal work on DMs (Sohl-Dickstein et al., 2015) introduces
a framework for the diffusion process, which has been further developed in multiple forms, such as denoising diffusion
probabilistic models (DDPMs) (Ho et al., 2020) and score-based generative models (SGMs) (Song et al., 2021b). These
models have been widely applied to signal recovery problems (Daras et al., 2024), which can be broadly classified into two
main paradigms.

One paradigm is task-specific, in which DMs are trained for particular tasks. For example, the model in (Saharia et al.,
2022c) is customized for super-resolution, while the model in (Ren et al., 2023) is developed for deblurring. The other
paradigm makes use of pre-trained DMs that are not limited to any specific signal recovery problem. Works within this
paradigm can be further classified according to how they handle the measurements. Some approaches use DMs as priors
to direct the reconstruction process by estimating the score function, as shown in (Feng et al., 2023; Daras et al., 2022).
Other approaches, such as DDRM (Kawar et al., 2022), adapt the DDPM framework specifically for linear signal recovery
problems. By incorporating singular value decomposition to limit the solution space, DDRM can effectively handle linear
measurements. However, its performance degrades when dealing with sparse or limited measurements, rendering it less
effective in challenging situations.

To solve general noisy linear signal recovery problems, some recent works (Chung et al., 2022a; 2023b; Song et al., 2023; Fei
et al., 2023; Fabian et al., 2023; Zhang et al., 2023) aim to estimate the posterior distribution using the unconditional diffusion
model based on Bayes’ rule. In particular, MCG (Chung et al., 2022a) approaches data consistency from the perspective
of the data manifold. It proposes a manifold-constrained gradient to ensure that corrections stay on the data manifold.
DPS (Chung et al., 2023b) abandons the projection step in the reverse process because it may cause the sampling path to
deviate from the data manifold. Instead, it approximates the gradient of the posterior through a specially hand-designed
strategy, where the measurements can be regarded as a signal conditioning the sampling process. ΠGDM (Song et al., 2023)
further develops this type of strategy into a unified expression that encompasses various signal recovery problems by using
the Moore-Penrose pseudoinverse. ΠGDM guides the diffusion process by matching the one-step denoising solution and the
ground-truth measurements, after transforming both via a generalized pseudoinverse of the measurement model. DAPS
(Zhang et al., 2024a) modifies the traditional diffusion process by decoupling consecutive steps in the sampling trajectory.
This allows for greater variation between steps, improving the exploration of the solution space and leading to more accurate
and stable reconstructions.

1



Learning Single Index Models with Diffusion Priors

B. Proofs of Lemmas 1 and 2
Before presenting the proofs, we present the following simple tail bound for a Gaussian random variable.
Lemma 4. (Gaussian tail bound (Wainwright, 2019, Example 2.1)) Suppose that X ∼ N (α, σ2) is a Gaussian random

variable with mean α and variance σ2. Then, for any u > 0, P(|X − α| ≥ u) ≤ 2e−
u2

2σ2 .

B.1. Proof of Lemma 1

For u > 0 and any j ∈ [n], from Lemma 4, from Lemma 4, we have with probability at least 1 − 2e−
u2

2 that |ϵj | ≤ u.

Taking a union bound over all j ∈ [n], we obtain with probability at least 1 − 2ne−
u2

2 that ∥ϵ∥∞ ≤ u. Then, by setting
u = C

√
log(2n), we obtain the desired result.

B.2. Proof of Lemma 2

Let gi = aT
i x

∗. Since x∗ ∈ Sn−1, we know that gi are independent standard normal random variables. Additionally, note
that

1

m
ATy − µx∗ =

1

m

m∑
i=1

yiai − µx∗ (30)

=
1

m

m∑
i=1

yi(ai − (aT
i x

∗)x∗) +
1

m

m∑
i=1

yi(a
T
i x

∗)x∗ − µx∗. (31)

For any j ∈ [n], since E[aijgi] = x∗
j , aij can be written as

aij = x∗
jgi +

√
1− (x∗

j )
2rij , (32)

where rij is a standard normal random variable that is independent of gi. Then, the j-th entry of the first term in the
right-hand side of Eq. (31) can be written as[

1

m

m∑
i=1

yi(ai − (aT
i x

∗)x∗)

]
j

=
1

m

m∑
i=1

yi(aij − gix
∗
j ) (33)

=
√
1− (x∗

j )
2 · 1

m

m∑
i=1

yirij . (34)

Note that yi = f(aT
i x

∗) = f(gi). Thus rij is also independent of yi. Let M2 := Eg∼N (0,1)[f(g)
2] and E1 be the event that

1
m

∑m
i=1 y

2
i ≤ 2M2. From (Liu & Liu, 2022, Lemma 3), we have

P(Ec
1) ≤

Cf

m
, (35)

where Cf is a positive constant depending on f . Moreover, conditioned on the event E1, the term
∑m

i=1 yirij in Eq. (34) is
zero-mean Gaussian with the variance being

∑m
i=1 y

2
i . Then, from Lemma 4, we obtain

P

(∣∣∣∣∣
m∑
i=1

yirij

∣∣∣∣∣ > u

)
≤ 2 exp

(
− u2

2
∑m

i=1 y
2
i

)
≤ 2 exp

(
− u2

4mM2

)
. (36)

Taking a union bound over all j ∈ [n], we obtain with probability at least 1− 2n exp
(
− u2

4mM2

)
that∥∥∥∥∥ 1

m

m∑
i=1

yi(ai − (aT
i x

∗)x∗)

∥∥∥∥∥
∞

=

∥∥∥∥∥√1− (x∗
j )

2 · 1

m

m∑
i=1

yirij

∥∥∥∥∥
∞

≤ u

m
. (37)

Furthermore, the j-th entry of the second term in the right-hand side of Eq. (31) can be written as

1

m

m∑
i=1

yi(a
T
i x

∗)x∗ − µx∗ =

(
1

m

m∑
i=1

yi(a
T
i x

∗)− µ

)
x∗. (38)
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For any τ > 0, let E2 be the event that
∣∣ 1
m

∑m
i=1 yi(a

T
i x

∗)− µ
∣∣ < τ . From (Liu & Liu, 2022, Lemma 3), we have

P(Ec
2) ≤

C ′
f

mτ2
, (39)

where C ′
f is a positive constant depending on f . Additionally, conditioned on E2, we have∥∥∥∥∥

(
1

m

m∑
i=1

yi(a
T
i x

∗)− µ

)
x∗

∥∥∥∥∥
∞

=

∣∣∣∣∣ 1m
m∑
i=1

yi(a
T
i x

∗)− µ

∣∣∣∣∣ · ∥x∗∥∞ ≤ τ. (40)

Combining Eqs. (31), (35), (37), (39), and (40), we observe that by setting u = C1

√
log(2n) ·

√
m and τ =

C2

√
log(2n)/

√
m for some sufficiently large positive constants C1 and C2 and letting C ′ = C1+C2, we obtain the desired

result.

C. Proof of Theorem 3
First, we provide a proof for the auxiliary result in Lemma 3 for popular sampling methods such as DDIM and DM2M (cf.
Sec. 2.1). Specifically, we have the following detailed version of Lemma 3.

Lemma 5. Suppose that the data prediction network xθ satisfies Assumption 1. Then, if G : Rn → Rn is the generator
corresponding to the entire sampling process of DDIM (see Eq. (11)), we have that G is L-Lipschitz continuous with

L =

N∏
i=1

(
σti

σti−1

+ σti

(αti

σti

−
αti−1

σti−1

)
· Lti−1

)
. (41)

Additionally, suppose that G : Rn → Rn is the generator corresponding to the entire sampling process of DM2M (see
Eq. (12)), and suppose that for i = 0, 1, 2, . . . , N , x̃ti is L̃i-Lipschitz continous with respect to x̃t0 . Then, we have that L̃0

can be set to 1 and L̃1 can be set to be σt1

σt0
+ σt1

(αt1

σt1
− αt0

σt0

)
· Lt0 , and for i ≥ 2, L̃i can be calculated via the following

recursive formula:

L̃i =

(
σti

σti−1

+ αti

(
1− e−hi

)
·
(
1 +

1

2ri

)
Lti−1

)
L̃i−1 + αti

(
1− e−hi

)
· 1

2ri
Lti−2

L̃i−2. (42)

In particular, we have that G is L-Lipschitz continuous with L = L̃N .

Proof. For DDIM, by the triangle inequality, we have the following inequality for any i ∈ [N ] and any x1,x2 ∈ Rn:

∥κi(x1)− κi(x2)∥2 ≤
(

σti

σti−1

+ σti

(
αti

σti

−
αti−1

σti−1

)
· Lti−1

)
· ∥x1 − x2∥2, (43)

where κi is defined in Eq. (13). Additionally, it is easy to show that if function f is Lf -Lipschitz and g is Lg-Lipschitz, then
their composition f ◦ g is (LfLg)-Lipschitz (Bora et al., 2017). Then, we obtain that the generator G = κN ◦ · · · ◦ κ2 ◦ κ1

(see Eq. (14)) is L-Lipschitz continuous, with L given by Eq. (41). Note that for the first sampling step of DM2M, we need
to use the first-order numerical scheme—DDIM. Then, similarly to the case of DDIM, based on Eq. (12), we can obtain the
desired recursive formula for the Lipschitz constants.

Then, we list the regularity conditions on xθ required for Theorem 3 as follows. These conditions are similar to those in (Lu
et al., 2022a, Appendix B.1).

• The total derivatives dj x̂θ(x̂λ,λ)
dλj (as a function of λ) exist and are continuous for j = 0, 1, 2, 3.

• The neural function xθ(x, t) is Lipschitz continuous with w.r.t. its first parameter x (i.e., Assumption 1).

• hmax = maxi∈[N ](λti − λti−1
) = O(1/N).

Based on the above auxiliary results, we are now ready to present the proof of Theorem 3.
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C.1. Proof of Theorem 3

Let Ḡ†
t be the analytic inversion operator (corresponding to Eq. (10)) from time t to T . That is, for any x ∈ Rn, we have

Ḡ†
t(x) =

σT

σt
x+ σT

∫ λT

λt

eλx̂θ(x̂λ, λ)dλ. (44)

Additionally, let Ḡ be the analytic sampling operator (corresponding to Eq. (10)) from time T to ϵ. That is, for any x ∈ Rn,
we have

Ḡ(x) =
σϵ

σT
x+ σϵ

∫ λϵ

λT

eλx̂θ(x̂λ, λ)dλ. (45)

Let x̄T = Ḡ†
t(x̄t) =

σT

σt
x̄t + σT

∫ λT

λt
eλx̂θ(x̂λ, λ)dλ. We have

Ḡ ◦ Ḡ†
t(x̄t) = Ḡ(x̄T ) (46)

=
σϵ

σϵ
x̄T + σϵ

∫ λϵ

λT

eλx̂θ(x̂λ, λ)dλ (47)

=
σϵ

σT

(
σT

σt
x̄t + σT

∫ λT

λt

eλx̂θ(x̂λ, λ)dλ

)
+ σϵ

∫ λϵ

λT

eλx̂θ(x̂λ, λ)dλ (48)

=
σϵ

σt
x̄t + σϵ

∫ λT

λt

eλx̂θ(x̂λ, λ)dλ+ σϵ

∫ λϵ

λT

eλx̂θ(x̂λ, λ)dλ (49)

=
σϵ

σt
x̄t + σϵ

∫ λϵ

λt

eλx̂θ(x̂λ, λ)dλ (50)

= x̄ϵ. (51)

Therefore, we obtain

∥G ◦G†
t(x̄t)− x̄ϵ∥2 = ∥G ◦G†

t(x̄t)− Ḡ ◦ Ḡ†
t(x̄t)∥2 (52)

≤ ∥G ◦G†
t(x̄t)−G ◦ Ḡ†

t(x̄t)∥2 + ∥G ◦ Ḡ†
t(x̄t)− Ḡ ◦ Ḡ†

t(x̄t)∥2 (53)

≤ L∥G†
t(x̄t)− Ḡ†

t(x̄t)∥2 + ∥G(x̄T )− Ḡ(x̄T )∥2, (54)

where the last inequality follows from the L-Lipschitz continuity of G and x̄T = Ḡ†
t(x̄t). Under the regularity conditions

listed above, similarly to (Lu et al., 2022a, Theorem 3.2),15 we have

∥G†
t(x̄t)− Ḡ†

t(x̄t)∥2 = O(
√
nhk1

max) (55)

and
∥G(x̄T )− Ḡ(x̄T )∥2 = O(

√
nhk2

max). (56)

Combining Eqs. (54), (55), and (56), we obtain the desired result.

D. Experimental Results for CIFAR-10 with 1-bit and cubic Measurements
In this section, we present the experimental results obtained from the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) using
1-bit and cubic measurements. For the CIFAR-10 dataset, the ambient dimension is n = 32× 32× 3 = 3072, and the pixel
values are normalized to the range [0, 1]. Prior experimental findings have shown that the SIM-DMIS method outperforms
SIM-DMS and SIM-DMFIS in terms of reconstruction performance. Therefore, in this study, we limit our comparison to
our SIM-DMIS approach against QCS-SGM, DPS-N, and DPS-L. For 1-bit measurements, since QCS-SGM cannot handle
cubic measurements, we compare against OneShot proposed in (Liu & Liu, 2022), which uses GANs to solve nonlinear
signal recovery problems. Additionally, since we have observed from the results for 1-bit measurements that SIM-DMFIS
does not perform well, we do not compare against it. The experimental results demonstrate the superior performance of our
proposed method SIM-DMIS across different datasets and measurement settings.

15Note that the term O(hk
max) in the statement of (Lu et al., 2022a, Theorem 3.2) is added element-wise. Thus when considering the ℓ2

norm, we have an extra
√
n factor, where n is the data dimension.
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Results on CIFAR-10 (32×32) with 1-Bit Measurements For 1-bit measurements, we report results under two mea-
surement settings: m = 500 and m = 1000, corresponding to approximately 16% and 32% of the ambient dimension
n. We utilize a pre-trained unconditional DDPM model with the variance preserving (VP) schedule16 for CIFAR-10.
Prior experimental findings have shown that the SIM-DMIS method outperforms SIM-DMS and SIM-DMFIS in terms
of reconstruction performance. Therefore, in this study, we limit our comparison to our SIM-DMIS approach against
QCS-SGM, DPS-N, and DPS-L. As shown in Table 5, SIM-DMIS consistently outperforms existing approaches across
both m = 500 and m = 1000. Qualitative results in Figure 6 further confirm its strong reconstruction capability.

Table 5. Quantitative results for 1-bit with m = 500 and m = 1000 measurements. We mark bold the best scores, and underline the
second best scores.

Method NFE m = 500 m = 1000

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

QCS-SGM 1160 8.40±3.75 0.25±0.19 0.55±0.20 11.76±4.59 0.41±0.22 0.41±0.18
DPS-N 1000 9.43±1.89 0.04±0.06 0.57±0.05 9.70±2.19 0.04±0.06 0.65±0.08
DPS-L 1000 11.53±1.59 0.08±0.02 0.61±0.03 12.24±2.71 0.10±0.05 0.69±0.07

SIM-DMIS 150 16.24±1.65 0.55±0.10 0.40±0.10 18.61±1.65 0.65±0.08 0.31±0.07

Figure 6. Examples of reconstructed images for CIFAR-10 with m = 1000 1-bit measurements.

Results on CIFAR-10 (32×32) with Cubic Measurements The quantitative results are shown in Table 6, and examples
of reconstructed images are presented in Figure 7. SIM-DMIS consistently outperforms OneShot across all measurement

16https://huggingface.co/google/ddpm-cifar10-32
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settings. Specifically, with m = 500 measurements, SIM-DMIS achieves approximately 15% higher PSNR and 2% better
SSIM compared to OneShot. With m = 1000 measurements, SIM-DMIS achieves approximately 25% higher PSNR and
12% better SSIM compared to OneShot. Furthermore, SIM-DMIS consistently yields a lower LPIPS value, indicating
better perceptual similarity to the original images, compared to OneShot.

Table 6. Quantitative results for CIFAR-10 with cubic measurements. We mark bold the best scores, and underline the second best scores.

Method m = 500 m = 1000

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

OneShot 13.68±2.09 0.33±0.09 0.50±0.04 14.61±2.09 0.39±0.09 0.48±0.04
SIM-DMIS 15.80±2.02 0.45±0.10 0.43±0.08 16.97±2.21 0.55±0.12 0.38±0.09

Figure 7. Examples of reconstructed images for CIFAR-10 with m = 1000 cubic measurements.

E. Additional Examples of Reconstructed Images for FFHQ and ImageNet with 1-bit
Measurements

In this section, we present some additional examples of reconstructed images for the FFHQ 256×256 dataset in Figure 8,
and also present some additional examples of reconstructed images for the ImageNet 256×256 dataset in Figure 9.
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Figure 8. Examples of reconstructed images for FFHQ with m = n/8 = 24576 1-bit measurements. Top: Origin, Middle: SIM-DMS,
Bottom: SIM-DMIS.
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Figure 9. Examples of reconstructed images for ImageNet with m = n/16 = 12288 1-bit measurements.
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F. Ablation Study for SIM-DMS
In this section, we present a detailed analysis of the ablation experiments conducted on SIM-DMS using the CIFAR-10
dataset with m = 500 1-bit measurements. The experimental setup follows the same framework as in the main body of the
research, and the sampling technique is applied throughout.

The results shown in Table 7 provide valuable insights into the performance of SIM-DMS under different parameter
configurations. Specifically, we analyze the impact of hyperparameters Cs, C ′

s, and the number of function evaluations on
model performance.

When varying Cs while fixing C ′
s = 55 and NFE = 50, we observe a clear upward trend in both PSNR and SSIM, indicating

improved signal quality and better structural similarity with increasing Cs. However, LPIPS reaches its minimum value
at a moderate Cs, suggesting that the best perceptual quality is achieved with balanced parameter settings. On the other
hand, when Cs is fixed at 55 and C ′

s is varied, we find that lower values of C ′
s yield better performance across all metrics,

with PSNR and SSIM reaching their peak at the lowest tested value. LPIPS remains relatively stable but shows a slight
decrease at lower C ′

s values. Finally, when we adjust the NFE with Cs = 55 and C ′
s = 55, all performance metrics show

minimal fluctuation, suggesting that once NFE reaches a certain threshold, increasing it further does not yield significant
improvements.

In conclusion, these results underscore the flexibility of SIM-DMS with respect to parameter tuning. The parameter Cs

demonstrates a clear impact on reconstruction quality, while lower values of C ′
s tend to yield better results. Additionally, the

stability across different NFE values indicates the model’s efficiency even with fewer iterations. These findings provide
valuable guidance for parameter selection in practical applications of SIM-DMS.

Table 7. Ablation experiments for SIM-DMS on CIFAR-10 with m = 500 1-bit measurements, with different values of Cs, C′
s and NFEs.

We mark bold the best scores, and underline the second best scores.

Cs (C′
s = 55) C′

s (Cs = 55) NFE (Cs = 55, C′
s = 55)

Value 50 52 55 58 60 50 52 55 58 60 20 50 80 100

PSNR (↑) 14.441 14.625 14.860 14.956 14.971 15.337 15.214 14.860 14.451 14.205 14.860 14.860 14.860 14.860
±1.037 ±1.119 ±1.201 ±1.275 ±1.334 ±1.354 ±1.252 ±1.201 ±1.185 ±1.146 ±1.201 ±1.201 ±1.201 ±1.201

SSIM (↑) 0.427 0.442 0.460 0.467 0.470 0.481 0.475 0.460 0.440 0.426 0.460 0.460 0.460 0.460
±0.096 ±0.099 ±0.103 ±0.106 ±0.108 ±0.107 ±0.104 ±0.103 ±0.101 ±0.099 ±0.103 ±0.103 ±0.103 ±0.103

LPIPS (↓) 0.444 0.436 0.433 0.441 0.447 0.440 0.436 0.433 0.440 0.447 0.433 0.433 0.433 0.433
±0.090 ±0.090 ±0.094 ±0.097 ±0.099 ±0.100 ±0.098 ±0.094 ±0.091 ±0.090 ±0.094 ±0.094 ±0.094 ±0.094

G. Ablation Study for SIM-DMIS
In this section, we present a detailed analysis of the ablation experiments conducted on SIM-DMIS using the CIFAR-10
dataset with a measurement of m = 500. The experimental setup follows the same framework as in the main body of the
research, and the DDIM sampling and DM2M inversion technique is applied throughout. The results are shown in Table 8.

When varying Cs while fixing C ′
s = 55 and NFE = 50, the trend of PSNR and SSIM are consistent with the SIM-DMS

where higher values of Cs also led to better signal quality and structural similarity. On the other hand, when Cs is fixed at 55
and C ′

s is varied, the trends for PSNR and SSIM are largely similar to the SIM-DMS results, where lower values of C ′
s lead

to better performance in these metrics. Interestingly, while the improvement in PSNR and SSIM is clear, LPIPS remains
relatively stable across a wide range of C ′

s values, with a slight decrease at lower values of C ′
s, particularly around 50 and

52. Finally, when adjusting the NFE with Cs = 55 and C ′
s = 55, the results show minimal fluctuation in all performance

metrics. This observation is consistent with the findings from SIM-DMS, where a similar behavior was noted.

In summary, the findings from the ablation study of SIM-DMIS underline several important insights. The parameter Cs has
a notable impact on both the signal quality and structural similarity of the reconstructed images, with higher values leading
to better PSNR and SSIM. The parameter C ′

s plays a crucial role in enhancing PSNR and SSIM, with lower values yielding
better results, while LPIPS remains stable. Additionally, the minimal effect of increasing NFE suggests that SIM-DMIS is
highly efficient and provides stable performance even with fewer evaluations.
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Table 8. Ablation experiments for SIM-DMIS on CIFAR-10 with m = 500 1-bit measurements. We mark bold the best scores, and
underline the second best scores.

Cs (C′
s = 55, NFE=150) C′

s (Cs = 55, NFE=150) NFE (Cs = 55, C′
s = 55)

Value 50 52 55 58 60 50 52 55 58 60 100 150 200 250

PSNR (↑) 15.388 15.562 15.733 15.809 15.820 16.247 16.091 15.733 15.322 15.057 15.733 15.733 15.733 15.733
±1.218 ±1.331 ±1.420 ±1.513 ±1.592 ±1.655 ±1.500 ±1.420 ±1.355 ±1.307 ±1.420 ±1.420 ±1.420 ±1.420

SSIM (↑) 0.489 0.506 0.522 0.531 0.534 0.548 0.540 0.522 0.500 0.484 0.522 0.522 0.522 0.522
±0.097 ±0.098 ±0.099 ±0.101 ±0.104 ±0.101 ±0.099 ±0.099 ±0.099 ±0.099 ±0.099 ±0.099 ±0.099 ±0.099

LPIPS (↓) 0.406 0.399 0.402 0.411 0.417 0.409 0.405 0.402 0.404 0.411 0.402 0.402 0.402 0.402
±0.095 ±0.093 ±0.095 ±0.100 ±0.102 ±0.103 ±0.098 ±0.095 ±0.093 ±0.094 ±0.095 ±0.095 ±0.095 ±0.095

H. Comparative Evaluation of SIM-DMS and SIM-DMIS on Performance and Efficiency
In this section, we evaluate the performance and efficiency of SIM-DMS and SIM-DMIS on the FFHQ dataset. The
experimental setup follows the same framework as in the main body of the research. The results presented in the main paper
(Table 1) show that SIM-DMIS consistently outperforms QCS-SGM and SIM-DMFIS in both reconstruction quality and
NFE. Notably, QCS-SGM requires over 11,000 NFEs to achieve competitive results, incurring a high computational cost.
Due to the performance of SIM-DMIS over both methods, and the particularly high computational cost of QCS-SGM, we
exclude QCS-SGM and SIM-DMFIS from the comparisons in this section.

Performance Evaluation As discussed in Footnote 10 and Appendices F and G, ablation studies on CIFAR-10 show that
further increasing the NFE for SIM-DMS does not lead to substantial performance enhancements.

To further verify this behavior and to compare the relative performance of SIM-DMS and SIM-DMIS, we conduct additional
experiments on the FFHQ dataset. The results, summarized in Table 9, indicate that under the same NFEs, SIM-DMIS
consistently outperforms SIM-DMS across all standard metrics.

Table 9. Quantitative results on FFHQ (m = n/8 = 24576). We mark bold the best scores, and underline the second best scores.

Method NFE PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓)

DPS-N 1000 11.14±1.46 0.37±0.09 0.69±0.05 349.24
DPS-L 1000 8.57±2.05 0.22±0.08 0.69±0.09 109.01
DAPS-N 1000 16.59±0.54 0.33±0.05 0.48±0.05 138.70
DAPS-L 1000 5.63±0.71 0.04±0.03 0.61±0.03 322.75
SIM-DMS 50 17.14±2.41 0.44±0.07 0.48±0.05 105.04
SIM-DMS 150 17.72±2.63 0.46±0.08 0.48±0.06 95.52
SIM-DMIS 50 18.78±3.09 0.58±0.10 0.41±0.08 89.47
SIM-DMIS 150 19.87±2.77 0.60±0.09 0.37±0.05 76.21

Reconstruction Speed We conduct additional experiments to measure the reconstruction speed of SIM-DMS and
SIM-DMIS. The inference time is averaged over 10 validation images from the FFHQ dataset. All experiments are
executed on a single NVIDIA GeForce RTX 4090 GPU. As shown in Table 10, the results indicate that SIM-DMS and
SIM-DMIS exhibit significantly faster reconstructions when compared to the competing methods.
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Table 10. Comparison of inference time (in seconds) for reconstructing 10 images on FFHQ. We mark bold the best scores, and underline
the second best scores.

Method NFE Inference Time (s) (↓)

DPS-N 1000 142
DPS-L 1000 142
DAPS-N 1000 160
DAPS-L 1000 160
SIM-DMS 50 1.96
SIM-DMIS 150 5.66
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