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Abstract

Reliable structured prediction requires forecasts
that are calibrated both marginally and jointly. We
identify two fundamental challenges in post-hoc
multivariate calibration: performativity, where
recalibration alters the very statistics used to as-
sess calibration, and proportionality, the need to
preserve a model’s learned dependence structure
when correcting miscalibration. We show that
two trivial forecasters can satisfy any notion of
multivariate calibration, motivating a search for
minimal corrections. By framing recalibration
as a constrained optimization problem, we out-
line principled directions for feedback-aware algo-
rithms that deliver reliable multivariate forecasts.

1. Introduction

Modern machine learning systems are increasingly deployed
in domains that require not only accurate predictions but
also reliable uncertainty quantification. This is particu-
larly true in structured prediction settings—such as time-
series forecasting, tabular prediction, or multivariate regres-
sion—where the model must output a distribution over a
vector-valued target Y € R? given input features X .

In the univariate regression setting, the notion of calibration
is well-understood: a forecaster is calibrated if its predicted
quantiles (or prediction intervals) match empirical frequen-
cies (Gneiting et al., 2007). For instance, a 90% prediction
interval should contain the true outcome 90% of the time.
This has led to a variety of reliable post-hoc calibration tech-
niques—such as isotonic regression (Kuleshov et al., 2018)
and histogram binning—that adjust predictive distributions
to align with observed outcomes.

However, in structured prediction tasks, the calibration of
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individual output dimensions is not sufficient. Even if each
marginal forecast is perfectly calibrated, the joint distribu-
tion may still be misspecified. Consider a weather forecast-
ing system predicting the probability of rainfall at multiple
locations within a region. If the marginal forecasts at each lo-
cation are calibrated—but the joint dependence is not—then
the system might frequently predict high probabilities of
rain at all locations simultaneously, even when such joint
events are rare in reality. This could lead to overestimated
flood risk, inefficient resource allocation (e.g., unnecessary
deployment of emergency crews), or poor performance in
ensemble-based downstream tasks like trajectory sampling
or hydrological simulation. In such settings, downstream
applications rely not only on marginal correctness but also
on the validity of the joint structure.

Several recent works have recognized the importance of
modeling joint uncertainty and have proposed methods
to enforce multivariate calibration using held-out calibra-
tion data. Classical techniques such as the Schaake Shuf-
fle (Clark et al., 2004) and Ensemble Copula Coupling
(ECC) (Schefzik et al., 2013) combine calibrated marginal
forecasts with a copula, either from historical analogs or the
raw ensemble, in an effort to produce realistic joint sam-
ples. More recent approaches, such as those by Kock et al.
(2024) and Chung et al. (2024), aim to directly calibrate
the joint distribution, either by replacing the model’s de-
pendence structure with one estimated from the calibration
set, or by resampling from the forecaster to match empirical
multivariate rank statistics.

Our goal is to clarify the conceptual landscape of post-hoc
multivariate calibration and outline foundational issues that

must be addressed. Our contributions are as follows:
* We identify an overlooked performative prediction

challenge in multivariate calibration and demonstrate
how this issue prevents existing recalibration methods
from achieving reliable calibration.

* We define and motivate the concept of proportionality
in multivariate calibration, and use it to demonstrate
that existing recalibration approaches can erase useful
information about the joint dependence structure of the
original forecaster.

* We outline promising future directions—including op-
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timal transport, fixed-point iterative recalibration, and
confidence set construction—and highlight open chal-
lenges in designing calibration methods.

‘We hope these contributions highlight the need for additional
techniques in multivariate calibration and are a step toward
resolving these challenges in structured prediction settings.

2. Background on Multivariate Calibration

We consider the problem of modeling the conditional distri-
bution of a multivariate random variable Y € R¢ given co-
variates X. Let Hy|x and hy | x denote the true conditional
cumulative distribution function (CDF) and probability den-
sity function (PDF), respectively. Likewise, let H y|x and

iLy‘ x denote the forecaster’s CDF and PDF, respectively.

Calibration in the Univariate Setting. In the univariate
case (d = 1), a forecaster Hy|x is said to be probabilisti-
cally calibrated (Gneiting et al., 2007) if:

P(ﬁwx(y) <p)=p, VYpel01].

This is equivalent to requiring that the Probability Integral
Transform (PIT) of the forecast, defined as U = Hy | x(Y),
is uniformly distributed: U ~ Uniform[0, 1].

2.1. Multivariate Calibration via Projection Functions

Extending probabilistic calibration to multivariate targets
introduces subtle challenges. While the PIT provides a
natural tool in the univariate setting, its direct extension to
higher dimensions is problematic. For one, the multivariate
quantile function is not uniquely defined (Belloni & Winkler,
2011). Additionally, evaluating a multivariate CDF at its
own samples does not yield a uniformly distributed variable
(Genest & Rivest, 2001; Barbe et al., 1996). To address these
limitations, prior work has proposed assessing calibration
using scalar-valued projections—or pre-rank functions—of
forecast—observation pairs.

This idea is well-established in the literature (Kniippel et al.,
2022), and underlies a variety of diagnostic tools for mul-
tivariate forecasts. The key idea is to evaluate calibration
via a real-valued summary statistic g(ﬁ ,y), where Hisa
predictive distribution and y is the realized outcome. These
projections reduce multivariate forecast—observation pairs
to a scalar quantity that can be evaluated using univariate
techniques, such as histogram uniformity or PIT-based diag-
nostics. Different choices of g emphasize different aspects
of forecast quality, such as tail behavior, dependence struc-
ture, or spatial coherence.

Let g : H x Y — R be a pre-rank function that takes a
predictive distribution and an outcome and returns a scalar.
For each input z, let Z = g(Hy|,,Y) where Y ~ Hy\,,

and let Z = g(I:Iy|x, Y), where ¥ ~ Hylw. Define I—AIZW
to be the CDF of Z conditioned on .

Definition 1 (g-calibration). (Kniippel et al., 2022) A mul-
tivariate forecaster Hy|x is said to be g-calibrated if, for
all p € [0,1],

P (I:IZ|X(Z) < p) =p,

where Z = g(ﬁy‘x,Y) and ﬂZ|X is the CDF of Z =
g(ﬁy‘x, Y') conditional on X.

This framework recovers many standard notions of calibra-
tion. For instance, choosing g(H,y) = H(y) corresponds
to copula calibration (Ziegel & Gneiting, 2014), while other
choices recover rank-based or score-based notions.

To illustrate these concepts, we introduce a running example
in Figure 1, to be used throughout the paper. The ground
truth distribution is a bivariate Gaussian with negatively
correlated components. The forecaster uses the correct
marginal distributions but assumes independence across
dimensions. As shown in Figure 1(a), this results in a fore-
caster that is marginally calibrated by design but fails the
copula PIT diagnostic, revealing joint miscalibration. We
will return to this example to evaluate the behavior of previ-
ous recalibration methods.

We further define an approximate notion of calibration,
which allows for a margin of error and provides a measure
of how close a forecaster is to satisfying g-calibration.

Definition 2. A multivariate forecaster £ y|x 1s said to be
(g, €)-calibrated if, for all p € [0, 1],

‘P (ﬁzp((z) Sp) —p‘ <e.

Performative prediction. In classical supervised learning,
the data distribution is fixed and independent of the model.
In contrast, the framework of performative prediction (Per-
domo et al., 2020) considers settings in which the predictive
model influences the distribution on which it is evaluated.
Formally, deploying a forecaster H v|x induces a data distri-

bution D(H ) over covariate-response pairs (X, Y"), reflect-
ing structural feedback between prediction and outcome. In
this setting, model training becomes inherently dynamic:
updates aim to minimize risk over the distribution induced
by the previous forecaster,

D) — argmﬁirn E(X,Y)ND(ﬁ(t)) [f(X,Y;I:I)} .

This motivates the study of repeated risk minimization that
converges to a fixed point, and notions of performative
stability and optimality, which formalize when such fixed
points are well-defined and globally risk-minimizing.
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Figure 1: Toy example illustrating marginal vs. joint (copula) calibration. The ground truth distribution is a bivariate
Gaussian with nonzero correlation. The base forecaster (a) has the correct univariate marginals but an incorrect dependence
structure, leading to uniform marginal histograms but a miscalibrated Copula PIT histogram. In (b), we apply the resampling
method from Chung et al. (2024) to recalibrate the forecaster. While the marginals remain calibrated, the Copula PIT
histogram remains non-uniform. This illustrates that ignoring the performative effect when enforcing multivariate calibration

can result in forecasters that remain jointly miscalibrated.

3. Proportionality in Multivariate
Recalibration

Trained forecasters learn meaningful joint dependence
among target variables, and recalibration should preserve
this structure to retain valuable predictive signal. We argue
that recalibration should be proportional: it should inter-
vene only to the extent necessary to achieve calibration,
preserving the forecaster’s learned dependence structure
whenever possible. This section formalizes this principle
and diagnoses where existing approaches fail to uphold it.

Let H denote the space of forecasters, and let H.,y C H be
the subset of g-calibrated forecasters. Given a miscalibrated
forecaster H € H, a recalibration method R : H — Hca
satisfies a-proportionality if it stays close to the original
model while ensuring calibration:

Definition 3 («-Proportional Recalibration). A recalibra-
tion map R is a-proportional if, for all H € H,

D(R(H).H) < inf D(H',H)+a,
cal

H'€Hca

for some divergence measure D over forecasters.

This minimality condition ensures that IR behaves like a
near-projection onto the calibrated set, applying only the
smallest necessary adjustment. A natural special case is
invariance: if a forecaster is already calibrated (H € Hca)),
then a proportional method with o = 0 should return it
unchanged. Recalibration methods that fail to satisfy this
property are over-correcting even in the absence of error.

Two Extremes: Perfect and Naive Calibration. Con-
sider two extremes in the space of calibrated forecasters. At
one end lies the uninformative forecaster Hy-, which ignores
the input X and always outputs the marginal distribution
of Y. While this forecaster is g-calibrated (Appendix A), it

is clearly not useful—it produces constant predictions and
offers no conditional signal. At the other end lies the Bayes-
optimal forecaster Hy |y, which is perfectly calibrated for
all g but infeasible in practice. Our goal is to land some-
where between these extremes: to preserve as much of the
original forecaster’s signal as possible while intervening just
enough to achieve calibration. The principle of proportion-
ality provides a formal means of navigating this tradeoff.

Proportionality as a Diagnostic Tool. Proportionality
also provides a useful lens for evaluating existing recalibra-
tion methods. Many approaches fall closer to the uninforma-
tive end of the spectrum by discarding the model’s learned
joint structure in favor of a fixed dependence estimated
from historical data. For example, the Schaake Shuffle and
the method of Kock et al. (2024) construct new joint dis-
tributions using empirical ranks or copulas fit directly on
the calibration set, independent of the model’s predictions.
While these methods satisfy calibration by construction,
proportionality reveals that they apply unnecessarily large
interventions and fail to preserve the learned structure. In
particular, they violate invariance, as they modify forecasts
that may already be calibrated. Proportionality thus serves
as a key desiderata and a diagnostic tool for identifying when
recalibration methods overcorrect the model’s outputs.

4. Performativity in Multivariate
Recalibration

Up to this point, we have motivated the need for recal-
ibration procedures that are proportionate and structure-
preserving—ideally transforming a forecaster just enough
to achieve calibration, without discarding its useful, learned
dependence structure. Here we introduce what we believe to
be a central and previously overlooked insight: most widely
used notions of multivariate calibration are inherently per-
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formative. That is, the act of recalibrating a forecaster alters
the very pre-rank statistics used to assess whether calibra-
tion has been achieved—and more importantly, any method
that does not account for this alteration is not calibrated with
respect to the updated pre-rank statistics. We show that this
issue is not incidental, but a general consequence of post-
hoc g-calibration when g depends on the forecaster. As a
concrete example, we demonstrate how the sampling-based
method of Chung et al. (2024) falls into this pitfall.

Figure 1 illustrates this failure directly. Panel (a) shows the
base forecaster, which has correctly calibrated marginals
but an incorrect dependence structure. Panel (b) shows the
result of applying the method of Chung et al. (2024), which
resamples from the forecaster to achieve calibration. The
post-processed model remains miscalibrated: a direct man-
ifestation of performative prediction, where recalibration
changes the distribution over pre-rank statistics.

Calibration as a performative learning objective. To
formalize the recalibration problem, we consider finding

a new forecaster H. i‘fl‘g( that minimizes a chosen notion of

calibration error. Let g(f[ ,y) denote a pre-rank function,
and let Z = g(Hy|x.Y), Z = g(Hy|x,Y), with Y ~
Hy\x, Y ~ fly|x. A common goal is to minimize a scalar-
valued calibration error metric, such as

CEg(ﬁ) = IEp~u(o,1) ’PX (I:IZ\X(Z) < P) —p|,

where H z|x 1s the conditional CDF of 7 | X. This objec-
tive is often posed as: H™" € arg ming CE, (H).

At first glance, this appears analogous to classical risk mini-
mization. However, a key subtlety arises when g depends on
the forecaster: the distributions of Z and Z used to compute
CE,(H) are themselves functions of H. Thus, this is not
an ordinary loss minimization problem, but a performative
prediction objective (Perdomo et al., 2020).

More formally, we may write the distribution of the pre-

rank statistics as Dy(H) := Law (g(fi,Y), g(ﬁ, Y)) ,

and reinterpret the calibration objective as

H™ ¢ argmin CE,(D,(H)).
H

This framing makes the self-dependence of the optimization
problem explicit: the distribution over which calibration
is assessed depends on the model being optimized. In the
language of Perdomo et al. (2020), calibration is not evalu-
ated on a fixed distribution, but rather on a model-dependent
distribution Dg(ﬁ ). Ignoring this feedback loop—as most
existing approaches do—can lead to solutions that mini-
mize calibration error with respect to an outdated diagnostic,
while remaining miscalibrated under the updated one.

Impact on existing methods. This issue affects several
prominent definitions of multivariate calibration, all of
which define the pre-rank function g(ﬁyu, y) in a way
that depends explicitly on the forecaster. In copula cali-
bration (Ziegel & Gneiting, 2014), the pre-rank is defined
as g(ﬁy‘m,y) = ﬁy‘w(y), the model’s own multivariate
CDF evaluated at the true outcome. In high-density re-
gion calibration (Chung et al., 2024), it is taken to be
the predictive density, g(flymy) = ﬁy|x(y). In score-
based calibration (Kniippel et al., 2022), the pre-rank is
defined via a proper scoring function S as g(ﬁy‘w, y) =

Ey iy, [S(Y,y)]. In each case, changing the forecaster

induces a shift not only in the forecast distribution but also
in the statistic used to evaluate calibration.

Fixed-point calibration. Our contribution is to clarify
that many of the most statistically grounded notions of mul-
tivariate calibration are inherently performative. Without
accounting for this, post-hoc methods may fail to achieve
calibration. Rather than viewing this performativity as a
flaw, we argue it is a defining feature of multivariate cali-
bration: calibration should be understood as a fixed-point
condition, where a forecaster remains calibrated even after
transformation, relative to its own induced diagnostic.

5. Potential Approaches & Future Directions

Achieving reliable multivariate calibration requires satis-
fying two key principles: proportionality, to preserve the
structure of the original forecaster, and performativity, to
ensure that the forecaster is calibrated consistently after in-
tervention. A promising direction is to pose recalibration
as a constrained optimization problem, minimizing devia-
tions from the original forecaster subject to calibration con-
straints. Optimal transport provides a natural foundation for
this view, with recent work on vector copulas (Fan & Henry,
2023), vector quantiles (Carlier et al., 2016), and calibra-
tion in economics (Guo et al., 2021) and physics (Pollard &
Windischhofer, 2022) suggesting cost-minimizing transport
as a principled mechanism for enforcing calibration.

An alternative approach is to design iterative recalibra-
tion procedures that converge to fixed points, drawing on
ideas from performative prediction (Perdomo et al., 2020).
Resampling-based methods (Chung et al., 2024) offer a flex-
ible starting point, but must account for the shifting pre-rank
statistics induced by performativity.

Finally, calibrated multivariate forecasters may enable valid
confidence sets that account for joint structure. Prior work
in time-series conformal prediction (Sun & Yu, 2023; An-
gelopoulos et al., 2023) and multivariate quantiles (Garcin
et al., 2023; Watts et al., 2024) offers tools for construct-
ing such regions. Developing these methods is a promising
direction for future work.
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We believe these directions offer a foundation for building
calibrated, interpretable, and practically useful multivariate
forecasters.
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A. Appendix: Proofs

Lemma 4 (Approximate Calibration Implies Richness). Let H denote a space of continuous conditional forecasters H Y)X
and let g : X x Y — R be a fixed projection function. For any € > 0, the set of (g, €)-calibrated forecasters contains
uncountably many distinct distributions in H.

Proof. Let Z = g(FI ,Y') be the scalar pre-rank variable induced by the forecaster H. (g, €)-calibration only requires the
PIT histogram of Z to be within € of uniformity. Because g maps to a one-dimensional projection, many different forecasters
H' can induce the same distribution over Z, even if their full joint distributions differ. In particular, we can perturb H
along directions in the conditional distribution of Y | X that leave the distribution of Z invariant or approximately invariant
(within €). Under mild continuity and support assumptions on H, this defines an uncountable family of forecasters in H that
all satisfy (g, €)-calibration. O

Lemma 5 (The Uninformative Forecaster is g-Calibrated). Let (X,Y") ~ Hx y be a joint distribution over covariates and
outcomes. Define the uninformative forecaster as Hy|x := Hy, i.e., a fixed forecast distribution equal to the marginal

distribution of Y, independent of the input X. Then for any pre-rank function g(ﬁ ,Y') that depends only on the forecaster
H and the outcome Y, the forecaster Hy|x = Hy is g-calibrated.

Proof. Let g(ﬁ ,Y") be any scalar-valued pre-rank function that depends only on the forecaster and the outcome. Define:
Z = g(ﬁle7Y), ZI: g(ﬁyl‘x,?) Whel'ei/’\/ﬁy‘x :HY.

Since H y|x = Hy is constant with respect to X, both Z and Z are functions of Y and Y/ respectively, but not of X. In
particular, the distribution of A | X is independent of X, and so is the conditional CDF:

Hyix(2) =P(g(Hy,Y) < 2| X) =P(g(Hy,Y) < 2),

which is simply the marginal distribution of Z.

Therefore, the PIT statistic H z|x (Z) is given by:

Hy x(Z) = P(g(Hy,Y) < g(Hy,Y)) = F, 1, 3 (9(Hy,Y)),

where F ;5 denotes the CDF of g(Hy,Y).

Now note that both Y ~ Hy and Y ~ Hy-, independently. So g(Hy,Y) and g(Hy,Y') are i.i.d. random variables with the
same distribution. Hence, the rank of g(Hy,Y") among i.i.d. draws from that distribution is uniform:

Hy\x(Z) ~ Uniform[0, 1].
This proves that the uninformative forecaster is g-calibrated. O

B. Appendix B: Simple Pre-Rank Functions

While most definitions of multivariate calibration rely on pre-rank functions g(ﬁ ,Y") that depend on the forecaster, a recent
line of work introduces an alternative class of diagnostics that are forecaster-independent (Allen et al., 2024). These simple
pre-rank functions are designed to depend only on the outcome Y, not on the covariates X or the forecast distribution Hy| x.

By construction, simple pre-rank functions are unaffected by recalibration. This avoids the core issue of performativity:
since the diagnostic remains fixed as the forecaster is transformed, one-shot recalibration does not alter the calibration target.
The PIT statistics based on these functions thus provide a stable diagnostic of multivariate forecast quality.

Common examples of simple pre-rank functions include:

* Coordinate-wise projections: g(Y) = Y; for some dimension i;

* Norm-based scores: g(Y) = ||Y||, or g(Y) = Y T AY for a fixed positive semi-definite matrix A;

6
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* Mabhalanobis distances: g(Y) = /(Y — ) TS~ 1(Y — ), where 1, 3 are fixed.

Each simple pre-rank function captures a particular aspect of the multivariate distribution, such as location, spread, or
marginal sharpness. To obtain a more complete picture of calibration behavior, it is often necessary to evaluate multiple
simple pre-rank functions in parallel. This diagnostic strategy is used in Allen et al. (2024), where failure in any one function
may indicate a specific mode of miscalibration.

While simple pre-rank functions offer a valuable tool for assessing multivariate calibration without inducing performativity,
they are not expressive enough on their own to enforce or characterize full joint calibration. An interesting direction for
future work is the design of recalibration procedures that can simultaneously enforce calibration across a collection of simple
pre-rank functions. Doing so could provide a practical and robust alternative to fully forecaster-dependent diagnostics, while
retaining the benefits of stability and interpretability.



