
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REVISITING PREFIX-TUNING: STATISTICAL BENEFITS
OF REPARAMETERIZATION AMONG PROMPTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Prompt-based techniques, such as prompt-tuning and prefix-tuning, have gained
prominence for their efficiency in fine-tuning large pre-trained models. Despite
their widespread adoption, the theoretical foundations of these methods remain
limited. For instance, in prefix-tuning, we observe that a key factor in achiev-
ing performance parity with full fine-tuning lies in the reparameterization strat-
egy. However, the theoretical principles underpinning the effectiveness of this ap-
proach have yet to be thoroughly examined. Our study demonstrates that reparam-
eterization is not merely an engineering trick but is grounded in deep theoretical
foundations. Specifically, we show that the reparameterization strategy implic-
itly encodes a shared structure between prefix key and value vectors. Building
on recent insights into the connection between prefix-tuning and mixture of ex-
perts models, we further illustrate that this shared structure significantly improves
sample efficiency in parameter estimation compared to non-shared alternatives.
The effectiveness of prefix-tuning across diverse tasks is empirically confirmed to
be enhanced by the shared structure, through extensive experiments in both vi-
sual and language domains. Additionally, we uncover similar structural benefits
in prompt-tuning, offering new perspectives on its success. Our findings provide
theoretical and empirical contributions, advancing the understanding of prompt-
based methods and their underlying mechanisms.

1 INTRODUCTION

The rapid growth in data availability, along with advances in computational power and training
algorithms, has driven the development of numerous foundational models that achieve impressive
results across a wide range of tasks (Kaplan et al., 2020; Rae et al., 2021; Dosovitskiy et al., 2021).
Leveraging these models’ strong generalization abilities, fine-tuning them for downstream tasks
has become a widely adopted and successful approach (Iofinova et al., 2022). However, full fine-
tuning involves updating all model parameters, demanding storage for separate models per task,
which becomes computationally and memory-intensive, especially with models containing billions
of parameters (Dosovitskiy et al., 2021; Dehghani et al., 2023; Lialin et al., 2023).

To address these limitations, parameter-efficient fine-tuning (PEFT) has emerged as a promising
alternative (Hu et al., 2021; Lian et al., 2022; Xin et al., 2024). By updating only a small subset
of parameters, PEFT can achieve performance comparable to, or even surpassing, that of full fine-
tuning while significantly reducing computational and memory overhead (Houlsby et al., 2019; Jia
et al., 2022). Among these, prompting (Lester et al., 2021; Li & Liang, 2021; Jia et al., 2022) is
gaining momentum as a promising solution by updating task-specific tokens while keeping the pre-
trained transformer model frozen. Specifically, Lester et al. (2021) introduced trainable continuous
embeddings, or continuous prompts, which are appended to the original sequence of input word
embeddings, with only these prompts being updated during training. Extending this idea, prefix-
tuning (Li & Liang, 2021) optimizes not just the input embeddings but also the inputs to every
attention layer within the transformer model, appending them to the key and value vectors.

To ensure stability during optimization, prefix-tuning employs a reparameterization strategy (Li &
Liang, 2021; Liu et al., 2021; Han et al., 2024), where prefix vectors are reparameterized rather than
being optimized directly. After training, only the prefix vectors are retained for inference. However,
the theoretical justification for this approach remains largely unexplored. Key questions, such as why

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

reparameterization is necessary and what theoretical principles support its effectiveness, have not
been comprehensively addressed. In investigating these questions, we argue that reparameterization
is not merely an engineering trick but is supported by deep theoretical foundations. Our findings
suggest that the reparameterization trick implicitly encodes a shared structure between the prefix
key and value vectors. Through extensive experiments, we demonstrate that this shared structure
plays a pivotal role in enabling prefix-tuning to achieve competitive performance.

Recent work by Le et al. (2024) has revealed that self-attention (Vaswani, 2017) functions as a
specialized mixture of experts (MoE) architecture (Jacobs et al., 1991; Jordan & Jacobs, 1994).
Within this framework, prefix-tuning serves as a mechanism for introducing new experts into these
models. Building on this connection, we provide a detailed analysis of reparameterization from the
perspective of expert estimation. We show that the shared structure enhances sample efficiency in
prompt estimation compared to cases where the structure is not shared.

Contribution. The contributions of this paper can be summarized as follows: (i) We uncover that the
reparameterization trick in prefix-tuning, often regarded as an engineering technique, is grounded
in solid theoretical principles. Specifically, we show that reparameterization induces a shared struc-
ture between the prefix key and value vectors, which is crucial in enabling prefix-tuning to achieve
competitive performance. (ii) Through comprehensive experiments in both visual and linguistic do-
mains, we empirically demonstrate that this shared structure significantly enhances the effectiveness
of prefix-tuning, highlighting its importance across diverse tasks. (iii) Via the connection between
prefix-tuning and mixtures of experts, we provide theoretical justifications for these empirical obser-
vations, showing that the shared structure leads to faster convergence rates compared to non-shared
alternatives. (iv) Furthermore, we observe analogous patterns of shared structure in prompt-tuning.
Our insights not only explain the role of common practices in prefix-tuning implementation but also
offer a partial exploration of the mechanisms underlying the effectiveness of prompt-tuning.

Organization. The rest of the paper is structured as follows. In Section 2, we provide an overview
of prompt-based techniques and their connection to the mixture of experts framework. Section 3
introduces the shared structure, which is inspired by the reparameterization strategy. In Section 4,
we present theoretical convergence rates for scenarios involving shared structures, demonstrating
improved sample efficiency compared to non-shared cases. Section 5 details our empirical evalu-
ations on visual and language tasks. Finally, in Section 6, we discuss the limitations and suggest
future directions. Full proofs and experimental details are provided in the appendices.

Notation. Firstly, let we denote [n] = {1, 2, . . . , n} for any n ∈ N. Next, for any vector u ∈ Rd,
we use u = (u(1), u(2), . . . , u(d)) and u = (u1, u2, . . . , ud) interchangeably. Given any α :=
(α1, α2, . . . , αd) ∈ Nd, let uα = uα1

1 uα2
2 . . . uαd

d , |u| := u1+u2+. . .+ud and α! := α1!α2! . . . αd!,
while ∥u∥ stands for its 2-norm value. Additionally, let |S| denote its cardinality for any set S.
Lastly, for any two positive sequences (an)n≥1 and (bn)n≥1, we write an = O(bn) or an ≲ bn if
an ≤ Cbn for all n ∈ N, where C > 0 is some universal constant. The notation an = OP (bn)
indicates that an/bn is stochastically bounded.

2 BACKGROUND

We begin by reviewing the background of prompt-based fine-tuning techniques. Following this, we
describe the concept of mixture of experts models and examine how prefix-tuning can be interpreted
within the context of MoE models. A detailed discussion of related work is provided in Appendix D.

2.1 PROMPT-BASED APPROACHES

The Transformer (Vaswani, 2017; Dosovitskiy et al., 2021) architecture comprises multiple multi-
head self-attention (MSA) layers. To illustrate the function of a single MSA layer, consider an input
sequence of embeddings [x1, . . . ,xN]⊤ ∈ RN×d, where N is the sequence length and d is the
embedding dimension. The MSA layer processes this sequence as follows:

MSA(XQ,XK ,XV) := Concat(h1, ...,hm)WO ∈ RN×d, (1)

hi := Attention(XQW
Q
i ,XKWK

i ,XV W
V
i), i ∈ [m], (2)

where XQ = XK = XV = [x1, ...,xN]⊤ are the query, key, and value matrices, respectively.
Here m is the number of heads, and WO ∈ Rmdv×d is the projection matrix. Each attention head hi

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

is parameterized by WQ
i ∈ Rd×dk ,WK

i ∈ Rd×dk , and WV
i ∈ Rd×dv with dk = dv = d

m . Building
on this, fine-tuning techniques such as prompt-tuning (Lester et al., 2021) and prefix-tuning (Li &
Liang, 2021) have emerged as efficient methods for adapting pre-trained transformer-based models
to downstream tasks. These methods introduce prompt parameters P ∈ RNp×d, which are used to
modify the input embeddings fed into MSA layers, where Np denotes the prompt length.

Prompt-tuning involves prepending prompt vectors to the input embeddings, which is equivalent
to concatenating the same prompt parameters P to XQ, XK , and XV :

fPro−T
prompt(XQ,XK ,XV ;P) := MSA

([
P
XQ

]
,

[
P
XK

]
,

[
P
XV

])
= Concat(ĥ1, ..., ĥm)WO, (3)

resulting in an output in R(N+Np)×d with increased dimensions.

Prefix-tuning decomposes P into PK ∈ R
Np
2 ×d and PV ∈ R

Np
2 ×d, which are then appended to

XK and XV , respectively:

fPre−T
prompt(XQ,XK ,XV ;P) := MSA

(
XQ,

[
PK

XK

]
,

[
PV

XV

])
= Concat(h̃1, ..., h̃m)WO. (4)

In contrast to prompt-tuning, prefix-tuning preserves the output sequence length, keeping it identical
to the input sequence length and enabling flexible adaptation across the network.

2.2 MIXTURE OF EXPERTS MEETS PREFIX-TUNING

An MoE model consists of N ′ expert networks, fi : Rd → Rdv for i ∈ [N ′], and a gating func-
tion G : Rd → RN ′

that allocates contributions of each expert based on the input x. The gating
mechanism uses learned score functions, si : Rd → R, associated with each expert, resulting in:

ŷ =

N ′∑
i=1

G(x)i · fi(x) =
N ′∑
i=1

exp (si(x))∑N ′

j=1 exp (sj(x))
· fi(x), (5)

where G(x) = softmax(s1(x), . . . , sN ′(x)). Building on this formulation, recent work by Le
et al. (2024) demonstrates that each attention head within the MSA layer can be interpreted as a
specialized architecture composed of multiple MoE models. The study further suggests that prefix-
tuning serves as a mechanism for introducing new experts into these MoE models, facilitating their
adaptation to downstream tasks. Specifically, from equation (4), consider the output of the l-th head
h̃l = [h̃l,1, . . . , h̃l,N]⊤ ∈ RN×dv . Let X =

[
x⊤
1 , . . . ,x

⊤
N

]⊤ ∈ RNd represent the concatenated

input embeddings, and let PK =
[
pK
1 , . . . ,pK

L

]⊤ ∈ RL×d,PV =
[
pV
1 , . . . ,p

V
L

]⊤ ∈ RL×d, where
L =

Np

2 . We define N pre-trained experts fj : RNd → Rdv encoded in the MSA layer, along with
L prefix experts fN+j′ : RNd → Rdv introduced via the prompt as follows:

fj(X) := WV
l

⊤
EjX = WV

l

⊤
xj , fN+j′(X) := WV

l

⊤
pV
j′ ,

for j ∈ [N] and j′ ∈ [L], where the matrix Ej ∈ Rd×Nd is such that EjX := xj . Next, we
introduce N × (N + L) score functions, si,j : RNd → R, associated with these experts:

si,j(X) :=
X⊤E⊤

i WQ
l WK

l

⊤
EjX√

dv
, si,N+j′(X) :=

X⊤E⊤
i WQ

l WK
l

⊤
pK
j′√

dv
,

for i ∈ [N], j ∈ [N] and j′ ∈ [L]. Consequently, each output vector h̃l,i can be formulated as the
result of an MoE model, utilizing the experts and score functions defined above:

h̃l,i =

N∑
j=1

exp(si,j(X))∑N
k=1 exp(si,k(X)) +

∑L
k′=1 exp(si,N+k′(X))

fj(X)

+

L∑
j′=1

exp(si,N+j′(X))∑N
k=1 exp(si,k(X)) +

∑L
k′=1 exp(si,N+k′(X))

fN+j′(X). (6)

Notably, only PK and PV are learnable, meaning that only the prefix experts fN+j′ and their cor-
responding score functions si,N+j′ are trained. These new experts work in conjunction with the
pre-trained ones embedded in the original model, enabling efficient adaptation to downstream tasks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 MOTIVATION: REPARAMETERIZATION STRATEGY

In this section, we first introduce the concept of shared structure, derived from the reparameterization
technique. We then explain how this structure is integrated into the formulation of prompt-tuning.

...
..

Prefix expert

Pre-trained expert

Output

MoE
within

Attention

...
..

Gating
function

Figure 1: Reparameterization defines both the prefix key pK
i and value pV

i as functions of shared
parameters p′

i, transformed by gθ. This introduces parameter sharing between the score functions
and expert parameters in the MoE framework in attention. The gating function computes expert
weights based on score functions, and the MoE output is a weighted average of all expert outputs.

In equation (4), instead of directly updating the prompt parameters PK and PV , which can lead to
unstable optimization and a slight drop in performance, Li & Liang (2021) proposed reparameteriz-
ing the matrix [PK ,PV] ∈ RL×2d using a smaller matrix P ′ = [p′

1, . . . ,p
′
L]

⊤ ∈ RL×d, which is
then composed with a feedforward neural network gθ : Rd → R2d,[

pK
i ,pV

i

]
= gθ(p

′
i), (7)

for i = 1, . . . , L, where L =
Np

2 . After training, the reparameterization can be discarded, and only
the final prompt parameters, PK and PV , need to be stored. We observe that the reparameterization
strategy implicitly encodes a shared structure between the prefix key and prefix value vectors. This
relationship can be made explicit by reformulating equation (7) as follows:

pK
i = σ1(p

′
i), p

V
i = σ2(p

′
i), (8)

where σ1 : Rd → Rd and σ2 : Rd → Rd are two functions derived from gθ. Both the prefix key pK
i

and prefix value pV
i are functions of the same underlying parameters p′

i but modulated by distinct
transformations σ1 and σ2. We refer to this as the shared structure among the prompt parameters.

As discussed in Section 2.2, drawing from the relationship between prefix tuning and MoE models,
the prefix key and value can be viewed as corresponding to the score functions and expert parameters,
respectively. This suggests that the shared structure introduces a form of parameter sharing between
the score functions and expert parameters within the MoE framework in attention, as illustrated
in Figure 1. In Section 4, we show that this sharing strategy enhances sample efficiency from the
perspective of the parameter estimation problem, compared to models without such shared structure.

Shared structure in prompt-tuning. Prompt-tuning, by attaching prompt parameters to the key,
query, and value matrices, refines pre-trained MoE models by integrating additional experts, similar
to prefix-tuning, and also allows the incorporation of new MoE models. Detailed proof is provided in
Appendix A. While prompt-tuning can integrate new MoE models, our study focuses on pre-trained
MoE models within each attention head as a preliminary exploration of the underlying mechanism.

As shown in equation (3), prompt-tuning employs a single prompt parameter P for both key and
value vectors. We find that this strategy also introduces a shared structure, similar to the pattern

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

described in Section 3. Specifically, the prefix key and prefix value vectors are now expressed as:

PK = σ1(P) = P , PV = σ2(P) = P , (9)

where σ1 and σ2 are identity functions. Consequently, prompt-tuning encodes a shared structure
between key and value vectors, leading to parameter sharing between the score functions and expert
parameters in pre-trained MoE models. As discussed further in Section 4, this parameter-sharing
mechanism promotes faster convergence in parameter estimation, offering theoretical justifications
for using the same prompt parameters for both key and value vectors. We posit that these insights
contribute to a partial explanation of the efficiency and effectiveness of prompt-tuning, which applies
the same prompt parameters to the key, query, and value matrices.

4 THEORETICAL ANALYSIS FOR PROMPT LEARNING IN PREFIX-TUNING

The interpretation of prefix-tuning via mixtures of experts in equation (6) provides a natural way to
understand prompt learning in prefix-tuning via the convergence analysis of prompt estimation in
these MoE models. Moreover, as shown in equation (6), each MoE model in each attention head
follows a similar structure. Thus, to simplify the presentation of our analysis, we focus only on the
first head, namely, l = 1 in equation (6), and the first row of the attention in this head, namely, i = 1
in equation (6). In particular, we consider a regression framework for MoE models as follows.

Setting. We assume that (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ Rd × R are i.i.d. samples of size n
generated from the model:

Yi = fG∗(Xi) + εi, i = 1, 2, . . . , n, (10)

where ε1, . . . , εn are independent Gaussian noise variables such that E[εi|Xi] = 0 and
Var(εi|Xi) = ν2 for all 1 ≤ i ≤ n. Additionally, we assume that X1,X2, . . . ,Xn are i.i.d.
samples from some probability distribution µ. The regression function fG∗(·) in equation (10) then
takes the form of a prefix MoE model with N pre-trained experts and L unknown experts,

fG∗(X) :=

N∑
j=1

exp(X⊤A0
jX + a0j)

Df (X)
· h(X, η0j) +

L∑
j′=1

exp((BpK
∗,j′)

⊤X + b∗,j′)

Df (X)
· CpV

∗,j′ , (11)

where Df (X) :=
∑N

k=1 exp(X
⊤A0

kX + a0k) +
∑L

j′=1 exp((BpK
∗,j′)

⊤X + b∗,j′), while G∗ :=∑L
j′=1 exp(b∗,j′)δ(pK

∗,j′ ,p
V
∗,j′)

denotes a mixing measure, i.e., a weighted sum of Dirac measures δ,

associated with unknown parameters (b∗,j′ ,pK
∗,j′ ,p

V
∗,j′)

L
j′=1 in the parameter space Θ ⊂ R× Rd ×

Rd. At the same time, the values of the matrix A0
j , the expert parameter η0j , and the bias parameter

a0j are known for all 1 ≤ j ≤ N . Additionally, the matrices B ∈ Rd×d and C ∈ R1×d are given and
they play the role of pre-trained projection matrices in the context of prefix-tuning in equation (6).

In the sequel, we will investigate the convergence behavior of estimation for the unknown prompt
parameters. Our main objective is to show that the convergence rates of the prompts will be ac-
celerated when they share the structure, that is, they can be reparametrized as pK = σ1(p) and
pV = σ2(p), for some functions σ1 and σ2, as motivated in Section 3. To this end, we will con-
duct the convergence analysis of prompt estimation when there are non-shared and shared structures
among the ground-truth prompts in Section 4.1 and Section 4.2, respectively. Then, we compare the
convergence rates in these scenarios to highlight the sample efficiency of the latter method.

4.1 WITHOUT REPARAMETRIZATION (NONSHARED STRUCTURES) AMONG PROMPTS

In this section, we first investigate the scenario when the prompt parameters do not share the inner
structure, where we need to learn the prompts pK

∗,j′ and pV
∗,j′ in equation (11) separately. To estimate

those unknown prompts or, equivalently, the ground-truth mixing measure G∗, we use the least
square method (van de Geer, 2000). In particular, we take into account the estimator

Ĝn := argmin
G∈GL′ (Θ)

n∑
i=1

(
Yi − fG(Xi)

)2

, (12)

where we denote GL′(Θ) := {G =
∑ℓ

i=1 exp(bi)δ(pK
i ,pV

i) : 1 ≤ ℓ ≤ L′, (bi,p
K
i ,pV

i) ∈ Θ} as the
set of all mixing measures with at most L′ atoms. In practice, since the true number of experts L is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

typically unknown, we assume that the number of fitted experts L′ is sufficiently large, i.e., L′ > L.
In order to characterize the convergence rate of prompt estimation, it is necessary to construct a
loss function among prompt parameters. To this end, we propose using a loss function based on the
concept of Voronoi cells (Manole & Ho, 2022), which we refer to as the Voronoi loss function.

Voronoi loss. For a mixing measure G with L ≤ L′ atoms, we distribute its atoms to the following
Voronoi cells Vj ≡ Vj(G), for j ∈ [L], generated by the atoms of G∗:

Vj := {i ∈ [L′] : ∥(pK
i ,pV

i)− (pK
∗,j ,p

V
∗,j)∥ ≤ ∥(pK

i ,pV
i)− (pK

∗,ℓ,p
V
∗,ℓ)∥,∀ℓ ̸= j}. (13)

Then, the Voronoi loss function of interest is defined as

D1,r(G,G∗) :=

L∑
j′=1

∣∣∣ ∑
i∈Vj′

exp(bi)− exp(b∗,j′)
∣∣∣+ L∑

j′=1

∑
i∈Vj′

exp(bi)
[
∥∆pK

ij′∥r + ∥∆pV
ij′∥r

]
,

for r ∈ N, where we denote ∆pK
ij′ := pK

i −pK
∗,j′ and ∆pV

ij′ := pV
i −pV

∗,j′ . Given this loss function,
we are now ready to capture the convergence behavior of prompts in the following theorem.
Theorem 4.1. The following bound of estimating G∗ holds for any r ∈ N:

sup
G∈GL′ (Θ)\GL−1(Θ)

EfG [D1,r(Ĝn, G)] ≳ n−1/2, (14)

where EfG indicates the expectation taken w.r.t the product measure with fn
G.

Proof of Theorem 4.1 is in Appendix B.1. The bound in equation (14) together with the formulation
of the loss D1,r implies that the convergence rates of estimations for both the prompts pK

∗,j′ and
pV
∗,j′ are slower than O(n−1/2r) for any r ∈ N and, therefore, could be as significantly slow as

O(1/ log(n)). This observation indicates that the performance of prompt learning will be negatively
affected when there are no shared structures among the prompt parameters.

4.2 WITH REPARAMETRIZATION (SHARED STRUCTURES) AMONG PROMPTS

In this section, we consider the scenario when the prompts share their structures with each other. In
particular, we reparameterize the prompts as pK = σ1(p) and pV = σ2(p) where p ∈ Rd′

, the
functions σ1, σ2 : Rd′ → Rd, and the dimension d′ ≥ 1 is given. That parametrization indicates
that the prompts will share the input of the functions σ1 and σ2.

To theoretically demonstrate the benefits of reparametrization among prompts in prompt learning,
we specifically take into account the following two settings of the functions σ1 and σ2:

(i) Simple linear setting: σ1(p) = p and σ2(p) = p for any p ∈ Rd;

(ii) One-layer neural network setting: σ1(p) = σ̄1(W1p) and σ2(p) = σ̄2(W2p) for any p ∈ Rd′

where W1 ∈ Rd×d′
and W2 ∈ Rd×d′

are learnable weights.

Here, σ̄1 and σ̄2 are two given real-valued activation functions. Furthermore, for any vector x =
(x(1), . . . , x(d)) ∈ Rd, we denote σ̄i(x) = (σ̄i(x

(1)), . . . , σ̄i(x
(d))) for any 1 ≤ i ≤ 2, that is, the

functions σ̄1 and σ̄2 are applied to each element of the vector x.

4.2.1 SIMPLE LINEAR SETTING

We begin our analysis with the simple linear setting under which pK = σ1(p) = p and pV =
σ2(p) = p for any p ∈ Rd. This setting is motivated by prompt-tuning strategy as being discussed
in Section 3. Then, the ground-truth regression function in equation (11) turns into

fḠ∗(X) :=

∑N
j=1 exp(X

⊤A0
jX + a0j)h(X, η0j) +

∑L
j′=1 exp((Bp∗,j′)

⊤X + b∗,j′) · Cp∗,j′

Df (X)
,

where Ḡ∗ =
∑L

j′=1 exp(b∗,j′)δp∗,j′ is a mixing measure with unknown parameters (b∗,j′ ,p∗,j′)
L
j′=1

belonging to the parameter space Ω ⊂ R× Rd′
. To ensure the identifiability of estimating prompts

in the simple linear setting, we assume that Bp∗,1, . . . , Bp∗,L are pairwise different. Similar to the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

nonshared structure setting of prompts in Section 4.1, we also employ the least square method to
estimate the unknown parameters or, equivalently the mixing measure Ḡ∗. In particular, the least
square estimator of interest is given by:

Ḡn := argmin
Ḡ∈ḠL′ (Ω)

n∑
i=1

(
Yi − fḠ(Xi)

)2

, (15)

where ḠL′(Ω) := {Ḡ =
∑ℓ

i=1 exp(bi)δpi : 1 ≤ ℓ ≤ L′, (bi,pi) ∈ Ω} is the set of all mixing
measures with at most L′ atoms, where L′ > L, and parameters belonging to the space Ω. Then, we
need to build a new Voronoi loss function to capture the convergence rate of prompt estimation.

Voronoi loss. The Voronoi loss tailored to the simple linear setting of prompts is defined as

D2(Ḡ, Ḡ∗) :=

L∑
j′=1

∣∣∣ ∑
i∈Vj′

exp(bi)− exp(b∗,j′)
∣∣∣+ ∑

j′∈[L]:|Vj′ |=1

∑
i∈Vj′

exp(bi)∥∆pij′∥

+
∑

j′∈[L]:|Vj′ |>1

∑
i∈Vj′

exp(bi)∥∆pij′∥2,

where we denote ∆pij′ := pi − p∗,j′ for any i, j′. Equipped with this loss function, we wrap
up the simple linear setting of prompts by providing the convergence rate of prompt estimation in
Theorem 4.2 whose proof is deferred to Appendix B.2.
Theorem 4.2. Given the least square estimator Ḡn defined in equation (15), we have that

D2(Ḡn, Ḡ∗) = OP (
√
log(n)/n).

It follows from the bound in Theorem 4.2 and the formulation of the loss D2 that for prompts p∗,j′
whose Voronoi cells have exactly one element, that is |Vj′ | = 1, the rate for estimating them is of
order OP (

√
log(n)/n), which is parametric on the sample size n. On the other hand, the estimation

rate for those whose Voronoi cells have more than one element, that is |Vj′ | > 1, is slightly slower,
standing at the order of OP (

4
√
log(n)/n). In both cases, it is clear that these prompt estimation

rates are substantially faster than those in Theorem 4.1, which could be as slow as O(1/ log(n)).
Therefore, we can claim that reparameterizing the prompts as pK = pV = p helps enhance the
sample efficiency of the prompt learning process, thereby leading to a superior performance to the
scenario when there are no shared structures among prompts in Section 4.1.

4.2.2 ONE-LAYER NEURAL NETWORK SETTING

We now move to the setting where the prompts are reparameterized as one-layer neural networks,
that is, pK = σ1(p) = σ̄1(W1p) and pV = σ2(p) = σ̄2(W2p) in which W1 ∈ Rd×d′

,W2 ∈
Rd×d′

are learnable weight matrices and σ̄1, σ̄2 are two given real-valued element-wise activation
functions. Our goal is to demonstrate that the reparametrization among prompts still yields sample
efficiency benefits beyond the simple linear setting in Section 4.2.1. Different from the simple linear
setting, the true regression function under the one-layer neural network setting takes the form:

fG̃∗
(X) :=

N∑
j=1

exp(X⊤A0
jX + a0j)

Df (X)
· h(X, η0j)

+

L∑
j′=1

exp((Bσ̄1(W∗,1p∗,j′))
⊤X + b∗,j′)

Df (X)
· Cσ̄2(W∗,2p∗,j′),

where the true mixing measure is of the form G̃∗ :=
∑L

j′=1 exp(b∗,j′)δ(W∗,1p∗,j′ ,W∗,2p∗,j′)
,

that is, a weighted sum of Dirac measures associated with unknown parameters
(b∗,j′ ,W∗,1p∗,j′ ,W∗,2p∗,j′)

L
j′=1 in the parameter space Ξ ⊂ R × Rd × Rd. To guarantee

the identifiability of prompt estimation in the one-layer neural network setting, we assume that
Bσ̄1(W∗,1p∗,1), . . . , Bσ̄1(W∗,1p∗,L) are pairwise different. In order to estimate these unknown
parameters, we utilize the least square estimator, which is given by:

G̃n := argmin
G̃∈G̃L′ (Ξ)

n∑
i=1

(
Yi − fG̃(Xi)

)2

, (16)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where G̃L′(Ξ) := {G̃ =
∑ℓ

i=1 exp(bi)δ(W1pi,W2pi) : 1 ≤ ℓ ≤ L′, (bi,W1pi,W2pi) ∈ Ξ} as the
set of mixing measures with at most L′ atoms, where L′ > L, and with parameters in the space Ξ.

Voronoi loss. In alignment with the regression function change, it is necessary to construct an
appropriate Voronoi loss function for the analysis of this setting, which is given by:

D3(G̃, G̃∗) :=

L∑
j′=1

∣∣∣ ∑
i∈Vj′

exp(bi)− exp(b∗,j′)
∣∣∣

+
∑

j′∈[L]:|Vj′ |=1

∑
i∈Vj′

exp(bi)(∥W1pi −W∗,1p∗,j′∥+ ∥W2pi −W∗,2p∗,j′∥)

+
∑

j′∈[L]:|Vj′ |>1

∑
i∈Vj′

exp(bi)(∥W1pi −W∗,1p∗,j′∥2 + ∥W2pi −W∗,2p∗,j′∥2).

Subsequently, since the prompt reparametrization under this setting involves the activation functions
σ̄1 and σ̄2, let us introduce two standard assumptions on these two functions prior to presenting the
convergence analysis of prompt estimation.

Assumptions. The two activation functions σ̄1 and σ̄2 are given such that the followings holds:

(A.1) (Uniform Lipschitz) Let F (X;W1p,W2p) := exp((Bσ̄1(W1p))
⊤X)Cσ̄2(W2p). Then, for

any r ∈ {1, 2}, we have∑
|α|=r

∣∣∣∣∣(∂|α|F

∂(W1p)α1∂(W2p)α2
(X;W1p,W2p)−

∂|α|F

∂(W1p)α1∂(W2p)α2
(X;W1p

′,W2p
′)
)
γα

∣∣∣∣∣
≤ C∥(W1p,W2p)− (W1p

′,W2p
′)∥ζ∥γ∥r,

for any vector γ ∈ R2d and for some positive constants ζ and C which are independent of X and
(W1p,W2p), (W1p

′,W2p
′). Here, α = (α1, α2) ∈ N2d where α1, α2 ∈ Nd.

(A.2) (Non-zero derivatives) ∂2σ̄2

∂(W2p)(u)∂(W2p)(u) (W∗,2p∗,j′) ̸= 0, for all u ∈ [d] and j′ ∈ [L].

Example. We can validate that σ̄1(W1p) = tanh(W1p) and σ̄2(W2p) = tanh(W2p), where the
function tanh is applied element-wise, meet both the assumptions (A.1) and (A.2). By contrast, if
σ̄2 is a linear function, e.g. σ̄2(W2p) = W2p, then the assumption (A.2) is violated.
Theorem 4.3. Assume that the given activation functions σ̄1 and σ̄2 satisfy both the above assump-
tions (A.1) and (A.2), then it follows that

D3(G̃n, G̃∗) = OP (
√
log(n)/n).

Proof of Theorem 4.3 is in Appendix B.3. This theorem indicates that the rates for estimating
W∗,1p∗,i,W∗,2p∗,i are of orders OP (

√
log(n)/n) and OP (

4
√
log(n)/n) if |Vj′ | = 1 and |Vj′ | > 1,

respectively. Furthermore, let W̃n,1p̃n,i and W̃n,2p̃n,i be estimators of W∗,1p∗,j′ and W∗,2p∗,j′ ,
respectively. Since the activation functions σ̄1 and σ̄1 are Lipschitz continuous, that is,

∥σ̄ℓ(W̃n,ℓp̃n,i)− σ̄ℓ(W∗,ℓp∗,j′)∥ ≲ ∥W̃n,ℓp̃n,i −W∗,ℓp∗,j′∥, for any ℓ ∈ {1, 2}

we deduce that the prompts pK
∗,j′ = σ̄1(W∗,1p∗,j′) and pV

∗,j′ = σ̄1(W∗,2p∗,j′) admit the same
estimation rates as those of W∗,1p∗,i and W∗,2p∗,i. Note that these rates are significantly faster
than those in Theorem 4.1 where the prompts does not share their inner structures, which could be
as slow as O(1/ log(n)). This observation together with that from Theorem 4.2 demonstrate that
the reparametrization among prompts under both the simple linear setting and the one-layer neural
network setting helps improve the sample efficiency of prompt learning considerably.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

In our experiments on visual and language tasks, we follow the settings of Jia et al. (2022) and Li &
Liang (2021), respectively. Please refer to Appendix E for further details.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Comparison of prefix-tuning with and without reparameterization on FGVC and VTAB-1K
benchmarks. We report the average accuracy over five independent runs. Best results among all
methods except Finetune are bolded.

Method FGVC VTAB-1K
Mean Acc CUB-200-2011 NABirds Oxford Flowers Stanford Dogs Stanford Cars Natural Specialized Structured

Finetune 88.54 87.3 82.7 98.8 89.4 84.5 75.88 83.36 47.64
Deep-shareSHALLOW 84.36 87.2 81.5 98.6 91.1 63.4 75.79 79.48 38.53
No-shareSHALLOW 80.38 85.1 77.8 97.9 86.4 54.7 69.00 77.20 29.65
Deep-shareDEEP 88.28 87.8 84.5 98.2 91.6 79.3 77.06 82.28 52.00
No-shareDEEP 82.32 85.9 79.0 97.9 86.3 62.5 70.29 80.20 37.69

Table 2: Comparison of prefix-tuning with and without reparameterization on language datasets
including E2E, WebNLG, and XSUM. Best results among all methods except Finetune are bolded.

Method
E2E WebNLG XSUM

BLEU NIST MET R-L CIDEr BLEU MET TER ↓ R-1 R-2 R-L
S U A S U A S U A

Finetune 68.2 8.62 46.2 71.0 2.47 64.2 27.7 46.5 0.45 0.30 0.38 0.33 0.76 0.53 45.14 22.27 37.25
Deep-share 69.9 8.78 46.3 71.5 2.45 63.9 44.3 54.5 0.45 0.36 0.41 0.34 0.52 0.42 42.62 19.66 34.36
No-share 68.0 8.61 45.8 71.0 2.41 61.1 42.8 53.5 0.43 0.35 0.40 0.36 0.49 0.42 36.86 15.16 29.89

Datasets and metrics. For visual tasks, we use the FGVC and VTAB-1K (Zhai et al., 2019) bench-
marks. FGVC includes five Fine-Grained Visual Classification datasets: CUB-200-2011 (Wah et al.,
2011), NABirds (Van Horn et al., 2015), Oxford Flowers (Nilsback & Zisserman, 2008), Stanford
Dogs (Khosla et al., 2011), and Stanford Cars (Gebru et al., 2017). VTAB-1K comprises 19 visual
tasks in three categories: Natural (standard camera images), Specialized (specialized equipment
images), and Structured (tasks requiring structural reasoning like 3D depth prediction). We report
accuracy on the test set. For language tasks, we assess performance in table-to-text generation and
summarization. We evaluate table-to-text generation with E2E (Novikova et al., 2017) and WebNLG
(Gardent et al., 2017) datasets, using BLEU (Papineni et al., 2002), NIST (Belz & Reiter, 2006),
METEOR (Banerjee & Lavie, 2004), ROUGE-L (Lin, 2004), CIDEr (Vedantam et al., 2015), and
TER (Snover et al., 2005). Summarization is assessed with the XSUM dataset (Narayan et al., 2018)
using ROUGE-1, ROUGE-2, and ROUGE-L. Table 3 summarizes the metrics for each dataset.

Baselines. To assess the effectiveness of the shared structure, we evaluate prefix-tuning under the
following configurations: Deep-share: uses prefix-tuning with the reparameterization trick; No-
share: applies prefix-tuning without reparameterization, with prefix key and value vectors as inde-
pendent parameters; Simple-share: similar to Deep-share, but with σ1 and σ2 as the identity function
(see Section 3). Additionally, following Jia et al. (2022), we explore two variants: SHALLOW, where
prompts attach only to the first layer, and DEEP, where prompts are attached to all layers. Un-
less otherwise specified, references to prefix-tuning denote the DEEP variant. We also compare
prefix-tuning with several fine-tuning techniques: Finetune: updates all backbone model parame-
ters; Partial-k: fine-tunes only the last k layers of the backbone while freezing the others; Adapter
(Houlsby et al., 2019; Lin et al., 2020): inserts new MLP modules with residual connections into the
Transformer layers; VPT (Jia et al., 2022): designed for visual tasks, integrates learnable prompts
into the input space of Transformer layers, following prompt-tuning approach.

Pre-trained backbones. We use the Vision Transformer (ViT-B/16) (Dosovitskiy et al., 2021),
pre-trained on ImageNet-21K (Deng et al., 2009), for visual tasks. For table-to-text, we utilize
GPT2MEDIUM (Radford et al., 2019), with linearized input tables. For summarization, we employ
BARTLARGE (Lewis, 2019), truncating source articles to 512 BPE tokens.

5.2 MAIN RESULTS

Tables 1 and 2 present the performance of prefix-tuning with and without reparameterization. De-
tailed per-task results for VTAB-1K are provided in Appendix F.

Prefix-tuning with reparameterization can achieve competitive performance with full fine-
tuning. As shown in Table 1, although prefix-tuning has not been widely explored for visual tasks,
our results indicate that Deep-shareDEEP performs comparably to full fine-tuning, surpassing it in 2
out of 4 problem classes (13 out of 24 tasks). For instance, prefix-tuning achieved 91.6% accuracy

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

on Stanford Dogs, surpassing full fine-tuning by 2.2%, and 52% accuracy on VTAB-1K Structured,
exceeding fine-tuning by 4.36%. While it underperformed on more challenging tasks like Stanford
Cars, Deep-shareDEEP still achieved a comparable average accuracy (88.28% vs. 88.54%). Similar
trends are observed for language tasks, as shown in Table 2. On E2E, prefix-tuning outperformed
fine-tuning across most metrics, though it slightly lagged in the XSUM summarization task.

Reparameterization plays a crucial role in enhancing the effectiveness of prefix-tuning. It
can be observed that the performance significantly declines when the reparameterization strategy is
omitted. As shown in Table 1, Deep-share outperforms No-share by a substantial margin across
both variants, DEEP and SHALLOW. For instance, on Stanford Cars, Deep-shareDEEP exceeds No-
shareDEEP by 16.8%. This trend is consistent across the majority of datasets (22 out of 24 tasks),
underscoring the effectiveness of reparameterization in improving prefix-tuning performance. This
empirical finding aligns with our theoretical results presented in Section 4, which demonstrate that
reparameterization significantly enhances sample efficiency in parameter estimation. These trends
persist across both visual and language tasks. In Table 2, Deep-share surpasses No-share on most
metrics across three datasets. For example, in summarization tasks, Deep-share outperforms No-
share on all metrics by a considerable margin. This illustrates the critical role of reparameterization
in enabling prefix-tuning to achieve competitive performance.

Figure 2: Comparison of prefix-tuning across three configurations: Deep-share, Simple-share, and
No-share, referred to as Deep, Simple, and No, respectively, on FGVC benchmarks.

The shared structure significantly improves prefix-tuning performance. To further assess the
impact of the shared structure, we compare prefix-tuning under the Simple-share configuration,
where σ1 and σ2 are identity functions. As discussed in Section 4.2, our theoretical analysis sug-
gests that both Deep-share and Simple-share substantially outperform the No-share baseline. These
findings are consistent with our empirical results, as shown in Figure 2. Across all FGVC datasets,
both Simple-share and Deep-share consistently yield significantly better performance than No-share.
This consistent improvement demonstrates the empirical effectiveness of shared structures in en-
hancing prefix-tuning performance. For further experimental results, see Appendix F.

6 DISCUSSION AND CONCLUSION

In this paper, we offer theoretical insights into the reparameterization strategy employed in prefix-
tuning, which is often regarded as an engineering technique. We demonstrate that reparameterization
induces a shared structure between the prefix key and value vectors, which significantly enhances
sample efficiency during prompt estimation. Beyond the theoretical analysis, we empirically val-
idate the advantages of this shared structure through experiments across both vision and language
tasks. However, the current reparameterization implementation, which relies on an MLP to generate
prefix vectors during training, introduces a potential memory overhead. Future work could focus
on optimizing this implementation to reduce such overhead. Additionally, while our focus is on
prefix-tuning, we propose that the benefits of the shared structure may extend to other parameter-
efficient fine-tuning techniques, such as LoRA. We also identify similar patterns of shared structure
in prompt-tuning, offering a preliminary investigation into the underlying mechanisms contribut-
ing to its effectiveness. However, our study is limited to pre-trained MoE models in the context
of prompt-tuning, serving as an initial exploration. Future research could explore the influence of
newly introduced MoE models and the interactions between these models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

In order to facilitate the reproduction of our empirical results, we provide detailed descriptions of
the experimental setup in Section 5.1 and Appendix E. All datasets used in this study are publicly
available, enabling full replication of our experiments.

REFERENCES

Satanjeev Banerjee and Alon Lavie. Meteor: an automatic metric for mt evaluation with high levels
of correlation with human judgments. Proceedings of ACL-WMT, pp. 65–72, 2004.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Anja Belz and Ehud Reiter. Comparing automatic and human evaluation of nlg systems. In 11th
conference of the european chapter of the association for computational linguistics, pp. 313–320,
2006.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3606–3613, 2014.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–
5569. PMLR, 2022.

D. Eigen, M. Ranzato, and I. Sutskever. Learning factored representations in a deep mixture of
experts. In ICLR Workshops, 2014.

Li Fei-Fei, Robert Fergus, and Pietro Perona. One-shot learning of object categories. IEEE trans-
actions on pattern analysis and machine intelligence, 28(4):594–611, 2006.

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. The webnlg
challenge: Generating text from rdf data. In 10th International Conference on Natural Language
Generation, pp. 124–133. ACL Anthology, 2017.

Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng, and Li Fei-Fei. Fine-grained
car detection for visual census estimation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31, 2017.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ben Graham. Kaggle diabetic retinopathy detection competition report. University of Warwick, 22
(9), 2015.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Nhat Ho, Chiao-Yu Yang, and Michael I Jordan. Convergence rates for gaussian mixtures of experts.
Journal of Machine Learning Research, 23(323):1–81, 2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Eugenia Iofinova, Alexandra Peste, Mark Kurtz, and Dan Alistarh. How well do sparse imagenet
models transfer? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12266–12276, 2022.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.
Neural Computation, 3, 1991.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, pp. 709–727.
Springer, 2022.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2901–2910, 2017.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for fine-
grained image categorization: Stanford dogs. In Proc. CVPR workshop on fine-grained visual
categorization (FGVC), volume 2, 2011.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Minh Le, An Nguyen, Huy Nguyen, Trang Nguyen, Trang Pham, Linh Van Ngo, and Nhat Ho.
Mixture of experts meets prompt-based continual learning. In Advances in Neural Information
Processing Systems, 2024.

Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic object recognition with
invariance to pose and lighting. In Proceedings of the 2004 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 2, pp. II–104. IEEE,
2004.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Yoav Levine, Itay Dalmedigos, Ori Ram, Yoel Zeldes, Daniel Jannai, Dor Muhlgay, Yoni Osin,
Opher Lieber, Barak Lenz, Shai Shalev-Shwartz, et al. Standing on the shoulders of giant frozen
language models. arXiv preprint arXiv:2204.10019, 2022.

M Lewis. Bart: Denoising sequence-to-sequence pre-training for natural language generation, trans-
lation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.

Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down to scale up: A guide to
parameter-efficient fine-tuning. arXiv preprint arXiv:2303.15647, 2023.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & shifting your features: A
new baseline for efficient model tuning. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative language model
via parameter-efficient transfer learning. arXiv preprint arXiv:2004.03829, 2020.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-
tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling task relation-
ships in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 1930–1939, 2018.

Tudor Manole and Nhat Ho. Refined convergence rates for maximum likelihood estimation under
finite mixture models. In Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 14979–15006. PMLR, 17–23 Jul
2022.

Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement
testing sprites dataset, 2017.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Huy Nguyen, TrungTin Nguyen, and Nhat Ho. Demystifying softmax gating function in Gaussian
mixture of experts. In Advances in Neural Information Processing Systems, 2023.

Huy Nguyen, Pedram Akbarian, and Nhat Ho. Is temperature sample efficient for softmax Gaussian
mixture of experts? In Proceedings of the ICML, 2024a.

Huy Nguyen, Nhat Ho, and Alessandro Rinaldo. Sigmoid gating is more sample efficient than
softmax gating in mixture of experts. In Advances in Neural Information Processing Systems,
2024b.

Huy Nguyen, Nhat Ho, and Alessandro Rinaldo. On least square estimation in softmax gating
mixture of experts. In Proceedings of the ICML, 2024c.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for end-
to-end generation. arXiv preprint arXiv:1706.09254, 2017.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Aleksandar Petrov, Philip HS Torr, and Adel Bibi. When do prompting and prefix-tuning work? a
theory of capabilities and limitations. arXiv preprint arXiv:2310.19698, 2023.

Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. From sparse to soft mixtures
of experts. arXiv preprint arXiv:2308.00951, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts,
2021.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outrageously
large neural networks: The sparsely-gated mixture-of-experts layer. In International Conference
on Learning Representations (ICLR), 2017.

Mathew Snover, Bonnie Dorr, Richard Schwartz, John Makhoul, Linnea Micciulla, and Ralph
Weischedel. A study of translation error rate with targeted human annotation. In Proceedings
of the 7th Conference of the Association for Machine Translation in the Americas (AMTA 06), pp.
223–231, 2005.

S. van de Geer. Empirical processes in M-estimation. Cambridge University Press, 2000.

Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro
Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 595–604, 2015.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
description evaluation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4566–4575, 2015.

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation
equivariant cnns for digital pathology. In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20,
2018, Proceedings, Part II 11, pp. 210–218. Springer, 2018.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pp. 3485–3492. IEEE, 2010.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yi Xin, Siqi Luo, Haodi Zhou, Junlong Du, Xiaohong Liu, Yue Fan, Qing Li, and Yuntao Du.
Parameter-efficient fine-tuning for pre-trained vision models: A survey, 2024.

Bin Yu. Assouad, Fano, and Le Cam. Festschrift for Lucien Le Cam, pp. 423–435, 1997.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Yanqi Zhou, Nan Du, Yanping Huang, Daiyi Peng, Chang Lan, Da Huang, Siamak Shakeri, David
So, Andrew M Dai, Yifeng Lu, et al. Brainformers: Trading simplicity for efficiency. In Interna-
tional Conference on Machine Learning, pp. 42531–42542. PMLR, 2023.

Wei Zhu and Ming Tan. Improving prompt tuning with learned prompting layers. arXiv preprint
arXiv:2310.20127, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Supplement to “Revisiting Prefix-tuning: Statistical Benefits of
Reparametrization among Prompts”

In this supplementary material, we begin by exploring the relationship between prompt-tuning and
mixture of experts in Appendix A. Following this, we provide detailed proofs for the theoretical
results discussed in Section 4. Additionally, we present an in-depth discussion of related work
in Appendix D. Appendix E offers further implementation details for the experiments outlined in
Section 5. Finally, Appendix F includes additional experimental results.

A PROMPT-TUNING AND MIXTURE OF EXPERTS

We demonstrate that applying prompt-tuning not only fine-tunes pre-trained MoE models by incor-
porating new experts but also facilitates the introduction of entirely new MoE models within the
attention mechanism. Specifically, similar to Section 2.2, we consider the l-th head within the MSA
layer. Let P =

[
p1, . . . ,pNp

]⊤ ∈ RNp×d. We define new experts fN+j : RNd → Rdv along with
their corresponding new score functions si,N+j : RNd → R for pre-trained MoE models as follows:

fN+j(X) := WV
l

⊤
pj , si,N+j(X) :=

X⊤E⊤
i WQ

l WK
l

⊤
pj√

dv
=

x⊤
i W

Q
l WK

l

⊤
pj√

dv
(17)

for i ∈ [N] and j ∈ [Np]. For Np new MoE models, we define the score functions sN+i, j : RNd →
R associated with pre-trained experts as:

sN+i, j(X) :=
p⊤
i W

Q
l WK

l

⊤
EjX√

dv
=

p⊤
i W

Q
l WK

l

⊤
xj√

dv
, (18)

for i ∈ [Np] and j ∈ [N]. The score functions sN+i,N+j : RNd → R for new experts within new
MoE models are defined as:

sN+i,N+j(X) :=
p⊤
i W

Q
l WK

l

⊤
pj√

dv
, (19)

for i ∈ [Np] and j ∈ [Np]. Then from equation (3), the output of the l-th head can be expressed as:

ĥl = Attention

([
P
XQ

]
,

[
P
XK

]
,

[
P
XV

])
=

[
ĥl,1, . . . , ĥl,N+Np

]⊤
∈ R(N+Np)×dv , (20)

ĥl,i =

N∑
j=1

exp(si,j(X))∑N
k=1 exp(si,k(X)) +

∑Np

k′=1 exp(si,N+k′(X))
fj(X)

+

Np∑
j′=1

exp(si,N+j′(X))∑N
k=1 exp(si,k(X)) +

∑Np

k′=1 exp(si,N+k′(X))
fN+j′(X), (21)

for i ∈ [N + Np]. Prompt-tuning extends pre-trained MoE models by incorporating Np additional
experts fN+j , which are defined by the prompt vectors pj . Additionally, prompt-tuning introduces
new MoE models, ĥl,N+1, . . . , ĥl,N+Np , that utilize linear and scalar score functions.

B PROOFS

B.1 PROOF OF THEOREM 4.1

The proof is divided into two step as follows:

Step 1. To begin with, we demonstrate that the following limit holds true for any r ≥ 1:

lim
ε→0

inf
G∈GL′ (Θ):D1,r(G,G∗)≤ε

∥fG − fG∗∥L2(µ)

D1,r(G,G∗)
= 0. (22)

Note that it is sufficient to construct a mixing measure sequence (Gn)n≥1 that satisfies both
D1,r(Gn, G∗) → 0 and ∥fGn − fG∗∥L2(µ)/D1,r(Gn, G∗) → 0, as n → ∞.

For that purpose, we take into account the sequence Gn =
∑L+1

i=1 exp(bn,i)δ(pK
n,i,p

V
n,i)

, where

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• exp(bn,1) = exp(bn,2) = 1
2 exp(b∗,1) +

1
2nr+1 and exp(bn,i) = exp(bn,i−1) for any

3 ≤ i ≤ L+ 1;
• pK

n,1 = pK
n,2 = pK

∗,1 and pK
n,i = pK

n,i−1 for any 3 ≤ i ≤ L+ 1;

• pV
n,1 = pV

∗,1 + 1
n (1, 0, . . . , 0), p

V
n,2 = pV

∗,1 − 1
n (1, 0, . . . , 0) and pV

n,i = pV
∗,i−1 for any

3 ≤ i ≤ L+ 1.

Then, we can compute the loss function D1,r(Gn, G∗) as

D1,r(Gn, G∗) =
1

nr+1
+

[
exp(b∗,1) +

1

nr+1

]
· 1

nr
= O(n−r). (23)

It can be seen that D1,r(Gn, G∗) → 0 as n → ∞.

Subsequently, we illustrate that ∥fGn
−fG∗∥L2(µ)/D1,r(Gn, G∗) → 0. In particular, let us consider

the quantity

Qn(X) :=
[N∑
i′=1

exp(X⊤A0
i′X + a0i′) +

L∑
j′=1

exp((BpK
∗,j′)

⊤X + b∗,j′)
]
· [fGn

(X)− fG∗(X)],

which can be decomposed as follows:

Qn(X) =

L∑
j=1

∑
i∈Vj

exp(bn,i)
[
exp((BpK

n,i)
⊤X)CpV

n,i − exp((BpK
∗,j)

⊤X)CpV
∗,j

]

−
L∑

j=1

∑
i∈Vj

exp(bn,i)
[
exp((BpK

n,i)
⊤X)fGn

(X)− exp((BpK
∗,j)

⊤X)fGn
(X)

]

+

L∑
j=1

(∑
i∈Vj

exp(bn,i)− exp(b∗,j)
)[

exp((BpK
∗,j)

⊤X)CpV
∗,j − exp((BpK

∗,j)
⊤X)fGn

(X)
]

:= An(X)−Bn(X) + Cn(X).

It follows from the choices of pK
n,i,p

V
n,i and bn,i that

An(X) =

2∑
i=1

1

2

[
exp(b∗,1) +

1

nr+1

]
exp((BpK

∗,1)
⊤X)C(pV

n,i − pV
∗,1)]

=
1

2

[
exp(b∗,1) +

1

nr+1

]
exp((pK

∗,1)
⊤X)C[(pV

n,1 − pV
∗,1) + (pV

n,2 − pV
∗,1)]

= 0.

Moreover, we can also verify that Bn(X) = 0, and Cn(X) = O(n−(r+1)). Thus, we deduce that
Qn(X)/D1,r(Gn, G∗) → 0 as n → ∞ for almost every X .

As the term
[∑N

i′=1 exp(X
⊤A0

i′X + a0i′) +
∑L

j′=1 exp((p
K
∗,j′)

⊤X + b∗,j′)
]

is bounded, we have
[fGn(X)− fG∗(X)]/D1,r(Gn, G∗) → 0 for almost every X . This limit suggests that

∥fGn − fG∗∥L2(µ)/D1,r(Gn, G∗) → 0

as n → ∞. Thus, we obtain the claim in equation (22).

Step 2. We will establish the desired result in this step, that is,

inf
Gn∈GL′ (Θ)

sup
G∈GL′ (Θ)\GL−1(Θ)

EfG [D1,r(Gn, G)] ≳ n−1/2. (24)

Since the noise variables ϵi follow from the Gaussian distribution, we get that Yi|Xi ∼
N (fG∗(Xi), σ

2) for all i ∈ [n]. Additionally, for sufficiently small ε > 0 and a fixed con-
stant C1 > 0 which we will select later, we can find a mixing measure G′

∗ ∈ GL′(Θ) such that
D1,r(G

′
∗, G∗) = 2ε and ∥fG′

∗
− fG∗∥L2(µ) ≤ C1ε thanks to the result in equation (22). According

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

to the Le Cam’s lemma (Yu, 1997), as the Voronoi loss function D1,r satisfies the weak triangle
inequality, it follows that

inf
Gn∈GL′ (Θ)

sup
G∈GL′ (Θ)\GL−1(Θ)

EfG [D1,r(Gn, G)]

≳
D1,r(G

′
∗, G∗)

8
exp(−nEX∼µ[KL(N (fG′

∗
(X), σ2),N (fG∗(X), σ2))])

≳ ε · exp(−n∥fG′
∗
− fG∗∥2L2(µ))

≳ ε · exp(−C1nε
2), (25)

where the second inequality follows from the equality

KL(N (fG′
∗
(X), σ2),N (fG∗(X), σ2)) =

(fG′
∗
(X)− fG∗(X))2

2σ2
.

Let ε = n−1/2, then we get that ε · exp(−C1nε
2) = n−1/2 exp(−C1). Consequently, we achieve

the desired minimax lower bound in equation (24).

B.2 PROOF OF THEOREM 4.2

The proof of Theorem 4.2 consists of two parts. In the first part in Section B.2.1, we prove the
parametric convergence rate OP (

√
log(n)/n) of the estimated regression function fḠn

to the true
regression function fḠ∗ . In the second part in Section B.2.2, we establish the lower bound ∥fḠ −
fḠ∗∥L2(µ) ≥ C ′D2(Ḡ, Ḡ∗) for any Ḡ ∈ ḠL′(Ω) for some universal constant C ′. This lower bound
directly translates to the convergence rate OP (

√
log(n)/n) of the least-square estimator Ḡn to the

true mixing measure Ḡ∗.

B.2.1 CONVERGENCE RATE OF DENSITY ESTIMATION

Proposition B.1. The convergence rate of the model estimation fḠn
(·) to the true model fḠ∗(·)

under the L2(µ) norm is parametric on the sample size, that is,

∥fḠn
− fḠ∗∥L2(µ) = OP (

√
log(n)/n). (26)

Proof of Proposition B.1 is in Appendix C.1.

B.2.2 FROM DENSITY ESTIMATION TO EXPERT ESTIMATION

Given the parametric convergence rate of the estimated regression function fḠn
to the true regression

function fḠ∗ in Proposition B.1, to obtain the conclusion of Theorem 4.2, it is sufficient to demon-
strate that ∥fḠ − fḠ∗∥L2(µ) ≥ C ′D2(Ḡ, Ḡ∗) for any Ḡ ∈ ḠL′(Ω) for some universal constant C ′.
It is equivalent to demonstrate the following inequality:

inf
Ḡ∈ḠL′ (Ω)

∥fG − fḠ∗∥L2(µ)/D2(G, Ḡ∗) > 0.

We divide the proof of the above inequality into local and global parts.

Local part: We will demonstrate that

lim
ε→0

inf
Ḡ∈ḠL′ (Ω):D2(G,Ḡ∗)≤ε

∥fḠ − fḠ∗∥L2(µ)/D2(Ḡ, Ḡ∗) > 0

Assume by contrary that the above claim does not hold. Then, there exists a sequence of mixing
measures Ḡn :=

∑L′

j′=1 exp(bn,j′)δpn,j′ in ḠL′(Ω) such that as n → ∞, we have{
D2n := D2(Ḡn, Ḡ∗) → 0,

∥fḠn
− fḠ∗∥L2(µ)/D2n → 0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Denote Vn
j := Vj(Ḡn) as a Voronoi cell of Ḡn generated by the j-th components of Ḡ∗. Since our

arguments are asymptotic, we may assume that those Voronoi cells do not depend on the sample
size, i.e., Vj = Vn

j . Thus, the Voronoi loss D2n can be represented as

D2n :=

L∑
j′=1

∣∣∣ ∑
i∈Vj′

exp(bn,i)− exp(b∗,j′)
∣∣∣+ ∑

j′∈[L]:|Vj′ |=1

∑
i∈Vj′

exp(bn,i)∥∆pn,ij′∥

+
∑

j′∈[L]:|Vj′ |>1

∑
i∈Vj′

exp(bn,i)∥∆pn,ij′∥2,

where ∆pn,ij′ = pn,i − p∗,j′ for all i ∈ Vj′ .

Additionally, since D2n → 0, we have
∑

i∈Vj
exp(bn,i) → exp(b∗,j) and pn,i → p∗,j for any

i ∈ Vj , j ∈ [L]. Now, we divide the proof of the local part into three sub-steps as follows.

Step 1 - Taylor expansion. In this step, we would like to decompose the quantity

Qn(X) :=
[N∑
j=1

exp(X⊤A0
jX + a0j) +

L∑
j′=1

exp((Bp∗,j′)
⊤X + b∗,j′)

]
· [fḠn

(X)− fḠ∗(X)],

as follows:

Qn(X) =

L∑
j=1

∑
i∈Vj

exp(bn,i)
[
exp((Bpn,i)

⊤X)Cpn,i − exp((Bp∗,j)
⊤X)Cp∗,j

]

−
L∑

j=1

∑
i∈Vj

exp(bn,i)
[
exp((Bpn,i)

⊤X)− exp((Bp∗,j)
⊤X)

]
fḠn

(X)

+

L∑
j=1

(∑
i∈Vj

exp(bn,i)− exp(b∗,j)
)
exp((Bp∗,j)

⊤X)
[
Cp∗,j − fḠn

(X)
]

:= Ān(X)− B̄n(X) + C̄n(X). (27)

Decomposition of Ān(X). To ease the ensuing presentation, we denote E(X;p) :=
exp((Bp)⊤X) and H(p) = Cp, and F (X;p) = E(X;p)H(p). Since each Voronoi cell Vj

possibly has more than one element, we continue to decompose Ān as follows:

Ān(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(bn,i)
[
F (X;pn,i)− F (X;p∗,j)

]
+

∑
j:|Vj |>1

∑
i∈Vj

exp(bn,i)
[
F (X;pn,i)− F (X;p∗,j)

]
:= Ān,1(X) + Ān,2(X).

By means of the first-order Taylor expansion, we have

E(X;pn,i) = E(X;p∗,j) +
∑
|α|=1

(∆pn,ij)
α ∂

|α|E

∂pα
(X;p∗,j) +Rij,1(X),

H(pn,i) = H(p∗,j) +
∑
|α|=1

(∆pn,ij)
α ∂

|α|H

∂pα
(p∗,j) +Rij,2,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

for any i ∈ Vj and j such that |Vj | = 1. Here, Rij,1(X) and Rij,2 are Taylor remainders. Putting
the above results together leads to

Ān,1(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(bn,i)

α!

∑
|α|=1

{
(∆pn,ij)

α ∂
|α|E

∂pα
(X;p∗,j)H(p∗,j)

+ (∆pn,ij)
α ∂

|α|H

∂pα
(p∗,j)E(X;p∗,j)

}
+ R̄n,1(X)

=
∑

j:|Vj |=1

∑
|α|=1

{
Mn,j,α

∂|α|E

∂pα
(X;p∗,j)H(p∗,j)

+Mn,j,α
∂|α|H

∂pα
(p∗,j)E(X;p∗,j)

}
+ R̄n,1(X)

where the function R̄n,1(X) satisfies R̄n,1(X)/D2n → 0 when n → ∞. Furthermore, the formu-
lations of Mn,j,α are given by:

Mn,j,α =
∑
i∈Vj

exp(bn,i)

α!
(∆pn,ij)

α,

for any |α| = 1.

Moving to the term Ān,2(X), by applying the second-order Taylor expansions to E(X;pn,i) around
E(X;p∗,j) and H(pn,i) around H(p∗,j) for any i ∈ Vj and j such that |Vj | > 1, we get that

Ān,2(X) =
∑

j:|Vj |>1

∑
1≤|α|≤2

{
Mn,j,α

∂|α|E

∂pα
(X;p∗,j)H(p∗,j)

+Mn,j,α
∂|α|H

∂pα
(p∗,j)E(X;p∗,j)

}
+

∑
|α|=1,|β|=1

Mn,j,α,β
∂|α|E

∂pα
(X;p∗,j)

∂|β|H

∂pβ
(p∗,j) + R̄n,2(X)

where the function R̄n,2(X) satisfies R̄n,2(X)/D2n → 0 when n → ∞. Furthermore, we define

Mn,j,α =
∑
i∈Vj

exp(bn,i)

α!
(∆pn,ij)

α,

for any |α| = 2 and

Mn,j,α,β =
∑
i∈Vj

exp(bn,i)

α!β!
(∆pn,ij)

α+β ,

for any |α| = |β| = 1. Direct calculation leads to the following formulations of the partial deriva-
tives of E(X;p) and H(p):

∂E

∂p(u)
(X;p) = exp((Bp)⊤X)(B1u)

⊤X,

∂2E

∂p(u)∂p(v)
(X;W1p) = exp((Bp)⊤X)X⊤(B1u)(B1v)

⊤X,

∂H

∂p(u)
(p) = C1u,

∂2H

∂p(u)∂p(v)
(W2p) = 0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Here, we denote 1u is the vector that its u-th element is 1 while its other elements are 0 for any
1 ≤ u ≤ d. Given the above formulations, we can rewrite Ān,1(X) and Ān,2(X) as follows:

Ān,1(X) =
∑

j:|Vj |=1

exp((Bp∗,j)
⊤X)

[
L1,n(p∗,j) + L2,n(p∗,j)

⊤B⊤X
)
+ R̄n,1(X),

Ān,2(X) =
∑

j:|Vj |>1

exp((Bσ1(p∗,j))
⊤X)

[
L̄1,n(p∗,j) + L̄2,n(p∗,j)

⊤B⊤X

+ (B⊤X)⊤L̄3,n(p∗,j)B
⊤X

]
+ R̄n,2(X),

where the formulations of the functions L1,n, L2,n, L̄1,n, L̄2,n, and L̄3,n are given by:

L1,n(p) =

d∑
u=1

Mn,j,1uC1u,

L2,n(p) =

d∑
u=1

Mn,j,1u1uCp,

L̄1,n(p) =

d∑
u=1

Mn,j,1uC1u,

L̄2,n(p) =

d∑
u=1

Mn,j,1u1uCp+
∑

1≤u,v≤d

Mn,j,1v,1uC1u1v

L̄3,n(p) =
∑

1≤u,v≤d

Mn,j,1uv
1u1

⊤
v Cp.

Here, 1uv is the matrix that its (u, v)-th element is 1 while its other elements are 0 for any 1 ≤
u, v ≤ d.

Decomposition of B̄n(X). We can rewrite B̄n(X) as follows:

B̄n(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(bn,i)
[
E(X;pn,i)− E(X;p∗,j)

]
fḠn

(X)

+
∑

j:|Vj |>1

∑
i∈Vj

exp(bn,i)
[
E(X;pn,i)− E(X;p∗,j)

]
fḠn

(X)

:= B̄n,1(X) + B̄n,2(X)

By applying the first-order and second-order Taylor expansion, we get

B̄n,1(X) =
∑

j:|Vj |=1

∑
|α|=1

Mn,j,α
∂|α|E

∂pα
(X;p∗,j)fḠn

(X) +Rn,3(X)

B̄n,2(X) =
∑

j:|Vj |=1

∑
1≤|α|≤2

Mn,j,α
∂|α|E

∂pα
(X;p∗,j)fḠn

(X) +Rn,4(X)

where Rn,3(X), Rn,4(X) is a Taylor remainder such that Rn,3(X)/D2n → 0, Rn,4(X)/D2n → 0
when n → ∞. Therefore, we can express the functions B̄n,1(X) and B̄n,2(X) as follows:

B̄n,1(X) =
∑

j:|Vj |=1

exp((Bp∗,j)
⊤X)N1,n(p∗,j)

⊤XfḠn
(X) +Rn,3(X),

B̄n,2(X) =
∑

j:|Vj |>1

exp((Bp∗,j)
⊤X)

[
N̄1,n(p∗,j)

⊤B⊤X

+ (B⊤X)⊤N̄2,n(p∗,j)(B
⊤X)

]
fḠn

(X) +Rn,4(X),

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where the formulations of the functions N1,n, N̄1,n, and N̄2,n are given by:

N1,n(p) =

d∑
u=1

Mn,j,1u1u,

N̄1,n(p) =

d∑
u=1

Mn,j,1u1u,

N̄2,n(p) =
∑

1≤u,v≤d

Mn,j,1uv
1u1

⊤
v .

Plugging the above expressions into equation (27), we can represent Qn(X) as folows:

Qn(X) =
∑

j:|Aj |=1

exp((Bp∗,j)
⊤X)

[
L1,n(p∗,j) + L2,n(p∗,j)

⊤B⊤X
)

+
∑

j:|Aj |>1

exp((Bp∗,j)
⊤X)

[
L̄1,n(p∗,j) + L̄2,n(p∗,j)

⊤B⊤X + (B⊤X)⊤L̄3,n(p∗,j)B
⊤X

]
−

∑
j:|Aj |=1

exp((Bp∗,j)
⊤X)N1,n(p∗,j)

⊤XfḠn
(X)

−
∑

j:|Aj |>1

exp((Bp∗,j)
⊤X)

[
N̄1,n(p∗,j)

⊤B⊤X + (B⊤X)⊤N̄2,n(p∗,j)B
⊤X

]
fḠn

(X)

−
L∑

j=1

Mn,j,0d exp((Bp∗,j)
⊤X)fGn(X) +

L∑
j=1

Mn,j,0d exp((Bp∗,j)
⊤X)Cp∗,j

+ R̄n,1(X) + R̄n,2(X)−Rn,3(X)−Rn,4(X)

=
∑

j:|Aj |=1

exp((Bp∗,j)
⊤X)

[
L′
1,n(p∗,j) + L2,n(p∗,j)

⊤B⊤X
)

+
∑

j:|Aj |>1

exp((Bp∗,j)
⊤X)

[
L̄′
1,n(p∗,j) + L̄2,n(p∗,j)

⊤B⊤X + (B⊤X)⊤L̄3,n(p∗,j)B
⊤X

]
−

∑
j:|Aj |=1

exp((Bp∗,j)
⊤X)

[
Mn,j,0d +N1,n(p∗,j)

⊤B⊤X
]
fḠn

(X)

−
∑

j:|Aj |>1

exp((Bp∗,j)
⊤X)

[
Mn,j,0d + N̄1,n(p∗,j)

⊤B⊤X + (B⊤X)⊤N̄2,n(p∗,j)B
⊤X

]
fḠn

(X)

+ R̄n,1(X) + R̄n,2(X)−Rn,3(X)−Rn,4(X) (28)

where Mn,j,0d =
∑

i∈Vj
exp(bn,i) − exp(b∗,j) for any j ∈ [L], L′

1,n(p∗,j) = L1,n(p∗,j) +

Mn,j,0dCp∗,j , and L̄′
1,n(p∗,j) = L̄1,n(p∗,j) +Mn,j,0dCp∗,j .

Step 2 - Non-vanishing coefficients. From equation (35), we can represent Qn(X)/D2n as
a linear combination of the independent functions exp((Bp∗,j)

⊤X), (B⊤X)(u) exp((Bp∗,j)
⊤X),

(B⊤X)(u)(B⊤X)(v) exp((Bp∗,j)
⊤X), exp((Bp∗,j)

⊤X)fḠn
(X), (B⊤X)(u) exp((Bp∗,j)

⊤X)fḠn
(X),

and (B⊤X)(u)(B⊤X)(v) exp((Bp∗,j)
⊤X)fḠn

(X) for any 1 ≤ j ≤ L and 1 ≤ u, v ≤ d.

Assume that all the coefficients of these linear independent functions in the formulation of
Qn(X)/D2n go to 0 as n → ∞. It follows that L1,n(p∗,j)/D2n, L2,n(p∗,j)

(u)/D2n,
L̄1,n(p∗,j)/D2n, L̄2,n(p∗,j)

(u)/D2n, L̄3,n(p∗,j)
(uv)/D2n, N1,n(p∗,j)/D2n, N̄1,n((p∗,j)

(u)/D2n,
N̄2,n(p∗,j)

(uv)/D2n, and Mn,j,0d/D2n approach 0 as n → ∞ for any 1 ≤ u, v ≤ d and 1 ≤ j ≤ L.

Then, as Mn,j,0d/D2n → 0, it indicates that

|Mn,j,0d |
D2n

=
|
∑

i∈Vj
exp(bn,i)− exp(b∗,j)|

D2n
→ 0,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

for any 1 ≤ j ≤ L. By summing these limits up when varying the index j from 1 to L, we obtain
that ∑L

j=1 |
∑

i∈Vj
exp(bn,i)− exp(b∗,j)|
D2n

→ 0. (29)

Now, we consider indices j ∈ [L] such that its corresponding Voronoi cell has only one element, i.e.
|Vj | = 1. As L2,n(p∗,j)

(u)/D2n → 0, it indicates that Mn,j,1u/D2n → 0. It indicates that∑d
u=1 exp(bn,i)|Mn,j,1u |

D2n
=

∑
i∈Vj

exp(bn,i)∥∆pn,ij∥
D2n

→ 0.

Putting the above results together, we find that∑
j:|Vj |=1

∑
i∈Vj

exp(bn,i)∥∆pn,ij∥
D2n

→ 0. (30)

Moving to indices j ∈ [L] such that |Vj | > 1, as L̄3,n(p∗,j)
(uu)/D2n → 0, we obtain that∑d

u=1 exp(bn,i)L̄3,n(p∗,j)
(uu)

D2n
=

∑
i∈Vj

exp(bn,i)∥∆pn,ij∥2

D2n
→ 0.

Therefore, we find that ∑
j:|Vj |>1

∑
i∈Vj

exp(bn,i)∥∆pn,ij∥2

D2n
→ 0.

Collecting all the above results, we obtain that

1 =
D2n

D2n
→ 0

as n → ∞, which is a contradiction.

As a consequence, not all of the coefficients of the linear independent functions in the formulations
of Qn(X)/D2n go to 0 as n → ∞.

Step 3 - Application of Fatou’s lemma. In particular, let denote mn as the maximum of the
absolute values of L′

1,n(p∗,j)/D2n, L2,n(p∗,j)
(u)/D2n, L̄′

1,n(p∗,j)/D2n, L̄2,n(p∗,j)
(u)/D2n,

L̄3,n(p∗,j)
(uv)/D2n, N1,n(p∗,j)/D2n, N̄1,n((p∗,j)

(u)/D2n, N̄2,n(p∗,j)
(uv)/D2n, and

Mn,j,0d/D2n for all 1 ≤ u, v ≤ d. From the result of Step 2, it follows that 1/mn ̸→ ∞
as n → ∞.

Recall that ∥fḠn
− fḠ∗∥L2(µ)/D2n → 0 as n → ∞, which indicates that ∥fḠn

−
fḠ∗∥L2(µ)/(mnD2n) → 0. By applying Fatou’s lemma, we get that

0 = lim
n→∞

∥fḠn
− fḠ∗∥L2(µ)

mnD2n
≥

∫
lim inf
n→∞

∣∣fḠn
(X)− fḠ∗(X)

∣∣
mnD2n

dµ(X) ≥ 0.

It indicates that lim infn→∞

∣∣fḠn
(X)− fḠ∗(X)

∣∣
mnD2n

= 0 for almost surely X . As n → ∞, we

denote

L′
1,n(p∗,j)

mnD2n
→ αj ,

L2,n(p∗,j)

mnD2n
→ βj ,

L̄′
1,n(p∗,j)

mnD2n
→ ᾱj ,

L̄2,n(p∗,j)

mnD2n
→ β̄j ,

L̄3,n(p∗,j)

mnD2n
→ γ̄j ,

Mn,j,0d

D2n
→ α̃j ,

N1,n(p∗,j)

mnD2n
→ β̃j ,

N̄1,n(p∗,j)

mnD2n
→ β̂j ,

N̄2,n(p∗,j)

mnD2n
→ γ̂j

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

for any 1 ≤ j ≤ L. Here, from the definition of mn, at least one coefficient among
{αj , βj , α̃j , β̃j}j:|Vj |=1, {ᾱj , β̄j , γ̄j , α̃j , β̂j , γ̂j}j:|Vj |>1 is different from 0. Then, the equation

lim infn→∞

∣∣fḠn
(X)− fḠ∗(X)

∣∣
mnD2n

= 0 leads to∑
j:|Aj |=1

exp((Bp∗,j)
⊤X)(αj + β⊤

j (B⊤X)
)

+
∑

j:|Aj |>1

exp((Bp∗,j)
⊤X)

[
ᾱj + β̄⊤

j (B⊤X) + (B⊤X)⊤γ̄j(B
⊤X)

]
−

∑
j:|Aj |=1

exp((Bp∗,j)
⊤X)(α̃j + β̃⊤

j (B⊤X))fḠ∗(X)

−
∑

j:|Aj |>1

exp((Bp∗,j)
⊤X)

[
α̃j + β̂⊤

j (B⊤X) + (B⊤X)⊤γ̂jB
⊤X

]
fḠ∗(X) = 0

for almost surely X . By denoting Z = B⊤X , this equation also holds for almost
surely Z. However, the new equation implies that all the coefficients {αj , βj , α̃j , β̃j}j:|Vj |=1,
{ᾱj , β̄j , γ̄j , α̃j , β̂j , γ̂j}j:|Vj |>1 are 0, which is a contradiction.

It indicates that we indeed have the conclusion of the local part, namely,

lim
ε→0

inf
Ḡ∈ḠL′ (Ω):D2(Ḡ,Ḡ∗)≤ε

∥fḠ − fḠ∗∥L2(µ)/D2(Ḡ, Ḡ∗) > 0.

Global part: From local part, there exists a positive constant ε′ such that

inf
Ḡ∈ḠL′ (Ω):D2(Ḡ,Ḡ∗)≤ε′

∥fḠ − fḠ∗∥L2(µ)/D2(Ḡ, Ḡ∗) > 0.

Therefore, it is sufficient to prove that

inf
Ḡ∈ḠL′ (Ω):D2(Ḡ,Ḡ∗)>ε′

∥fḠ − fḠ∗∥L2(µ)/D2(G, Ḡ∗) > 0.

Assume by contrary, then we can find a sequence of mixing measures Ḡ′
n :=

∑L′

j′=1 exp(bn,j′)δpn,j′

in ḠL′(Ω) such that as n → ∞, we have{
D2(Ḡ

′
n, Ḡ∗) > ε′

∥fḠ′
n
− fḠ∗∥L2(µ)/D2(Ḡ

′
n, Ḡ∗) → 0,

which indicates that ∥fḠ′
n
− fḠ∗∥L2(µ) → 0 as n → ∞.

Recall that Ω is a compact set. Therefore, there exists a mixing measure Ḡ′ in ḠL′(Ω) such that one
of Ḡ′

n’s subsequences converges to Ḡ′. Since D2(Ḡ
′
n, Ḡ∗) > ε′, we deduce that D2(Ḡ

′, Ḡ∗) > ε′.
By invoking the Fatou’s lemma, we have that

0 = lim
n→∞

∥fḠ′
n
− fḠ∗∥L2(µ) ≥

∫
lim inf
n→∞

∣∣∣fḠ′
n
− fḠ∗

∣∣∣2 dµ(X).

Thus, we have fḠ′ = fḠ∗ for µ−almost surely X . From the identifiability property (cf. the end of
this proof), we deduce that Ḡ′ ≡ Ḡ∗. It follows that D2(Ḡ

′, Ḡ∗) = 0, contradicting the fact that
D2(Ḡ

′, Ḡ∗) > ε′ > 0.
Hence, the proof of the global part is completed.

Identifiability property. We now prove the identifiability of shared strutures among prompts. In
particular, we will show that if fḠ(X) = fḠ∗(X) for almost every X , then it follows that Ḡ ≡ Ḡ∗.

For any Ḡ ∈ ḠL′(Ω), let us denote

softmaxḠ(u) =
exp(u)∑N

k=1 exp(X
⊤A0

kX + a0k) +
∑L′

j′=1 exp((Bpj′)⊤X + bj′)
,

softmaxḠ∗(u∗) =
exp(u∗)∑N

k=1 exp(X
⊤A0

kX + a0k) +
∑L

j′=1 exp((Bp∗,j′)⊤X + b∗,j′)
,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where

u ∈ {X⊤A0
jX + a0j ; (Bpj′)

⊤X + bj′ : j ∈ [N], j′ ∈ [L′]},
u∗ ∈ {X⊤A0

jX + a0j ; (Bp∗,j′)
⊤X + b∗,j′ : j ∈ [N], j′ ∈ [L]}.

Since fḠ(X) = fḠ∗(X) for almost every X , we have

N∑
j=1

softmaxḠ(X
⊤A0

jX + a0j))h(X, η0j) +

L′∑
j′=1

softmaxḠ((Bpj′)
⊤X + bj′)Cpj′

=

N∑
j=1

softmaxḠ∗(X
⊤A0

jX + a0j))h(X, η0j) +

L∑
j′=1

softmaxḠ∗((Bp∗,j′)
⊤X + b∗,j′)Cp∗,j′ .

(31)

Thus, we must have that L = L′. As a result,

{softmaxḠ((Bpj′)
⊤X + bj′) : j

′ ∈ [L]} = {softmaxḠ∗((Bp∗,j′)
⊤X + b∗,j′) : j

′ ∈ [L′]},

for almost every X . Without loss of generality, we assume that

softmaxḠ((Bpj′)
⊤X + bj′) = softmaxḠ∗((Bp∗,j′)

⊤X + b∗,j′),

for any j′ ∈ [L], for almost every X . Since the softmax function is invariant to translation, this
result indicates that bj′ = b∗,j′ + r for some r ∈ R and for any j′ ∈ [L]. Then, the equation (31)
can be reduced to

L∑
j=1

exp (bj) exp ((Bpj)
⊤X)Cpj =

L∑
j=1

exp (b∗,j) exp ((Bp∗,j)
⊤X)Cp∗,j , (32)

for almost surely X . Next, we will partition the index set [L] into m subsets K1,K2, . . . ,Km where
m ≤ L, such that exp (bj) = exp (b∗,j′) for any j, j′ ∈ Ki and i ∈ [m]. It follows that exp (bj) ̸=
exp (b∗,j′) when j, j′ do not belong to the same set Ki. Thus, we can rewrite equation (32) as

m∑
i=1

∑
j∈Ki

exp (bj) exp ((Bpj)
⊤X)Cpj

=

m∑
i=1

∑
j∈Ki

exp (b∗,j) exp ((Bp∗,j)
⊤X)Cp∗,j ,

for almost surely X . Given the above equation, for each i ∈ [m], we obtain that

{((Bpj)
⊤,pj) : j ∈ Ki} = {((Bp∗,j)

⊤,p∗,j) : j ∈ Ki},

for almost surely X , which directly leads to

{pj : j ∈ Ki} = {p∗,j : j ∈ Ki}

Without loss of generality, we assume that pj = p∗,j for all j ∈ Ki. Consequently, we get that
m∑
i=1

∑
j∈Ki

exp (bj)δpj
=

m∑
i=1

∑
j∈Ki

exp (b∗,j)δp∗,j ,

or Ḡ ≡ Ḡ∗. The proof is completed.

B.3 PROOF OF THEOREM 4.3

The proof strategy of Theorem 4.3 is also similar to that of Theorem 4.2. We first establish the
parametric convergence rate OP (

√
log(n)/n) of the estimated regression function fG̃n

to the true
regression function fG̃∗

in Section B.3.1. Then, in Section B.3.2, we establish the lower bound

∥fG̃ − fG̃∗
∥L2(µ) ≥ C ′D2(G, G̃∗) for any G̃ ∈ G̃L′(Ξ) for some universal constant C ′.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

B.3.1 CONVERGENCE RATE OF DENSITY ESTIMATION

Proposition B.2. Given the least square estimator G̃n in equation (16), the convergence rate of the
model estimation fG̃n

(·) to the true model fG̃∗
(·) under the L2(µ) norm is parametric on the sample

size, that is,

∥fG̃n
− fG̃∗

∥L2(µ) = OP (
√

log(n)/n). (33)

The proof argument of Proposition B.2 is similar to that of Proposition B.1; therefore, it is omitted.

B.3.2 FROM DENSITY ESTIMATION TO EXPERT ESTIMATION

Given the convergence rate of regression function estimation in Proposition 4.3, our goal is to
demonstrate the following inequality:

inf
G̃∈G̃L′ (Ξ)

∥fG̃ − fG̃∗
∥L2(µ)/D3(G̃, G̃∗) > 0.

Similar to the proof of Theorem 4.2, we divide the proof of the above inequality into local and global
parts.

Local part: We will demonstrate that

lim
ε→0

inf
G̃∈G̃L′ (Ξ):D3(G̃,G̃∗)≤ε

∥fG̃ − fG̃∗
∥L2(µ)/D3(G̃, G̃∗) > 0

Assume by contrary that the above claim does not hold. Then, there exists a sequence of mixing
measures G̃n :=

∑L′

j′=1 exp(bn,j′)δ(Wn,1pn,j′ ,Wn,2pn,j′)
in G̃L′(Ξ) such that as n → ∞, we have{

D3n := D3(G̃n, G̃∗) → 0,
∥fG̃n

− fG̃∗
∥L2(µ)/D3n → 0.

To ease the ensuing presentation, we also denote Vn
j := Vj(G̃n) as a Voronoi cell of Gn generated

by the j-th components of G̃∗. Since our arguments are asymptotic, we may assume that those
Voronoi cells do not depend on the sample size, i.e., Vj = Vn

j . Therefore, we can represent the
Voronoi loss D3n as follows:

D3n :=

L∑
j′=1

∣∣∣ ∑
i∈Vj′

exp(bn,i)− exp(b∗,j′)
∣∣∣

+
∑

j′∈[L]:|Vj′ |=1

∑
i∈Vj′

exp(bn,i)(∥Wn,1pn,i −W∗,1p∗,j′∥+ ∥Wn,2pn,i −W∗,2p∗,j′∥)

+
∑

j′∈[L]:|Vj′ |>1

∑
i∈Vj′

exp(bn,i)(∥Wn,1pn,i −W∗,1p∗,j′∥2 + ∥Wn,2pn,i −W∗,2p∗,j′∥2)

=

L∑
j′=1

∣∣∣ ∑
i∈Vj′

exp(bn,i)− exp(b∗,j′)
∣∣∣

+
∑

j′∈[L]:|Vj′ |=1

∑
i∈Vj′

exp(bn,i)(∥∆Wn,1pn,ij′∥+ ∥∆Wn,2pn,ij′∥)

+
∑

j′∈[L]:|Vj′ |>1

∑
i∈Vj′

exp(bn,i)(∥∆Wn,1pn,ij′∥2 + ∥∆Wn,2pn,ij′∥2)

where we define ∆Wn,1pn,ij′ = Wn,1pn,i −W∗,1p∗,j′ and ∆Wn,2pn,ij′ = Wn,2pn,i −W∗,2p∗,j′
for all i ∈ Vj′ .

Additionally, since D3n → 0, we have
∑

i∈Vj
exp(bn,i) → exp(b∗,j), Wn,1pn,i → W∗,1p∗,j , and

Wn,2pn,i → W∗,2p∗,j for any i ∈ Vj , j ∈ [L]. Now, we divide the proof of the local part into three
steps as follows:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Step 1 - Taylor expansion. In this step, we would like to decompose the quantity

Q̃n(X) :=
[N∑
j=1

exp(X⊤A0
jX+a0j)+

L∑
j′=1

exp((Bσ̄1(W∗,1p∗,j′))
⊤X+b∗,j′)

]
·[fG̃n

(X)−fG̃∗
(X)],

as follows:

Q̃n(X) =

L∑
j=1

∑
i∈Vj

exp(bn,i)
[
exp((Bσ̄1(Wn,1pn,i))

⊤X)Cσ̄2(Wn,2pn,i)

− exp((Bσ̄1(W∗,1p∗,j))
⊤X)Cσ̄2(W∗,2p∗,j)

]
−

L∑
j=1

∑
i∈Vj

exp(bn,i)
[
exp((Bσ̄1(Wn,1pn,i))

⊤X)− exp((Bσ̄1(W∗,1p∗,j))
⊤X)

]
fG̃n

(X)

+

L∑
j=1

(∑
i∈Vj

exp(bn,i)− exp(b∗,j)
)
exp((Bσ̄1(W∗,1p∗,j))

⊤X)
[
Cσ̄2(W∗,2p∗,j)− fG̃n

(X)
]

:= Ãn(X)− B̃n(X) + C̃n(X). (34)

Decomposition of Ãn(X). To ease the ensuing presentation, we denote E(X;W1p) :=
exp((Bσ̄1(W1p))

⊤X) and H(W2p) = Cσ̄2(W2p), and F (X;W1p,W2p) =
E(X;W1p)H(W2p). Since each Voronoi cell Vj possibly has more than one element, we
continue to decompose Ān as follows:

Ãn(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(bn,i)
[
F (X;Wn,1pn,i,Wn,2pn,i)− F (X;W∗,1p∗,j ,W∗,2p∗,j)

]
+

∑
j:|Vj |>1

∑
i∈Vj

exp(bn,i)
[
F (X;Wn,1pn,i,Wn,2pn,i)− F (X;W∗,1p∗,j ,W∗,2p∗,j)

]
:= Ãn,1(X) + Ãn,2(X)

By means of the first-order Taylor expansion, we have

E(X;Wn,1pn,i) = E(X;W∗,1p∗,j) +
∑
|α|=1

(∆Wn,1pn,ij)
α ∂|α|E

∂(W1p)α
(X;W∗,1p∗,j) +Rij,1(X),

H(Wn,2pn,i) = H(W∗,2p∗,j) +
∑
|α|=1

(∆Wn,2pn,ij)
α ∂|α|H

∂(W2p)α
(W∗,2p∗,j) +Rij,2,

for any i ∈ Vj and j such that |Vj | = 1. Here, Rij,1(X) and Rij,2 are Taylor remainders. Putting
the above results together leads to

Ãn,1(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(bn,i)

α!

∑
|α|=1

{
(∆Wn,1pn,ij)

α ∂|α|E

∂(W1p)α
(X;W∗,1p∗,j)H(W∗,2p∗,j)

+ (∆Wn,2pn,ij)
α ∂|α|H

∂(W2p)α
(W∗,2p∗,j)E(X;W∗,1p∗,j)

}
+ R̄n,1(X)

=
∑

j:|Vj |=1

∑
|α|=1

{
M

(1)
n,j,α

∂|α|E

∂(W1p)α
(X;W∗,1p∗,j)H(W∗,2p∗,j)

+M
(2)
n,j,α

∂|α|H

∂(W2p)α
(W∗,2p∗,j)E(X;W∗,1p∗,j)

}
+ R̄n,1(X)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where R̄n,1(X) satisfies R̄n,1(X)/D3n → 0 when n → ∞, which is due to the uniform Lipschitz
property of the function F . Furthermore, the formulations of M (1)

n,j,α and M
(2)
n,j,α are given by:

M
(1)
n,j,α =

∑
i∈Vj

exp(bn,i)

α!
(∆Wn,1pn,ij)

α,

M
(2)
n,j,α =

∑
i∈Vj

exp(bn,i)

α!
(∆Wn,2pn,ij)

α,

for any |α| = 1.

Moving to the term Ãn,2(X), by applying the second-order Taylor expansions to E(X;Wn,1pn,i)
around E(X;W∗,1p∗,j) and H(Wn,2pn,i) around H(W∗,2p∗,j) for any i ∈ Vj and j such that
|Vj | > 1, we obtain that

Ãn,2(X) =
∑

j:|Vj |>1

∑
1≤|α|≤2

{
M

(1)
n,j,α

∂|α|E

∂(W1p)α
(X;W∗,1p∗,j)H(W∗,2p∗,j)

+M
(2)
n,j,α

∂|α|H

∂(W2p)α
(W∗,2p∗,j)E(X;W∗,1p∗,j)

}
+

∑
|α|=1,|β|=1

Mn,j,α,β
∂|α|E

∂(W1p)α
(X;W∗,1p∗,j)

∂|β|H

∂(W2p)β
(W∗,2p∗,j) + R̄n,2(X)

where R̄n,2(X) satisfies R̄n,2(X)/D3n → 0 when n → ∞. Furthermore, we define

M
(1)
n,j,α =

∑
i∈Vj

exp(bn,i)

α!
(∆Wn,1pn,ij)

α,

M
(2)
n,j,α =

∑
i∈Vj

exp(bn,i)

α!
(∆Wn,2pn,ij)

α,

for any |α| = 2 and

Mn,j,α,β =
∑
i∈Vj

exp(bn,i)

α!β!
(∆Wn,1pn,ij)

α(∆Wn,2pn,ij)
β ,

for any |α| = |β| = 1. Direct calculation leads to the following formulations of the partial deriva-
tives of E(X;W1p) and H(W2p):

∂E

∂(W1p)(u)
(X;W1p) = exp((Bσ̄1(W1p))

⊤X)(B
∂σ̄1

∂(W1p)(u)
(W1p))

⊤X,

∂2E

∂(W1p)(u)∂(W1p)(v)
(X;W1p) = exp((Bσ̄1(W1p))

⊤X)

{
(B

∂2σ̄1

∂(W1p)(u)∂(W1p)(v)
(W1p))

⊤X

+X⊤(B
∂σ̄1

∂(W1p)(u)
(W1p))(B

∂σ̄1

∂(W1p)(v)
(W1p))

⊤X

}
,

∂H

∂(W2p)(u)
(W2p) = C

∂σ̄2

∂(W2p)(u)
(W2p),

∂2H

∂(W2p)(u)∂(W2p)(v)
(W2p) = C

∂2σ̄2

∂(W2p)(u)∂(W2p)(v)
(W2p).

Given the above formulations, we can rewrite Ãn,1(X) and Ãn,2(X) as follows:

Ãn,1(X) =
∑

j:|Aj |=1

exp((Bσ̄1(p∗,j))
⊤X)

[
L1,n(p∗,j) + L2,n(p∗,j)

⊤B⊤X
)
+ R̄n,1(X),

Ãn,2(X) =
∑

j:|Aj |>1

exp((Bσ̄1(p∗,j))
⊤X)

[
L̄1,n(p∗,j) + L̄2,n(p∗,j)

⊤B⊤X

+ (B⊤X)⊤L̄3,n(p∗,j)B
⊤X

]
+ R̄n,2(X),

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

where the formulations of the functions L1,n, L2,n, L̄1,n, L̄2,n, and L̄3,n are given by:

L1,n(p) =

d∑
u=1

M
(2)
n,j,1u

C
∂σ̄2

∂(W2p)(u)
(W2p),

L2,n(p) =

d∑
u=1

M
(1)
n,j,1u

∂σ̄1

∂(W1p)(u)
(W1p)Cσ̄2(W2p),

L̄1,n(p) =
∑

1≤u,v≤d

M
(2)
n,j,1uv

C
∂2σ̄2

∂(W2p)(u)∂(W2p)(v)
(W2p),

=

d∑
u=1

M
(2)
n,j,1uu

C
∂2σ̄2

∂(W2p)(u)∂(W2p)(u)
(W2p),

L̄2,n(p) =

d∑
u=1

M
(1)
n,j,1u

∂σ̄1

∂(W1p)(u)
(W1p)Cσ̄2(W2p)

+
∑

1≤u,v≤d

[
Mn,j,1v,1uC

∂σ̄2

∂(W2p)(u)
(p)

∂σ̄1

∂(W1p)(v)
(W1p)

+M
(1)
n,j,1uv

∂2σ̄1

∂(W1p)(u)∂(W1p)(v)
(W1p)Cσ̄2(W2p)

]
,

L̄3,n(p) =
∑

1≤u,v≤d

M
(1)
n,j,1uv

∂σ̄1

∂(W1p)(u)
(W1p)(

∂σ̄1

∂(W1p)(v)
(W1p))

⊤Cσ̄2(W2p).

Here, we denote 1u is the vector that its u-th element is 1 while its other elements are 0 for any
1 ≤ u ≤ d. Furthermore, 1uv is the matrix that its (u, v)-th element is 1 while its other elements are
0 for any 1 ≤ u, v ≤ d. The second equation in the formulation of L̄1,n(p) is due to the fact that the

function σ̄2 is only applied element wise to W2p, which leads to
∂2σ̄2

∂(W2p)(u)∂(W2p)(v)
(W2p) = 0

for all u ̸= v.

Decomposition of B̄n(X). We can rewrite B̄n(X) as follows:

B̄n(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(bn,i)
[
E(X;Wn,1pn,i)− E(X;W∗,1p∗,j)

]
fGn(X)

+
∑

j:|Vj |>1

∑
i∈Vj

exp(bn,i)
[
E(X;Wn,1pn,i)− E(X;W∗,1p∗,j)

]
fGn

(X)

:= B̃n,1(X) + B̃n,2(X).

By applying the first-order and second-order Taylor expansions, we get

B̃n,1(X) =
∑

j:|Vj |=1

∑
|α|=1

M
(1)
n,j,α

∂|α|E

∂(W1p)α
(X;W∗,1p∗,j)fG̃n

(X) +Rn,3(X),

B̃n,2(X) =
∑

j:|Vj |=1

∑
1≤|α|≤2

M
(1)
n,j,α

∂|α|E

∂(W1p)α
(X;W∗,1p∗,j)fG̃n

(X) +Rn,4(X)

where Rn,3(X), Rn,4(X) is a Taylor remainder such that Rn,3(X)/D3n → 0, Rn,4(X)/D3n → 0

when n → ∞. Therefore, we can express the functions B̃n,1(X) and B̃n,2(X) as follows:

B̃n,1(X) =
∑

j:|Aj |=1

exp((Bσ1(p∗,j))
⊤X)N1,n(p∗,j)

⊤B⊤XfG̃n
(X) +Rn,3(X),

B̃n,2(X) =
∑

j:|Aj |>1

exp((Bσ1(p∗,j))
⊤X)

[
N̄1,n(p∗,j)

⊤B⊤X + (B⊤X)⊤N̄2,n(p∗,j)B
⊤X

]
fG̃n

(X)

+Rn,4(X),

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

where the formulations of the functions N1,n, N̄1,n, and N̄2,n are given by:

N1,n(p) =

d∑
u=1

M
(1)
n,j,1u

∂σ̄1

∂(W1p)(u)
(W1p),

N̄1,n(p) =

d∑
u=1

M
(1)
n,j,1u

∂σ̄1

∂(W1p)(u)
(W1p)

+
∑

1≤u,v≤d

M
(1)
n,j,1uv

∂2σ̄1

∂(W1p)(u)∂(W1p)(v)
(W1p),

N̄2,n(p) =
∑

1≤u,v≤d

M
(1)
n,j,1uv

∂σ̄1

∂(W1p)(u)
(W1p)

∂σ̄1

∂(W1p)(v)
(W1p)

⊤.

Plugging the above expressions into equation (34), we can represent Q̃n(X) as follows:

Q̃n(X) =
∑

j:|Aj |=1

exp((Bσ̄1(W∗,1p∗,j))
⊤X)

[
L1,n(p∗,j) + L2,n(p∗,j)

⊤B⊤X
)

+
∑

j:|Aj |>1

exp((Bσ̄1(W∗,1p∗,j))
⊤X)

[
L̄1,n(p∗,j) + L̄2,n(p∗,j)

⊤B⊤X + (B⊤X)⊤L̄3,n(p∗,j)B
⊤X

]
−

∑
j:|Aj |=1

exp((Bσ̄1(W∗,1p∗,j))
⊤X)N1,n(p∗,j)

⊤B⊤XfG̃n
(X)

−
∑

j:|Aj |>1

exp((Bσ̄1(W∗,1p∗,j))
⊤X)

[
N̄1,n(p∗,j)

⊤B⊤X + (B⊤X)⊤N̄2,n(p∗,j)B
⊤X

]
fG̃n

(X)

−
L∑

j=1

Mn,j,0d exp((Bσ̄1(W∗,1p∗,j))
⊤X)fG̃n

(X)

+

L∑
j=1

Mn,j,0d exp((Bσ̄1(W∗,1p∗,j))
⊤X)Cσ̄2(W∗,2p∗,j)

+ R̄n,1(X) + R̄n,2(X)−Rn,3(X)−Rn,4(X)

=
∑

j:|Aj |=1

exp((Bσ̄1(W∗,1p∗,j))
⊤X)

[
L′
1,n(p∗,j) + L2,n(p∗,j)

⊤B⊤X
)

+
∑

j:|Aj |>1

exp((Bσ̄1(W∗,1p∗,j))
⊤X)

[
L̄′
1,n(p∗,j) + L̄2,n(p∗,j)

⊤B⊤X + (B⊤X)⊤L̄3,n(p∗,j)B
⊤X

]
−

∑
j:|Aj |=1

exp((Bσ̄1(W∗,1p∗,j))
⊤X)

[
Mn,j,0d +N1,n(p∗,j)

⊤B⊤X
]
fG̃n

(X)

−
∑

j:|Aj |>1

exp((Bσ̄1(W∗,1p∗,j))
⊤X)

[
Mn,j,0d + N̄1,n(p∗,j)

⊤B⊤X + (B⊤X)⊤N̄2,n(p∗,j)B
⊤X

]
fG̃n

(X)

+ R̄n,1(X) + R̄n,2(X)−Rn,3(X)−Rn,4(X), (35)

where Mn,j,0d =
∑

i∈Vj
exp(bn,i) − exp(b∗,j) for any j ∈ [L], L′

1,n(p∗,j) = L1,n(p∗,j) +

Mn,j,0dCσ̄2(W∗,2p∗,j), and L̄′
1,n(p∗,j) = L̄1,n(p∗,j) +Mn,j,0dCσ̄2(W∗,2p∗,j).

Step 2 - Non-vanishing coefficients. From equation (35), we can represent Q̃n(X)/D3n as a
linear combination of the following independent functions:

exp((Bσ̄1(W∗,1p∗,j))
⊤X), (B⊤X)(u) exp((Bσ̄1(W∗,1p∗,j))

⊤X),

(B⊤X)(u)(B⊤X)(v) exp((Bσ̄1(W∗,1p∗,j))
⊤X), exp((Bσ̄1(W∗,1p∗,j))

⊤X)fG̃n
(X),

(B⊤X)(u) exp((Bσ̄1(W∗,1p∗,j))
⊤X)fG̃n

(X), (B⊤X)(u)(B⊤X)(v) exp((Bσ̄1(W∗,1p∗,j))
⊤X)fG̃n

(X)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

for any 1 ≤ j ≤ L and 1 ≤ u, v ≤ d.

Assume that all the coefficients of these linear independent functions in the formulation of
Q̃n(X)/D3n go to 0 as n → ∞. It follows that L′

1,n(p∗,j)/D3n, L2,n(p∗,j)
(u)/D3n,

L̄′
1,n(p∗,j)/D3n, L̄2,n(p∗,j)

(u)/D3n, L̄3,n(p∗,j)
(uv)/D3n, N1,n(p∗,j)/D3n, N̄1,n((p∗,j)

(u)/D3n,
N̄2,n(p∗,j)

(uv)/D3n, and Mn,j,0d/D3n approach 0 as n → ∞ for any 1 ≤ u, v ≤ d and 1 ≤ j ≤ L.

Then, as Mn,j,0d/D3n → 0, it indicates that

|Mn,j,0d |
D2n

=
|
∑

i∈Vj
exp(bn,i)− exp(b∗,j)|

D3n
→ 0,

for any 1 ≤ j ≤ L. By summing these limits up when varying the index j from 1 to L, we obtain
that ∑L

j=1 |
∑

i∈Vj
exp(bn,i)− exp(b∗,j)|
D3n

→ 0. (36)

Now, we consider indices j ∈ [L] such that its corresponding Voronoi cell has only one element, i.e.
|Vj | = 1. As L2,n(p∗,j)

(u)/D3n → 0 and the first order derivatives of σ̄1 are non-zero, it indicates
that M (1)

n,j,1u
/D3n → 0. It indicates that∑d

u=1 |M
(1)
n,j,1u

|
D2n

=

∑
i∈Vj

exp(bn,i)∥∆Wn,1pn,ij∥
D3n

→ 0.

Similarly, L1,n(p∗,j)/D3n → 0 also leads to

∑
i∈Vj

exp(bn,i)∥∆Wn,2pn,ij∥
D3n

→ 0. Putting the

above results together, we find that∑
j:|Vj |=1

∑
i∈Vj

exp(bn,i)(∥∆Wn,1pn,ij∥+ ∥∆Wn,2pn,ij∥
D3n

→ 0. (37)

Moving to indices j ∈ [L] such that |Vj | > 1, as L̄3,n(p∗,j)
(uu)/D3n → 0, we obtain that∑d

u=1 L̄3,n(p∗,j)
(uu)

D3n
=

∑
i∈Vj

exp(bn,i)∥∆Wn,1pn,ij∥2

D3n
→ 0.

Likewise, as L̄1,n(p∗,j)
(uu)/D3n → 0 and the second order derivatives of σ̄2 are non-zero, we also

obtain that

∑
i∈Vj

exp(bn,i)∥∆Wn,2pn,ij∥2

D3n
→ 0. Therefore, we find that∑

j:|Vj |>1

∑
i∈Vj

exp(bn,i)(∥∆Wn,1pn,ij∥2 + ∥∆Wn,2pn,ij∥2

D3n
→ 0.

Collecting all the above results, we obtain that

1 =
D3n

D3n
→ 0

as n → ∞, which is a contradiction.

As a consequence, not all of the coefficients of the linear independent functions in the formulations
of Q̃n(X)/D3n go to 0 as n → ∞.

Step 3 - Application of Fatou’s lemma. Let us denote mn as the maximum of the absolute values
of L′

1,n(p∗,j)/D3n, L2,n(p∗,j)
(u)/D3n, L̄′

1,n(p∗,j)/D3n, L̄2,n(p∗,j)
(u)/D3n, L̄3,n(p∗,j)

(uv)/D3n,
N1,n(p∗,j)/D3n, N̄1,n((p∗,j)

(u)/D3n, N̄2,n(p∗,j)
(uv)/D3n, and Mn,j,0d/D3n for all 1 ≤ u, v ≤ d.

From the result of Step 2, it follows that 1/mn ̸→ ∞ as n → ∞.

Since ∥fG̃n
− fG̃∗

∥L2(µ)/D3n → 0 as n → ∞, we obtain ∥fG̃n
− fG̃∗

∥L2(µ)/(mnD3n) → 0. By
applying Fatou’s lemma, we get that

0 = lim
n→∞

∥fG̃n
− fG̃∗

∥L2(µ)

mnD3n
≥

∫
lim inf
n→∞

∣∣∣fG̃n
(X)− fG̃∗

(X)
∣∣∣

mnD3n
dµ(X) ≥ 0.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Therefore, lim infn→∞

∣∣∣fG̃n
(X)− fG̃∗

(X)
∣∣∣

mnD2n
= 0 for almost surely X . As n → ∞, we denote

L′
1,n(p∗,j)

mnD3n
→ αj ,

L2,n(p∗,j)

mnD3n
→ βj ,

L̄′
1,n(p∗,j)

mnD3n
→ ᾱj ,

L̄2,n(p∗,j)

mnD3n
→ β̄j ,

L̄3,n(p∗,j)

mnD3n
→ γ̄j ,

Mn,j,0d

D3n
→ α̃j ,

N1,n(p∗,j)

mnD3n
→ β̃j ,

N̄1,n(p∗,j)

mnD3n
→ β̂j ,

N̄2,n(p∗,j)

mnD3n
→ γ̂j

for any 1 ≤ j ≤ L. Here, from the definition of mn, at least one coefficient among
{αj , βj , α̃j , β̃j}j:|Vj |=1, {ᾱj , β̄j , γ̄j , α̃j , β̂j , γ̂j}j:|Vj |>1 is different from 0. Then, the equation

lim infn→∞

∣∣∣fG̃n
(X)− fG̃∗

(X)
∣∣∣

mnD3n
= 0 leads to∑

j:|Aj |=1

exp((Bσ̄1(W∗,1p∗,j))
⊤X)(αj + β⊤

j (B⊤X)
)

+
∑

j:|Aj |>1

exp((Bσ̄1(W∗,1p∗,j))
⊤X)

[
ᾱj + β̄⊤

j (B⊤X) + (B⊤X)⊤γ̄j(B
⊤X)

]
−

∑
j:|Aj |=1

exp((Bσ̄1(W∗,1p∗,j))
⊤X)(α̃j + β̃⊤

j (B⊤X))fG̃∗
(X)

−
∑

j:|Aj |>1

exp((Bσ̄1(W∗,1p∗,j))
⊤X)

[
α̃j + β̂⊤

j (B⊤X) + (B⊤X)⊤γ̂jB
⊤X

]
fG̃∗

(X) = 0

for almost surely X . By denoting Z = B⊤X , this equation also holds for almost
surely Z. However, the new equation implies that all the coefficients {αj , βj , α̃j , β̃j}j:|Vj |=1,
{ᾱj , β̄j , γ̄j , α̃j , β̂j , γ̂j}j:|Vj |>1 are 0, which is a contradiction.

As a consequence, we obtain

lim
ε→0

inf
G̃∈G̃L′ (Ξ):D3(G̃,G̃∗)≤ε

∥fG̃ − fG̃∗
∥L2(µ)/D3(G̃, G̃∗) > 0.

Global part: From local part, there exists a positive constant ε′ such that

inf
G̃∈G̃L′ (Ξ):D3(G̃,G̃∗)≤ε′

∥fG̃ − fG̃∗
∥L2(µ)/D3(G̃, G̃∗) > 0.

Therefore, it is sufficient to prove that

inf
G̃∈G̃L′ (Ξ):D3(G̃,G̃∗)>ε′

∥fG̃ − fG̃∗
∥L2(µ)/D3(G̃, G̃∗) > 0.

Assume by contrary, then we can find a sequence of mixing measures G̃′
n :=∑L′

j′=1 exp(bn,j′)δ(Wn,1pn,j′ ,Wn,2pn,j′)
in G̃L′(Ξ) such that as n → ∞, we have{
D3(G̃

′
n, G̃∗) > ε′

∥fG̃′
n
− fG̃∗

∥L2(µ)/D3(G̃
′
n, G̃∗) → 0,

which indicates that ∥fG̃′
n
− fG̃∗

∥L2(µ) → 0 as n → ∞.

Since Ξ is a compact set, there exists a mixing measure G̃′ in G̃L′(Ξ) such that one of G̃′
n’s subse-

quences converges to GG̃′. Since D3(GG̃′
n, G̃∗) > ε′, we deduce that D3(G̃

′, G̃∗) > ε′.
By invoking the Fatou’s lemma, we have that

0 = lim
n→∞

∥fG̃′
n
− fG̃∗

∥L2(µ) ≥
∫

lim inf
n→∞

∣∣∣fG̃′
n
− fG̃∗

∣∣∣2 dµ(X).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Thus, we have fG̃′ = fG̃∗
for µ−almost surely X . From the identifiability property, we deduce that

G̃′ ≡ G̃∗. It follows that D3(G̃
′, G̃∗) = 0, contradicting the fact that D3(G̃

′, G̃∗) > ε′ > 0.
Hence, the proof is completed.

Identifiability property. We now prove the identifiability of one layer neural network structures
among prompts. In particular, we will show that if fG̃(X) = fG̃∗(X) for almost every X , then it

follows that G̃ ≡ G̃∗.

For any G̃ ∈ G̃L′(Ξ) and G̃∗, let us denote

softmaxG̃(u) =
exp(u)∑N

k=1 exp(X
⊤A0

kX + a0k) +
∑L′

j′=1 exp((Bσ̄1(W1pj′))⊤X + bj′)
,

softmaxG̃∗
(u∗) =

exp(u∗)∑N
k=1 exp(X

⊤A0
kX + a0k) +

∑L
j′=1 exp((Bσ̄1(W∗,1p∗,j))⊤X + b∗,j′)

,

where

u ∈ {X⊤A0
jX + a0j ; (Bσ̄1(W1pj′))

⊤X + bj′ : j ∈ [N], j′ ∈ [L′]},
u∗ ∈ {X⊤A0

jX + a0j ; (Bσ̄1(W∗,1p∗,j′))
⊤X + b∗,j′ : j ∈ [N], j′ ∈ [L]}.

Since fG̃(X) = fG̃∗
(X) for almost every X , we have

N∑
j=1

softmaxG̃(X
⊤A0

jX + a0j))h(X, η0j) +

L′∑
j′=1

softmaxG̃((Bσ̄1(W1pj′))
⊤X + bj′)Cσ̄2(W2pj′)

=

N∑
j=1

softmaxG̃∗
(X⊤A0

jX + a0j))h(X, η0j)

+

L∑
j′=1

softmaxG̃∗
((Bσ̄1(W∗,1p∗,j′))

⊤X + b∗,j′)Cσ̄2(W∗,2p∗,j′). (38)

Thus, we must have that L = L′. As a result, we obtain that

{softmaxG̃((Bσ̄1(W1pj′))
⊤X + bj′) : j

′ ∈ [L]}
= {softmaxG̃∗

((Bσ̄1(W∗,1p∗,j′))
⊤X + b∗,j′) : j

′ ∈ [L′]},
for almost every X . We may assume that

softmaxG̃((Bσ̄1(W1pj′))
⊤X + bj′) = softmaxG̃∗

((Bσ̄1(W∗,1p∗,j′))
⊤X + b∗,j′),

for any j′ ∈ [L], for almost every X . Since the softmax function is invariant to translation, this
result indicates that bj′ = b∗,j′ + r for some r ∈ R and for any j′ ∈ [L]. Then, the equation (38)
can be reduced to

L∑
j=1

exp (bj) exp ((Bσ̄1(W1pj))
⊤X)Cσ̄2(W2pj)

=

L∑
j=1

exp (b∗,j) exp ((Bσ̄1(W∗,1p∗,j))
⊤X)Cσ̄2(W∗,2p∗,j), (39)

for almost every X . Next, we will partition the index set [L] into m subsets K1,K2, . . . ,Km where
m ≤ L, such that exp (bj) = exp (b∗,j′) for any j, j′ ∈ Ki and i ∈ [m]. It follows that exp (bj) ̸=
exp (b∗,j′) when j, j′ do not belong to the same set Ki. Thus, we can rewrite equation (39) as
m∑
i=1

∑
j∈Ki

exp (bj) exp ((Bσ̄1(W1pj))
⊤X)Cσ̄2(W2pj)

=

m∑
i=1

∑
j∈Ki

exp (b∗,j) exp ((Bσ̄1(W∗,1p∗,j))
⊤X)Cσ̄2(W∗,2p∗,j),

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

for almost surely X . Given the above equation, for each i ∈ [m], we obtain that

{((Bσ̄1(W1pj))
⊤,W2pj) : j ∈ Ki} = {((Bσ̄1(W∗,1p∗,j))

⊤,W∗,2p∗,j) : j ∈ Ki},

which directly leads to

{W1pj : j ∈ Ki} = {W∗,1p∗,j : j ∈ Ki} and {W2pj : j ∈ Ki} = {W∗,2p∗,j : j ∈ Ki}.

Without loss of generality, we assume that W1pj = W∗,1p∗,j and W2pj = W∗,2p∗,j for all j ∈ Ki.
Consequently, we get that

m∑
i=1

∑
j∈Ki

exp (bj)δ(W1pj ,W2pj) =

m∑
i=1

∑
j∈Ki

exp (b∗,j)δ(W∗,1p∗,j ,W∗,2p∗,j),

which implies that G̃ ≡ G̃∗. As a consequence, the proof is completed.

C ADDITIONAL PROOFS

In this appendix, we provide proof for the convergence rate of regression function estimation.

C.1 PROOF OF PROPOSITION B.1

To start with, it is necessary to define the notations that will be used throughout this proof. First of
all, let us denote by FL′(Ω) the set of regression functions w.r.t mixing measures in ḠL′(Ω), that is,

FL′(Ω) := {fḠ(X) : G ∈ ḠL′(Ω)}.

Next, for each δ > 0, we define the L2(µ) ball centered around the regression function fḠ∗(X) and
intersected with the set FL′(Ω) as

FL′(Ω, δ) :=
{
f ∈ FL′(Θ) : ∥f − fḠ∗∥L2(µ) ≤ δ

}
.

Furthermore, van de Geer (2000) suggest capturing the size of the above set by using the following
quantity:

JB(δ,FL′(Ω, δ)) :=

∫ δ

δ2/213
H

1/2
B (t,FL′(Ω, t), ∥ · ∥L2(µ)) dt ∨ δ, (40)

in which HB(t,FL′(Ω, t), ∥·∥L2(µ)) denotes the bracketing entropy van de Geer (2000) of FL′(Ω, t)

under the L2(µ)-norm and t ∨ δ := max{t, δ}.

Subsequently, let us introduce a key result of this proof in Lemma C.1, which is achieved by applying
similar arguments as those in Theorem 7.4 and Theorem 9.2 in van de Geer (2000).
Lemma C.1. Take Ψ(δ) ≥ JB(δ,FL′(Ω, δ)) that satisfies Ψ(δ)/δ2 is a non-increasing function of
δ. Then, for some universal constant c and for some sequence (δn) such that

√
nδ2n ≥ cΨ(δn), we

achieve that

P
(
∥fḠn

− fḠ∗∥L2(µ) > δ
)
≤ c exp

(
−nδ2

c2

)
,

for all δ ≥ δn.

General picture. We begin with deriving the bracketing entropy inequality

HB(ε,FL′(Ω), ∥ · ∥L2(µ)) ≲ log(1/ε), (41)

for any 0 < ε ≤ 1/2. Then, it follows that

JB(δ,FL′(Ω, δ)) =

∫ δ

δ2/213
H

1/2
B (t,FL′(Ω, t), ∥ · ∥L2(µ)) dt ∨ δ ≲

∫ δ

δ2/213
log(1/t)dt ∨ δ. (42)

Let Ψ(δ) = δ · [log(1/δ)]1/2, then Ψ(δ)/δ2 is a non-increasing function of δ. Additionally, equa-
tion (42) indicates that Ψ(δ) ≥ JB(δ,FL′(Ω, δ)). Moreover, by choosing δn =

√
log(n)/n, we

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

have that
√
nδ2n ≥ cΨ(δn) for some universal constant c. Then, according to Lemma C.1, we reach

the conclusion of Theorem B.1.

As a result, it suffices to establish the inequality in equation (41).

Proof of equation (41). Let fḠ be an arbitrary regression function in FL′(Ω). As the prompts pj′

are both bounded, we obtain that |fḠ(X)| ≤ M for all X where M > 0 is some universal constant.

Next, let τ ≤ ε and {π1, . . . , πN̄} be the τ -cover under the L∞ norm of the set FL′(Ω) in which
N̄ := N(τ,FL′(Ω), ∥ · ∥L2(µ)) is the τ -covering number of the metric space (Fk(Ω), ∥ · ∥L∞(µ)).
Then, we construct the brackets of the form [Li(X), Ui(X)] for all i ∈ [N̄] as follows:

Li(x) := max{πi(X)− τ, 0},
Ui(x) := max{πi(X) + τ,M}.

It can be verified that FL′(Ω) ⊂ ∪N̄
i=1[Li(X), Ui(X)]. Furthermore, we also get that

∥Ui − Li∥L2(µ) =
(∫

(Ui − Li)
2dµ(X)

)1/2

≤
(∫

4τ2dµ(X)
)1/2

= 2τ,

From the definition of the bracketing entropy, we have that

HB(2τ,FL′(Ω), ∥ · ∥L2(µ)) ≤ log N̄ = logN(τ,FL′(Ω), ∥ · ∥L∞). (43)

Thus, it is sufficient to establish an upper bound for the covering number N̄ . For that purpose, we
denote ∆ = {(b,p) ∈ R × Rd : (b,p) ∈ Θ}. Since Ω is a compact set, ∆ is also compact. Thus,
there exist τ -covers for ∆, denoted by ∆τ , respectively. Then, we find that

|∆τ | ≤ O(τ−(d+1)L′
)).

For each mixing measure Ḡ =
∑L′

i=1 exp(bi)δpi ∈ ḠL′(Ω), we consider a corresponding mixing
measure Ǧ defined as

Ǧ :=

L′∑
i=1

exp(b̌i)δp̌i
,

where (b̌i, p̌i) ∈ ∆τ is the closest to (bi,pi) in that set. Let us denote

D : =

N∑
i′=1

exp(X⊤A0
i′X + a0i′) +

L′∑
j′=1

exp((Bpj′)
⊤X + bj′),

Ď : =

N∑
i′=1

exp(X⊤A0
i′X + a0i′) +

L′∑
j′=1

exp((Bp̌j′)
⊤X + b̌j′).

Subsequently, we aim to show that ∥fḠ − fǦ∥L2(µ) ≲ τ . In particular, we have

∥fḠ − fǦ∥L2(µ) =
∥∥∥ L′∑

j=1

exp((Bpj)
⊤X + bj)

D
· Cpj −

L′∑
j=1

exp((Bp̌j)
⊤X + b̌j)

Ď
· Cp̌j

∥∥∥
L2(µ)

≤
∥∥∥ L′∑

j=1

exp((Bpj)
⊤X + bj)

D
· C(pj − p̌j)

∥∥∥
L2(µ)

+
∥∥∥ L′∑

j=1

[exp((Bpj)
⊤X + bj)

D
− exp((Bp̌j)

⊤X + b̌j)

Ď

]
· Cp̌j

∥∥∥
L2(µ)

:= T1 + T2.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Then, it is sufficient to demonstrate that T1 ≲ τ and T2 ≲ τ , respectively. First of all, we get that

T 2
1 =

∫ [
L′∑
j=1

exp((Bpj)
⊤X + bj)

D
· C(pj − p̌j)

]2

dµ(X)

≤ L′
∫ L′∑

j=1

[
exp((Bpj)

⊤X + bj)

D
· C(pj − p̌j)

]2

dµ(X)

≤ L′
∫ L′∑

j=1

[C(pj − p̌j)]
2 dµ(X) ≲ L′

∫ L′∑
j=1

τ2 dµ(X) ≲ τ2,

which is equivalent to T1 ≲ τ . Here, the second inequality is according to the Cauchy-Schwarz
inequality, the third inequality occurs as the softmax weight is bounded by 1.

Next, we have

T 2
2 =

∫ [1

D

(N∑
i=1

exp(X⊤A0
iX + c0i)h(X, η0i) +

L′∑
j=1

exp((Bpj)
⊤X + bj)Cp̌j

− 1

Ď

(N∑
i=1

exp(X⊤A0
iX + c0i)h(X, η0i) +

L′∑
j=1

exp((Bp̌j)
⊤X + b̌j)Cp̌j

)]2
dµ(X)

≤ 1

2

∫ {[N∑
i=1

(exp(X⊤A0
iX + c0i)

D
− exp(X⊤A0

iX + c0i)

Ď

)
h(X, η0i)

]2
+
[L′∑
j=1

(exp((Bpj)
⊤X + bj)

D
− exp((Bp̌j)

⊤X + b̌j)

Ď

)
Cp̌j

]2}
dµ(X)

≤ N

2

(1

D
− 1

Ď

)2
∫ N∑

i=1

[
exp(X⊤A0

iX + c0i)h(X, η0i)
]2
dµ(X)

+
L′

2

∫ L′∑
j=1

[(exp((Bpj)
⊤X + bj)

D
− exp((Bp̌j)

⊤X + b̌j)

Ď

)
Cp̌j

]2

dµ(X).

(44)

Now, we will bound two terms in the above right hand side. Firstly, since both the input space X
and the parameter space Ω are bounded, we have that

1

D
− 1

Ď
≲ |D − Ď| =

∣∣∣ L′∑
j′=1

[
exp((Bpj′)

⊤X + bj′)− exp((Bp̌j′)
⊤X + b̌j′)

]∣∣∣
≲

L′∑
j′=1

[
∥pj′ − p̌j′∥ · ∥X∥+ |bj − b̌j′ |

]
≤ kτ(B + 1).

As a result, we deduce that

N

2

(1

D
− 1

Ď

)2
∫ N∑

i=1

[
exp(X⊤A0

iX + c0i)h(X, η0i)
]2
dµ(X) ≲

1

2
N [L′τ(B + 1)]2. (45)

Regarding the second term, note that

exp((Bpj)
⊤X + bj)

D
− exp((Bp̌j)

⊤X + b̌j)

Ď

= exp((Bpj)
⊤X + bj)

(1

D
− 1

Ď

)
+

1

Ď

[
exp((Bpj)

⊤X + bj)− exp((Bp̌j)
⊤X + b̌j)

]
.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Since we have

exp((Bpj)
⊤X + bj)

(1

D
− 1

Ď

)
≲

1

D
− 1

Ď
≲ L′τ(B + 1),

1

Ď

[
exp((Bpj)

⊤X + bj)− exp((Bp̌j)
⊤X + b̌j)

]
≲

[
∥pj − p̌j∥ · ∥X∥+ |bj − b̌j |

]
≤ τ(B + 1),

it follows that

L′

2

∫ L′∑
j=1

[(exp((Bpj)
⊤X + bj)

D
− exp((Bp̌j)

⊤X + b̌j)

Ď

)
h(x, ηj)

]2

dµ(X) ≲
1

2
(L′)2M2[τ(B + 1)]2

(46)

From equation 44, equation 45 and equation 46, we obtain that T2 ≲ τ . As a result, we achieve that

∥fḠ − fǦ∥L2(µ) ≤ T1 + T2 ≲ τ.

By definition of the covering number, we deduce that

N(τ,FL′(Θ), ∥ · ∥L∞) ≤ |∆τ | ≤ O(n−(d+1)L′
). (47)

Combine equations equation 43 and equation 47, we achieve that

HB(2τ,FL′(Θ), ∥ · ∥L2(µ)) ≲ log(1/τ).

Let τ = ε/2, then we obtain that

HB(ε,FL′(Θ), ∥.∥L2(µ)) ≲ log(1/ε).

Hence, the proof is completed.

D RELATED WORK

Parameter-Efficient Fine-Tuning. Full fine-tuning is a common approach for adapting pre-trained
foundation models to specific downstream tasks. However, this method requires updating all model
parameters, which leads to high computational costs and the need to store a separate fine-tuned
model for each task. As a more efficient alternative, parameter-efficient fine-tuning (PEFT) has
emerged to address these limitations (Xin et al., 2024; Li & Liang, 2021; Hu et al., 2021). PEFT
updates only a small subset of parameters, offering the potential to achieve performance comparable
to, or even exceeding, that of full fine-tuning. For instance, LoRA (Hu et al., 2021) approximates
weight updates through low-rank matrices that are added to the original model weights, while Bitfit
(Zaken et al., 2021) modifies only the bias terms, freezing all other parameters. Adapters (Houlsby
et al., 2019) introduce lightweight modules into each Transformer layer, and SSF (Lian et al., 2022)
employs scaling and shifting of deep features.

Prompt-based techniques. Unlike the previously discussed methods of fine-tuning backbones,
prompt-tuning (Lester et al., 2021) and prefix-tuning (Li & Liang, 2021) introduce learnable prompt
tokens into the input space. These tokens are optimized while the backbone model remains frozen,
offering substantial computational efficiency. Despite its apparent simplicity, prompting has demon-
strated notable performance improvements without the need for complex module-specific designs
(Liu et al., 2021). VPT (Jia et al., 2022) extends this idea to vision tasks by introducing tunable
prompt tokens that are prepended to the original tokens in the first or multiple layers. Additionally,
(Levine et al., 2022) introduces input-dependent prompt tuning, which generates prompt tokens us-
ing a generator. SPT (Zhu & Tan, 2023) proposes a mechanism that automatically determines which
layers should receive new soft prompts and which should propagate prompts from preceding layers.

Analysis of prompt-based techniques. Recent research has increasingly focused on understanding
the theoretical foundations that drive the success of prompt-based methods, aiming to uncover the
underlying mechanisms responsible for their effectiveness. For instance, He et al. (2021) investigates
the relationship between prefix-tuning and adapters, while Le et al. (2024) examines prefix-tuning
within the framework of mixture of experts models. Additionally, Petrov et al. (2023) explores the
limitations of prompting, demonstrating that it cannot change the relative attention patterns and can
only bias the outputs of an attention layer in a fixed direction. Unlike these prior works, our study

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 3: Evaluation metrics for each dataset.

Datasets Task Metrics
FGVC Image classification Accuracy
VTAB-1K Image classification Accuracy
E2E Table-to-text generation BLEU, NIST, METEOR, ROUGE-L, CIDEr
WebNLG Table-to-text generation BLEU, METEOR, TER
XSUM Summarization ROUGE-1, ROUGE-2, ROUGE-L

delves into the theoretical principles behind key implementation techniques, particularly reparame-
terization, that enable prefix-tuning to achieve competitive performance.

Mixture of Experts. Building on the foundational concept of mixture models (Jacobs et al., 1991;
Jordan & Jacobs, 1994), prior works by Eigen et al. (2014); Shazeer et al. (2017) established the
MoE layer as a key component for efficiently scaling model capacity. MoE models have since
gained widespread attention for their adaptability across various domains, including large language
models (Du et al., 2022; Zhou et al., 2023), computer vision (Riquelme et al., 2021; Puigcerver et al.,
2023), and multi-task learning (Ma et al., 2018). Recent studies have investigated the convergence
rates for expert estimation in MoE models, focusing on different assumptions and configurations of
gating and expert functions. Ho et al. (2022), assuming data from an input-free gating Gaussian
MoE, demonstrated that expert estimation rates for maximum likelihood estimation depend on the
algebraic independence of the expert functions. Similarly, employing softmax gating, Nguyen et al.
(2023; 2024a) found that expert estimation rates are influenced by the solvability of polynomial sys-
tems arising from the interaction between gating and expert parameters. More recently, Nguyen et al.
(2024c;b) utilized least square estimation to propose an identifiable condition for expert functions,
particularly for feedforward networks with nonlinear activations. They showed that under these
conditions, estimation rates are significantly faster compared to models using polynomial experts.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 DATASETS DESCRIPTION

Table 4 summarizes the details of the evaluated datasets for visual tasks. Each VTAB-1K task
contains 1,000 training examples. We follow the protocol from VPT (Jia et al., 2022) to perform the
split of the train, validation, and test sets.

For language tasks, we employ E2E (Novikova et al., 2017) and WebNLG (Gardent et al., 2017)
for table-to-text generation. The E2E dataset comprises approximately 50,000 examples across
eight distinct fields, featuring multiple test references for each source table, with an average output
length of 22.9 tokens. The WebNLG dataset contains 22,000 examples, where the input consists
of sequences of (subject, property, object) triples, with an average output length of 22.5 tokens.
For summarization, we utilize the XSUM dataset (Narayan et al., 2018), which is an abstractive
summarization dataset for news articles. This dataset contains 225,000 examples, with an average
article length of 431 words and an average summary length of 23.3 words.

E.2 IMPLEMENTATION DETAILS

In visual tasks, we preprocess the data by normalizing it with ImageNet’s mean and standard devia-
tion, applying a random resize and crop to 224× 224 pixels, and implementing a random horizontal
flip for FGVC datasets. For the VTAB-1k suite, we resize images directly to 224 × 224 pixels.
Following Jia et al. (2022), we perform a grid search to determine optimal hyperparameters, specif-
ically learning rates from the set [50, 25, 10, 5, 2.5, 1, 0.5, 0.25, 0.1, 0.05] and weight decay values
from [0.01, 0.001, 0.0001, 0.0], evaluated on the validation set for each task. For prompt length,
we select Np to ensure the number of new prefix experts within each attention head corresponds to
the optimal prompt length established by Jia et al. (2022). The SGD optimizer is utilized for 100
epochs, incorporating a linear warm-up during the initial 10 epochs, followed by a cosine learning
rate schedule. We report the average test set accuracy across five independent runs, maintaining

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 4: Specifications of datasets evaluated for visual tasks. Following Jia et al. (2022), we ran-
domly sampled the train and val sets since there are no public splits available.

Dataset Description # Classes Train Val Test
Fine-grained visual recognition tasks (FGVC)

CUB-200-2011 (Wah et al., 2011) Fine-grained bird species recognition 200 5,394 600 5,794
NABirds (Van Horn et al., 2015) Fine-grained bird species recognition 55 21,536 2,393 24,633
Oxford Flowers (Nilsback & Zisserman, 2008) Fine-grained flower species recognition 102 1,020 1,020 6,149
Stanford Dogs (Khosla et al., 2011) Fine-grained dog species recognition 120 10,800 1,200 8,580
Stanford Cars (Gebru et al., 2017) Fine-grained car recognition 196 7,329 815 8,041

Visual Task Adaptation Benchmark (VTAB-1K)

CIFAR-100 (Krizhevsky et al., 2009)

Natural

100

800/1000 200

10,000
Caltech101 (Fei-Fei et al., 2006) 102 6,084
DTD (Cimpoi et al., 2014) 47 1,880
Flowers102 (Nilsback & Zisserman, 2008) 102 6,149
Pets (Parkhi et al., 2012) 37 3,669
SVHN (Netzer et al., 2011) 10 26,032
Sun397 (Xiao et al., 2010) 397 21,750

Patch Camelyon (Veeling et al., 2018)

Specialized

2

800/1000 200

32,768
EuroSAT (Helber et al., 2019) 10 5,400
Resisc45 (Cheng et al., 2017) 45 6,300
Retinopathy (Graham, 2015) 5 42,670

Clevr/count (Johnson et al., 2017)

Structured

8

800/1000 200

15,000
Clevr/distance (Johnson et al., 2017) 6 15,000
DMLab (Beattie et al., 2016) 6 22,735
KITTI/distance (Geiger et al., 2013) 4 711
dSprites/loc (Matthey et al., 2017) 16 73,728
dSprites/ori (Matthey et al., 2017) 16 73,728
SmallNORB/azi (LeCun et al., 2004) 18 12,150
SmallNORB/ele (LeCun et al., 2004) 9 12,150

consistent batch size settings of 64 and 128. All experiments were implemented in PyTorch (Paszke
et al., 2017) and executed on NVIDIA A100-40GB GPUs.

In our experiments with language datasets, we adopt the hyperparameter configuration proposed by
Li & Liang (2021), which includes the number of epochs, batch size, and prefix length. For the
learning rate, we conduct a grid search across the following values: [1e − 1, 5e − 2, 1e − 2, 5e −
3, 1e−3, 5e−4, 1e−4, 5e−5, 1e−5]. During training, we utilize the AdamW optimizer with a linear
learning rate scheduler. For decoding in table-to-text datasets, we implement beam search with a
beam size of 5. For summarization, we employ a beam size of 6 and apply length normalization
with a factor of 0.8.

F ADDITIONAL EXPERIMENTS

F.1 PER-TASK RESULTS ON VTAB-1K

Table 5 summarizes the results for each task on VTAB-1K. Across most datasets, either Deep-
shareDEEP or Deep-shareSHALLOW consistently achieves the highest performance, often comparable
to full fine-tuning. While prefix-tuning slightly underperforms full fine-tuning on some datasets, its
average accuracy remains competitive. These results underscore the effectiveness of reparameteri-
zation in enabling prefix-tuning to perform on par with full fine-tuning. Additionally, Deep-share
configurations significantly outperform No-share settings on most datasets. For instance, on SVHN,
Deep-shareSHALLOW outperforms No-shareSHALLOW by 32%, and on Clevr/count, Deep-shareDEEP ex-
ceeds No-shareDEEP by 28.4%. These findings emphasize the critical role of reparameterization,
highlighting the benefits of shared structures over non-shared configurations.

F.2 PER-TASK RESULTS ON FGVC

Table 6 presents the detailed results for each task in the FGVC dataset, as visualized in Figure 2.
Across all FGVC tasks, both the Simple-share and Deep-share methods consistently outperform
the No-share baseline. For example, on the Stanford Cars dataset, Deep-shareDeep and Simple-

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Table 5: Per-task fine-tuning results for VTAB-1k benchmarks. We report the average accuracy over
five independent runs. Best results among all methods except Finetune are bolded.

Method Natural Specialized Structured

C
IF

A
R

-1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
s1

02

Pe
ts

SV
H

N

Su
n3

97

Pa
tc

h
C

am
el

yo
n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
/c

ou
nt

C
le

vr
/d

is
ta

nc
e

D
M

L
ab

K
IT

T
I/

di
st

an
ce

dS
pr

ite
s/

lo
c

dS
pr

ite
s/

or
i

Sm
al

lN
O

R
B

/a
zi

Sm
al

lN
O

R
B

/e
le

Finetune 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1
Deep-shareSHALLOW 76.8 88.9 62.4 97.7 86.2 68.0 50.5 78.6 90.7 75.7 73.7 39.2 55.2 35.4 55.5 47.7 35.8 15.0 24.4
No-shareSHALLOW 63.5 87.3 62.3 96.7 85.8 36.0 51.4 78.7 90.5 71.1 72.9 36.8 43.8 34.6 54.0 13.4 22.6 10.5 21.5
Deep-shareDEEP 75.5 90.7 65.4 96.6 86.0 78.5 46.7 79.5 95.1 80.6 74.0 69.9 58.2 40.9 69.5 72.4 46.8 23.9 34.4
No-shareDEEP 70.0 88.5 62.2 96.7 85.3 43.5 45.8 78.0 93.4 75.7 73.9 41.5 55.0 34.1 60.0 39.6 31.9 15.4 24.0

Table 6: Per-task fine-tuning results for FGVC benchmarks. We report the average accuracy over
five independent runs. Best results among all methods are bolded.

Method CUB-200-2011 NABirds Oxford Flowers Stanford Dogs Stanford Cars Mean Acc
Deep-shareSHALLOW 87.2 81.5 98.6 91.1 63.4 84.36
Simple-shareSHALLOW 86.6 79.3 98.4 90.8 55.4 82.10
No-shareSHALLOW 85.1 77.8 97.9 86.4 54.7 80.38
Deep-shareDEEP 87.8 84.5 98.2 91.6 79.3 88.28
Simple-shareDEEP 88.7 84.3 98.8 90.6 82.8 89.04
No-shareDEEP 85.9 79.0 97.9 86.3 62.5 82.32

shareDeep exceed the No-share baseline by 16.8% and 20.3%, respectively. Additionally, these
methods lead to significantly higher average accuracy, surpassing the No-share baseline by 5.96%
and 6.72%, respectively. This substantial improvement underscores the empirical effectiveness
of leveraging shared structures to enhance prefix-tuning performance. Notably, Simple-shareDeep
achieves the highest average accuracy among all methods, even surpassing full fine-tuning and Deep-
share. However, the theoretical comparison between Simple-share and Deep-share remains an open
question and is left for future investigation.

As shown in Figure 2 and Table 6, the performance of Simple-share and Deep-share varies depend-
ing on the task and implementation variant (i.e., SHALLOW and DEEP), with Simple-share some-
times surpassing Deep-share and vice versa. Simple-share consistently shows strong performance
relative to No-share and remains competitive with Deep-share. Moreover, Simple-share offers a
more parameter-efficient approach, as it does not require the additional MLP used in Deep-share for
reparameterization, thereby simplifying the shared structure’s implementation. In contrast, Deep-
share’s use of MLP for reparameterization introduces greater flexibility, which may offer benefits in
specific applications. Nonetheless, a more thorough theoretical and empirical comparison between
Deep-share and Simple-share remains an open question, which we propose for future research.

F.3 COMPARISION WITH OTHER FINE-TUNING TECHNIQUES

Table 7 and Table 8 present a comparative analysis of prefix-tuning against common fine-tuning
techniques. In the vision domain, prefix-tuning demonstrates competitive performance, achieving
results comparable to full fine-tuning and surpassing several alternative methods, though it slightly
trails behind VPT. No-share, however, shows significantly weaker performance compared to VPT,
underscoring the importance of reparameterization in enhancing prefix-tuning’s effectiveness. Sim-
ilarly, in the language domain, prefix-tuning delivers strong results, with reparameterization once
again playing a crucial role in its success relative to other fine-tuning approaches.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 7: Comparison of fine-tuning results between common techniques on FGVC and VTAB-1K.

Method FGVC VTAB-1K
Natural Specialized Structural

Finetune 88.54 75.88 83.36 47.64
Partial-1 82.63 69.44 78.53 34.17
Adapter 85.66 70.39 77.11 33.43
VPT-Shallow 84.62 76.81 79.66 46.98
VPT-Deep 89.11 78.48 82.43 54.98

No-shareSHALLOW 80.38 69.00 77.20 29.65
No-shareDEEP 82.32 70.29 80.20 37.69
Deep-shareSHALLOW 84.36 75.79 79.48 38.53
Deep-shareDEEP 88.28 77.06 82.28 52.00

Table 8: Comparison of fine-tuning results between common techniques on E2E and WebNLG.

Method
E2E WebNLG

BLEU NIST MET R-L CIDEr BLEU MET TER ↓
S U A S U A S U A

Finetune 68.2 8.62 46.2 71.0 2.47 64.2 27.7 46.5 0.45 0.30 0.38 0.33 0.76 0.53
Partial-2 68.1 8.59 46.0 70.8 2.41 53.6 18.9 36.0 0.38 0.23 0.31 0.49 0.99 0.72
Adapter 66.3 8.41 45.0 69.8 2.40 54.5 45.1 50.2 0.39 0.36 0.38 0.40 0.46 0.43

No-share 68.0 8.61 45.8 71.0 2.41 61.1 42.8 53.5 0.43 0.35 0.40 0.36 0.49 0.42
Deep-share 69.9 8.78 46.3 71.5 2.45 63.9 44.3 54.5 0.45 0.36 0.41 0.34 0.52 0.42

41

	Introduction
	Background
	Prompt-based approaches
	Mixture of Experts Meets Prefix-Tuning

	Motivation: Reparameterization strategy
	Theoretical Analysis for Prompt Learning in prefix-tuning
	 Without Reparametrization (Nonshared Structures) among Prompts
	With Reparametrization (Shared Structures) among Prompts
	Simple linear setting
	One-layer neural network setting

	Experiments
	Experimental Setup
	Main Results

	Discussion and Conclusion
	Prompt-tuning and Mixture of Experts
	Proofs
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Convergence rate of density estimation
	From density estimation to expert estimation

	Proof of Theorem 4.3
	Convergence rate of density estimation
	From density estimation to expert estimation

	Additional Proofs
	Proof of Proposition B.1

	Related Work
	Additional Experimental Details
	Datasets Description
	Implementation Details

	Additional Experiments
	Per-task Results on VTAB-1K
	Per-task Results on FGVC
	Comparision with other fine-tuning techniques

