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Abstract

Post-hoc explanation techniques on graph neural networks (GNNs) provide eco-
nomical solutions for opening the black-box graph models without model retraining.
Many GNN explanation variants have achieved state-of-the-art explaining results
on a diverse set of benchmarks, while they rarely provide theoretical analysis for
their inherent properties and explanatory capability. In this work, we propose
Structure-Aware Shapley-based Multipiece Explanation (SAME) method to ad-
dress the structure-aware feature interactions challenges for GNNs explanation.
Specifically, SAME leverages an expansion-based Monte Carlo tree search to ex-
plore the multi-grained structure-aware connected substructure. Afterward, the
explanation results are encouraged to be informative of the graph properties by
optimizing the combination of distinct single substructures. With the considera-
tion of fair feature interactions in the process of investigating multiple connected
important substructures, the explanation provided by SAME has the potential to
be as explainable as the theoretically optimal explanation obtained by the Shapley
value within polynomial time. Extensive experiments on real-world and synthetic
benchmarks show that SAME improves the previous state-of-the-art fidelity per-
formance by 12.9% on BBBP, 7.01% on MUTAG, 42.3% on Graph-SST2, 38.9%
on Graph-SST5, 11.3% on BA-2Motifs and 18.2% on BA-Shapes under the same
testing condition. Code is available at https://github.com/same2023neurips/same.

1 Introduction

Graph neural networks (GNNs) have demonstrated a powerful representation learning ability to deal
with data in non-Euclidean space. However, the explanation techniques for deep learning models
on images and text cannot directly apply to understand GNNs [27, 18, 6, 1]. There is a gap in the
understanding of how GNNs work, which largely limits GNNs’ application in many fields.

Many GNN explanation techniques aim to examine the extent to which GNNs depend on individual
nodes and edges of the graph [22, 35, 19, 24, 37]. However, graph features within nodes and
edges contribute different amounts of information when considered individually than contextualized
with topology [37, 39]. Therefore, discovering the most important explanation with one or more
connected components given an input graph and a well-trained GNN raises the additional challenge
of handling structure-aware feature interactions. Recently, a number of studies, including GNN-
LRP [25], SubgraphX [38] and GStarX [40] have endeavored to address this issue to some extent.
Although many of the current GNN explanation techniques have empirically achieved state-of-the-art
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explainability performance, the design of new GNN explanation techniques mainly relies upon
empirical intuition, iterative experiments, and heuristics principles. To the best of our knowledge, the
explanatory capability, potential limitations and inherent properties of GNN explanation techniques
have not yet been thoroughly studied from a theoretical perspective.

In this work, we propose a novel Structure-Aware Shapley-based Multipiece Explanation (SAME)
technique for fairly considering the multi-level structure-aware feature interactions over the graph
by introducing expansion-based Monte Carlo tree search (MCTS). Our construction is inspired by
the recently proposed perturbation-based GNN explanation methods [38, 40], which have proven
effective for providing explainability from a cooperative game perspective. We summarize the main
differences between SAME and previous work in Table 1. The main contributions and novelties
of this work include the following. (1) Theoretical aspect: i) We review the characteristics of
previous methods [22, 35, 19, 25, 38, 40] and highlight several desired properties (see Table 1)
that can be considered by explanation methods for GNNs. ii) We provide the loss bound of the
MCTS-based explanation techniques and further verify the superiority of our expansion-based MCTS
in SAME compared to previous work [38] in an intuitive manner (Sec. 3.2). (2) Empirical aspect: Our
experiments cover both real-world and synthetic datasets. The results show that i) SAME outperforms
previous SOTA with fidelity and harmonic fidelity metrics under the same testing condition (Sec. 5.1).
ii) SAME qualitatively achieves a more human-intuitive explanation compared to previous methods
across multiple datasets (Sec. 5.2).

Table 1: Comparison of the properties of different GNN explanation techniques.

Properties
Methods Grad

-CAM [22]
GNNExplainer [35] PGExplainer [19]

GNN
-LRP [25]

SubgraphX [38] GStarX [40] SAME(Ours)

Graph-level tasks X X X X X X X
Node-level tasks X X X X X X

Feature interactions X X X
Structure awareness X X X X

Multipiece explanation X X X X X X
Node-wise importance X X X

Substructure-wise importance X X X
Composite-wise importance X X X X X

Priority-based integration X X X X
Redundancy consideration X X X X

Note: Feature interactions and structure awareness are discussed in Sec. 3.1. Multipiece explanation is provided
in Sec. 3.2. Multi-grained importance (node / substructure / composite), priority-based integration and redundancy

consideration are presented in Sec. 4. Detailed mathematical definitions are provided in Appendix B.1.

2 Related Work

Improving the explainability of GNN models in a post-hoc fashion has been a theme in deep graph
learning. An intuitive way to explain a well-trained GNN is to trace the gradient in the models [3, 22],
where the larger gradient indicates the higher importance of node or edge of the graph. Previous work
has also studied the decomposition-based methods [26, 25, 9] which decompose the final prediction
into several terms and mark them as the important scores for input features. Another line of GNN
explanation techniques lies in perturbation-based methods [19, 31, 11, 34] which usually obtain a
mask for the input graph in various ways to identify the important input feature. SubgraphX [38],
as one of a perturbation-based method, samples the subgraphs from the input graph by the pruning-
based MCTS and finds the most important one via the Shapley value. However, the pruning-based
MCTS in SubgraphX leads to a much larger search space and thus causes higher computational
costs. Moreover, SubgraphX can only provide a single connected explanation for each graph, which
limits its explanatory power in many scenarios that require multipiece explanation. Most recently,
GStarX [40] scores node importance based on the Hamiache-Navarro (HN) value. Although GStarX
also fairly considers the structure-aware feature interactions, it fails to account for the multi-grained
importance, which might result in a suboptimal explanation. For other categories in GNN explanation
techniques, including surrogate methods [30, 41, 8, 12], generation-based methods [36, 15, 32], and
counterfactual-based methods [17, 2, 16], we refer readers to a recent survey [37].
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3 Theoretical Motivation

Notation and Preliminaries. The well-trained target GNN to be explained can be formulated as
f : G ! Y , where G denotes the space of input graphs and Y refers to the related label space. A graph
can be denoted as G = (V,X,E), where V 2 Rn⇥n represents node set, X 2 Rn⇥d is the node
feature set and E 2 Rn⇥n denotes edge set. Given a well-trained GNN model f(·) and an input graph
G, the goal of GNN explanation is to find the most important explanation G⇤

ex
from G. Formally,

this can be defined as an optimization problem that maximizes the importance of the explanation Gex

for a given graph G with n nodes using an importance scoring function I(f(·), Gex, G):
G⇤

ex
= argmax

Gex✓G

I(f(·), Gex, G), (1)

where each explanation Gi

ex
has ni nodes, and the other nodes not in the explanation can be expressed

as {G\Gi

ex
} = {vj}nj=ni+1. It is noteworthy that each explanation Gi

ex
might contain one or more

substructures (i.e., connected components).

3.1 Structure-aware Shapley-based Explanations Satisfies Fairness Axioms

Unlike grid-like images or sequence-like texts, graphs have more complex and abstract structures.
The importance scoring function of explanations determines the reliability and explanatory power of
the GNN explanation method. Therefore, we present the idea that a comprehensive assessment of the
importance of an explanation should consider the feature interactions under the constraints of the
input graph’s topology.

Shapley value [28], originating from cooperative game theory, is the unique credit allocation scheme
that satisfies the fairness axioms. This concept is similar to the importance scoring function for
explanation with the consideration of feature interactions. Some previous work have brought Shapley
value into deep learning explanation methods [18, 5, 14]. In our study, the importance assessment
of explanation is treated as a cooperative game, where the explanation Gi

ex
and all nodes not in the

explanation {G\Gi

ex
} are the players in the game. Therefore, when scoring the importance of any

explanation Gi

ex
, a set of players participating in the game can be denoted as:

Pi = {Gi

ex
, vni+1, vni+2, . . . , vn| {z }

{G\Gi
ex}

}.

Inspired by the close connection between feature interactions and Shapley value, we define several
desirable properties of importance scoring function for explanation according to fairness axioms:

Property 1. (Efficiency). The sum importance of all players pj in Pi is the same as the improve-

ment of GNN f(·) on Pi over an empty set,
P|Pi|

j=1 I(f(·), pj , G) = f(Pi)� f(;).

Property 2. (Symmetry). For any explanation Gi

ex
, if there exist two other players pj , pk 2

{Pi/Gi

ex
} that satisfy f(Gi

ex
[ pj) = f(Gi

ex
[ pj), then I(f(·), pj , G) = I(f(·), pk, G).

Property 3. (Dummy). If a player pj makes no contribution to GNN f(·), i.e. f(Gi

ex
[ pj) =

f(Gi

ex
) holds for any Gi

ex
, then I(f(·), pj , G) = 0.

Property 4. (Monotonicity). Consider two well-trained GNN models f1(·) and f2(·), given an

explanation Gi

ex
, if for any player pj , f1(Gi

ex
[ pj) � f1(pj) � f2(Gi

ex
[ pj) � f2(pj) always

holds, then I(f1(·), Gi

ex
, G) � I(f2(·), Gi

ex
, G).

Shapley value can well satisfy the above four fairness Properties 1-4. However, the Shapley-based
importance scoring function attempts to take all nodes in the graph except explanation Gi

ex
into the

cooperation game, which not only ignores the topological information of the input graph but also
brings huge computational costs. Fortunately, [38] alleviate this issue by modifying the Shapley-
based importance scoring function as ‘k-hop Shapley’, which also makes it structure-aware:

I(f(·), Gi

ex
, G) =

X

pi✓{Pi,khop\Gi
ex}

|pi|!(|Pi,khop|� |pi|� 1)!

|Pi,khop|!
(f(pi [Gi

ex
)� f(pi)), (2)
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where I(f(·), Gi

ex
,G) denotes the weighted sum of the marginal contribution of explanation Gi

ex
,

and Pi,khop = {Gi

ex
, vni+1, vni+2, . . . , vni+ki} includes the nodes within the Gi

ex
as well as the

nodes in the k-hop neighbors of Gi

ex
.

3.2 Structure-aware Shapley-based Multipiece Explanation Provide Strong Explainability

The characteristics and properties within a graph or node tend to be jointly influenced by more than one
high-order connected community of the graph. This implies that the appropriate explanation within
this context requires the GNN explanation method to provide the multiple connected substructures
simultaneously.

To solve the above challenge, we first define the mathematical formalization of the search processes on
graphs by utilizing the MCTS-based GNN explanation methods. Then we propose a mathematically
coherent framework to explore the explanatory power of MCTS-based GNN explanation methods
using computational methods for the multi-armed bandit problem in the MCTS algorithm [20, 13].

Our mathematical framework is based on the hierarchical partitioning of the MCTS search space
X . More precisely, the smoothness of the MCTS search space X can be defined by the inequality
|f(xi) � f(xj)|  l(xi, xj), where l(xi, xj) refers to the Lipschitz continuity between any two
substructures xi and xj in X . It serves as a critical metric to ascertain the boundedness of the change
in the explanation method f(·) concerning the change in input substructures. Assuming that the
function f(·) is Lipschitz continuous and the l is given, an evaluation of the function f(·) at any point
xt enables us to define an upper bounding function Bt(x) for f(·). This upper bounding function can
be refined after each evaluation of f(·):

8x 2 X , f(x)  Bt(x)
def

= min
1st

[f(xs) + l(x, xs)], (3)

where metric l satisfies the following Assumptions 1-3. In the context of computational uncertainties
associated with MCTS, the evaluation strategy in (3) offers the potential to describe specific numerical
estimates within an undefinable space.

Assumption 1. (Local smoothness). There exists at least one stage-optimal substructure x?
2 X

of f(·) (i.e. f(x?) = sup
x2X f(x)) and 8x 2 X , f(x?)� f(x)  l(x, x?) holds.

Assumption 2. (Decreasing diameters). There exists a decreasing sequence �(h) > 0, such that

for any depth h � 0 and for any cell Xh,i of depth h, supXh,i
l(X ,Xh,i)  �(h) holds.

Assumption 3. (Well-shaped cells). There exists ⌫ > 0 such that for any depth h � 0, any cell

Xh,i contains a l-ball of radius ⌫�(h) centered in xh,i.

With the given assumptions, the search space X can be partitioned into KH subsets (i.e., cells) Xh,i

using a K-ary tree of depth H , where 0  h  H, 0  i  Kh�1. Based on this partitioning
method, the MCTS process can be treated as the expansion of this K-ary tree. The root of K-ary
tree (i.e., cell X0,0) corresponds to the whole search space X . Each cell Xh,i corresponds to a node
(h, i) of the tree, where h denotes the depth of the tree and i refers to the index. Each node (h, i)
possesses K children nodes {(h + 1, ik)}1kK s.t. the associated cells {Xh+1,ik , 1  k  K}

form a partition of the parent’s cell Xh,i. Consequently, expanding one node requires adding one of
its K children to the current tree, which corresponds to subdividing the cell Xh,j into K children
cells {Xh+1,j1 , . . . ,Xh+1,jK}. Assume that there exist a decreasing sequence �(h) � 0 that satisfies
supXh,i

l(X ,Xh,i)  �(h) for any Xh,i. The decreasing sequence �(h) ensures that each cell size
reduces with increasing depth.

The search space X can be divided through the above partitioning method according to �(h), with
respect to l-open balls. Let Tt denote nodes of the current tree, and Lt denotes the incoming leaves
of Tt to be expanded at round t. Recalling our earlier definition of Bt(h) which was derived from the
Lipschitz continuity, we can now generalize it to a new representation that connects to �(h). Formally,
it is expressed as:

bh,i = f(xh,i) + �(h). (4)
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Based on this, we now consider which nodes will be expanded during the search. Note that Assump-
tion 2 implies that the b-value of any cell contains x? upper bounds f?. In other words, for any cell
Xh,i such that x?

2 Xh,i,

bh,i = f(xh,i) + �(h) � f(xh,i) + l(xh,i, x
?) � f?. (5)

This means that a leaf (h, i) of a K-ary tree will never be expanded if f(xh,i) + �(h) < f?.
Therefore, under this partitioning strategy, the only set of nodes that will be expanded could be
defined as I def

= [h�0Ih, which could be stated as

Ih
def

= {nodes{h, i} such that f(xh,i) + �(h) � f?
}. (6)

In order to derive a loss bound, we now define a measure of the quantity of near-optimal states, called
near-optimality dimension. For any ✏ > 0, the set of ✏-optimal states can be defined as

X✏ := {x 2 X , f(x) � f?
� ✏}. (7)

Definition 1. (⌘-near-optimality dimension). The ⌘-near-optimality dimension is the smallest

d � 0 such that there exists C � 0, for all ✏ > 0, the maximum number of disjoint l-balls of radius

⌘✏ with centers in X✏ is less than C✏�d
.

Definition 1 represents the number of near-optimal states for a function f(·) around its optimal
solution. It is important to note that d is not an intrinsic property of f(·) as we are packing near-
optimal states using l-balls. Instead, it characterizes both f(·) and l and depends on the constant.
In order to relate this measure to the algorithmic details, we also need to correlate it with the
characteristics of the partitioning, specifically the shape of the cells. That is, the near-optimality
dimension d is dependent on a particular constant, which will be determined in accordance with the
parameter ⌫ as defined in Assumption 3.

Lemma 1. Let d be the ⌫-near-optimality dimension, and C the corresponding constant. Then

|Ih|  C�(h)�d
.

Building upon Lemma 1, we further analyze the loss of the MCTS-based GNN explanation methods
across n iterations in Theorem 1.

Theorem 1. Let us write h(n) the smallest integer h such that C⌃h

l=0�(l)
(�d)

� n, then the loss

of the MCTS-based GNN explanation methods is bounded as:

rn  �(h(n)) (8)

The loss rn reflects the gap between the obtained and optimal explanations over n iterations. We aim
to bound this loss by �(h(n)), illustrating that refining the partition of the search space X reduces the
loss, thus better approximating the optimal explanation. We provide a complete description of the
mathematical properties and theorem proofs of the framework in Appendix B.2.

6KDSOH\�YDOXH������ 6KDSOH\�YDOXH������ 6KDSOH\�YDOXH������ 6KDSOH\�YDOXH������6KDSOH\�YDOXH������

2SWLPDO�H[SODQDWLRQ 6XERSWLPDO�H[SODQDWLRQV

1RGH�WKDW�PDWFK�WKH�JURXQG�WUXWK�H[SODQDWLRQ 1RGH�WKDW�GR�QRW�PDWFK�WKH�JURXQG�WUXWK�H[SODQDWLRQ

Figure 1: Illustration of ground truth explanation and the possible sub-optimal explanations provided
by pruning-based MCTS explanation techniques.

Leveraging the mathematical underpinnings provided above, as demonstrated in Figure 1, we employ
an example to contextualize the theoretical insights within the GNN explanation. The ground truth
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explanation is highlighted in yellow which includes two connected components. When searching for
explanations starting from any node in the two components through the pruning-based MCTS, the

nodes in other components are accessible only via the unimportant node which is highlighted in blue.
In this situation, given sparsity constraints, the pruning-based MCTS can only generate the suboptimal
explanation. As a consequence, regardless of the search trajectory adopted, the diameter of the l-ball
remains unyielding, failing to converge to the ⌘-near optimality numerical solution. Therefore, it is
necessary to design an explanation method that can accurately retain important nodes while avoiding
irrelevant nodes, thus increasing the likelihood of discovering the optimal explanation. This ambition
resonates with previously proposed loss bound rn  �(h(n)), emphasizing the need for advanced
exploration to reduce losses and approximate the optimal explanation with higher precision.
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Figure 2: Overview of Structure-Aware Shapley-based Multipiece Explanation (SAME) method.
(a) Important substructure initialization phase aims at searching the single connected important
substructure. (b) Explanation exploration phase provides a candidate set of explanations by optimizing
the combination of different important substructures. (c) The comparison of the final explanation
with the highest importance score from the candidate set with the optimal explanation.

4 Structure-aware Shapley-based Multipiece Explanation Method

As we discussed in Section 3, the structure-aware Shapley-based multipiece explanation provides a
potential way to effectively uncover the GNN black box. In order to approximate the optimal Shapley-
based explanation, we propose a two-phase framework, Structure-aware Shapley-based Multipiece
Explanation (SAME) method, which is composed of (1) an important substructure initialization

phase and (2) an explanation exploration phase, as shown in Figure. 2.

In the first phase (Section 4.1), we extend an expansion-based Monte Carlo tree search as an important
substructure initializer to generate connected components not only of high importance but also of
multi-grained diversity. In the second phase (Section 4.2), we apply the important substructure set as
an action set in another expansion-based Monte Carlo tree search to explore potential explanations.

4.1 Important Substructure Initialization

In this section, we propose an expansion-based MCTS approach for important substructure initializa-
tion. It is intuitive that a favorable initialization should not exclude important substructures at any
scale and should not include redundant substructures. Formally, these can be defined as:

Property 5. (Node-wise importance). Given an input graph G to be explained, for any node

vi 2 G, its I(f(·), vi, G) importance will be considered.

Property 6. (Substructure-wise importance). Given an input graph G to be explained, for any

substructure Gsubi ✓ G, its importance I(f(·), Gsubi , G) will be considered.
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Property 7. (Composite-wise importance). Given an explanation Gi

com
✓ G consisting of one or

more substructures, its importance I(f(·), Gi

com
, G) will be considered.

Property 8. (Priority-based integration). Given an explanation Gj

ex
with any size, the node

vi 2 {G\Gj

ex
} will be added on Gj

ex
to get a new explanation Gk

ex
, if and only if for any

vl 2 {G\(Gj

ex
[ vi)}, I(f(·), Gj

ex
[ vi, G) > I(f(·), Gj

ex
[ vl, G) holds.

Property 9. (Redundancy consideration). Given an explanation Gex ✓ G, if I(f(·), Gex\{i}, G)
> I(f(·), Gex, G) holds, the new explanation G0

ex
= Gex\{i} will be chosen.

Taking the above properties into account, we propose our expansion-based Monte Carlo tree search
for important substructure initialization which aims at providing important connected components of
the graph. The detailed Algorithm is presented in Appendix C. Given a graph G to be explained, the
node in the MCTS is defined as Ni which contains the following variables:

Ni : {G
i

sub
, Ti, Ri, Ai, Ci,Wi}

where Gi

sub
denotes the corresponding substructure of graph G for node Ni in the search tree. Ti is

the visiting time of node Ni in the search tree, Ri refers to the the importance (reward) of substructure
Gi

sub
. Ai represents the action set of node Ni. Ci = {Nj}

|Ai|
j=1 represents a set of children with

respect to node Ni, and we denote Nj as one of the child nodes obtained through the action aj 2 Ai

at parent node Ni. Wi means the sum of the children’s rewards.

The expansion-based MCTS is initialized with an empty set, N0 = ;. At the beginning of each
iteration, our method will randomly choose an unvisited node from the graph, or choose the node
with the highest reward if all nodes have been visited. Then, the tree will be iteratively expanded
according to the node-wise tree expansion until it reaches a leaf node. Specifically, given an MCTS
node Ni, it will only choose the child node within 1-hop neighbors of the associate Gi

sub
to expand,

which means that the action set is topology dependent. Therefore, the substructure of any nodes in
the search tree will be a connected component. During the child node selection, the reward of each
child node Rj of Ni will be calculated following Equation (2). Finally, the chosen action is decided
following the child selection strategy:

a? = argmax
aj

Wj

Tj

+ �Rj

qP
k2Ci

Tk

1 + Tj

(9)

where � is a hyperparameter for balancing exploration-exploitation trade-off [4]. We define the
maximum substructure size as �, and for any Gi

sub
✓ G, |Gi

sub
|  � always holds. After reaching

the maximum substructure size, the reward of associated leaf nodes is backpropagated up the tree
along the search path, updating all the information stored in each node of the path. The important
substructure set includes all nodes in MCTS after performing M1 times iterations.

4.2 Explanation Exploration

In this section, we propose another expansion-based MCTS for exploring high-explainable explana-
tions. The detailed algorithm is provided in Appendix C. Different from the previous expansion-based
MCTS provided in Section 4.1, we propose a slight modification on it such that we change the action
set from node level to substructure level. As Section 3.2 discussed, this can be useful not only to
obtain more flexible explanation results on real-world cases but also to provide the higher potential to
approximate the theoretically optimal Shapley-based explanation.

The action set of MCTS in this phase is built upon the substructure set derived from the important
substructure initialization phase. Similar to the previous MCTS, at the beginning of each iteration,
it will randomly select an unvisited substructure from the set, or choose the substructure with the
highest reward to expand if all substructures have been visited. Afterward, the substructure-wise
tree expansion also follows the Equation (2) and (9) to develop the tree and provide the explanation
candidate. The action set corresponding to each node of MCTS in the phase is the whole substructure
set. To further accelerate the exploration, we filter the unimportant substructures by only keeping the
top K important substructure in the action set.
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Notice that calculating all possible combinations of either substructures or nodes can definitely
obtain the optimal Shapley-based explanation. Nevertheless, such node-wise or substructure-wise
brute force methods lead to O(2|V |) computational complexity, which is an NP-hard problem. We
provide a feasible solution to approximate the optimal Shapley-based explanation in polynomial time
O(M1�|V |

2 + M1�|V | ⇥ |E| + M2Kts
|V |⇥(1�sparsity)

�
), where M1 and M2 denote maximum

number of iterations of the first phase and second phase respectively, � is the maximum substructure
size, K refers to the size of the important substructure set and ts is the time budget of MCTS in the
second phase. We leave the derivation of the time complexity in Appendix B.4.

Table 2: Comparison of our SAME and other baseline using fidelity.

Methods

Dataset Graph classification Node classif.

Molecular graph Semantic graph Synthetic graph

BBBP MUTAG Graph-SST2 Graph-SST5 BA-2Motifs BA-Shapes

Grad-CAM [22] 0.226±0.036 0.261±0.018 0.257±0.056 0.229±0.042 0.472±0.010 -
GNNExplainer [35] 0.148±0.041 0.188±0.031 0.143±0.041 0.170±0.046 0.442±0.026 0.154±0.000
PGExplainer [19] 0.197±0.043 0.156±0.004 0.219±0.040 0.207±0.036 0.431±0.011 0.135±0.020
GNN-LRP [25] 0.111±0.040 0.253±0.030 0.103±0.042 0.131±0.057 0.146±0.010 0.155±0.000
SubgraphX [38] 0.433±0.073 0.379±0.030 0.262±0.027 0.283±0.042 0.493±0.003 0.181±0.005

GStarX [40] 0.117±0.043 0.656±0.096 0.183±0.050 0.186±0.050 0.476±0.014 -

SAME 0.489±0.034 0.702±0.125 0.373±0.042 0.393±0.022 0.549±0.004 0.214±0.000
Relative Improve 12.9%" 7.01%" 42.3%" 38.9%" 11.3%" 18.2%"

Note: The fidelity results are averaged across different sparsity from 0.5 to 0.8. The quantitative results are
presented in the form of mean ± std. The previous SOTA results on different datasets are marked with an
underline. Relative Improve denotes the relative improvement of our SAME method over the SOTA methods.

5 Experiments

Our objective of the experiments is to understand the following two questions. 1) Are the explanations
provided by SAME more informative and faithful compared to other methods under the same test
conditions? 2) Can SAME provide a more human-intuitive explanation than others? To this end, we
perform extensive quantitative and qualitative analysis to evaluate the explanatory power of SAME,
following previous literature [38, 40]. The SAME is compared with various competitive baselines
and shows state-of-the-art (SOTA) results in all the cases.

Dataset. The experiments are conducted on six datasets with diverse categories, including molecular
graphs (e.g., BBBP [33] and MUTAG [7]), sentiment graphs (e.g., Graph-SST2 and Graph-SST5 [29])
and synthetic Barabási-Albert graphs (e.g., BA-2Motifs [19] and BA-Shapes [35]). We conduct a
node classification task for the BA-Shapes dataset, and graph classification tasks for the rest five
datasets. More detailed descriptions of datasets are provided in Appendix D.

Metrics. In this work, we use several criteria [37] to evaluate our approach: (1) Sparsity quantifies
how compact are the explanations, and further facilitates fair comparison by restricting the different
explanations to the same size. (2) Fidelity determines how informative and faithful are the explanations
by removing the selected nodes. (3) Inv-Fidelity measures the explanations from the same aspect as
fidelity while it keeps the selected nodes. (4) Harmonic fidelity [40] normalizes fidelity by sparsity
and takes a harmonic mean to make different explanations comparable with a single metric. We leave
detailed mathematical definitions of the above metrics in Appendix E.

Experimental setup. In the important substructure initialization phase, we set the MCTS iteration
number M1 to 20. The exploration-exploitation trade-off � is set to 5 for BBBP and 10 for other
datasets. The substructure size � has different settings in different datasets. In the explanation
exploration phase, we set the hyperparameter K = 7 for important substructure filtering, M2 = 10
for the MCTS iteration number, and the other hyperparameters of MCTS remain the same as
the previous phase. We follow [37, 40] to set other baselines hyperparameters. All methods are
implemented in PyTorch [21] and PyG [10]. Our experiments are conducted on a single Nvidia V100
GPU with an Intel Xeon Gold 5218 CPU. We leave the detailed settings in Appendix F.
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Table 3: Comparison of inference time (in seconds) on different datasets.

Methods
Dataset BBBP MUTAG Graph-SST2 Graph-SST5 BA-2Motifs BA-Shapes

Grad-CAM [22] 0.16 0.23 0.39 0.44 0.14 -
GNNExplainer [35] 7.56 1.96 7.64 19.39 1.89 2.72
PGExplainer [19] 0.15 0.21 0.35 0.43 0.12 0.13
GNN-LRP [25] 2.37 1.97 5.84 5.47 3.30 51.77
SubgraphX [38] 26.72 151.75 36.48 71.32 85.50 162.80
GStarX [40] 84.54 25.24 30.64 54.49 77.99 -

SAME 7.86 5.67 6.06 8.83 8.19 14.08

Note: The PGExplainer needs training before inferring the explanation.

cons.

that

and

but

of

struct. carefully

tortured is

unset. --

alive unques.

scream a

Sentence: “a carefully structured scream of consciousness that is tortured and unsettling -- but unquestionably alive.”
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Figure 3: Comparison of the explanations on Graph-SST2 with GCN classifier.

5.1 Quantitative Analysis

To validate the overall explainability performance, we compare the proposed SAME with a series of
competitive baselines under different metrics. Table 2 shows the averaged fidelity under different
sparsity (i.e., sparsity=[0.5,0.6,0.7,0.8]). The proposed SAME significantly outperforms the previous
state-of-the-art on both real-world and synthetic datasets. Specifically, the performance improvement
of SAME is 12.9% on BBBP, 7.01% on MUTAG, 42.3% on Graph-SST2, 38.9% on Graph-SST5,
11.3% on BA-2Motifs and 18.2% on BA-Shapes. Notably, we also demonstrate reliable improvements
of SAME over previous SOTA methods in terms of harmonic fidelity at different sparsities, with an
average improvement of 1.92% on the graph classification task. This result implies SAME has a
higher ability to discover important components in the graph than all baseline methods. As for the
inv-fidelity metric, the explanatory power of SAME is competitive compared with the previous SOTA.
Detailed results for harmonic fidelity and inv-fidelity are in Appendix G.1. Since the proposed SAME
is a model-agnostic method, it works well with GAT and GIN. More comparisons with GraphSVX [8]
and OrphicX [16] are provided in Appendix G.3.

The computational cost of SAME and other baselines on different datasets are summarized in Table
3. We show that SAME consistently achieves much lower computational cost compared to GStarX
and SubgraphX, reflecting its efficiency and robustness. This further verifies that expansion-based
MCTS in SAME can work effectively in various scenarios.

5.2 Qualitative Analysis

Figure 3 presents the visualization comparison of the explanations on sentiment graphs. The nodes of
adjectives and adverbs are considered to be important for they reveal the attitude of a sentence. Thus,
the optimal explanation here is therefore the word or phrase with a positive meaning. In this sense,
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Figure 4: Comparison of the explanations on MUTAG with GIN classifier.
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Figure 5: Comparison of the explanations on BA-2Motifs with GCN classifier.

SAME can better capture the adjectives-or-adverbs-like graph structures than other baselines. For
instance, SubgraphX focuses on adjectives and adverbs but fails to capture the "but" word which bears
significant weight under the contrasting relationship. Intuitively, without the "but", the contribution of
"tortured" and "unsettling" should be negative. GStarX achieves to identify words that are consistent
with the opinion such as "carefully" and "alive," yet overlooks the crucial transitional relationship
between "alive" and "unsettling". Figure 4 shows the visualization of explanations on molecular
graphs. The ground truth explanations (i.e., functional group �NO2) of MUTAG are labelled by
human experts. We see that SAME is able to provide the explanations the same as the ground truth.
We also illustrate the explanation of the synthetic graph in Figure 5. The ground-truth label of all the
graphs in BA-2Motifs is a 5-node-house-structure motif. Results show that SAME exactly finds the
ground-truth explanation compared to other baselines. We leave more comparisons in Appendix G.2.

6 Conclusion

Structure-aware Shapley-based Multipiece Explanation provides strong explainability over GNN
models, while this ability is limited by only using the single connected substructure. Moving
forward from the theoretical deduction, we propose the SAME method for explaining GNN, a
novel perturbation-based method that is aware of input graph structure, feature interactions, and
multi-grained importance. Experimental results demonstrate that our SAME consistently outperforms
SOTA methods on multiple benchmarks by a large margin with various metrics and provides a more
understandable explanation.

Limitations. In the implementation of SAME, the Shapley value is obtained through approximation
following [38]. Under this approximation, the fairness axioms discussed in Section 3.1 no longer
hold. This is also identified as an unsolved issue for the Shapley value in machine learning by [23].
In addition, the scalability of SAME on large graphs can also become a potential challenge. As the
time complexity shown in Section 4, the time overhead caused by the increase in the number of nodes
will become very expensive when scaling up the size of the input graph.
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Appendix to “SAME: Uncovering GNN Black Box with
Structure-aware Shapley-based Multipiece Explanation”
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This appendix comprises both theoretical and experimental materials and is structured as follows.
Section A presents a notation table that includes all notations used in this paper. Section B provides the
full theoretical analysis. Section C presents detailed algorithms related to Section 3 in the manuscript.
Section D-F show the detailed settings of the experiments in this work. Section G provides additional
quantitative and qualitative results.

A Notations
Table S1 contains the notations organized into three sections, each pertaining to different aspects of

our paper. These include:

• Graph: These symbols are related to graph theory, representing elements such as graph nodes,
edges, and other attributes of graphs.

• MCTS: These symbols represent elements related to the Monte Carlo Tree Search (MCTS)
algorithm, such as MCTS nodes, actions, and rewards.

• Importance score: These symbols are used to denote values associated with measuring the
importance of explanations in our explanation algorithm.
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Table S1: Notations of the graph (see top part), MCTS (see middle part) and importance score (see
bottom part).

Notation Description

G The graph set to be explained. For any input graph G 2 G, G = (V,X,E),
V = {v1, v2, . . . , vn} denotes node set,
E 2 Rn⇥n denotes edge set and X 2 Rn⇥d denotes node feature set.

Gex The set of the explanation candidates for a given graph G. Gex = {G
i
ex}

m
i=1,

where G
i
ex ✓ G, m is the number of explanation candidates

G
i
sub Each G

i
sub is a connected component, and is called a substructure

G
i
com Each composite G

i
sub contains more than two nodes or substructures.

G
i
ex Each G

i
ex refers to a possible final explanation, i.e., Gi

ex = {G
i
subj

}
li
j=1,

where li is the number of substructures in explanation G
i
ex

Ti The number of visit for node i in MCTS
Ri The reward of node i in MCTS
Ci The child set of node i in MCTS
Ai A set of actions of MCTS node i to reach its children
Wi The reward of all children for MCTS node i

N The node set of the corresponding MCTS of the input graph G.
Each node of MCTS can be denoted as Ni 2 N ,
where Ni is a structure containing {G

i
ex, Ti, Ri, Ai, Ci,Wi}.

⇡ The strategy to choose the best child in MCTS.

Pi A set of players (including all nodes in the input G).
f(·) A well-trained GNN model.

I(·, ·, ·) The importance score, where we employ Shapley value here in this paper.
| · | The size of a set.

B Theoretical Analysis

B.1 Definitions of Desire GNN Explanation Technique Properties
The following content is a detailed definition of desired properties in Table 1 of the main manuscript.

• Graph-level tasks: the GNN explanation method can handle the graph classification/regression
tasks.

• Node-level tasks: the GNN explanation method can handle the node classification/regression
tasks.

• Feature interactions: given a graph G to be explained, when measuring the importance of the
explanation result Gex, the GNN explanation method can consider the influence of {G/Gex} on
the importance of Gex.

• Structure awareness: given a graph G to be explained, when measuring the importance of the
explanation result Gex, the GNN explanation method is sensitive to the topology of the given
input graph G.

• Multipiece explanation: the GNN explanation method can provide the explanation Gex that
can be composed of one or more connected components.

• Node-wise importance: given any node vi 2 G, its importance I(f(·), vi, G) can be considered
by the GNN explanation method.

• Substructure-wise importance: given any substructure G
i
sub ✓ G, it can be directly calculated

as a whole through the GNN explanation method to obtain its importance I(f(·), Gi
sub, G). Note

that any substructure is a connected component which has more than one node.
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• Composite-wise importance: given any composite G
i
com ✓ G consisting of more than two

nodes or substructures, it can be directly calculated as a whole through the GNN explanation
method to obtain its importance I(f(·), Gi

com, G).

• Priority-based integration: given an explanation G
j
ex ✓ G with any size, the node vi 2

{G/G
j
ex} will be added by the GNN explanation method on G

j
ex to get a new explanation, if

and only if for any node vk 2 {G/G
j
ex} except vi, I(f(·), {vi [G

j
ex}, G) � I(f(·), {vk [G

j
ex}, G)

always holds.

• Redundancy consideration: given an explanation G
j
ex ✓ G, if there exist a node vi 2 {G/G

j
ex}

that satisfies I(f(·), {Gj
ex/vi}, G) � I(f(·), Gj

ex, G), the GNN explanation technique would not
choose G

j
ex as the final explanation.

%UDLQ�1HWZRUNV�$VVRFLDWHG�
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Figure S1: Examples of the characteristics and properties within a graph or node.

As Figure S1 shows, the characteristics and properties within a graph or node tend to be jointly
influenced by more than one high-order connected community of the graph. The "multipiece explanation"
property is aware of such an attribute by considering whether multiple disconnected pieces are allowed
to appear together in the explanation output. For example, when "A" and "B" are two orthogonal
connected components and the ground truth explanation for a prediction is "A and B", then the GNN
explanation method has a probability of providing the correct "A and B" explanation.

We call a GNN explanation method that has the "structure-awareness" property if it can process
the structural information of the input graph, whether through explicit mechanisms, as demonstrated
by GstarX, or implicit modalities, as exemplified by SubgraphX and this study.

B.2 Discussion about Four Fairness Properties
Efficiency demonstrates that the aggregated importance of individual substructures is equivalent to
the prediction of GNN on the entire substructure set. Symmetry and Dummy take into account the
equal importance of substructures with the same interactions and the substructures that are completely
unimportant, respectively. Monotonicity ensures that the explanation method is consistent in the trend
of results between different well-trained GNN models given the same dataset.

B.3 Detailed Proof of Regret Bound
The proper definition of the regret phenomenon that the algorithm or the function f encounters must
be considered to make the objective clear. Prior studies have recognized two principal definitions:

We recall the Lemma 1 in the main manuscript as follows.

Lemma 1. Let d be the ⌫-near-optimality dimension (where ⌫ is defined in Assumption 3 of the
main manuscript), and C is the corresponding constant. Then |Ih|  C�(h)�d.

Proof. From Assumption 3 in the main manuscript, each cell (h, i) contains a ball of radius ⌫�(h)
centered at xh,i. Consequently, if |Ih| = |{xh,i 2 X�(h)}| exceeds C�(h)�d, this would imply the
existence of more than C�(h)�d disjoint l-balls of radius ⌫�(h), each centered within X�(h). This
assertion would contradict the definition of d.

We recall the Theorem 1 in the main manuscript as follows.
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Theorem 1. Let us write h(n) the smallest integer h such that C
Ph

l=0 �(l)
�d
� n. Then the loss of

algorithm is bounded as rn  �(h(n)).

Proof. Consider the tuple (hmax, jmax) to be the node with the maximum depth that the algorithm
expands up to the nth round. Given that the algorithm’s expansion is limited to nodes within the set
I, we can provide that the total number of nodes expanded, denoted by n, adheres to the following
condition:

n =
hmaxX

l=0

K
l
Kl�1X

j=0

1 {(h, j) has been expanded}



hmaxX

l=0

|Il|

 C

hmaxX

l=0

�(l)�d
,

from Lemma 1. Now from the definition of h(n) we have hmax � h(n). Finally, since node (hmax, jmax)
has been expanded, we have that (hmax, jmax) 2 I, thus f(x(n)) � f(xhmax,jmax) � f

?
� �(hmax) �

f
?
� �(h(n)).

Corollary 1. Assume that �(h) = c�
h for some constants c > 0 and � < 1, if d > 0, then the loss

decreases polynomially fast:

rn  (
C

1� �d
)1/dn�1/d

If d = 0, then the loss decreases exponentially fast:

rn  c�
n/C�1

Proof. From Theorem 1,whenever d > 0 we have

n  C

h(n)X

l=0

�(l)�d = Cc
�d �

�d(h(n)+1)�1

��d � 1
(1)

thus �
�dh(n)

�
n

Cc�d (1� �
d), therefore we can also have:

rn  �(h(n))  c�
h(n)
 (

C

1� �d
)1/dn�1/d (2)

Now, if d = 0 then n  C
Ph(n)

l=0 �(l)�d = C(h(n) + 1), and we deduce that the loss is bounded as
rn  �(h(n)) = c�

n/C�1.

B.4 Analysis of Time Complexity
Given a graph G = (V,E), we take a single iteration as an example to analyze the time complexity of
the expansion-based MCTS in our proposed SAME. A single iteration includes four steps: selection,
expansion, simulation and backpropagation [1].

B.4.1 Important Substructure Initialization Phase

In this phase, the goal of our SAME is to figure out a group of important substructures whose
size is smaller than �. In the selection step, our method chooses an unvisited node from the
graph or chooses the node with the highest reward if all nodes have been visited (O(|V |)). Then,
in the expansion step, our method selects the node within 1-hop neighbors whose value is largest
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according to G, which requires O(1), and adds it to the tree. In the simulation step, only the
adjacency node will be appended each time. For the graph G, in the worst case SAME will append
all the nodes by visiting all the edges in the graph. Thus, the time complexity of simulation is
O(|V | + |E|). For the backpropagation step, since the maximum size of a substructure is �, the
depth of the MCTS tree will not exceed �. The time complexity of reward backpropagation is bounded
by O(�). Since we perform M1 iterations, according to the law of multiplication, the time complexity
of the first phase is O(M1) ⇥ O(selection)⇥O(expansion)⇥O(simulation)⇥O(backpropagation) =
O(M1�|V |

2 +M1�|V |⇥ |E|).

B.4.2 Explanation exploration phase

In the selection step, the MCTS is initialized with an unvisited substructure from Important
Substructure Set (size = K, where K ⌧ |V |) or chooses the substructure with the highest reward
if all substructures have been visited (O(K)). The expansion step is O(1) as we only need to
append the substructure with the largest value to the current state. In the following simulation
step, our method will append other substructures to the current state until the size exceeds the
sparsity limit, which is bounded by O(2K) for finding all possible combination. Notice that O(2K)
can be very large, we set a maximum simulation time ts as budget which requires O(ts). Since the
final explanation is highly related to the sparsity, the cost of backpropagation step is bounded by
O( |V |⇥(1�sparsity)

� )), where � is the maximum size of each substructure. With M2 iterations, the time
complexity in this phase is O(M2)⇥O(selection)⇥O(expansion)⇥O(simulation)⇥O(backpropagation)

= O(M2Kts
|V |⇥(1�sparsity)

� ).
Overall, time complexity of SAME is O(M1�|V |

2 +M1�|V |⇥ |E|+M2Kts
|V |⇥(1�sparsity)

� ). As the
ts, �, K, M1, M2 and sparsity is predefined, therefore SAME is a polynomial-time method under these
constraints.

C Detailed Pseudo Code of SAME
In this section, we are going to provide a detailed overview of the processes of SAME which includes

important substructure initialization and explanation exploration.
Algorithm 1 outlines the process of using Monte Carlo Tree Search (MCTS) to find a set of important

substructures, as mentioned in Section 3.1 of the main manuscript. Algorithm 2 and 3 illustrate the
method to discover an optimal explanation from these important substructures, as described in Section
3.2. Algorithm 4 provides a detailed description of how the importance of an explanation is assessed
using the structure-aware Shapley value, which was proposed in Section 2.1 of your document. This
algorithm outlines the steps necessary to approximate the Shapley value for a given explanation,
effectively measuring the contribution of each individual component via sampling.

D Dataset Description
We provide details of the datasets used in our experiments, including BBBP [11], MUTAG [2], BA-

2Motifs [8], BA-Shapes [12], Graph-SST2 [7], and Graph-SST5 [7].
Molecular graphs. We use the BBBP [11] containing approximately 2000 molecular graphs, which
are classified into two classes over the property of blood–brain barrier penetration (BBBP). Another
dataset MUTAG [2] is a collection of molecules with �NO2 functional groups. The goal is to predict
whether these molecules are mutation-induced.
Barabási-Albert graphs. The BA-2Motifs [8] and the BA-Shapes [12] are used for graph classification
and node classification respectively. For each instance in BA-2Motifs, it is a Barabási-Albert graph
attached by motifs with a structure either house-like or five-node-cycle-like. The instances are labelled
according to the type of motifs they get. The graph in BA-Shapes is a Barabási-Albert graph with
house-structured network motifs. The nodes in the graph will be classified into four classes, with labels
0 for the nodes belonging to the original graph and labels 1-3 for the nodes on the middle, bottom, or
top of the house-like structures respectively.
Sentiment graphs. The sentiment graphs are built from real-world text sequences, and labelled
according to the semantic meanings. Specifically, the nodes in the graph represent the words with an
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Algorithm 1: Important Substructure Initialization
Input: f(·), well-trained GNN model; G, graph to be explained; M1, max iteration number of

MCTS; �1, threshold of max single substructure size; ⇡, child selection strategy
Output: N , all nodes in MCTS

1 Initialize the root of the MCTS as N0

2 G
0
sub  ;

3 N  {N0}

4 for i = 1, 2, . . . ,M1 do

5 Ncur  N0

6 curPath [N0]
7 G

cur
sub  G

0
sub

8 while |G
cur
sub| < Nmax do

9 forall vj in the {adj(Gcur
sub)} do

10 Expand Ni to get Nj

11 G
j
sub  G

i
sub [ {vj}

// Compute the Shapley-based reward according to Algorithm 4
12 Rj  I(f(·), Gj

sub, G)
13 N  N [ {Nj}

14 end

15 Select the child Nnext and its substructure G
next
sub according to the strategy ⇡

16 Ncur  Nnext

17 G
cur
sub  G

next
sub

18 curPath curPath+Nnext.
19 N  N [ {Ncur}

20 end

21 Nl  Ncur // Nl is a leaf node
22 forall node Npathi in the curPath do

23 Tpathi  Tpathi + 1
24 Wpathi  Wpathi + I(f(·), Gl

sub, G)
25 end

26 end

Algorithm 2: Explanation Exploration
Input: f(·), well-trained GNN model; G, graph to be explained; N , set of all the nodes in

MCTS; K, number of the top most important structures; Kt, threshold to use MCTS;
M2, max iteration number of MCTS; �2, max explanation size; ⇡, child selection
strategy.

Output: Gex, the best explanation.
1 Sort the N in descending order of the corresponding reward Ri.
2 NK  top K substructures {N1, N2, . . . , NK} in N

3 Gex  {(Gsubi , Ri)}
M2
i=1

// Find explanations through MCTS in Algorithm 3.
4 G

0
ex  MCTS(f(·), G, M2, Nmax, ⇡, NK)

5 Gex  Gex [ G
0
ex

6 Sort the Gex in descending order of R.
// Gex is the explanation at the first element in the sorted Gex

7 Gex  Gex[0]
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Algorithm 3: MCTS Explanation Exploration
Input: f(·), well-trained GNN model; G, graph to be explained; M2, max iteration number of

MCTS; �2, threshold of max explanation size; ⇡, child selection strategy, NK , the
substructure set.

Output: Gex, the explanation set found in MCTS
1 Initialize the root of the MCTS as N

0
0

2 G
0
ex  ;, Gex  {G

0
ex}

3 for i = 1, 2, . . . ,M2 do

4 N
0
cur  N

0
0, curPath [N 0

0], Gcur
ex  G

0
ex

5 while |G
cur
ex | < �2 do

6 forall Nj in the {NK\N
0
cur} do

// Expand N
0
cur with Nj to get N

0
j:

7 N
0
j  N

0
cur [Nj

8 G
j
ex  G

i
ex [Gsubj

// Compute reward according to Algorithm 4
9 R

0
j  I(f(·), Gj

ex, G)

10 end

11 Select the child N
0
next and its substructure G

next
ex according to the strategy ⇡

12 N
0
cur  N

0
next, Gcur

ex  G
next
ex

13 curPath curPath+N
0
next.

14 end

15 N
0
l  N

0
cur // N

0
l is a leaf node

16 Gex  Gex [ {(Gcur
ex , R

0
cur)}

17 forall node Npathi in the curPath do

18 T
0
pathi

 T
0
pathi

+ 1

19 W
0
pathi

 W
0
pathi

+ I(f(·), Gl
ex, G)

20 end

21 end

Algorithm 4: Importance Scoring via Shapley Value
Input: f(·), well-trained GNN model; G, graph data; Gi

ex, explanation of G; T , sampling
times; k, number of neighboring hop

Output: Ii, importance of Gi
ex for GNN f(·).

1 Obtain the k-hop neighbor nodes of substructure G
i
ex, denoted as {vni+1, vni+2, . . . , vni+ki}.

2 Then, the players set Pi,khop = {G
i
ex, vni+1, vni+2, . . . , vni+ki}

3 for i = 1, 2, . . . , T do

4 Randomly sample a set Si ✓ {P\G
i
ex}

5 Obtain f(Si [ {G
i
ex}) and f(Si) by setting the features of the nodes not in the input

structure with zero.
// m(Si, G

i
ex) denotes the marginalized contribution

6 m(Si, G
i
ex) f(Si [ {G

i
ex})� f(Si).

7 end

8 I(f(·), Gi
ex, G) 1

T

PT
t=1 m(Si, G

i
ex)

9 Ii  I(f(·), Gi
ex, G)
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initial embedding from the pre-trained BERT [3] and the edges denote the relationships between the
words which are extracted by the Biaffine parser [5]. We take experiments on the Graph-SST2 and
Graph-SST5 datasets for the sentiment graphs. Note that both Graph-SST2 and Graph-SST5 are the
datasets for graph classification of two classes and five classes respectively.

E Metrics
The Fidelity, Inverse Fidelity, and Sparsity are formally defined as:

Fidelity(G,Gex) = [f(G)]c⇤ � [f(G/Gex)]c⇤ (3)
FidelityInv(G,Gex) = [f(G)]c⇤ � [f(Gex)] (4)

Sparsity(G,Gex) = 1�
|Gex|

|G|
(5)

Harmonic Fidelity (H-Fidelity) takes a harmonic mean of normalized fidelity (N-Fidelity) and normalized
inverse fidelity (N-FidelityInv). According to [15], the H-Fidelity can be formally defined as:

N-Fidelity(G,Gex) : m1 = Fidelity(G,Gex) · Sparsity(G,Gex) (6)
N-FidelityInv(G,Gex) : m2 = FidelityInv(G,Gex) · (1� Sparsity(G,Gex)) (7)

H-Fidelity(G,Gex) =
(1 +m1)(1�m2)

(2 +m1 �m2)
(8)

F Detailed Experimental Settings
In this section, we provide the computational details and detailed hyperparameter settings on different
datasets.

F.1 Computation Details
All experiments were performed on a single Nvidia V100 GPU with an Intel Xeon Gold 5218 CPU. Since
it takes more than 24 hours for some baselines to explain the whole dataset, our inference time analysis
is implemented by randomly sampling from the datasets. For BBBP, BA-2Motifs and BA-Shapes, we
use all the test data. And all the data (train, evaluation and test data) is used for MUTAG dataset.
For semantic graphs like Graph-SST2 and Graph-SST5, we randomly choose 30 graphs.

F.2 Hyperparameter Settings
We adhere to the hyperparameter settings for GNN training as described in [13, 15], detailed in Table
S2. For the qualitative analysis, the GCN in Figures 2, 4, S2, and S3 aligns with the settings depicted
in Table S2. Moreover, the GIN featured in Figure 3 is trained for 800 epochs with a batch size of 64
and without adding self-loops, while all other hyperparameters remain constant to Table S2.

Table S2: Hyperparameters for training the GCN models on different datasets. All quantitative
results are verified under the following conditions.

Hyperparameter BBBP MUTAG Graph-SST2 Graph-SST5 BA-2Motifs BA-Shapes

# Layers 3 3 3 3 3 3
Hidden dimensions [128, 128, 128] [128, 128, 128] [128, 128, 128] [128, 128, 128] [20, 20, 20] [20, 20, 20]

Dropout 0.0 0.0 0.0 0.0 0.0 0.0
Readout method max mean max max mean identity

Learning rate 0.001 0.005 0.001 0.001 0.001 0.05
Batch size 32 32 128 128 64 1
# Epochs 200 1000 50 50 800 400

Weight decay 5⇥ 10�4 0 0 0 0 5⇥ 10�4

Add self-loop Yes Yes Yes Yes Yes Yes
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Table S3: The quality of the explanations from
SAME with different hyperparameters.

�\K 1 3 5 7 9

1 0.2511 0.3319 0.3548 0.3938 0.4026
2 0.2851 0.3121 0.3418 0.3652 0.3786
3 0.2938 0.3180 0.3297 0.3637 0.3741
4 0.3134 0.3355 0.3491 0.3610 0.3540
5 0.3134 0.3387 0.3504 0.3591 0.3598

Table S4: The average inference time (seconds)
per sample under different hyperparameters.

�\K 1 3 5 7 9

1 0.0990 0.3300 1.289 5.178 15.95
2 0.0889 0.3129 1.137 3.817 11.88
3 0.0874 0.3986 0.8344 2.746 7.047
4 0.0932 0.2846 0.8483 2.296 5.330
5 0.0914 0.2822 0.8427 2.191 5.796

The hyperparameters in SAME include � and K as we didn’t use a time budget in our MCTS.
In order to see the effect of these two hyperparameters, we run our SAME by randomly selecting 30
graphs from Graph-SST5 datasets using GCN, the fidelity w.r.t. � and K are shown in the Table S3,
and we report the average inference time in Table S4. Notice that since we only selected 30 graphs
from Graph-SST5 to obtain the results, the results provided in Table S3 might be slightly different
from the results given in the main manuscript.

It is noteworthy that �=1 could lead to optimal fidelity in most benchmarks. However, when
� is small, the final explanation may be composed of disconnected nodes at different positions in
the graph, which usually causes the visualization of explanation results not human-understandable.
Therefore, we fine-tuned � and K according to the visualization of explanation results so that the
provided explanations are more human-intuitive. For the inference time, a larger K leads to a larger
search space for the explanation exploration phase. When � is small, the size of a single candidate
substructure is small, indicating that we need to select more substructures from the candidates to
obtain an explanation with the desired sparsity. Thus, the inference time increases as the depth of
searching grows. The detailed hyperparameter settings are provided in Table S5. For the sentiment
network Twitter [13] and molecular network BACE [11], we use them to compare SAME with more
SOTA explainers in Section G.3

Table S5: The hyperparameters of SAME for different datasets.

Hyperparameter BBBP MUTAG Graph-SST2 Graph-SST5 BA-2Motifs BA-Shapes Twitter BACE

� 5 2 3 3 3 5 3 2

K 7 7 7 7 7 7 7 7

G Additional Results

G.1 Results under Other Metrics
Here, we present the results over inverse fidelity and harmonic fidelity under the same experimental
settings in Table S2. Table S6 demonstrates that SAME is competitive over the 5/6 datasets. Table S7
reports the harmonic fidelity quantities. SAME outperforms the baselines in all the graph tasks.

G.2 Additional Visualization Results
We are presenting additional visualization results for BBBP and Graph-SST2 datasets. Figure S2
presents explanations for the BBBP dataset. SAME identifies critical functional groups (for instance,
carbonyl group =C=O), which result in a high fidelity score. Figure S3 provides a visualization for the
negative label of the Graph-SST2 dataset. In this case, SAME uniquely identifies the word "only," which
contributes to the negative prediction of the GNN due to the contrasting relationship it establishes.
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Table S6: Comparison of our SAME and other baseline explainers using 1 - Inverse Fidelity.

Methods

Dataset Graph tasks Node tasks

Molecular graph Semantic graph Synthetic graph

BBBP MUTAG Graph-SST2 Graph-SST5 BA-2Motifs BA-Shapes

Grad-CAM [9] 0.897±0.029 0.901±0.048 1.006±0.029 0.937±0.047 0.587±0.092 -
GNNExplainer [12] 0.829±0.012 0.810±0.007 0.855±0.037 0.860±0.034 0.562±0.015 0.953±0.032
PGExplainer [8] 0.838±0.036 0.793±0.030 0.956±0.036 0.850±0.058 0.582±0.021 0.902±0.008
GNN-LRP [10] 0.670±0.044 0.768±0.013 0.784±0.047 0.771±0.041 0.560±0.015 0.988±0.010
SubgraphX [14] 1.010±0.011 1.053±0.017 1.008±0.008 1.022±0.040 0.906±0.162 0.978±0.034

GStarX [15] 0.939±0.011 1.124±0.025 1.072±0.003 1.140±0.031 0.587±0.117 -

SAME 0.993±0.014 1.095±0.008 1.058±0.010 1.039±0.001 0.857±0.046 0.881±0.000

Note: The previous SOTA results on different datasets are marked with an underline. Relative Improve denotes
the relative improvement of our SAME method over the SOTA methods.

Table S7: Comparison of our SAME and other baseline explainers using Harmonic Fidelity.

Methods

Dataset Graph tasks Node tasks

Molecular graph Semantic graph Synthetic graph

BBBP MUTAG Graph-SST2 Graph-SST5 BA-2Motifs BA-Shapes

Grad-CAM [9] 0.520±0.002 0.527±0.002 0.538±0.005 0.529±0.003 0.502±0.014 -
GNNExplainer [12] 0.504±0.002 0.505±0.007 0.507±0.001 0.512±0.001 0.487±0.027 0.514±0.001
PGExplainer [8] 0.511±0.002 0.500±0.006 0.528±0.003 0.516±0.000 0.493±0.023 0.504±0.003
GNN-LRP [10] 0.488±0.003 0.501±0.013 0.495±0.001 0.495±0.002 0.497±0.027 0.518±0.002
SubgraphX [14] 0.560±0.002 0.552±0.002 0.528±0.004 0.541±0.003 0.548±0.007 0.528±0.003

GStarX [15] 0.510±0.002 0.599±0.011 0.533±0.005 0.542±0.005 0.506±0.016 -

SAME 0.571±0.001 0.604±0.022 0.540±0.021 0.566±0.000 0.554±0.007 0.517±0.000
Relative Improve 1.96%" 0.83%" 1.31%" 4.43%" 1.09%" -

Note: The previous SOTA results on different datasets are marked with an underline. Relative Improve denotes
the relative improvement of our SAME method over the SOTA methods.

SAME(ours)

Grad-CAM GNNExplainer

SubgraphXGNN-LRP

PGExplainer

GStarX

Fidelity: 0.70 Fidelity: 0.31 Fidelity: 0.99Fidelity: 0.23

Fidelity: 0.14 Fidelity: 0.03 Fidelity: 0.22

Figure S2: Comparison of the explanations on BBBP with GCN classifier.
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Sentence: “shocking only in that it reveals the filmmaker‘s bottomless pit of self - absorption.”
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Figure S3: Comparison of the explanations on Graph-SST2 with GCN classifier for a negative prediction.

G.3 Additional Quantitative Analysis
Here we report more quantitative analysis with alternative SOTA methods and datasets. We tested
SAME on GAT and GIN, and compared SAME with other SOTA algorithms (GraphSVX [4] and
OrphicX [6]). In table S8, We report the averaged fidelity over a sparsity of [0.5, 0.6, 0.7, 0.8]. For the
inference time plus fidelity, they are summarized in Table S9. SAME not only surpasses the benchmarks’
performance by alternative GNN architectures, but it also exhibits superior efficiency in elucidating
explanations.

Table S8: Comparison of SAME and other baseline explainers with different GNN
architecture.

Methods

Dataset GAT GIN GCN

Graph-SST2 Graph-SST5 Graph-SST2 Graph-SST5 Twitter BACE

GraphSVX [4] -0.0136 -0.0108 0.0839 0.161 0.0691 0.2061
OrphicX [6] 0.071 0.104 0.258 0.176 0.1701 0.3277

SubgraphX [14] 0.060 0.060 0.222 0.254 0.2903 0.3906
GStarX [15] 0.134 0.114 0.274 0.263 0.2501 0.3903

SAME 0.142 0.222 0.400 0.264 0.3127 0.7154

Note: The previous SOTA results on different datasets are marked with an underline.

Table S9: Comparison of SAME and other benchmarks in both fidelity and
inference time (per sample). The architecture of our model is GCN.

Metric
Methods GraphSVX [4] OrphicX [6] SubgraphX [14] GStarX [15] SAME

Fidelity Twitter 0.0691 0.1701 0.2903 0.2501 0.3127
BACE 0.2061 0.3277 0.3906 0.3903 0.7154

Time Twitter 0.0885 0.4942 197.1 36.26 25.85
BACE 0.0915 0.2361 44.41 48.81 26.98

Note: The previous SOTA results on different datasets are marked with an underline.

11



References
[1] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener,

D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[2] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Hansch. Structure-
activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with
molecular orbital energies and hydrophobicity. Journal of Medicinal Chemistry, 34(2):786–797,
1991.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. ArXiv, abs/1810.04805, 2019.

[4] A. Duval and F. D. Malliaros. Graphsvx: Shapley value explanations for graph neural networks. In
Machine Learning and Knowledge Discovery in Databases. Research Track: European Conference,
ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part II 21, pages 302–318.
Springer, 2021.

[5] M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. Liu, M. Peters, M. Schmitz, and
L. Zettlemoyer. Allennlp: A deep semantic natural language processing platform. 2018.

[6] W. Lin, H. Lan, H. Wang, and B. Li. Orphicx: A causality-inspired latent variable model for
interpreting graph neural networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13729–13738, 2022.

[7] M. Liu, Y. Luo, L. Wang, Y. Xie, H. Yuan, S. Gui, H. Yu, Z. Xu, J. Zhang, Y. Liu, et al. Dig: A
turnkey library for diving into graph deep learning research. The Journal of Machine Learning
Research, 22(1):10873–10881, 2021.

[8] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang. Parameterized explainer for
graph neural network. Advances in Neural Information Processing Systems, 33:19620–19631, 2020.

[9] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann. Explainability methods for
graph convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10772–10781, 2019.

[10] T. Schnake, O. Eberle, J. Lederer, S. Nakajima, K. T. Schütt, K.-R. Müller, and G. Montavon.
Higher-order explanations of graph neural networks via relevant walks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(11):7581–7596, 2021.

[11] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, and
V. Pande. Moleculenet: a benchmark for molecular machine learning. Chemical Science, 9(2):513–
530, 2018.

[12] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: Generating explanations
for graph neural networks. Advances in Neural Information Processing Systems, 32, 2019.

[13] H. Yuan, H. Yu, S. Gui, and S. Ji. Explainability in graph neural networks: A taxonomic survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[14] H. Yuan, H. Yu, J. Wang, K. Li, and S. Ji. On explainability of graph neural networks via subgraph
explorations. In International Conference on Machine Learning, pages 12241–12252. PMLR, 2021.

[15] S. Zhang, Y. Liu, N. Shah, and Y. Sun. Gstarx: Explaining graph neural networks with structure-
aware cooperative games. In Advances in Neural Information Processing Systems, 2022.

12

View publication stats


