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Abstract

Humans can perform unseen tasks by recalling relevant skills acquired previously
and then generalizing them to the target tasks, even if there is no supervision at all.
In this paper, we aim to improve this kind of cross-task generalization ability of
massive multi-task language models, such as T0 and FLAN, in an unsupervised
setting. We propose a retrieval-augmentation method named ReCross that takes a
few unlabelled examples as queries to retrieve a small subset of upstream data and
uses them to update the multi-task model for better generalization. ReCross is a
straightforward yet effective retrieval method that combines both efficient dense
retrieval and effective pair-wise reranking. Our results and analysis show that it
significantly outperforms both non-retrieval methods and other baseline methods. 1

1 Introduction

Advances in pre-training techniques for large language models (LMs) have considerably improved
natural language processing (NLP) models on various important tasks via fine-tuning with labeled
data. While these fine-tuned models are impressive in their target tasks, they can hardly generalize
to unseen tasks. This thus makes it difficult to approach the general linguistic intelligence that we
ultimately want an NLP model to enjoy. A promising avenue is to train a massively multi-task
model that learns a large set of NLP tasks. However, in real-world applications, users often expect a
multi-task NLP model can also perform unseen tasks that they are interested in. These users may
only be able to provide a few unlabeled examples (i.e., the input-only data) of the target tasks with
natural-language instructions. How can we generalize the multi-task model to unseen tasks without
labels? This desirable ability is dubbed “unsupervised cross-task generalization.”

Recent studies show that multi-task prompted training makes language models better in cross-task
generalization, especially when natural-language instructions are used for formatting the training
data (Ye et al., 2021; Sanh et al., 2021; Wei et al., 2021). The general recipe is to first fine-tune a text-
to-text language model such as T5 (Raffel et al., 2020) on a multi-task mixture of diverse NLP datasets
that are converted to sequence-to-sequence formats. We use the term upstream learning to refer to
this multi-task training stage. Given a target task that is unseen during upstream learning, we want the
upstream multi-task model to also perform well on it via reusing the previously acquired knowledge.
FLAN (Wei et al., 2021) and T0 (Sanh et al., 2021) both use natural language (NL) instructions as
prompts to reformat the data of various NLP tasks for upstream learning and generalization. Their
results suggest that NL instructions are keys to unsupervised cross-task generalization.

Despite of the exciting results from Wei et al. (2021) and Sanh et al. (2021), their studies are limited
to the analysis of the task generalization performance of the frozen, target-agnostic upstream models
(i.e., FLAN and T0). We argue that the generalization performance can be further improved if we
can exploit the unlabeled data of target tasks as hints for adjusting the upstream model to a more

1Our data, code, and supplementary materials are at https://inklab.usc.edu/ReCross/.
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Figure 1: The unsupervised cross-task generalization problem. In the upstream training stage, we
train a multi-task NLP model, M, with a diverse collection of upstream tasks. In the generalization
stage, given an unseen task Ui with a few unlabeled examples Qi, we want to update the upstream
model (via retrieval augmentation) such that it can generalize to the target task.

dedicated, target-aware model. Intuitively, the upstream examples that share similar skills with the
target task should help the task generalization if the upstream model could recap these skills via
retrieving. Motivated by this idea, we propose to further improve the cross-task generalization ability
of upstream models via retrieval augmentation from the upstream data.

The key challenge of such retrieval augmentation is to predict the example-level utility for cross-task
generalization, which we introduce with details in Sec. 2. To address the challenges, we present a
two-stage retrieval-augmentation framework, ReCross, for unsupervised cross-task generalization
in Section 3. Specifically, we pre-compute a dense index by encoding all upstream data as dense
vectors. Given a set of unlabeled examples, we first use them to retrieve an initial set of upstream data
by using encoded queries to efficiently search over the dense index. Then, we apply the reranking
module to carefully analyze the utility of each candidate example. To get such a reranker, we fine-
tune a cross-encoder model with distant supervision mined by a novel algorithm. Finally, we take
top-ranking retrieved data to fine-tune the upstream model for a few steps and use this updated model
for inference on the target task in the future (i.e., the retrieval augmentation and model update is a
one-time procedure for each unseen task).

To more efficiently evaluate generalization methods without losing the generality, we train a variant
of T0-like models, named BART0, which has comparable performance with T0-3B yet is 8x smaller.
Our extensive experiments show that the proposed ReCross outperforms the baseline methods by a
large margin. For example, ReCross improves the non-retrieval methods by 4 points on the overall
performance of 10 target tasks and similarly on a few BigBench tasks. We also analyze the distribution
of the retrieved data to understand the behavior of retrieval-augmentation methods better and find
that ReCross has a very different distribution compared to semantic retrieval baselines.

2 Problem Formulation

Massively Multi-Task Language Models. To build a general NLP model that can serve a wide
range of real-world downstream applications, it is important to train a massively multi-task upstream
model. We assume there are N different upstream tasks (e.g., sentiment analysis of IMDB reviews),
dubbed as {T1, . . . , TN}. We use D to denote the collection of all labeled data for these upstream
tasks (i.e., the upstream data), which are then used for training a massive multi-task model M
(e.g., BART, T5, and other Transformer-based models). The datasets of these upstream tasks are
all converted to a shared text-to-text format using natural-language instruction templates such as
PromptSource (Bach et al., 2022) to reformat data of different NLP tasks. This pipeline has become a
common approach, adopted by several recent massive multi-task models for NLP, such as T0 (Sanh
et al., 2021), FLAN (Wei et al., 2021), and CrossFit (Ye et al., 2021).

Unsupervised Cross-Task Generalization. In real-world scenarios, it is very common that users
to want a general multi-task model to perform tasks of their interest, even if their target tasks are never
seen before by the upstream model. For these unseen target tasks, users usually can provide only a
few unlabeled examples (i.e., the input-only data) of them for specifying the task instructions. This is
the reason why we need to study how to generalize a multi-task LM to unseen tasks with only a few
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Figure 2: ReCross is a retrieval-augmentation method for unsupervised cross-task general-

ization. We reuse the encoder layers of the upstream model (green) to build a dense index, which
consists of vectors of the upstream examples D. We also propose an algorithm to generate distant
supervision for training a reranker, which takes a pair of examples as input and outputs a score.
During the evaluation, we encode query examples Qi for querying the index to get initial ranking
results R0, and then pair them with the queries again for reranking. Finally, we take the top-K results
(i.e., R) for generalizing the upstream model M to the unseen task Ui.

unlabeled examples, i.e., unsupervised cross-task generalization. For instance, in Fig. 1, the unseen

task Ui is a coreference-resolution task that is not covered by the upstream training (the top-right box
in Fig. 1). We have only a few inputs for it as the “hints” for cross-task generalization, which we call
query examples Qi. Our objective is to use the query examples Qi to enhance the performance of
upstream model M on the unseen task Ui. For evaluating such unsupervised cross-task generalization
methods, we test the enhanced model with a held-out labeled data of each target task.

Challenges. Standard fine-tuning approaches (with or without meta-learning designs) for few-shot
cross-task generalization are not feasible here. We have to adjust the upstream model based on only a
few input-only examples for the unseen task. Intuitively, upstream examples that share similar skills
with the target task Ui should be more beneficial than other upstream data. Thus, one naive idea is to
first estimate the utility of each upstream example for Ui and then re-train a dedicated model Mi via
a weighted learning method (e.g., examples of more utility are trained with larger loss).

However, such a target-aware weighted re-training method cannot scale, because the upstream data
is usually very large and there can be a large number of unseen tasks from users in real-world
applications. In addition, it is particularly challenging to estimate the utility scores of upstream data
for a given unseen task, as we do not have ground-truth annotations for learning this. Although there
are some existing studies on task-to-task relatedness and transferability (Vu et al., 2020; Lange et al.,
2021; Padmakumar et al., 2022), most of them are not designed for unsupervised settings and few are
done with multi-task (prompted) upstream models. Moreover, these prior analyses are mainly limited
to the task-level analysis and they may not directly generalize to studying example-level utility, which
is particularly important for the problem setup of this work.

3 ReCross: Retrieval Augmentation for Cross-Task Generalization

3.1 Overview

To address the above challenges for unsupervised cross-task generalization, we propose a retrieval-
augmentation method named ReCross. The ReCross method is also based on the simple idea that we
should exploit the upstream examples that enjoy better utility for a given unseen target task. Instead
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of costly re-training from scratch, our method first retrieves a small subset of the upstream data for
each unseen task. It then uses them to efficiently fine-tune the upstream model such that the updated
model is generalized. This can ensure scalability to a great extent and benefit upstream models from
re-learning target-specific acquired knowledge for cross-task generalization.

Ideally, we aim to retrieve the upstream examples that are the most beneficial ones for generalizing the
upstream model towards a particular unseen task — ranking the upstream data by their example-level
utility. To achieve this goal while preserving the efficiency, we first use the query examples to retrieve
initial candidates via efficient maximum inner product search (MIPS) over a dense index, which
consists of embedding vectors of all upstream examples (Section 3.2).

Based on the candidates from dense retrieval, we learn a reranking module for further improving the
retrieval results (Section 3.3). The reranker is based on the cross-encoder architecture that takes a
query-candidate pair of examples and outputs a more curated score of utility. Recall that we do not
have any annotation for such example-level utility scores, and the only allowed resources are the
upstream data and model. Therefore, we propose an algorithm to mine distant supervision from the
upstream data for learning the reranker (Section 3.4). The overview of ReCross is shown in Fig. 2.

3.2 Dense Retrieval

To efficiently estimate the example-level utility for generalization, we propose to first employ a dense
retrieval module that ensures high scalability. Specifically, we build a matrix D 2 R|D|⇥d, where
each upstream example in D is encoded with a dense vector. Based on this dense index, we can now
estimate the utility of an upstream example with its cosine distances to the encoded query examples
in Q. That is to say, the upstream examples that are the nearest neighbors of query examples, are
more likely to be beneficial for generalizing the upstream model M to the unseen target task.

To retrieve the candidate set R0, we use MIPS to search for the top-K examples for each query
example in Q, so K = d|R0|/|Q|e. (We introduce the details and other aggregation strategies in
Appendix.) This dense-retrieval process is very efficient as we pre-compute the upstream index and
perform MIPS for querying the candidates over the index on-the-fly during the generalization stage.
We use the FAISS library (Johnson et al., 2019) in our implementation.

Instance embeddings. The example encoder is a key component of the dense-retrieval pipeline. An
ideal example encoder is supposed to represent the underlying skills behind an example such that we
can use the distances in the result embedding space to estimate utility for cross-task generalization. As
we do not have annotations of utility scores for training an encoder, one may want to use pre-trained
sentence embedding models such as SentenceBERT (Reimers and Gurevych, 2019). Our empirical
results show that such semantics-based encoders cannot lead to much improvement over random
retrieval results. We think there are two reasons for this failure. First, the semantic similarities
between examples are not suitable for estimating the utility for generalization. Second, the external

encoding modules do not reflect the nature of the upstream model which we want to generalize.

To address these two issues, we propose to use the encoding layers of upstream model M for
computing the example embeddings. Without loss of generality, let us assume M to be a text-to-text

Transformer that has multiple layers for both encoders and decoders such as BART. We encode an
example by first obtaining the hidden representation of each token at the last encoder layer (i.e.,
a sequence of token vectors), and then performing mean-pooling over them to get a single dense
vector to represent this example. By doing this, the produced example embeddings reflect the internal
features of the upstream model, which are more relevant to the “thinking process” of the upstream
model for the examples instead of the shallow semantic information.

3.3 Reranking Module

Weakness of the dense retrieval. Although dense retrieval is very efficient thanks to the MIPS
support, the retrieval performance is limited by its two major weakness. First, it is a dual-encoder
architecture that encodes the candidate example and the query example separately, which ignores
informative features behind token-to-token attention across a pair of examples. Second, it is too costly
to frequently update the example encoder, which prevents us from learning to refine the retrieval
results with distant supervision (if any). Therefore, we design a re-ranking stage where we train a
cross-encoder to further enhance the dense-retrieval results with mined distant supervision (Sec. 3.4).
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Encoding query-candidate pairs. The cross-encoder architecture has been widely used in sentence-
pair classification tasks such as natural language inference and paraphrase detection. We here use a
cross-encoder to encode the concatenation of a query example and a candidate example. Specifically,
we fine-tune a RoBERTa (Liu et al., 2019) model to classify whether an example pair is a positive or
negative match. The confidence of classifying such a pair to be positive can thus be used as the utility
score of the candidate upstream example for this query example. On top of this, we then develop a
reranking module for further improving retrieval performance as follows.

Scoring paired data. To re-rank the initially retrieved data by the dense retriever, we apply the
cross-encoder on all pairs of query examples Q and candidate retrieved examples R

0, producing
scores of all |Q| ⇤ |R|0 query-candidate pairs. For each candidate example r 2 R

0, we use the average
of all cross-encoder scores involving r as its utility score. Finally, we take the top-K examples based
on this new ranking of candidate examples in R

0 as the final retrieved data R. We use upsampling

ratio µ to denote the ratio between R
0 and R, i.e., µ = |R0|/|R|.

3.4 Mining Distant Supervision for Reranking

How do we train such a re-ranking module? Recall that we only have access to the upstream data
D and must not use any data from the unseen tasks at this stage. Inspired by meta-learning works,
we propose an algorithm (Alg. 1) to mine distant supervision data for creating a training-as-testing

environment for learning the reranker. Our key motivation is to examine the utility scores of candidate
examples by assessing the generalization performance of updated models that are fine-tuned with
these candidates as if we use them for real unseen tasks. Such more realistic estimation of utility
scores can thus help us train a reranker to predict.

Algorithm 1: Distant Supervision Creation

Input: M; D; Tq

Output: Z = (Zq, Zp, Zn)

DTq  � {x 2 D|x is an example of Tq}
Zq  � Sample(DTq ); Hq  � Sample(DTq )
RZ  � DenseRetrieve(Zq, D)
/* Delete retrieved examples from the same task as queries. */
RZ  � RZ . discard(DTq )
foreach round do

RZ . shu✏e()
/* Split retrieved examples into n groups */
{G1, ..., Gn} � RZ . split()
foreach Gi in {G1, ..., Gn} do

M0  �M. copy()
M0

. fine_tune(Gi)
` �M0

. calc_loss(Hq)
foreach x 2 Gi do

scores[x]. append(`)
/* Score each in the group w/ the loss. */

/* Use mean group score as score for single examples */
foreach x 2 RZ do

score[x] � mean(scores[x])

/* Sort RZ by score in increasing order. */
RZ . sort(key: score, order: increasing)
Zp  � First W items of RZ

Zn  � Last W items of RZ

Specifically, we define a data point of such dis-
tant supervision as a tuple Z = (Zq, Zp, Zn):
1) Zq is a set of query examples of a particular
task Tq; 2) Zp is the set of positive examples
from other tasks; 3) Zn is the set of negative
examples from other tasks. We expect that Zp is
of more utility for generalization than Zn if Zq

would be a query set for the target task Tq. To
this end, we first randomly sample an upstream
task Tq and use a small subset of its training
data as the Zq. Here, we also sample a larger
held-out set Hq examples of task Tq to facilitate
utility estimation. Then, we apply the dense re-
triever using Zq as the query examples and get
the retrieval results RZ . This RZ is thus the can-
didate pool where we create Zp and Zn. That is,
Zp ⇢ RZ and Zn ⇢ RZ . We discard examples
that are from the Tq , so that the generated tuples
are closer to the real scenarios where we use the
reranker on the query sets of unseen tasks.

Our criteria to select Zp and Zn from RZ is
motivated by the hypothesis that a more suitable
set of retrieved examples should improve the
performance M on Ti after fine-tuning with it.
Therefore, we iteratively sample a small subset
from RZ , then fine-tune M with it, and finally,

use the fine-tuned model to evaluate on Z
0
q . The performance of such a temporarily fine-tuned model

can be seen as the utility score—how well this subset can help generalize M to the unseen task Tq.
Through multiple rounds of such sample-train-test procedures, we can thus score each example in
RZ by taking the average of all test results where it is involved. With such a new ranking of examples
in RZ , we take the best W examples as Zp and the worst W as Zn.

With such distant supervision, we then can create pair of query-positive instances and query-negative
instances via pairing Zq with Zp and Zn respectively. Now we can fine-tune a RoBERTa-base model
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by concatenating each pair and learning a binary-classification objective. The output logits of this
trained model will be used for the reranking procedure as shown in Sec. 3.3.

3.5 Re-learning via Fine-Tuning with Retrieved Data

When we have the final retrieved data Ri for a certain query set Qi, we can now enhance the upstream
model M for the unseen task Ui. We use a small learning rate to continually fine-tune M with the
retrieved upstream examples Ri for a small number of steps. We find that the learning rate has to be
very small so that this step can be seen as a natural continuation of the finished upstream training and
avoid overfitting the retrieved data. We acknowledge that there could be more effective methods to
reuse the query examples Q as guidance for fine-tuning, and we leave this as future work. Please find
more discussion on the hyper-parameter selection and configuration in our appendix.

4 Evaluation

In this section, we first introduce the experimental setups, including the task distribution, upstream
learning details, and the configurations of the main experiments. We present experimental results and
reveal some non-trivial findings with extensive analysis that justify the effectiveness of ReCross.

4.1 Evaluating Unsupervised Cross-Task Generalization

We follow Sanh et al. (2021) to use the templates from PromptSource (Bach et al., 2022) for converting
data of different types of NLP tasks to text-to-text formats. In total, we have 36 upstream tasks and
10 target unseen tasks for our main experiments. The upstream tasks are the same as the ones that the
T0 models used for upstream learning. We follow the evaluation protocol proposed by Sanh et al.
(2021) and select the target tasks that are significantly different from the upstream tasks. Besides, we
also include 5 additional tasks from the BIG-bench project (Srivastava et al., 2022) to create an even
more out-of-distribution set of unseen tasks for analysis.

Metric. When we apply the natural-language templates for the test examples, we only keep the
templates that can be evaluated with an exact match (classification, question answering, answer
selection, etc.) so that it is feasible to use exact-match for evaluating all tasks. To allow a smoother
grading, our metric also counts the cases when outputs and truths are sub-strings of each other, which
we call SoftEM. The only difference between SoftEM and the standard EM is that it also counts
the sub-string matches. We observe that sometimes even though T0-like models (including ours)
answer the input questions correctly, their raw outputs are not exactly the same as the truth outputs
generated by the PromptSource templates. In particular, the ground-truth outputs for multiple-choice
QA tasks are often in the form of “[A/B/C/D]: [answer]”, while the models often only output the id
of the correct choice (e.g., “A”) or the text of the answer. We also find that the model can output
some noise (such as additional punctuation) after the answer (e.g., “True” vs “True.”). The standard
EM will discard such matches and cause inaccurate measurements. Although SoftEM might add
false positives due to substring matches, we found it is very rare according to our manual inspection
of the 10 tasks. Therefore, we choose to use SoftEM for a more precise evaluation. We report the
results with the standard EM in Table 7 that also supports our findings.

4.2 BART0: Upstream Learning with a Smaller LM

The T0(pp) models are all very huge, and the smallest version, T0-3B (3 billion parameters), is still
too large to be fine-tuned on popular affordable GPUs. We need a parameter-efficient alternative
that makes the study on cross-task generalization more accessible to a broader community while
keeping the generality. Thus, we fine-tune a BART-large (Lewis et al., 2020a) (0.4 billion parameters)
following the recipe of training T0. Specifically, we sample 50k examples at most from each upstream
task to build a large upstream dataset consisting of 1.7 million examples (i.e., |D| = 1.7m), and then
we fine-tune a BART-large with 22k steps with this upstream dataset. Finally, we use the fine-tuned
checkpoint as our upstream model M and name it BART0. Surprisingly, we find that BART0 and
T0-3B have comparable zero-shot performance on the unseen target tasks, even though T0-3B is
about 8x larger than BART0. More implementation details are shown in Appendix.

4.3 Setup and Configurations

In our main experiments, we use |Qi| = 16 query examples for each unseen task Ui and retrieve |Ri|
= 512 examples for augmenting BART0. In the fine-tuning stage, we use a learning rate of 1e-6 and a
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Target Task T0-3B BART0 Random SBERT ReCross† ReCross �

anli_r3 26.00 30.50 35.34±1.52 32.64±2.53 36.70±0.53 35.76±0.90 5.26
h-swag 34.40 39.40 33.84±5.59 30.92±7.82 44.36±3.07 47.28±2.95 7.88

cb 53.93 39.64 47.07±1.25 48.00±3.28 44.50±4.20 44.79±3.36 5.15
wic 45.70 46.70 41.04±2.18 46.78±2.22 49.90±0.50 50.58±0.24 3.88
wsc 50.00 57.88 52.50±2.29 52.69±6.13 59.27±1.96 61.46±1.47 3.58

winogrande 47.60 51.10 52.68±0.83 52.18±3.20 54.60±1.35 55.46±0.88 4.36
arc-chan. 41.30 35.70 33.28±1.50 37.90±1.22 37.78±0.73 38.44±0.99 2.74

obqa 38.50 34.40 28.72±2.46 33.28±1.24 36.98±1.55 39.58±2.80 5.18
piqa 45.30 36.10 37.00±2.71 38.54±2.17 41.34±1.75 41.42±1.02 5.32

squadv2 30.60 32.40 29.86±5.46 29.46±0.84 30.26±1.54 30.58±1.61 -1.82

All@mean 41.33 40.38 39.13±2.06 40.24±1.61 43.57±0.68 44.53±0.42 4.15
@median 41.33 40.38 39.93 40.91 43.43 44.31 3.93

@min 41.33 40.38 35.66 38.28 42.65 44.16 3.77
@max 41.33 40.38 40.59 41.76 44.51 45.07 4.69

Table 1: The main experimental results (%) for unsupervised cross-task generalization in

SoftEM. Each result in the upper section is the average (and the std) performance of using 5 different
query sets for a task. The lower section of this table reports the mean, max, min, and median of the
overall performance (i.e., the average performance on all tasks) of these five rounds.

batch size of 4 to continually fine-tune all layers of BART0 for 2 epochs. As for re-ranking, we set
the upsampling ratio µ = 2, meaning that we first retrieve 1024 examples for reranking and use the
top 512 ones as the final retrieved data. To obtain more convincing evaluation results, we average the
scores of all target tasks to show the general zero-shot performance. For each task Ui, we use five
different query sets, {Q(1)

i , . . . , Q
(5)
i }, to conduct five individual rounds of retrieval, thus resulting

in five average scores for all tasks. To get a comprehensive assessment, we report the mean, std,
median, min, and max of these five overall scores in the lower part of Table 1. We present an ablation
study on hyper-parameter configurations in Table 3 and include more details in Appendix.

4.4 Experimental Results

BART0 vs T0-3B. As mentioned earlier, we find that BART0 is comparable with the much larger
T0-3B in terms of their zero-shot performance on our unseen tasks (41.33 vs 40.38). As we use BART0
as our base model for testing different retrieval-augmentation methods, its overall performance 40.38

is what we want retrieval-augmentation methods to beat. Note that when using BART0 and T0-3B
for non-retrieval zero-shot inference, they do not use any information from the query examples, so
their mean, median, min, and max are always the same.

Random Retrieval. The Random column shows the results when we randomly sample Ri from the
upstream data D without using any information from Qi. .

SBERT and ReCross
†
. We use SentenceBERT (SBERT) as a strong baseline method to create

a dense index of the upstream data, compared with our proposed indexing method, ReCross† (i.e.,
ReCross without reranking). We can see that ReCross† always outperforms the other methods. Even
its minimum performance in the five rounds (42.65) is better than the maximum of the SBERT
(41.76). Besides, the standard deviation also becomes much smaller (1.61! 0.68), which means that
improvement by the ReCross† is more consistent under different query sets.

The SBERT indexing relies mainly on the semantic similarities between a query example and the
upstream data. Instead, our proposed ReCross† uses the hidden representations inside the upstream
model M for representing examples. We believe using such an indexing method can better help us
find examples that share similar reasoning skills acquired by the upstream model.

ReCross = ReCross
†

+ Reranking. The full version of our ReCross with reranking can further
improve the performance substantially on multiple dimensions. Both all@mean and median are
improved by 1 point from the ReCross†, and the std is also reduced from 0.68 to 0.42. The last
column (�) in Table 1 shows its improvement compared to the base model BART0, and we can see
that ReCross consistently outperforms non-retrieval methods (e.g., BART0) by a significant gap.

7



Figure 3: The mapping between unseen tasks (as rows) and upstream tasks (as columns). The
darker upstream tasks take more percentage in retrieved data. For example, for the task WIC, ReCross
retrieves a plurality of examples from QQP (about 30% of the retrieved examples).

To explore the potential benefits of retrieval-augmentation methods such as our ReCross, we also
conduct the same experiments on five tasks selected from the BIG-Bench project. The results
are shown in Table 2, where we can see that ReCross still outperforms the non-retrieval methods.
An interesting case is the movie_dialog task, where the prompt in the template requires a
model to output “same” or “different.” However, both T0-3B and BART0 fail to follow the prompt
instruction, and can only output “yes/no.” Only when we use retrieval-augmentation methods, there
are performance improvement on this task.

4.5 Analysis & More Findings.

Task T0-3B BART0 ReCross

hindu_knowledge 24.75 23.48 24.87±0.27

known_unknowns 47.83 43.48 47.17±1.65

logic_grid_puzzle 23.60 20.70 17.12±6.29

strategyqa 47.70 48.30 49.76±0.80

movie_dialog 0.00 4.40 37.22±13.26

All@Mean 28.78 28.07 35.23±2.85

Table 2: Results on a subset of BigBench tasks.

More configurations. We have used a partic-
ular configuration in our main experiments that
are in Table 1, which is |Q|=16, |R|=512, and
|u|=2. In Table 3, we explore more configura-
tions as ablation studies. The “Main Exp.” row
refers to the results shown in Table 1, and the
configurations of other rows are only changed
with one factor at a time. Even using a single
query example, ReCross is better than BART0.
However, when increasing the query size to 32,
we find that the performance starts to decrease, meaning that there could be an optimal query size for
a certain |R|=512. We find that increasing |R| is generally beneficial, while the all@mean decreases
when |R| is changed from 512 to 1024, although the max and the median slightly increased. Finally,
we see that increasing µ increases the std. and does not improve the overall performance.

Setup\All@ Mean std. Min Max Median

Main Exp. 44.53 0.42 44.16 45.07 44.31

|Q|=1 43.20 0.83 42.58 44.58 42.88
|Q|=8 43.67 0.90 42.09 44.32 43.90
|Q|=32 42.52 1.17 40.52 43.40 42.96

|R|=256 40.80 0.83 39.45 41.68 40.96
|R|=1024 44.02 1.43 42.26 45.35 44.59

µ=3 43.92 0.58 43.08 44.57 43.89
µ=4 43.91 0.99 42.76 45.10 44.26

Table 3: The ablation study of ReCross.

Retrieved data distribution. Figure 3
presents the difference between the methods
in terms of their retrieved data. We draw
the distribution of the retrieved data among
different upstream tasks for each unseen task
individually. From the heatmap, we can see
that ReCross tends to have more dominant
retrieved tasks (i.e., darker cells), while
SBERT’s results are more sparse. They both
can identify that squad is most similar to the
adversarial_qa tasks. Their behaviors
are very different too. Taking the unseen task
winogrande (wngrnd) as an example, we can
see that the SBERT retrieves from multiple upstream tasks such as paws-x and cosmosQA , but
the ReCross mainly retrieves from social-iqa, wiki-qa, and cos-e. The experimental results
in Table 1 show that ReCross produces a better performance than SBERT (i.e., 55.46 vs 52.18), while
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it is not clear how we can predict such task correlation in advance. This suggests that we should
explore more about the utility of instances and tasks in future work.

More analysis. In the appendix, we further presented some analysis to help understand “how”
and “when” the retrieval augmentation works: Table 4, Table 5, Appendix A.1 A.2, and Appendix
B. We investigate whether the utility of upstream examples in retrieval augmentation is related to
the similarity in terms of the task formats. From Appendix A.1, we found some counterintuitive
results. For example, if removing MCQA upstream tasks from the upstream index, then the ARC
target task can have an even better performance, although it is an MCQA-formatted task. Thus, we
hypothesize that similarity in terms of reasoning types is more important than format similarity for
retrieval augmentation. After all, the upstream model has been already trained to work with these
basic task formats. Re-learning the tasks of the same format might lead the model to overfit the seen
domains. Additionally, to provide a more concrete analysis, we also present case studies with two
specific tasks (CB and SQUADv2) in Appendix B.

Moreover, we conjecture the natural language instructions in the templates are necessary for ReCross
to get impressive results. Therefore, we investigated two ways of perturbing the instructions and
monitoring the performance changes in Appendix A.2. We find it is indeed true that perturbations of
the instructions will lead to much worse performance. We believe that a rigorous, principled way of
analyzing the correlation between query and retrieval examples will be a great future direction, given
the strong evidence that ReCross works so well as such a simple method.

5 More Discussion

5.1 Practicality of unsupervised setting.

Cost of obtaining task labels The unsupervised setting in the paper does not require any human
annotation of labels. For some tasks (NLG tasks in particular, e.g., summarization), the expected
output (label) are open-ended and possibly lengthy and thus human annotation is much more expensive
and time-consuming. Also, few-shot learning must ask humans to label examples for each new task,
and it is thus less practical when there are a large number of emerging tasks from the users. Meanwhile,
ReCross requires only a natural-language task template, which does not require potentially expensive
manual annotation or domain expertise.

Scalability & Real-Time response Deploying the ReCross pipeline is a one-time process. All we
need to do is to pre-compute the upstream index with LM and configure the reranker (a simple masked
LM) by running our script. In production, once the users input the examples with NL instructions,
we do not need to wait for any human annotations anymore, so it is much more efficient in the long
run. In the scenarios where users only provide one query example and want to get its label from the
model, ReCross also shows great performance (i.e., |Q|=1 in Table 1). It is then impractical to assume
there are a few labeled data from the users too in such cases.

5.2 Empirical studies

The unsupervised ReCross performance is comparable to few-shot learning with label annotations.
In Appendix D.2, we report the performance of directly fine-tuning BART0 with the labeled query
examples. Although it is an unfair comparison with our previous ReCross results, we found that
they are comparable. More importantly, the ReCross framework does not conflict with the few-shot
setting. Given a labeled query set for a target task, retrieved examples from the ReCross can still
improve few-shot learning as additional training data. We designed two simple methods for applying
ReCross under the few-shot setting and report the empirical results in Appendix D.2. It turns out that
ReCross can also boost the performance under the few-shot setting by about 3 points.

6 Related Work

Multi-task training for task generalization. Text-to-text Transformer language models such as
T5 enable us to train a multi-task NLP model with a more straightforward recipe: mixing the data
of multiple tasks into a unified seq2seq format, and then fine-tuning text-to-text LMs for implicit
multi-task learning. UnifiedQA (Khashabi et al., 2020) is among the first works in this direction.
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Although it shows great generalization performance within QA tasks, it can hardly generalize to
other NLP tasks. Recent works, such as CrossFit (Ye et al., 2021), ExT5 (Aribandi et al., 2022),
FLAN (Wei et al., 2021), T0 (Sanh et al., 2021), and InstructGPT Ouyang et al. (2022) focus on how
to generalize a massively multi-task model across task boundaries in a much broader context.

Particularly, in the CrossFit framework (Ye et al., 2021), cross-task generalization requires a small
number of labeled instances of the target task for fine-tuning. It is because the templates of CrossFit
use the task names as the hard prefixes. Therefore, it is necessary to fine-tune the upstream model
with a few examples that have the target task names as prefixes (i.e., few-shot learning), but this
largely limits the application scenarios of these multi-task NLP models in practice. We instead focus
on unsupervised cross-task generalization, where there is no labeled data of an unseen task (i.e.,
zero-shot learning). Using natural-language instructions as prompts, both FLAN and T0 show that it
is promising to perform zero-shot cross-task generalization.

In this work, we also focus on such an unsupervised setting for cross-task generalization, while
our problem setup is a bit different from the ones used in T0 and FLAN. As for the assumption
about the unlabeled data, their setups can be seen as a special case of ours when |Q| = 1 for all
unseen tasks. The evaluation protocols of T0 and FLAN assess the generalization performance of
the upstream model as it is, and thus their evaluation is more about the quality of templates and the
upstream training tricks. In contrast, our evaluation protocol can also study how to efficiently adjust
the upstream model such that the updated models can generalize to new tasks without labeled data.
Thus, we believe ours is a more general setup for studying unsupervised cross-task generalization.

Retrieval augmentation in NLP. We aim to retrieve useful examples from the upstream data
and re-learning them for cross-task generalization. The proposed ReCross pipeline is inspired by
open-ended QA methods such as DPR (Karpukhin et al., 2020), DrFact (Lin et al., 2021), and
RAG (Lewis et al., 2020b). Retrieval augmentation also shows great performance in pre-training
LMs (Guu et al., 2020). Besides, Wang et al. (2022) shows that learning with similar data via retrieval
augmentation can improve the performance of a task-specific model. Rubin et al. (2022) show that
retrieving better demonstration examples is also helpful for in-context few-shot learning of GPT-3
style language models (Brown et al., 2020). The key challenge in the problem setup of this work is to
predict the utility of the examples for unseen tasks with the consideration of efficiency and scalability.
We have discussed more details about this challenge and related works in Sec. 2.

7 Conclusion & Future Directions

We demonstrate that retrieval augmentation can largely improve the cross-task generalization ability
to multitask LMs in unsupervised settings. Our proposed method, ReCross, is a straightforward
yet effective retrieval method that combines both efficient dense retrieval and effective pair-wise
reranking. Our empirical results show that it significantly outperforms both non-retrieval methods
and other baseline methods. We perform ablation studies showing the impact of changing query sizes,
retrieval sizes, upsampling ratios, etc. We also find the distribution of retrieved data for analyzing the
behavior differences between ReCross and others. We believe that our paper will spur further research
on retrieval-augmentation methods for cross-task generalization. Interesting future directions include:
1) improve the re-learning stage by including more information from query examples, 2) extend the
distant supervision mining process as a self-training procedure, 3) rigorously analyze the correlation
between upstream data and target tasks, etc.
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