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ABSTRACT

Normalizing Flows explicitly maximize a full-dimensional likelihood on the train-
ing data. However, real data is typically only supported on a lower-dimensional
manifold leading the model to expend significant compute on modeling noise. In-
jective Flows fix this by jointly learning a manifold and the distribution on it. So
far, they have been limited by restrictive architectures and/or high computational
cost. We lift both constraints by a new efficient estimator for the maximum like-
lihood loss, compatible with free-form bottleneck architectures. We further show
that naively learning both the data manifold and the distribution on it can lead to
divergent solutions, and use this insight to motivate a stable maximum likelihood
training objective. We perform extensive experiments on toy, tabular and image
data, demonstrating the competitive performance of the resulting model.

1 INTRODUCTION

Generative modeling is one of the most important tasks in machine learning, having numerous ap-
plications across vision (Rombach et al., 2022), language modeling (Brown et al., 2020), science
(Ardizzone et al., 2018; Radev et al., 2022) and beyond. One of the best-motivated approaches
to generative modeling is maximum likelihood training, due to its favorable statistical properties
(Hastie et al., 2009). In the continuous setting, exact maximum likelihood training is most com-
monly achieved by normalizing flows (Rezende & Mohamed, 2015; Dinh et al., 2015; Kobyzev
et al., 2021) which parameterize an exactly invertible function with a tractable change of variables
(log-determinant term). This generally introduces a trade-off between model expressivity and com-
putational cost, where the cheapest networks to train and sample from, such as coupling block
architectures, require very specifically constructed functions which may limit expressivity (Draxler
et al., 2022). In addition, normalizing flows preserve the dimensionality of the inputs, requiring a
latent space of the same dimension as the data space.

Due to the manifold hypothesis (Bengio et al., 2013), which suggests that realistic data lies on a
low-dimensional manifold embedded into a high-dimensional data space, it is more efficient to only
model distributions on a low-dimensional manifold and regard deviations from the manifold as un-
informative noise. Prior works such as Caterini et al. (2021); Brehmer & Cranmer (2020) have
restricted normalizing flows to low-dimensional manifolds via specially-constructed bottleneck ar-
chitectures (known as “invertible autoencoders” (Teng & Choromanska, 2019) or “injective flows”
(Kothari et al., 2021)) where encoder and decoder share parameters. These injective flows are opti-
mized by some version of maximum likelihood training. This is not an ideal design decision, as the
restrictive architectures used in such models were originally designed for tractable change of vari-
ables calculations in normalizing flows, but such calculations are not possible in the presence of a
bottleneck (Brehmer & Cranmer, 2020). As a result, we propose to drop the restrictive constructions
(such as coupling blocks), instead use an unconstrained encoder and decoder, and introduce a new
technique to get around calculating the change of variables. This greatly simplifies the design of the
model and makes it more expressive.

∗Equal contribution.
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Figure 1: Free-form injective flow (FIF) training and inference. (Left) We combine a recon-
struction loss Lrecon. with a novel maximum likelihood loss L̃NLL to obtain an injective flow without
architectural constraints. (Right) We generate novel samples by decoding standard normal latent
samples with our best-performing models on CelebA and MNIST. The reconstructions shown are
on CelebA validation data, the samples are uncurated samples from our models.

We build on the unbiased maximum likelihood estimator used by rectangular flows (Caterini et al.,
2021) to approximate the gradient of the change of variables term. We simplify the estimator con-
siderably by replacing iterative conjugate gradient with an efficient single-step estimator. This is
fast: a batch can be processed in about twice the time (or less) as an autoencoder trained on recon-
struction loss only. In addition, we make a novel observation about injective flows: naively training
with maximum likelihood is ill-defined due to the possibility of diverging curvature in the decod-
ing function. To fix this problem, we propose a modification to our maximum likelihood estimator
which counteracts the possibility of diverging curvature. We call our model the free-form injective
flow (FIF).

To summarize, we make the following contributions:

• We introduce an efficient maximum likelihood estimator for free-form injective flows and
use it to train an unconstrained injective flow for the first time (section 4.1).

• We identify pathological behavior in the naive application of maximum likelihood training
in the presence of a bottleneck, and offer a solution to avoid this behavior while maintaining
computational efficiency (section 4.2).

• We outperform previous injective flows and demonstrate competitive performance to gen-
erative autoencoders on toy, tabular and image data (section 5). We provide code to im-
plement our model and reproduce our results at https://github.com/vislearn/
FFF.

2 RELATED WORK

Injective flows jointly learn a manifold and maximize likelihood on that manifold. The latter requires
estimating the Jacobian determinant of the transformation to calculate the change of variables. Ef-
ficient computation of this determinant traditionally imposed two major restrictions on normalizing
flow architectures: Firstly, the latent space has to match in dimension with the data space, ruling
out bottleneck architectures. Secondly, normalizing flows are restricted to certain functional forms,
such as coupling and autoregressive blocks. Below we outline the existing approaches to overcome
these problems and how our solution compares.

Lower-dimensional latent spaces One set of methods attempts to use full-dimensional normal-
izing flows, with some additional regularization or architectural constraints such that a subspace
of the latent space corresponds to the manifold. One strategy adds noise to the data to make it a
full-dimensional distribution then denoises to the manifold (Horvat & Pfister, 2021; Loaiza-Ganem
et al., 2022). Another restricts the non-manifold latent dimensions to have small variance (Beitler
et al., 2021; Silvestri et al., 2023; Zhang et al., 2023).

Other methods sidestep the problem by making training into a two-step procedure. First, an au-
toencoder is trained on reconstruction loss, then a normalizing flow is trained to learn the resulting
latent distribution. In this line of work, Brehmer & Cranmer (2020) and Kothari et al. (2021) use
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an injective flow, while Böhm & Seljak (2022) use unconstrained networks as autoencoder. Ghosh
et al. (2020) additionally regularize the decoder.

Conformal embedding flows (Ross & Cresswell, 2021) ensure the decomposition of the determinant
into the contribution from each block by further restricting the architecture to exclusively conformal
transformations. Cramer et al. (2022) uses an isometric autoencoder such that the change of variables
is trivial. However, the resulting transformations are quite restrictive and cannot represent arbitrary
manifolds.

The most similar work to ours is the rectangular flow (Caterini et al., 2021) which estimates the
gradient of the log-determinant via an iterative, unbiased estimator. The resulting method is quite
slow to train, and uses injective flows, which are restrictive.

Unconstrained normalizing flow architectures Several works attempt to reduce the constraints
imposed by typical normalizing flow architectures, allowing the use of free-form networks. How-
ever, all of these methods only apply to full-dimensional architectures. FFJORD (Grathwohl et al.,
2019) is a type of continuous normalizing flow (Chen et al., 2018b) which estimates the change
of variables stochastically. Residual flows (Behrmann et al., 2019; Chen et al., 2019) make resid-
ual networks invertible, but require expensive iterative estimators to train via maximum likelihood.
Self-normalizing flows (Keller et al., 2021) and relative gradient optimization (Gresele et al., 2020)
estimate maximum likelihood gradients for the matrices used in neural networks, but restrict the ar-
chitecture to use exclusively square weight matrices without skip connections. In a parallel work, we
present the extension of the present paper to full-dimensional normalizing flows based on free-form
neural networks, called free-form flows (Draxler et al., 2024).

Approximating maximum likelihood Many methods optimize some bound on the full-
dimensional maximum likelihood, notably the variational autoencoder (Kingma & Welling, 2014)
and its variants. Cunningham et al. (2020) also optimizes a variational lower bound to the likelihood.
Other methods fit into the injective flow framework by jointly optimizing a reconstruction loss and
some approximation to maximum likelihood on the manifold: Kumar et al. (2020); Zhang et al.
(2020) approximate the log-determinant of the Jacobian by its Frobenius norm. The entropic AE
(Ghose et al., 2020) maximizes the entropy of the latent distribution by a nearest-neighbor estimator
while constraining its variance, resulting in a Gaussian latent space. In addition, there are other
ways to regularize the latent space of an autoencoder which are not based on maximum likelihood,
e.g. adversarial methods (Makhzani et al., 2015).

In contrast to the above, our approach jointly learns the manifold and maximizes the likelihood on
it with an unconstrained architecture, which easily accommodates a lower-dimensional latent space.

3 BACKGROUND

Notation Let f : RD → Rd be an encoder which compresses data to a latent space and a decoder
g : Rd → RD which decompresses the latent representation. A full-dimensional model has d = D
while a bottleneck model has d < D. If f ◦ g : Rd → Rd is the identity, then we call f and g
consistent. For example, the forward and inverse function of a normalizing flow are consistent as
f−1 = g.

Injective flows Injective flows (Brehmer & Cranmer, 2020), also called invertible autoencoders
(Teng & Choromanska, 2019), adapt invertible normalizing flow architectures to a bottleneck setting.
They parameterize f and g as the composition of two invertible functions, w defined in RD and h
defined in Rd, with a slicing/padding operation in between:

f = h−1 ◦ slice ◦ w−1 and g = w ◦ pad ◦ h, (1)

where slice(x) selects the first d elements of x and pad(z) concatenates D − d zeros to the end
of z. Since slice and pad are consistent, so too are f and g.

Injective flows typically minimize a reconstruction loss (to learn a manifold which spans the data)
alongside maximizing the likelihood of the data on that manifold, performing joint manifold and
maximum likelihood training (alternatively, they are trained via two-step training, see section 2)
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Change of variables across dimensions The maximum likelihood objective resulting from the
change of variables theorem, used to train normalizing flow models, is only well-defined when map-
ping between spaces of equal dimension. A result from differential geometry (Krantz & Parks,
2008) allows us to generalize the change of variables theorem to non-equal-dimension transforma-
tions through the formula:

pX(x) = pZ(f(x))
(
det
[
g′(f(x))⊤g′(f(x))

])− 1
2 , (2)

where f and g are consistent and primes denote derivatives: g′(f(x)) is the Jacobian matrix of g
evaluated at f(x). Note that, since pX is derived as the pushforward of the latent distribution pZ
by g, the formula is valid only for x which lie on the decoder manifold (see appendix A for more
details). Unlike in the full-dimensional case, there is no architecture known which can represent
arbitrary manifolds and at the same time allows efficient exact computation of eq. (2) (see section 2).

Rectangular flows Minimizing the negative logarithm of eq. (2) and adding a Lagrange multiplier
to restrict the distance of data points from the decoder manifold results in the following per-sample
loss term:

LRF(x) = − log pZ(z) +
1

2
log det

[
g′(z)⊤g′(z)

]
+ β∥x̂− x∥2, (3)

where z = f(x), x̂ = g(z), and β is a hyperparameter.

The log-determinant term is the difficult one to optimize. Fortunately, its gradient with respect to
the parameters θ of the decoder can be estimated tractably by the following construction (Caterini
et al., 2021). Note that g = gθ but the θ subscript is dropped to avoid clutter. The relevant quantity
is (with J = g′(z)):

∂

∂θj

1

2
log det(J⊤J) =

1

2
tr

(
(J⊤J)−1 ∂

∂θj
(J⊤J)

)
. (4)

The trace can be estimated (Hutchinson, 1989; Girard, 1989) by:

∂

∂θj

1

2
log det(J⊤J) ≈ 1

2K

K∑
k=1

ϵ⊤k (J
⊤J)−1︸ ︷︷ ︸

(∗∗)

∂

∂θj
(J⊤J)ϵk︸ ︷︷ ︸

(∗)

, (5)

where the ϵk are K samples from a distribution where E[ϵϵ⊤] = I, typically either Rademacher
or standard normal. Now, we take steps to compute the above without constructing the entire net-
work Jacobian J . First, note that (∗) can be written as a Jacobian-vector product v1 = Jv and
a vector-Jacobian product JT v1 = (v⊤1 J)

⊤, each readily available via automatic differentiation.
For (∗∗), Caterini et al. (2021) propose to employ the iterative conjugate gradient method: Write
ϵ⊤k (J

⊤J)−1 = CG(J⊤J ; ϵk)
⊤ where CG(A; b) denotes the conjugate gradient solution to Ax = b.

Conjugate gradient is a clever choice here, since it again only requires computing terms of the form
J⊤Jv using autodiff. The parameter derivative can be made to act only on the rightmost Jacobian
terms by applying the stop gradient operation to the output of the conjugate gradient method,
which returns its input, but has zero gradient. The final surrogate for the log-determinant term is
therefore:

1

2K

K∑
k=1

stop gradient
(
CG
(
J⊤J ; ϵk

)⊤)
J⊤Jϵk, (6)

which replaces the log-determinant term in the loss. This computation yields the same gradient as
the original loss in eq. (3), even though it has a different value. In the following, we present a signif-
icantly improved version of this estimator based on the insight that the encoder is an (approximate)
inverse of the decoder.

4 FREE-FORM INJECTIVE FLOW (FIF)

Our modification to rectangular flows is threefold: first, we use an unconstrained autoencoder archi-
tecture (no restrictively parameterized invertible functions); second, we introduce a more computa-
tionally efficient surrogate estimator; third, we modify the surrogate to avoid pathological behavior
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related to manifolds with high curvature. Our per-sample loss function is:

L(x) = − log pZ(z)−
1

K

K∑
k=1

ϵ⊤k f
′(x)stop gradient (g′(z)ϵk) + β∥x̂− x∥2, (7)

with z = f(x). Note the negative sign before the surrogate term, which comes from sending the
log-determinant gradient to the encoder rather than the decoder. We will derive and motivate this
formulation of the loss in sections 4.1 and 4.2.

4.1 SIMPLIFYING THE SURROGATE

We considerably simplify the optimization of rectangular flows by a new surrogate for the log-
determinant term in eq. (2), which uses the Jacobian of the encoder as an approximation for the
inverse Jacobian of the decoder. This allows the surrogate to be computed in a single pass, avoiding
costly conjugate gradient iterations.

We do this by expanding the derivative in eq. (4):

1

2
tr

(
(J⊤J)−1 ∂

∂θj
(J⊤J)

)
= tr

(
J† ∂

∂θj
J

)
, (8)

where J† = (J⊤J)−1J⊤ is the Moore-Penrose inverse of J . The full derivation is in appendix B. To
see the advantage of this formulation consider that for encoder f and decoder g optimal with respect
to the reconstruction loss, f ′(x̂) = g′(f(x))† (see appendix B.1). Using the stop gradient
operation, this leads to the following surrogate loss term:

1

K

K∑
k=1

stop gradient
(
ϵ⊤k f

′(x̂)
)
g′(z)ϵk, (9)

or equivalently, using the encoder Jacobian in place of the decoder Jacobian (see appendix B):

− 1

K

K∑
k=1

ϵ⊤k f
′(x̂)stop gradient (g′(z)ϵk) . (10)

Each term of the sum can be computed from just two vector-Jacobian/Jacobian-vector products
obtained from automatic differentiation. This is a significant improvement on the iterative conjugate
gradient method needed in the original formulation of rectangular flows which requires up to 2(d+1)
such products to ensure convergence (Caterini et al., 2021). Compared to reconstruction loss only,
we measure ∼ 1.5× to 2× the wall clock time, independent of the latent dimension. Note that
the surrogate is only accurate if f and g are (at least approximately) optimal with respect to the
reconstruction loss. We observe stable training in practice, validating this assumption.

4.2 PROBLEMS WITH MAXIMUM LIKELIHOOD IN THE PRESENCE OF A BOTTLENECK

Rectangular flows are trained with a combination of a reconstruction and a likelihood term. We
might ask what happens if we only train with the likelihood term, making an analogy to normalizing
flows. In this case our loss would be:

LNLL(x) = − log pZ(z) +
1

2
log det

[
g′(z)⊤g′(z)

]
. (11)

Unfortunately, optimizing this loss can lead us to learn a degenerate decoder manifold, an issue
raised in Brehmer & Cranmer (2020). Here we expand on their argument. First consider that if
f and g are consistent, then f(x̂) = f(g(f(x))) = f(x) and the per-sample loss is invariant to
projections: LNLL(x̂) = LNLL(x), since LNLL(x) is a function only of f(x) . This means that we
can write our loss as:

LNLL = Epdata(x)[LNLL(x)] = Ep̂data(x̂)[LNLL(x̂)], (12)

where p̂data(x̂) is the probability density of the projection of the training data onto the decoder
manifold. Now consider that the negative log-likelihood loss is one part of a KL divergence, and KL
divergences are always non-negative:

KL(p̂data(x̂)∥pθ(x̂)) = −H(p̂data(x̂))− Ep̂data(x̂)[log pθ(x̂)] ≥ 0. (13)
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Figure 2: Naive training of autoencoders with negative log-likelihood (NLL, see section 4.2) leads
to pathological solutions (left). Starting with the initialization (t = 0, black), gradient steps increase
the curvature of the learnt manifold (t = 1, 2, orange). This reduces NLL because the entropy of the
projected data is reduced, by moving the points closer to one another. This effect is stronger than the
reconstruction loss. We fix this problem by evaluating the volume change off-manifold (right). This
moves the manifold closer to the data and reduces the curvature (t = 1, 2, green), until it eventually
centers the manifold on the data with zero curvature (t = ∞, green). Light lines show the set of
points which map to the same latent point. Data is projected onto the t = 2 manifold.

As a result, the loss is lower bounded by the entropy of the data projected onto the manifold:

LNLL = −Ep̂data(x̂)[log pθ(x̂)] ≥ H(p̂data(x̂)). (14)

Unlike in standard normalizing flow optimization, where the right hand side would be fixed, here
the entropy depends on the projection learned by the model. Thus, the model could modify the
projection such that entropy is as low as possible. We break this pathology down into two cases:

1. A model manifold which does not align with the data manifold but instead intersects it. For
example, Brehmer & Cranmer (2020) discuss a case where a linear model learns to project
a data distribution to a single point on the manifold, thus reducing its entropy to −∞, the
lowest possible value. To the best of our knowledge, this can be fixed by adding noise and
a reconstruction loss with sufficiently high weight. In appendix C we prove as much for
linear models and characterize the solutions, which are the same as PCA if β ≥ 1/2σ2

where σ2 is the smallest eigenvalue of the data covariance matrix.
2. A model manifold which concentrates the data by use of high curvature, see fig. 2 (left).

This newly identified pathological case only occurs in nonlinear models, hence Brehmer &
Cranmer (2020) did not notice this effect in their linear example. Importantly, this is not
fixed by adding a reconstruction loss.

Most existing injective flows avoid this by a two-stage training, which first learns a projection and
then the distribution of the projected data in the latent space. To enable jointly learning a manifold
and a maximum-likelihood density on it, we need to find a fix for the pathology.

Towards a well-behaved loss The term which leads to pathological behavior in the likelihood loss
is the log-determinant. When using the change of variables with f ′ evaluated at x̂, all that matters is
the change of volume from the projected data to the latent space, so the model can decrease the loss
by choosing a manifold which concentrates the projected data more tightly (the more possibility it
has to expand the data, the lower the loss will be). We can counteract this effect by introducing a
factor inversely proportional to the concentration. This can be achieved by the fairly simple modifi-
cation of evaluating f ′ in our estimator at x rather than x̂. Namely, we modify eq. (10) to estimate
the gradient of the log-determinant term by:

− 1

K

K∑
k=1

ϵ⊤k f
′(x)stop gradient (g′(z)ϵk) . (15)

See appendix B.2 for a detailed explanation.
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Figure 3: Learning a noisy 2-D sinusoid with a 1-D latent space for different reconstruction weights
β. Color codes denote the value of the latent variable at each location. When the reconstruction term
has low weight (left), the autoencoder learns to throw away information about the position along the
sinusoid and only retains the orthogonal noise. Only sufficiently high weights (right) result in the
desired solution, where the decoder spans the sinusoid manifold. The middle plot shows the tradeoff
between reconstruction error and NLL as we transition between these regimes (box plots indicate
variability across runs).

In this way, we discourage pathological solutions involving high curvature. In fig. 2 (right) we
can see the effect of the modified estimator: the manifold now moves towards the data since the
optimization is not dominated by diverging curvature. We note that the modified estimator is also
computationally cheaper, since the vector-Jacobian product ϵ⊤k f

′(x) can reuse the computational
graph generated when computing z.

Along with the results of section 4.1, this leads to the following loss (same as eq. (7)):

L(x) = L̃NLL(x) + βLrecon.(x) (16)

= − log pZ(z)−
1

K

K∑
k=1

ϵ⊤k f
′(x)stop gradient (g′(z)ϵk) + β∥x̂− x∥2. (17)

Phase transition Figure 3 shows that when using this loss, if β is large enough, the dominant
manifold direction is identified. In appendix E.1.2, we show a similar experiment on MNIST.

5 EXPERIMENTS

In this section, we test the empirical performance of the proposed model. First, we show that our
model is much faster than rectangular flows on tabular data. Second, we show that it outperforms
previous SOTA injective flows on generating images. Finally, we compare against other generative
autoencoders on the Pythae image generation benchmark Chadebec et al. (2022), achieving the best
FID score in some categories.

Implementation details In implementing the trace estimator, we have to make a number of
choices. Briefly, i) we chose to formulate the log-determinant gradient in terms of the encoder
rather than decoder as it was more stable in practice, ii) we performed traces in the order f ′(x)g′(z)
as this reduces variance (both orderings are valid due to the cyclic property of the trace but since
f ′(x)g′(z) is a d×d matrix whereas g′(z)f ′(x) is D×D, the former is typically easier to estimate),
iii) we used a mixture of forward- and backward-mode automatic differentiation as this was com-
patible with our estimator, and iv) we used orthogonalized Gaussian noise in the trace estimator, to
reduce variance. Full justification for these choices is given in appendix D.

5.1 TABULAR DATA

We evaluate our method on four of the tabular datasets used by Papamakarios et al. (2017), using the
same data splits, and make a comparison to the published rectangular flow results (Caterini et al.,
2021), see table 1. We adopt the “FID-like metric” from that work, which computes the Wasserstein-
2 distance between the Gaussian distributions with equal mean and covariance as the test data and
the data generated by the model. This is a measure of the difference of the means and covariance
matrices of the generated and test datasets. We outperform rectangular flows on all datasets except
GAS. In addition, we see a speedup in training time of between 1.5 and 6 times between FIF and
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Table 1: Free-form injective flows (FIF) are significantly faster than rectangular flows (RF) with
superior performance in FID-like metric on 3 out of 4 tabular datasets (Papamakarios et al., 2017).
Both methods use K = 1. The results for RF are taken directly from (Caterini et al., 2021).

Method POWER GAS HEPMASS MINIBOONE

RF (Caterini et al., 2021) 0.083 ± 0.015 0.110 ± 0.021 0.779 ± 0.191 1.001 ± 0.051
FIF (ours) 0.041 ± 0.007 0.281 ± 0.031 0.541 ± 0.034 0.598 ± 0.024
Training Time Speedup 3.9 × 2.2 × 6.1 × 1.5 ×

a rerun of rectangular flows (using the published code) on the same hardware. Full experimental
details are in appendix E.2.

We also show an ablation study in table 6 and table 7 in the appendix disentangling the effect of
the three individual components of our method: The surrogate of eq. (10), the fix for high curvature
solutions in eq. (15) and the use of free-form architectures. Comparing to table 1, we find that
the fix to estimate the negative log-likelihood with an off-manifold encoder Jacobian is crucial for
good performance of free-from architectures, as the on-manifold variant diverges (see section 4.2).
This is not the case for the injective architecture based on coupling flows, indicating a stabilizing
regularization via the architecture.

5.2 COMPARISON TO INJECTIVE FLOWS

We compare FIF against previous injective flows on CelebA images (Liu et al., 2015) in table 2. Our
models significantly improve the quality of the generated images in terms of the Fréchet inception
distance (FID) Heusel et al. (2017) and Inception Score (IS) Salimans et al. (2016). The former
compares generated samples to a set of reference samples, by computing the Wasserstein-2 distance
between two Gaussian distributions fit to some embedding of the respective sets of samples. The
later measures diversity by the entropy of the distribution of class labels in the generated samples,
where the class labels are provided by some pre-trained classifier. Samples from this model are
depicted in fig. 1.

For a fair comparison, we train each model on the same hardware for equal wall clock time with
the code provided by the authors. The architectures of previous works were dominated by the
need that most layers are invertible and have a tractable Jacobian determinant. Our loss in eq. (7)
does not impose these constraints on the architecture, and we can use an off-the-shelf convolutional
auto-encoder with additional fully-connected layers in the latent space. Details can be found in
appendix E.3.

5.3 COMPARISON TO GENERATIVE AUTOENCODERS

As free-form injective flows (FIF) do not require any specific architecture, we expand our compar-
ison to the much broader range of generative autoencoders. This is a general class of bottleneck
architectures that encode the training data to a standard normal distribution, so that the decoder can
be used as a generator after training.

Recently, Chadebec et al. (2022) proposed the Pythae benchmark for comparing generative autoen-
coders on image generation. They evaluate different training methods using two different architec-

Table 2: Comparison of injective flows on CelebA under equal computational budget. Free-form
Injective Flows (FIF) outperform previous work significantly in terms of FID.

Model # parameters N sampler GMM sampler
FID ↓ IS ↑ FID ↓ IS ↑

DNF (Horvat & Pfister, 2021) 39.4M 55.6 ± 0.59 1.9 52.7 ± 0.33 2.0
Trumpet (Kothari et al., 2021) 19.1M 56.2 ± 1.39 1.8 47.7 ± 2.24 1.9
FIF (ours) 34.3M 47.3 ± 1.39 1.7 37.4 ± 1.35 2.0
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Table 3: Pythae benchmark results on CelebA, following Chadebec et al. (2022). We train their ar-
chitectures (ConvNet and ResNet) with our new training objective, achieving SOTA FID on ResNet.
We draw latent samples from standard normal “N ” or a GMM fit using training data “GMM”. Mod-
els with multiple variants (indicated in brackets) have been merged to indicate only the best result
across variants. We mark the best FID in each column in bold and underline the second best.

Model ConvNet + N ResNet + N ConvNet + GMM ResNet + GMM
FID ↓ IS ↑ FID IS FID IS FID IS

VAE (Kingma & Welling, 2014) 54.8 1.9 66.6 1.6 52.4 1.9 63.0 1.7
IWAE (Burda et al., 2015) 55.7 1.9 67.6 1.6 52.7 1.9 64.1 1.7
VAE-lin NF (Rezende & Mohamed, 2015) 56.5 1.9 67.1 1.6 53.3 1.9 62.8 1.7
VAE-IAF (Kingma et al., 2016) 55.4 1.9 66.2 1.6 53.6 1.9 62.7 1.7
β-(TC) VAE (Higgins et al., 2017; Chen et al., 2018a) 55.7 1.8 65.9 1.6 51.7 1.9 59.3 1.7
FactorVAE (Kim & Mnih, 2018) 53.8 1.9 66.4 1.7 52.4 2.0 63.3 1.7
InfoVAE - (RBF/IMQ) (Zhao et al., 2017) 55.5 1.9 66.4 1.6 52.7 1.9 62.3 1.7
AAE (Makhzani et al., 2015) 59.9 1.8 64.8 1.7 53.9 2.0 58.7 1.8
MSSSIM-VAE (Snell et al., 2017) 124.3 1.3 119.0 1.3 124.3 1.3 119.2 1.3
Vanilla AE 327.7 1.0 275.0 2.9 55.4 2.0 57.4 1.8
WAE - (RBF/IMQ) (Tolstikhin et al., 2018) 64.6 1.7 67.1 1.6 51.7 2.0 57.7 1.8
VQVAE (van den Oord et al., 2017) 306.9 1.0 140.3 2.2 51.6 2.0 57.9 1.8
RAE - (L2/GP) Ghosh et al. (2020) 86.1 2.8 168.7 3.1 52.5 1.9 58.3 1.8
FIF (ours) 56.9 2.1 62.3 1.7 47.3 1.9 55.0 1.8

tures on MNIST (LeCun et al., 2010) (data D = 784, latent d = 16), CIFAR10 (Krizhevsky, 2009)
(D = 3072, d = 256), and CelebA (Liu et al., 2015) (D = 12288, d = 64). All models are trained
with the same limited computational budget. The goal of the benchmark is to provide a fair com-
parison of different models, not to achieve SOTA image generation results, as this would require
significantly more compute.

As shown in table 3, our model performs strongly on the benchmark, achieving SOTA on CelebA in
Fréchet Inception Distance (FID) (Heusel et al., 2017) on the ResNet architecture with latent codes
sampled from a standard normal, and on both architectures when sampling from a Gaussian Mixture
Model fit using training data. At the same time, the Inception Scores (IS) (Salimans et al., 2016)
are high, indicating a high diversity. On the one combination where our model does not outperform
the competitors, FIF still achieves a comparable FID and high Inception Score. FIF also performs
strongly on the other datasets, see appendix E.4.

For each method in the benchmark, ten hyperparameter configurations are trained and the best model
according to FID is reported. For our method, we choose to vary β = 5, 10, 15, 20, 25 and the
number of Hutchinson samples K = 1, 2. We find the performance to be robust against these
choices, and give all details on the training procedure in appendix E.4.

6 CONCLUSION

This paper offers a computationally efficient solution to jointly learning a manifold and a distri-
bution on it, which we call the free-form injective flow (FIF). We i) significantly improve an ex-
isting estimator for the gradient of the change of variables across dimensions, ii) note that it can
be applied to unconstrained architectures, iii) analyze problems with joint manifold and maximum-
likelihood training and offer a solution, and iv) implement and test our model on toy, tabular and
image datasets. We find that the model is practical and scalable, outperforming comparable injec-
tive flows, and showing similar or better performance to other autoencoder generative models on the
Pythae benchmark.

Several theoretical and practical questions remain for future work: We identified a previously over-
looked problem with jointly learning a manifold and maximum likelihood. We propose a fix in
section 4.2 that provides high-quality models, but further investigation is needed for a thorough un-
derstanding. Fitting a GMM to the latent space after training improves performance on image data,
suggesting that our latent distributions are not perfectly Gaussian. We generally find that architec-
tures with more fully-connected layers in the latent space have a more Gaussian latent distribution,
suggesting that larger models suffer less from this problem. We leave potential theoretical or practi-
cal improvements to future work.
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with Invertible Neural Networks. In International Conference on Learning Representations, 2018.

Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
Invertible residual networks. In International Conference on Machine Learning, 2019.

Jan Jetze Beitler, Ivan Sosnovik, and Arnold Smeulders. PIE: Pseudo-invertible encoder.
arXiv:2111.00619, 2021.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.
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A CHANGE OF VARIABLES FORMULA ACROSS DIMENSIONS

The change of variables formula describes how probability densities change as they are mapped
through an injective “pushforward” function g. It is instructive to derive this formula when g is an
invertible function. Let pZ be a base density and pX the pushforward density obtained by mapping
samples from pZ through g. Then we can write

pX(x) =

∫
p(x | z)pZ(z)dz (18)

=

∫
δ(x− g(z))pZ(z)dz (19)

=

∫
δ(x− x̂)pZ(f(x̂)) |det(g′(f(x̂)))|−1

dx̂ (20)

= pZ(f(x)) |det(g′(f(x)))|−1 (21)

using the change of variables x̂ = g(z), meaning that z = f(x̂) and |det(g′(z))|dz = dx̂ with f
the inverse of g.

Now suppose that g maps from Rd to RD with d < D. We can generalize the change of variables
x̂ = g(z) using z = f(x̂) and det(g′(z)⊤g′(z))

1
2 dz = dx̂ where f and g are consistent (f ◦ g is the

identity) (see chapter 5 of Krantz & Parks (2008)). This gives us

pX(x) =

∫
δ(x− g(z))pZ(z)dz (22)

=

∫
δ(x− x̂)pZ(f(x̂)) det(g

′(f(x̂))⊤g′(f(x̂)))−
1
2 dx̂ (23)

This expression defines a probability density in the full ambient space RD (albeit a degenerate
distribution) but we cannot easily remove the integral. However, we can convert it into an expression
resembling the full-dimensional case, but defined only on the image of g:

pX(x) = pZ(f(x)) det(g
′(f(x))⊤g′(f(x)))−

1
2 (24)

Note that this expression only integrates to 1 if we restrict integration to the image of g. As such, it
should only be regarded as defining a probability distribution on this manifold, not in the ambient
space RD.

B DERIVATION OF GRADIENT ESTIMATOR

We expand the derivative in eq. (4):

∂

∂θj

1

2
log det J⊤J =

1

2
tr

(
(J⊤J)−1 ∂

∂θj
(J⊤J)

)
(25)

=
1

2
tr

(
(J⊤J)−1

(
∂

∂θj
J⊤
)
J

)
+

1

2
tr

(
(J⊤J)−1J⊤

(
∂

∂θj
J

))
(26)

=
1

2
tr

((
J(J⊤J)−1

)⊤ ∂

∂θj
J

)
+

1

2
tr

(
(J⊤J)−1J⊤ ∂

∂θj
J

)
(27)

= tr

(
(J⊤J)−1J⊤ ∂

∂θj
J

)
(28)

= tr

(
J† ∂

∂θj
J

)
(29)

where we used the cyclic property of the trace and that tr(AB) = tr(A⊤B⊤). J† = (J⊤J)−1J⊤

is the Moore-Penrose inverse of J .

Now we will do an equivalent derivation for the encoder. Observe that, since

(J†J†⊤)−1 = ((J⊤J)−1J⊤J(J⊤J)−1)−1 = J⊤J (30)
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we can rewrite the log-determinant term using the encoder Jacobian:

1

2
log det(J⊤J) = −1

2
log det(J†J†⊤) (31)

Note the negative sign on the right-hand side.

The derivation for the derivative is very similar to that for the decoder, where we now take a deriva-
tive with respect to encoder parameters ϕ:

∂

∂ϕj

1

2
log detJ†J†⊤ =

1

2
tr

(
(J†J†⊤)−1 ∂

∂ϕj
(J†J†⊤)

)
(32)

=
1

2
tr

(
(J†J†⊤)−1

(
∂

∂ϕj
J†
)
J†⊤

)
+

1

2
tr

(
(J†J†⊤)−1J†

(
∂

∂ϕj
J†⊤

))
(33)

=
1

2
tr

(
J†⊤(J†J†⊤)−1 ∂

∂ϕj
J†
)
+

1

2
tr

((
(J†J†⊤)−1J†)⊤ ∂

∂ϕj
J†
)

(34)

= tr

(
J†⊤(J†J†⊤)−1 ∂

∂ϕj
J†
)

(35)

= tr

(
J

∂

∂ϕj
J†
)

(36)

where we used the cyclic property of the trace, that tr(AB) = tr(A⊤B⊤) and that J =
(
J†)† =

J†⊤(J†J†⊤)−1.

Recall eq. (9) in section 4.1, which gives the surrogate for the log-determinant term:

1

K

K∑
k=1

stop gradient
(
ϵ⊤k f

′(x̂)
)
g′(z)ϵk, (37)

This is formulated in terms of the Jacobian of the decoder, in other words it is derived from
det(J⊤J). The equivalent term, formulated in terms of the Jacobian of the encoder should be
derived from det(J†J†⊤) and is therefore (note the negative sign):

− 1

K

K∑
k=1

ϵ⊤k f
′(x̂)stop gradient (g′(z)ϵk) (38)

We write it in the order f ′(x̂)g′(z) rather than g′(z)f ′(x̂) since this reduces the variance of the
estimate. See appendix D.1 for further details on this point.

B.1 NOTE ON OPTIMALITY WITH RESPECT TO RECONSTRUCTION LOSS

Our estimator relies on the approximation f ′(x̂) ≈ g′(f(x))†. If f and g are consistent (f ◦ g is the
identity) this guarantees that g′(f(x))f ′(x̂) = I , but not that f ′(x̂) is the Moore-Penrose inverse
of g′(f(x)). A sufficient requirement is that f and g are optimal with respect to the reconstruction
loss, that is, any variation in the functions would lead to a higher reconstruction. With calculus of
variations, it is possible to show that such f and g are consistent, and

(x̂− x)⊤g′(f(x)) = 0 (39)

for all x. By taking the derivative with respect to x and evaluating at some x in the image of g (so
x̂ = x) we have that

f ′(x̂)⊤g′(f(x))⊤g′(f(x))− g′(f(x)) = 0 (40)
and hence

f ′(x̂) = g′(f(x))⊤(g′(f(x))⊤g′(f(x)))−1 = g′(f(x))†. (41)

In the remainder of the appendix, given an encoder-decoder pair f and g which are optimal with
respect to the reconstruction loss, we refer to g as the pseudoinverse of f , and f as the pseudoinverse
of g.

15



Published as a conference paper at ICLR 2024

Figure 4: Representation of ill-defined probability density p̃(x) ∝ p(x̂)e−β∥x̂−x∥2

(left and center).
Solid black lines denote the manifold, dashed lines are a constant distance from the manifold. The
probability density is constant along the manifold. The width of the cyan bands is proportional to
e−β∥x̂−x∥2

and represents the probability density along the on- and off-manifold contours. While the
density is reasonable for a flat manifold (left), note that the amount of probability mass associated
with a region of the manifold (bounded by solid lines) is larger at some points off the manifold than
on it when the manifold has curvature (center). This behavior can lead to divergent solutions when
optimizing for likelihood and should be compensated for. The appropriate compensation factor is
the ratio of the volume of a small region on the manifold (small blue square embedded in green
manifold, right) to the equivalent region off the manifold (large blue square, right). The blue arrows
represent an orthonormal frame on the manifold, and the equivalent frame in the off-manifold region.

B.2 MODIFIED ESTIMATOR

As stated in 4.2, we modify the log-determinant estimator (eq. (38)) by replacing f ′(x̂) by f ′(x).
The loss we are trying to optimize (sending gradient from the log-determinant to the encoder) is:

L(x) = − log pZ(f(x))− log vol (f ′(x̂)) + β∥x̂− x∥2 (42)

with vol(f ′(x̂)) =
√

det(f ′(x̂)f ′(x̂)⊤). Consider the probability density p̃ implied by interpreting
this loss as a negative log-likelihood:

p̃(x) ∝ p(x̂)e−β∥x̂−x∥2

= pZ(z) vol (f
′(x̂)) e−β∥x̂−x∥2

(43)

where p(x̂) is the on-manifold density. Unfortunately, this density is ill-defined and leads to patho-
logical behavior (see fig. 4). In order to provide a correction to this density, we need a term which
compensates for the volume increase or decrease of off-manifold regions in comparison to the on-
manifold region they are projected to. This is depicted in fig. 4 (right). The blue arrows in the
on-manifold region will span the same latent-space volume as the blue arrows in the off-manifold
region. The change in volume between the depicted on-manifold region and the latent space is
vol(f ′(x̂)) and vol(f ′(x)) between the off-manifold region and the latent space. Combining these
facts means

vol(f ′(x̂))×(volume of on-manifold region) = vol(f ′(x))×(volume of off-manifold region) (44)

and hence the ratio of the volume of the on-manifold region to the off-manifold region is
vol(f ′(x))/ vol(f ′(x̂)). Multiplying p̃(x) by this factor leads to

p̃(x)
vol(f ′(x))

vol(f ′(x̂))
= pZ(z) vol (f

′(x)) e−β∥x̂−x∥2

(45)

and the corresponding negative log-likelihood loss is

L(x) = − log pZ(f(x))− log vol (f ′(x)) + β∥x̂− x∥2 (46)
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The surrogate for the log-determinant term is therefore

− tr(f ′(x)stop gradient(f ′(x)†)) (47)

In order to maintain computational efficiency, we approximate f ′(x)† by g′(f(x)):

− tr(f ′(x)stop gradient(g′(f(x)))) (48)

giving the stated correction.

C LINEAR MODEL TRAINED ON MAXIMUM LIKELIHOOD ALONE

Consider a linear model, trained on data with zero mean and covariance Σ. Let the encoder function
be f(x) = Ax and suppose that A has positive singular values, meaning that AA⊤ is positive
definite. Let the decoder function be g(z) = A†z, where A† = A⊤(AA⊤)−1. We want to minimize
a combination of negative log-likelihood and a reconstruction loss (here we use 1/2σ2 instead of β
as prefactor):

L = LNLL + Lrecon. (49)

= Ex

[
1

2
∥Ax∥2 − 1

2
log det(AA⊤) +

1

2σ2
∥A†Ax− x∥2

]
(50)

=
1

2
Ex[x

⊤A⊤Ax]− 1

2
log det(AA⊤) +

1

2σ2
Ex[x

⊤(A†A− I)2x] (51)

=
1

2
tr(AEx[xx

⊤]A⊤)− 1

2
log det(AA⊤) +

1

2σ2
tr(Ex[xx

⊤](I−A†A)) (52)

=
1

2
tr(AΣA⊤)− 1

2
log det(AA⊤) +

1

2σ2
tr(Σ(I−A†A)) (53)

where A is a full rank d×D matrix with d ≤ D.

Before solving for the minimum, let’s review some matrix calculus identities. It is often convenient
to consider A as a function of a single variable x, differentiate with respect to x, and then choose x
to be Aij . Then the derivative is

d

dAij
A = E(ij) (54)

where E(ij) is a matrix of zeros, except for the ij entry which is a one. We can write this as
E

(ij)
kl = δikδjl where δ is the Kronecker delta. When evaluating E(ij) inside a trace we get the

simple expression:
tr(E(ij)B) = E

(ij)
kl Blk = δikδjkBlk = Bji (55)

using Einstein notation. The additional matrix identities we will need are Jacobi’s formula for a
square invertible matrix B:

d

dx
det(B) = det(B) tr

(
B−1

(
d

dx
B

))
(56)

and hence
d

dx
log det(B) = tr

(
B−1

(
d

dx
B

))
(57)

and we will prove the following lemma.
Lemma C.1. Suppose the matrix A depends on a variable x. Then we have the following expression
for the derivative of the projection operator A†A:

d

dx
(A†A) = A†

(
d

dx
A

)
(I−A†A) +

(
A†
(

d

dx
A

)
(I−A†A)

)⊤

(58)

Proof. The following is based on the proof to lemma 4.1 in Golub & Pereyra (1973). Define the
projection operator PA = A†A and its complement P⊥

A = I− PA. Then, since PAPA = PA,(
d

dx
PA

)
=

(
d

dx
PAPA

)
=

(
d

dx
PA

)
PA + PA

(
d

dx
PA

)
(59)
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In addition, since PAA
⊤ = A⊤(

d

dx
PAA

⊤
)

=

(
d

dx
PA

)
A⊤ + PA

(
d

dx
A

)⊤

=

(
d

dx
A

)⊤

(60)

and therefore(
d

dx
PA

)
PA =

(
d

dx
PA

)
A⊤A†⊤ =

(
d

dx
A

)⊤

A†⊤−PA

(
d

dx
A

)⊤

A†⊤ = P⊥
A

(
d

dx
A

)⊤

A†⊤

(61)
By similar steps but using APA = A, we can derive

PA

(
d

dx
PA

)
= A†

(
d

dx
A

)
P⊥
A (62)

Putting it all together gives(
d

dx
PA

)
= A†

(
d

dx
A

)
P⊥
A +

(
A†
(

d

dx
A

)
P⊥
A

)⊤

(63)

Note that the second term is just the transpose of the first.

Now we are ready to find the derivative of the loss and set it to zero.

Lemma C.2. The derivative of the loss with respect to A takes the form:

d

dA
L =

(
ΣA⊤ −A† − 1

σ2
(I−A†A)ΣA†

)⊤

(64)

Proof. Let’s apply the above identities to the first term in the loss:

d

dx

1

2
tr(AΣA⊤) =

1

2
tr

((
d

dx
A

)
ΣA⊤ +AΣ

(
d

dx
A

)⊤
)

(65)

= tr

((
d

dx
A

)
ΣA⊤

)
(66)

since the trace is invariant under transposition and hence

d

dAij

1

2
tr(AΣA⊤) = tr(E(ij)ΣA⊤) = (ΣA⊤)ji (67)

Applying Jacobi’s formula to the second term in the loss gives:

d

dx

1

2
log det(AA⊤) =

1

2
tr

(
(AA⊤)−1

(
d

dx
(AA⊤)

))
(68)

=
1

2
tr

(
(AA⊤)−1

((
d

dx
A

)
A⊤ +A

(
d

dx
A

)⊤
))

(69)

and therefore

d

dAij

1

2
log det(AA⊤) =

1

2
tr
(
(AA⊤)−1

(
E(ij)A⊤ +AE(ji)

))
(70)

=
1

2
tr
(
E(ij)A⊤(AA⊤)−1 + E(ij)A⊤(AA⊤)−1

)
(71)

=
(
A⊤(AA⊤)−1

)
ji

(72)

= A†
ji (73)

where we used the cyclic and transpose properties of the trace and that E(ji)⊤ = E(ij).
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The final term requires a derivative of tr(Σ(I−A†A)), which is equal to a derivative of − tr(ΣA†A).
We use the formula for the derivative of the projection operator to get

d

dx

1

2
tr(ΣA†A) =

1

2
tr

(
Σ

(
d

dx
(A†A)

))
(74)

= tr

(
ΣA†

(
d

dx
A

)
(I−A†A)

)
(75)

again using the transpose property of the trace, and therefore

d

dAij

1

2
tr(ΣA†A) = tr(E(ij)(I−A†A)ΣA†) = ((I−A†A)ΣA†)ji (76)

Putting the three expressions together, we have that

d

dA
L =

(
ΣA⊤ −A† − 1

σ2
(I−A†A)ΣA†

)⊤

(77)

Lemma C.3. The critical points of L satisfy the following properties:

1. A = UΣ− 1
2 with UU⊤ = I

2. U⊤U commutes with Σ

Proof. Using lemma C.2, the critical points satisfy

ΣA⊤ −A† − 1

σ2
(I−A†A)ΣA† = 0 (78)

By multiplying by A from the left we have

AΣA⊤ = Id (79)

meaning that U = AΣ
1
2 must have orthonormal rows (since UU⊤ = I). With this definition, we

can write A = UΣ− 1
2 .

If we now multiply by A from the right, we get

ΣA⊤A−A†A− 1

σ2
ΣA†A+

1

σ2
A†AΣA†A = 0 (80)

Noting that the second and fourth terms are symmetric (since A†A is symmetric), this means that
the remaining terms must be symmetric:

ΣA⊤A− 1

σ2
ΣA†A = A⊤AΣ− 1

σ2
A†AΣ (81)

Since A⊤A commutes with A†A, they are simultaneously diagonalizable, and since they are both
symmetric, they share an orthonormal basis of eigenvectors. Clearly A⊤A−A†A/σ2 has the same
basis. Since this matrix commutes with Σ, it must share a basis with Σ and hence Σ has the same
basis as A⊤A. This means that Σ commutes with A⊤A.

Expanding A in terms of U , this means that

ΣA⊤A = Σ
1
2U⊤UΣ− 1

2 = Σ− 1
2U⊤UΣ

1
2 = A⊤AΣ (82)

and therefore ΣU⊤U = U⊤UΣ, meaning that Σ and U⊤U commute.

Consider as an example the case where Σ is diagonal. U⊤U is a projection matrix and in this case
must be diagonal due to commuting with Σ. As a result, it must have exactly d ones and D−d zeros
along the diagonal. This means that the rows of U are a basis for the d dimensional axis-aligned
subspace corresponding to the d nonzero entries. In the case of a non-diagonal Σ, this generalizes
to the rows of U spanning the same subspace as some subset of d eigenvectors of Σ. This leads to
the expression of the loss function in the next theorem.
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Figure 5: Plot of f(λi) = log λi − λi/σ
2 with σ = 1, showing maximum value at λi = σ2 and

unbounded behavior on either side.

Theorem C.4. Let Σ have the eigen-decomposition V ΛV ⊤ with Λ = diag(λ). Let U⊤U have the
eigen-decomposition V EV ⊤, with E = diag(α). Then the minimum of the loss is satisfied by α
such that

Lα =

D∑
i=1

1

2
αi

(
log λi −

1

σ2
λi

)
(83)

is minimal, subject to the constraint αi ∈ {0, 1} with
∑D

i=1 αi = d.

Proof. Let’s note a couple of properties. First, we have (UΣU⊤)k = UΣkU⊤ due to Σ commuting
with U⊤U , so we can say that f(UΣUT ) = Uf(Σ)U⊤ for any matrix function f with a Taylor
series. Next, U⊤U is an orthogonal projection matrix, so E is a diagonal matrix with ones or zeros
on the diagonal. We know that the rank of U is d, hence E has exactly d ones and D − d zeros
along the diagonal. Therefore we have the constraint αi ∈ {0, 1} with

∑D
i=1 αi = d. Next, note

that A†A = U⊤U .

Now we substitute back into the loss in terms of U :

L =
1

2
tr(UU⊤)− 1

2
log det(UΣ−1U⊤) +

1

2σ2
tr(Σ(I− U⊤U)) (84)

=
1

2
tr(U log(Σ)U⊤)− 1

2σ2
tr(UΣU⊤) + const. (85)

where we used that

log det(UΣ−1U⊤) = tr log(UΣ−1U⊤) = − tr(U log(Σ)U⊤) (86)

Note that tr(UU⊤) is constant. Consider that

tr(UΣU⊤) = tr(U⊤UΣU⊤U) = tr(V EDEV ⊤) = tr(EDE) = α · λ (87)

The same logic holds for the term with log(Σ). Therefore, dropping constant terms, the loss can be
written in terms of α and λ:

Lα =

D∑
i=1

1

2
αi

(
log λi −

1

σ2
λi

)
(88)
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The loss will take different values depending on which elements of α are nonzero. Define f(λi) =
log λi−λi/σ

2. The loss will be minimized when the nonzero αi correspond to those values of f(λi)
which are minimal. Clearly f ′′(λi) < 0, so f has only one maximum at λi = σ2 and is unbounded
below on either side of this maximum (see fig. 5). Consider the two extreme cases:

1. All eigenvalues λ are smaller than σ2. The minimal values of f(λi) will occur for the
smallest values of λi. Hence the d smallest eigenvalues of Σ will be selected.

2. All eigenvalues λ are larger than σ2. The minimal values of f(λi) will occur for the largest
values of λi. Hence the d largest eigenvalues of Σ will be selected.

In the intermediate regime, there will be a phase transition between these two extremes.

In the first case, the reconstructed manifold will be a projection onto the d-dimensional subspace
with the lowest variance, exactly the opposite result to PCA. In the second case, the reconstructed
manifold will be a projection onto the d-dimensional subspace with the highest variance, exactly the
same result as PCA. If we maximize the likelihood on the manifold without any reconstruction loss,
corresponding to the σ2 → ∞ limit, we actually learn the lowest entropy manifold. It makes more
sense to learn the highest entropy manifold as in PCA. We can ensure this is the case by adding
Gaussian noise of variance σ2 to the data, ensuring that the minimum eigenvalue of the covariance
matrix is at least σ2, even if the original data is degenerate.

D IMPLEMENTATION DETAILS

In implementing the trace estimator, we have to make a number of choices, each elaborated below.
The main reasons for each choice are given first, with more technical details deferred to later in the
appendix.

Gradient to encoder or decoder The log-determinant term can be formulated either in terms of
the Jacobian of the encoder (see eq. (10)) or the decoder (see eq. (9) ). As discussed in section 4.2
we find that formulating it in terms of the encoder Jacobian leads to more stable training. Since
the training also minimizes the squared norm of f(x), we speculate that having gradient from this
term and the log-determinant term both being sent to the encoder allows the encoder to more effi-
ciently shape the latent space distribution. We note the similarity of this formulation to the standard
change-of-variables loss used to train normalizing flows. If we instead send the gradient of the
log-determinant to the decoder, the information about how the encoder can change can only reach
it via the reconstruction term, which doesn’t allow the encoder to deviate significantly from being
the pseudoinverse of the decoder. A change in the decoder will therefore lead to a corresponding
change in the encoder, but this is a less direct process than sending gradient to the encoder directly.
In addition, this formulation means the decoder is optimized only to minimize reconstruction loss,
meaning that it will likely be an approximate pseudoinverse for the encoder, a condition we require
for the accuracy of the surrogate estimator.

Space in which trace is performed Considering eqs. (29) and (36), the central component of the
surrogate is a trace (estimator). Making use of the cyclic property of the trace, i.e. tr(A⊤B) =
tr(BA⊤) for any A,B ∈ RD×d, we can choose which expansion of the trace to estimate:

d∑
i=1

(A⊤B)ii = tr(A⊤B) = tr(BA⊤) =

D∑
i=1

(BA⊤)ii. (89)

The variance of a stochastic trace estimator depends on the noise used but in general is roughly
proportional to the squared Frobenius norm of the matrix (see appendix D.3). Given two matrices
A,B ∈ RD×d with d < D, it is likely that ∥A⊤B∥2F < ∥BA⊤∥2F . This statement is not true for all
A and B, but is almost always fulfilled when d ≪ D.

Transferred to our context: In general the matrices f ′(x) ∈ Rd×D and g′(z) ∈ RD×d are rectangular
and can be multiplied together in either the f ′(x)g′(z) ∈ Rd×d order or g′(z)f ′(x) ∈ RD×D order.
This matters for applying the trace since generally d < D.

A more precise statement (proven in appendix D.1) is that if the entries of A and B are sampled
from standard normal distributions, then E[∥A⊤B∥2F ] = Dd2 versus E[∥BA⊤∥2F ] = D2d. For

21



Published as a conference paper at ICLR 2024

Table 4: Different possible estimators for the gradient of the log-determinant term.

gradient to encoder gradient to decoder

trace in data space − tr
(
g′(z)

(
∂

∂ϕj
f ′(x)

))
tr
((

∂
∂θj

g′(x)
)
f ′(x)

)
trace in latent space − tr

((
∂

∂ϕj
f ′(x)

)
g′(z)

)
tr
(
f ′(x)

(
∂

∂θj
g′(z)

))

d ≪ D the difference becomes significant. The difference between the two estimators may not be
large if the two matrices have special structure, in particular if they share a basis. However, since
the terms being multiplied in our case are a Jacobian matrix and the derivative of another Jacobian
matrix with respect to a parameter θj or ϕj , it is unlikely that any such particular structure is present.

As a result, when the latent space is smaller than the data space, the preferable estimator is the
one that performs the trace in the latent space, meaning that products in the estimator have the
order f ′(x)g′(z) (see table 4). In appendix D.1.1, we experimentally test the convergence of trace
estimators with increasing Hutchinson samples, performed in both data and latent space, confirming
that convergence is much faster when performing the trace in latent space.

Type of gradient Consider the estimator:

tr

((
∂

∂ϕj
f ′(x)

)
g′(z)

)
=

∂

∂ϕj
Eϵ

[
ϵ⊤f ′(x)stop gradient(g′(z))ϵ

]
(90)

Ignoring the stop gradient operation for now, this requires computing terms of the form
ϵ⊤f ′(x)g′(z)ϵ. In order to avoid calculating full Jacobian matrices, we can implement the calcu-
lation using some combination of vector-Jacobian (vjp) or Jacobian-vector (jvp) products, which
are efficient to compute with backward-mode respectively forward-mode automatic differentiation.
Note that we can use the result from one product as the vector for another vjp or jvp. For example,
v1 := (ϵ⊤f ′(x))⊤ ∈ RD yields a vector, so we can compute ϵ⊤f ′(x)g′(z)ϵ = v⊤1 g

′(z)ϵ via two
vector-Jacobian products.

This gives us three choices: i) backward mode only (two vjp), ii) forward mode only (two jvp) or
iii) a mix of both (one jvp and one jvp). We opt to use mixed mode (see appendix D.2 for further
details).

Trace estimator noise Trace estimators rely on the identity Eϵ[ϵ
⊤Aϵ] = tr(AEϵ[ϵϵ

⊤]) = tr(A),
meaning that we require only Eϵ[ϵϵ

⊤] = I for the noise variable. The choice comes down mainly
to the variance of the estimator. Among all noise vectors whose entries are sampled independently,
Rademacher noise has the lowest variance (Hutchinson, 1989). However, if the entries are sampled
from a standard normal distribution and then scaled to have length

√
d where d is the dimension of ϵ,

the entries are no longer independent and the variance of the estimator is comparable to Rademacher
noise (Girard, 1989). When using a single Hutchinson sample, we choose to use scaled Gaussian
noise for its low variance, and since it covers more directions than Rademacher noise (covering the
hypersphere uniformly, rather than at a fixed 2d points). When we have more than one Hutchinson
sample, we additionally orthogonalize the vectors as this further reduces variance. More details are
in appendix D.3.

Number of noise samples We can choose to use between 1 and d noise samples in the trace esti-
mator (with d samples we already can calculate the exact trace, so more samples are not necessary).
Denote the number of samples by K. We find that in general K = 1 is enough for good performance,
especially if the batch size is sufficiently high.

D.1 VARIANCE OF TRACE ESTIMATOR

Theorem D.1. Let A,B ∈ RD×d where the entries of both matrices are sampled from a standard
normal distribution. Then

E
[
∥A⊤B∥2F

]
= d2D and E

[
∥BA⊤∥2F

]
= dD2 (91)
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Figure 6: Relative gradient distance to the exact surrogate gradient as a function of Hutchinson
samples for varying batch sizes. (Left) Trace estimation in data space. (Right) Trace estimation in
latent space. We estimate the trace using orthogonalized Gaussian noise (see appendix D.3.5) (solid
lines), but also feature non-orthogonalized samples for batch size 1 in latent space (dashed line).
Note the different scales on the y-axes and the use of symlog in the right-hand plot. We evaluate
the trace estimation on the surrogate estimator with gradient to encoder as specified in table 4 for a
converged model trained on conditional MNIST (d = 16, D = 784).

Proof. Consider first ∥A⊤B∥2F . We can write this as

∥A⊤B∥2F =

d∑
i=1

d∑
j=1

(
D∑

k=1

AkiBkj

)2

=

d∑
i,j

D∑
k,l

AkiAliBkjBlj (92)

Taking an expectation over this expression, the only nonzero contributions will be from terms where
the A and B terms are both quadratic, since if not, the term will be multiplied by E[X] = 0 where
X is standard normal. This requires k = l, giving

E
[
∥A⊤B∥2F

]
=

d∑
i,j

D∑
k

E
[
A2

kiB
2
kj

]
(93)

=

d∑
i,j

D∑
k

E
[
A2

ki

]
E
[
B2

kj

]
(94)

= d2D (95)

since Aki and Bkj are independent and the expectation of the square of a standard normal variable
is its variance, i.e. 1. The equivalent expressions for ∥BA⊤∥2F can be obtained by swapping d and
D in these expressions.

D.1.1 EXPERIMENTAL CONFIRMATION

To evaluate the convergence behavior of the trace estimation, which is exact for d and D Hutchin-
son samples in latent and data space respectively, we compute the relative gradient distance of the
resulting surrogate gradient with respect to the exact solution as a function of Hutchinson samples
K:

relative gradient distance(K) =
∥∇surrogate(K)−∇exact∥2

∥∇exact∥2
. (96)

Here, ∇surrogate(K) denotes the gradient of the surrogate loss term after K Hutchinson samples
and ∇exact the gradient of the exact surrogate loss term, i.e. after d or D samples.

In fig. 6 one can see a clear decrease in gradient distance and its variance when computing the
trace in latent space instead of data space. Furthermore, we note that increasing the batch size
also contributes to fast and steady convergence, which is a result of sampling an independent noise
sample per batch instance.

D.2 FORWARD/BACKWARD AUTOMATIC DIFFERENTIATION

Two of the basic building blocks of automatic differentiation (autodiff) libraries are the vector-
Jacobian product (vjp) and the Jacobian-vector product (jvp). The vjp is implemented by
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backward-mode autodiff and computes a vector multiplied with a Jacobian matrix from the left,
along with the output of the function being used:

f(x), ϵ⊤f ′(x) = vjp(f, x, ϵ) (97)

In PyTorch, this is implemented by the torch.autograd.functional.vjp function, or by
first computing f(x), then using torch.autograd.grad.

The jvp is implemented by forward-mode autodiff and computes a vector multiplied by a Jacobian
matrix from the right, along with the output of the function being used:

f(x), f ′(x)ϵ = jvp(f, x, ϵ) (98)

In PyTorch, this is implemented by the torch.autograd.forward ad package.

Our preferred estimator for the log-determinant is the following (see section 4.2):

− 1

K

K∑
k=1

ϵ⊤k f
′(x)stop gradient (g′(z)ϵk) (99)

Therefore we need to compute terms of the form ϵ⊤f ′(x)g′(z)ϵ, with a stop gradient opera-
tion. The stop gradient operation is implemented by applying the .detach() method to a
tensor in PyTorch. We have the following options. Note that we can use a product obtained from
vjp or jvp as a vector input to a subsequent product.

Backward mode This mode uses only vector-Jacobian products, requiring backward-mode au-
todiff.

1. v⊤1 = ϵ⊤f ′(x) z, v⊤1 = vjp(f, x, ϵ)

2. v⊤2 = v⊤1 g
′(z) x̂, v⊤2 = vjp(g, z, v1)

3. ϵ⊤f ′(x)g′(z)ϵ = v⊤2 ϵ

Forward mode This mode uses only Jacobian-vector products, requiring forward-mode autodiff.

1. v1 = g′(z)ϵ x̂, v1 = jvp(g, z, ϵ)

2. v2 = f ′(x)v1 z, v2 = jvp(f, x, v1)

3. ϵ⊤f ′(x)g′(z)ϵ = ϵ⊤v2

Mixed mode This mode uses one vector-Jacobian and one Jacobian-vector product, requiring both
forward- and backward-mode autodiff.

1. v⊤1 = ϵ⊤f ′(x) z, v1 = vjp(f, x, ϵ)

2. v2 = g′(z)ϵ x̂, v2 = jvp(g, z, ϵ)

3. ϵ⊤f ′(x)g′(z)ϵ = v⊤1 v2

We prefer using backward mode autodiff where possible, since we find that it is slightly faster than
forward mode in PyTorch. However for our estimator of choice, we use mixed mode, since this is
most easily implemented. Using backward mode would require a stop gradient operation to
be introduced after the second step, but in a way that allows gradient to flow back to f ′(x). While
we believe this is possible if implemented carefully, we did not pursue this option. In mixed mode,
we can easily detach the gradient of v2 without affecting the first step of the calculation.

D.3 PROPERTIES OF TRACE ESTIMATOR NOISE

Hutchinson style trace estimators (Hutchinson, 1989) have the form Eϵ[ϵ
⊤Aϵ] and equal tr(A) in

expectation. If A is skew-symmetric (A⊤ = −A), then (ϵ⊤Aϵ)⊤ = ϵ⊤A⊤ϵ = −ϵ⊤Aϵ and hence
ϵ⊤Aϵ = 0 with zero variance. Since any matrix can be decomposed into a symmetric and skew-
symmetric part, the variance in the estimator comes only from the symmetric part of A, namely
As = (A+A⊤)/2. From now on, suppose A is symmetric and if not, substitute As for A.
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D.3.1 RADEMACHER NOISE

If the entries of ϵ are sampled independently from a distribution with zero mean and unit variance,
then the variance of the estimator is minimized by the Rademacher distribution which samples the
values −1 and 1 each with probability half. This estimator achieves the following variance for
symmetric A (see proposition 1 in Hutchinson (1989)):

Vϵ[ϵ
⊤Aϵ] = 2

∑
i̸=j

A2
ij (100)

D.3.2 GAUSSIAN NOISE

With standard normal noise, the estimator is unbiased, but the variance is higher (see again Hutchin-
son (1989)):

Vϵ[ϵ
⊤Aϵ] = 2

∑
i,j

A2
ij = 2∥A∥2F (101)

i.e. twice the Frobenius norm.

D.3.3 SCALED GAUSSIAN NOISE

By contrast

Eϵ

[
ϵ⊤Aϵ

ϵ⊤ϵ

]
=

1

d
tr(A) (102)

where ϵ is a standard normal variable in Rd. The variance of this estimator for symmetric A (see
theorem 2.2 in Girard (1989)) is:

Vϵ

[
ϵ⊤Aϵ

ϵ⊤ϵ

]
=

2

d+ 2
σ2(λ(A)) (103)

where σ2(λ(A)) denotes the variance of the eigenvalues of A.

We can write this estimator in the “Hutchinson” form by sampling ϵ from a standard normal distri-
bution, then normalizing it such that its length is

√
d. Then we have

Eϵ[ϵ
⊤Aϵ] = tr(A) (104)

and

Vϵ[ϵ
⊤Aϵ] =

2d2

d+ 2
σ2(λ(A)) (105)

D.3.4 COMPARISON

When the dimension of A becomes large, the variance of Rademacher and scaled Gaussian esti-
mators are comparable. Suppose that the eigenvalues of A have zero mean (e.g. the entries are
independent normal samples). Then

dσ2(λ(A)) =
∑
i

λ2
i = tr(A2) = ∥A∥2F (106)

If we further assume that all entries of A have roughly equal magnitude we have that∑
i̸=j

A2
ij ≈ ∥A∥2F (107)

since the sum in the Frobenius norm is dominated by the d(d− 1) off-diagonal terms. Similarly,

d2

d+ 2
σ2(λ(A)) ≈ dσ2(λ(A)) = ∥A∥2F (108)

meaning that the two estimators have approximately the same variance.

If the matrix has special structure, we might choose one estimator over the other. For example, if
the standard deviation of the eigenvalues of A is small in comparison to the mean eigenvalue, the
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scaled Gaussian estimator is preferable and if A is dominated by its diagonal then the Rademacher
estimator is preferable. We don’t expect either type of special structure in our matrices, so we
consider the estimators interchangeable. We decided to use scaled Gaussian noise since it produces
noise which points in all possible directions in Rd whereas Rademacher noise is restricted to a finite
2d points. We assume that there is no reason to prefer this set of 2d directions and therefore sampling
from all possible directions is better.

D.3.5 REDUCING VARIANCE WHEN SAMPLING MORE THAN 1 HUTCHINSON SAMPLE

When the number of Hutchinson samples K are greater than 1, it is more favorable to sample the
noise vectors in a dependent way than independently. Consider the case of a d × d matrix A with
K = d. Then we can get an exact estimate of the trace via

d∑
i=1

q⊤i Aqi = tr(Q⊤AQ) = tr(A) (109)

with orthogonal Q and qi the i-th column of Q. If the qi were sampled independently, we almost
certainly wouldn’t achieve this exact result. We therefore sample our noise vectors as the first K
columns of a randomly sampled d × d orthogonal matrix and scale each column by

√
d. We show

below that this reduces variance compared with sampling independently and make an experimental
comparison (see fig. 6). If the resulting noise vectors are denoted ϵi, we estimate tr(A) by

t̂r(A) =
1

K

K∑
i=1

ϵ⊤i Aϵi (110)

This estimator is unbiased:

Eϵ1,...,ϵK [t̂r(A)] =
1

K

K∑
i=1

Eϵi [ϵ
⊤
i Aϵi] (111)

=
1

K

K∑
i=1

tr
(
AEϵi [ϵiϵ

⊤
i ]
)

(112)

=
1

K

K∑
i=1

tr(A) (113)

= tr(A) (114)

since Eϵi [ϵiϵ
⊤
i ] = I for all ϵi.

This procedure is equivalent to using scaled Gaussian noise when K = 1 and is what we implement
in practice for all values of K. Note that it is not necessary to use K > d since we already achieve
the exact value with K = d.

A note on our sampling strategy: in practice we sample by taking the Q matrix of the QR decompo-
sition of a d×K matrix with entries sampled from a standard normal. Since the QR decomposition
performs Gram-Schmidt orthogonalization, the Q matrix is uniformly sampled from the group of
orthogonal matrices if Q is square (Mezzadri, 2007). The same logic applies to the QR decomposi-
tion of non-square matrices, yielding a d×K matrix made up of the first K columns of a uniformly
sampled orthogonal d × d matrix. Strictly speaking, the QR decomposition is only unique if the R
matrix has a positive diagonal, and uniqueness is required for uniform sampling. Let X = QR and
define by D the sign of the diagonal of R. D is diagonal with 1 or −1 on the diagonal and D2 = I.
Uniqueness can be achieved by multiplying Q by D from the right and multiplying R by D from
the left: X = QDDR = QR. The resulting uniformly sampled orthogonal matrix is QD, meaning
the columns of Q are multiplied by either 1 or −1. In our setting, we have terms of the form ϵ⊤i Aϵi
where the ϵi are the columns of Q, so multiplying the columns by −1 has no effect on the trace
estimate. As a result we opt not to multiply by D. Therefore, although we do not sample uniformly
from the orthogonal group, the final result is equivalent to sampling uniformly.
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Variance derivation Using the formula for the variance of a sum of random variables, we have
that

Vϵ1,...,ϵK [t̂r(A)] =
1

K2

K∑
i,j=1

Cϵi,ϵj [ϵ
⊤
i Aϵi, ϵ

⊤
j Aϵj ] (115)

where C denotes the covariance between two random variables. Note that since the permutation of
the columns of a randomly sampled orthogonal matrix is arbitrary (permuting the columns results in
another randomly sampled orthogonal matrix of equal probability), all columns are equivalent and
we only have to distinguish between the cases i = j and i ̸= j. This leads to1

Vϵ1,...,ϵK [t̂r(A)] =
1

K2
(Kv +K(K − 1)c) =

1

K
(v + (K − 1)c) (116)

with v = Vϵi [ϵ
⊤
i Aϵi] and c = Cϵi,ϵj [ϵ

⊤
i Aϵi, ϵ

⊤
j Aϵj ] when i ̸= j. Each column viewed individually

is a randomly sampled Gaussian vector, scaled to have length
√
d, hence the value of v is equal to

the scaled Gaussian noise case above, namely

v =
2d2

d+ 2
σ2(λ(A)) (117)

where σ2(λ(A)) denotes the variance of the eigenvalues of A. We also know that the variance of the
estimator reduces to zero when K = d and hence v + (d− 1)c = 0 leading to

c = − v

d− 1
(118)

Putting it all together leads to

Vϵ1,...,ϵK [t̂r(A)] =
1

K
(v − K − 1

d− 1
v) (119)

=
1

K

d−K

d− 1
v (120)

=
2d2(d−K)

K(d− 1)(d+ 2)
σ2(λ(A)) (121)

valid for d > 1. The comparable quantity for independently sampled scaled Gaussian noise is

Vϵ1,...,ϵK [t̂r(A)] =
2d2

K(d+ 2)
σ2(λ(A)) (122)

i.e. 1/K times the K = 1 result. The orthogonalized noise strategy always has lower variance since
the ratio between the variances is

d−K

d− 1
≤ 1 (123)

which even reduces to zero when K = d. If d is large, the difference is not great for small K, which
aligns with the fact that randomly sampled directions in Rd are close to orthogonal for large d.

E EXPERIMENTAL DETAILS

E.1 ROLE OF RECONSTRUCTION WEIGHT

E.1.1 TOY DATA

To analyze the model behaviour depending on the reconstruction weight β, we train the same archi-
tecture on a simple sinusoid data set with β varied between 0.01 and 100.

For the generation of data points, we draw x positions from a 1D standard normal distribution
and calculate the respective y positions by y = sin(πx/2). Then, isotropic Gaussian noise with
σ = 0.1 is added. We train an autoencoder architecture built with four residual blocks and a 1D

1This argument is inspired by https://math.stackexchange.com/questions/1081345/
finding-variance-of-the-sample-mean-of-a-random-sample-of-size-n-without-replace
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Figure 7: The position of the transition point depends on the data set. The plots show the tradeoff
between reconstruction error and NLL with reconstruction weight β (box plots summarize 20 runs
per condition). The point at which β becomes sufficiently large (transition point) shifts to lower
values with increased Gaussian noise added to the data points.

latent space for 50 epochs with learning rate 0.001 until convergence. Each residual block is made
up of a feedforward network with one hidden layer of width 256. For each value of β, 20 models
are trained.

To visualize the dimension of the data that is captured by the model, we project samples from the
data distribution to the (1D) latent space and color the data points using the respective latent code
as color value. Figure 3 illustrates that low reconstruction weight β values result in learning the
dimension with the lowest entropy (noise) and higher values are required to learn the manifold that
spans the sinusoid.

Additionally, we repeat the procedure with higher noise levels (σ = 0.2, 0.3). We observe that the
point at which the model transitions from learning the noise to representing the manifold is not fixed,
but depends on features of the data set such as the noise (fig. 7).
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Figure 8: (Left) Singular value spectra for varying reconstruction weight. (Right) Number of singular
values greater or equal to one as a function of reconstruction weight. The error bars show the span
of the intersection of the shaded region with the line y = 1 in the left hand plot, rounded down to
the nearest integer. For each trained model we generate 1024 samples per condition, compute the
singular value spectra and average over all samples regardless of condition. The mean spectra and
their standard deviation are evaluated across five trained models per reconstruction weight.

Figure 9: Conditional MNIST samples for varying reconstruction weight β. For each value of β ∈
[0.1, 1, 10, 100] (from left to right), and each condition (rows) we generate ten samples (columns) at
temperature T = 1.

E.1.2 CONDITIONAL MNIST

To measure the structure of the conditional MNIST dataset learned by the generating model g, we
compute the full decoder Jacobian matrix J by calculating d Jacobian-vector products (one per
column of the Jacobian). We compute the singular values Σ = diag(s1, . . . , sd) of J , which –
roughly speaking – indicate the stretching or shrinking of the latent manifold by g. Hence, the
number of non-vanishing singular values suggest the dimension of the data manifold and the sum
of the log singular values is equal to the change in entropy between the latent space and data space,
where a higher entropy indicates that more of the data manifold is spanned by the decoder. We can
see this from the formula

H(pX) = H(pZ) + EpZ

[
1

2
log det(g′(z)⊤g′(z))

]
(124)

with H the differential entropy, and noting that 2 tr log Σ = log det(g′(z)⊤g′(z)).

We train multiple FIF models on conditional MNIST with reconstruction weights β ranging from
0.1 to 100, and evaluate their singular value spectra. The models are trained for 400 epochs, which
is sufficient for convergence. The architecture used is the same as in table 11, except that it has four
times as many channels in each convolutional layer.

In fig. 8 it is clear that a higher reconstruction weight gives rise to a higher number of non-vanishing
singular values. Hence, the reconstruction weight contributes towards learning structure of the true
data manifold. This observed additional structure for higher reconstruction weights is reflected in an
increasing diversity of samples (see fig. 9). Nevertheless, for high reconstruction weights we note
the trade-off between sample diversity and properly learned latent distributions, which might result
in out of distribution samples.

E.2 TABULAR DATA

We compare to the tabular data experiments in Caterini et al. (2021), using the same datasets and data
splits, as well as the same latent space dimensions. We train models with roughly the same number
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Table 5: Dataset-dependent hyperparameters and average total runtime for tabular data experiments.
We compare our runtime against the published rectangular flow (Caterini et al., 2021) runtimes
(RNFs-ML (K = 1) model), as well as rerunning their code on our hardware.

Hyperparameter POWER GAS HEPMASS MINIBOONE

Latent dimension 3 2 10 21
Training epochs 15 30 85 875
Model Training time (minutes)

FIF (ours) 38 39 41 49
Rectangular flow (published) 113 75 138 34
Rectangular flow (our hardware) 147 86 249 75

Training time speedup (same hardware) 3.9 × 2.2 × 6.1 × 1.5 ×

Table 6: Ablation study on the effect of each component of our proposed improvement to
rectangular flows (RF). By NLL estimator we denote how the loss in equation 3 is approximated.
For this experiment we used our reimplementation of RF.

Hyperparameters NLL estimator
& Model (on-/off-manifold) POWER GAS HEPMASS MINIBOONE

FIF & free-form net off manifold (eq. 15) 0.041 ± 0.007 0.281 ± 0.031 0.541 ± 0.034 0.598 ± 0.024
FIF & free-form net on manifold (eq. 10) 19.54 ± 20.81 7.48 ± 5.40 29.03 ± 5.42 77.23 ± 16.55
FIF & coupling flow off manifold (eq. 15) 0.11 ± 0.06 0.45 ± 0.09 1.30 ± 0.14 1.55 ± 0.04
RF & coupling flow off manifold (eq. 15) 0.98 ± 0.69 6.16 ± 4.20 2.02 ± 0.74 1.80 ± 0.10
FIF & coupling flow on manifold (eq. 10) 3.71 ± 2.19 0.40 ± 0.22 0.71 ± 0.05 3.13 ± 0.42
RF & coupling flow on manifold (eq. 10) 0.33 ± 0.22 0.33 ± 0.17 0.82 ± 0.07 1.84 ± 0.11

of parameters. Our main architectural difference is that we use an unconstrained autoencoder rather
than an injective flow. Our encoder consists of two parts: i) a feed-forward network with two hidden
layers of dimension 256 and ReLU activations (no normalization layers), which maps from the
input dimension to the latent dimension ii) a ResNet with two blocks, each with two hidden layers
of dimension 256 and ReLU activations. The ResNet has input and output dimension equal to the
latent space dimension. The decoder is the inverse: i) an identical ResNet to the encoder (but with
separate parameters) followed by ii) a feed-forward network with two hidden layers of dimension
256 mapping from the latent space to the data space dimension.

We use a batch size of 512, add isotropic Gaussian noise with standard deviation 0.01, use K = 1
Hutchinson samples and a reconstruction weight β = 10 for all experiments. We use the Adam
optimizer with the onecycle LR scheduler with LR of 10−4 (except for HEPMASS which has LR of
3 × 10−4) and weight decay of 10−4. The number of epochs was chosen such that all experiments
had approximately the same number of training iterations. We ran the model 5 times per dataset.
The dataset-dependent parameters and average training times are given in table 5.

We compare our training times against the published rectangular flow training times for their RNFs-
ML (K = 1) model, as well as rerunning their code on our hardware (a single RTX 2070 card). We
find comparable FID-like scores on our rerun (except on GAS where we could not reproduce the
score, see section 5), but our hardware is slower, with runs consistently taking at least 15% longer
and more than twice as long on MINIBOONE. We find that our model runs in half the time or less
of the rectangular flow on the same hardware, except for MINIBOONE (about 2/3 the time).

E.3 COMPARISON TO EXISTING INJECTIVE FLOWS

We compare against Trumpets Kothari et al. (2021) and Denoising Normalizing Flows (DNF) Hor-
vat & Pfister (2021), as they are the best-performing injective flows to our knowledge, and report
performance on CelebA in table 3. Note that Trumpets default to d = 192, DNF to d = 512, whereas
we are able to reduce the bottleneck dimension to d = 64 (consistent with the Pythae benchmark in
appendix E.4).
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Table 7: Reconstruction losses of FIF with a free-form architecture on the POWER, GAS HEP-
MASS and MINIBOONE datasets. The reconstruction error is always much higher for on-manifold
training compared to off-manifold, demonstrating the instability caused by on-manifold NLL eval-
uation in free-form networks. Note: the large standard deviations in on-manifold runs are typically
the result of a single large outlier. We remove the largest outlier where applicable (“On Manifold
(outliers removed)” row).

POWER GAS HEPMASS MINIBOONE

On manifold 237 ± 498 5835 ± 13006 119 ± 34 300 ± 160
On manifold (outliers removed) 14 ± 27 18 ± 31 119 ± 34 229 ± 23
Off manifold 0.072 ± 0.002 0.188 ± 0.012 2.569 ± 0.098 1.077 ± 0.011

Both models differ in the recommended wall clock time, and we therefore fix the wall clock time
available to each model to five hours on a single NVIDIA A40. Trumpets train the manifold and the
distribution on it in two sequential steps. To accommodate both steps in the reduced training time,
we vary the fraction of the five hours spent in training manifold and distribution and report the best
FID among the variants tried. We vary number of manifold epochs as nmanifold = 2, 5, 10, with 10
performing best.

Our free-form injective flows (FIF) are not restricted in their architecture, and we choose an off-
the-shelf convolutional autoencoder, followed by a total of four fully-connected ResNet blocks,
see table 11. The fully-connected blocks are important, as can be seen when comparing to the
architecture used in the Pythae benchmark (see appendix E.4). We note that the Pythae benchmark
could benefit from a modified architecture, but leave this modification open for future work.

For Trumpets and DNF, we point to the training details provided by the respective authors. For FIF,
we choose these training hyperparameters: We train with the Adam optimizer with a LR of 10−3

and a weight decay of 10−4, linearly increase β from 20 at initialization to 40 at the end of training,
a single Hutchinson sample K = 1 and a student-t distribution on the latent space. We set the batch
size to 256.

We conclude that the Pythae benchmark could benefit from an optimized architecture, as this change
probably also improves the other methods. From the data at hand, we further conclude that the full
potential of FIF has not yet been exploited, and that easy gains can be made by improving the
architecture and other hyperparameters.

E.4 PYTHAE BENCHMARK ON GENERATIVE AUTOENCODERS

We compare our method to existing generative autoencoder paradigms using the benchmark from
Chadebec et al. (2022). We use the provided open-source pipeline and follow the training setup de-
scribed by the authors. For MNIST and CIFAR10 this means training for 100 epochs with the Adam
optimizer at a starting LR of 10−4, reserving the last 10k images of the training sets as validation
sets. CelebA trains for 50 epochs with a starting LR of 10−3. All experiments are performed with
a batch size of 100 and LR is reduced by half when the loss plateaus for 10 epochs. In accordance
with the original benchmark we pick 10 sets of hyper-parameters, compute their validation FID (see
fig. 10) and use the model which achieves the best FID on the validation set as the final model. In
table 8 we report the FID and IS of this model on the test set. To complement the metrics, we show
samples from all models in fig. 11, demonstrating convincing quality. We exclude the VAEGAN
from the FID comparison, as the model trains more than double the time required for FIF and goes
beyond fitting a transformation of the training data to a standard normal distribution.

As described in section 5, we use the architectures from Chadebec et al. (2022) for the benchmark,
which we replicate in tables 9 and 10.

E.5 COMPUTE AND DEPENDENCIES

We used approximately 150 GPU hours for computing the Pythae benchmark, and an additional 800
GPU hours for model exploration and testing. The majority of the experiments were performed on
an internal cluster of A100s. The majority of compute time was spent on image datasets.
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Figure 10: Validation FID of our 10 benchmark model setups on the different datasets and architec-
tures used by Pythae. We report results for reconstruction weights β = 5, 10, 15, 20, 25 and number
of Hutchinson samples K = 1 in the solid lines and K = 2 in the dashed lines. We show the
performance of standard normal sampling (N ) and a Gaussian mixture model (GMM). We see that
GMM sampling always improves performance. In contrast, the reconstruction weight and number
of Hutchinson samples have no noticeable effect on performance, except that increasing β improves
performance on ConvNet MNIST and ConvNet CIFAR10, and decreases performance on ResNet
MNIST (normal sampling only).

We build our code upon the following python libraries: PyTorch (Paszke et al., 2019), PyTorch
Lightning (Falcon & The PyTorch Lightning team, 2019), Tensorflow (Abadi et al., 2015) for FID
score evaluation, Numpy (Harris et al., 2020), Matplotlib (Hunter, 2007) for plotting and Pandas
(McKinney, 2010; The pandas development team, 2020) for data evaluation.
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Table 8: Table taken from Chadebec et al. (2022) with our results added at the top. We report
Inception Score (IS) and Fréchet Inception Distance (FID) computed with 10k samples on the test
set. The best model per dataset and sampler is highlighted in bold, the second best is underlined.

Model Sampler
ConvNet ResNet

MNIST CIFAR10 CELEBA MNIST CIFAR10 CELEBA
FID ↓ IS ↑ FID IS FID IS ↑ FID ↓ IS ↑ FID IS FID IS

FIF (ours) N 23.8 2.2 121.0 3.0 56.9 2.1 19.5 2.1 132.6 2.9 62.3 1.7
GMM 11.0 2.2 90.6 4.0 47.3 1.9 11.7 2.1 119.2 3.4 55.0 1.8

VAE N 28.5 2.1 241.0 2.2 54.8 1.9 31.3 2.0 181.7 2.5 66.6 1.6
GMM 26.9 2.1 235.9 2.3 52.4 1.9 32.3 2.1 179.7 2.5 63.0 1.7

VAMP VAMP 64.2 2.0 329.0 1.5 56.0 1.9 34.5 2.1 181.9 2.5 67.2 1.6

IWAE N 29.0 2.1 245.3 2.1 55.7 1.9 32.4 2.0 191.2 2.4 67.6 1.6
GMM 28.4 2.1 241.2 2.1 52.7 1.9 34.4 2.1 188.8 2.4 64.1 1.7

VAE-lin NF N 29.3 2.1 240.3 2.1 56.5 1.9 32.5 2.0 185.5 2.4 67.1 1.6
GMM 28.4 2.1 237.0 2.2 53.3 1.9 33.1 2.1 183.1 2.5 62.8 1.7

VAE-IAF N 27.5 2.1 236.0 2.2 55.4 1.9 30.6 2.0 183.6 2.5 66.2 1.6
GMM 27.0 2.1 235.4 2.2 53.6 1.9 32.2 2.1 180.8 2.5 62.7 1.7

β-VAE N 21.4 2.1 115.4 3.6 56.1 1.9 19.1 2.0 124.9 3.4 65.9 1.6
GMM 9.2 2.2 92.2 3.9 51.7 1.9 11.4 2.1 112.6 3.6 59.3 1.7

Dis β-VAE

N (0, 1) 96.5 2.3 219.4 3.6 130.8 1.6 109.4 2.7 209.8 3.2 110.6 1.5
GMM 192.7 2.3 300.8 1.8 94.0 1.5 98.7 2.1 202.3 2.6 83.2 1.6

2-s sampler 236.1 1.5 371.2 1.0 167.9 1.0 250.8 1.1 349.0 1.2 161.0 1.2
MAF sampler 191.8 2.2 300.6 1.8 94.3 1.5 98.3 2.1 200.6 2.6 82.6 1.7

β-TC VAE N 21.3 2.1 116.6 2.8 55.7 1.8 20.7 2.0 125.8 3.4 65.9 1.6
GMM 11.6 2.2 89.3 4.1 51.8 1.9 13.3 2.1 106.5 3.7 59.3 1.7

FactorVAE N 27.0 2.1 236.5 2.2 53.8 1.9 31.0 2.0 185.4 2.5 66.4 1.7
GMM 26.9 2.1 234.0 2.2 52.4 2.0 32.7 2.1 184.4 2.5 63.3 1.7

InfoVAE - RBF N 27.5 2.1 235.2 2.1 55.5 1.9 31.1 2.0 182.8 2.5 66.5 1.6
GMM 26.7 2.1 230.4 2.2 52.7 1.9 32.3 2.1 179.5 2.5 62.8 1.7

InfoVAE - IMQ N 28.3 2.1 233.8 2.2 56.7 1.9 31.0 2.0 182.4 2.5 66.4 1.6
GMM 27.7 2.1 231.9 2.2 53.7 1.9 32.8 2.1 180.7 2.6 62.3 1.7

AAE N 16.8 2.2 139.9 2.6 59.9 1.8 19.1 2.1 164.9 2.4 64.8 1.7
GMM 9.3 2.2 92.1 3.8 53.9 2.0 11.1 2.1 118.5 3.5 58.7 1.8

MSSSIM-VAE N 26.7 2.2 279.9 1.7 124.3 1.3 28.0 2.1 254.2 1.7 119.0 1.3
GMM 27.2 2.2 279.7 1.7 124.3 1.3 28.8 2.1 253.1 1.7 119.2 1.3

VAEGAN N 8.7 2.2 199.5 2.2 39.7 1.9 12.8 2.2 198.7 2.2 122.8 2.0
(not compared) GMM 6.3 2.2 197.5 2.1 35.6 1.8 6.5 2.2 188.2 2.6 84.3 1.7

AE N 26.7 2.1 201.3 2.1 327.7 1.0 221.8 1.3 210.1 2.1 275.0 2.9
GMM 9.3 2.2 97.3 3.6 55.4 2.0 11.0 2.1 120.7 3.4 57.4 1.8

WAE - RBF N 21.2 2.2 175.1 2.0 332.6 1.0 21.2 2.1 170.2 2.3 69.4 1.6
GMM 9.2 2.2 97.1 3.6 55.0 2.0 11.2 2.1 120.3 3.4 58.3 1.7

WAE - IMQ N 18.9 2.2 164.4 2.2 64.6 1.7 20.3 2.1 150.7 2.5 67.1 1.6
GMM 8.6 2.2 96.5 3.6 51.7 2.0 11.2 2.1 119.0 3.5 57.7 1.8

VQVAE N 28.2 2.0 152.2 2.0 306.9 1.0 170.7 1.6 195.7 1.9 140.3 2.2
GMM 9.1 2.2 95.2 3.7 51.6 2.0 10.7 2.1 120.1 3.4 57.9 1.8

RAE - L2 N 25.0 2.0 156.1 2.6 86.1 2.8 63.3 2.2 170.9 2.2 168.7 3.1
GMM 9.1 2.2 85.3 3.9 55.2 1.9 11.5 2.1 122.5 3.4 58.3 1.8

RAE - GP N 27.1 2.1 196.8 2.1 86.1 2.4 61.5 2.2 229.1 2.0 201.9 3.1
GMM 9.7 2.2 96.3 3.7 52.5 1.9 11.4 2.1 123.3 3.4 59.0 1.8

Table 9: ConvNet, neural network architecture used for the convolutional networks, adapted from
Chadebec et al. (2022).

MNIST CIFAR10 CELEBA

Encoder (1, 28, 28) (3, 32, 32) (3, 64, 64)
Layer 1 Conv(128, 4, 2), BN, ReLU Conv(128, 4, 2), BN, ReLU Conv(128, 4, 2), BN, ReLU
Layer 2 Conv(256, 4, 2), BN, ReLU Conv(256, 4, 2), BN, ReLU Conv(256, 4, 2), BN, ReLU
Layer 3 Conv(512, 4, 2), BN, ReLU Conv(512, 4, 2), BN, ReLU Conv(512, 4, 2), BN, ReLU
Layer 4 Conv(1024, 4, 2), BN, ReLU Conv(1024, 4, 2), BN, ReLU Conv(1024, 4, 2), BN, ReLU
Layer 5 Linear(1024, latent dim)* Linear(4096, latent dim)* Linear(16384, latent dim)*

Decoder
Layer 1 Linear(latent dim, 16384) Linear(latent dim, 65536) Linear(latent dim, 65536)
Layer 2 ConvT(512, 3, 2), BN, ReLU ConvT(512, 4, 2), BN, ReLU ConvT(512, 5, 2), BN, ReLU
Layer 3 ConvT(256, 3, 2), BN, ReLU ConvT(256, 4, 2), BN, ReLU ConvT(256, 5, 2), BN, ReLU
Layer 4 Conv(1, 3, 2), Sigmoid Conv(3, 4, 1), Sigmoid ConvT(128, 5, 2), BN, ReLU
Layer 5 - - ConvT(3, 5, 1), Sigmoid

#Parameters 17.2M 39.4M 33.5M
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Table 10: ResNet, neural network architecture used for the residual networks, adapted from Chade-
bec et al. (2022).

MNIST CIFAR10 CELEBA

Encoder (1, 28, 28) (3, 32, 32) (3, 64, 64)
Layer 1 Conv(64, 4, 2) Conv(64, 4, 2) Conv(64, 4, 2)
Layer 2 Conv(128, 4, 2) Conv(128, 4, 2) Conv(128, 4, 2)
Layer 3 Conv(128, 3, 2) Conv(128, 3, 1) Conv(128, 3, 2)
Layer 4 ResBlock* ResBlock* Conv(128, 3, 2)
Layer 5 ResBlock* ResBlock* ResBlock*
Layer 6 Linear(2048, latent dim)* Linear(8192, latent dim)* ResBlock*
Layer 7 - - Linear(2048, latent dim)*

Decoder
Layer 1 Linear(latent dim, 2048) Linear(latent dim, 8192) Linear(latent dim, 2048)
Layer 2 ConvT(128, 3, 2) ResBlock* ConvT(128, 3, 2)
Layer 3 ResBlock* ResBlock* ResBlock*
Layer 4 ResBlock*, ReLU ConvT(64, 4, 2) ResBlock*
Layer 5 ConvT(64, 3, 2), ReLU ConvT(3, 4, 2), Sigmoid ConvT(128, 5, 2), Sigmoid
Layer 6 ConvT(1, 3, 2), Sigmoid - ConvT(64, 5, 2), Sigmoid
Layer 6 - - ConvT(3, 4, 2), Sigmoid

#Parameters 0.73M 4.8M 1.6M
*The ResBlocks are composed of one Conv(32, 3, 1) followed by Conv(128, 1, 1) with ReLU.

Table 11: FIF-ConvNet, neural network architecture used for comparison to Trumpet and Denoising
Normalizing Flow.

MNIST CELEBA

Encoder (1, 28, 28) (3, 64, 64)
Layer 1 Conv(32, 4, 2), BN, ReLU Conv(128, 4, 2), BN, ReLU
Layer 2 Conv(64, 4, 2), BN, ReLU Conv(256, 4, 2), BN, ReLU
Layer 3 Conv(128, 4, 2), BN, ReLU Conv(512, 4, 2), BN, ReLU
Layer 4 Conv(256, 4, 2), BN, ReLU Conv(1024, 4, 2), BN, ReLU
Layer 5 Linear(256, latent dim)* Linear(16384, latent dim)*

Layer 6-9 4xResBlock(512) 4xResBlock(256)

Decoder
Layer 1-4 4xResBlock(512) 4xResBlock(256)
Layer 5 Linear(latent dim, 4096) Linear(latent dim, 65536)
Layer 6 ConvT(256, 3, 2), BN, ReLU ConvT(512, 5, 2), BN, ReLU
Layer 7 ConvT(128, 3, 2), BN, ReLU ConvT(256, 5, 2), BN, ReLU
Layer 8 ConvT(64, 3, 2), BN, ReLU ConvT(128, 5, 2), BN, ReLU
Layer 9 Conv(1, 3, 2), Sigmoid ConvT(3, 5, 1), Sigmoid

#Parameters 3.3M 34.3M
*The ResBlocks(inner dim) are composed of Linear(latent dim, inner dim),
SiLU, Linear(inner dim, inner dim), SiLU, Linear(inner dim, latent dim) with a
skip connection.
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Figure 11: Uncurated samples from the CelebA ConvNet experiments in the PythAE benchmark.
Our model is shown at the bottom, samples from the other models have been taken from Chadebec
et al. (2022).
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Figure 12: Possible learnt manifolds of varying curvature 1/R for data supported on a subspace,
where d = 1 and D = 2.
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Figure 13: Weighting the reconstruction loss higher does not lead to stable training. The plots show
different reconstruction weights β. In all settings, highly curved manifolds (i.e. low radius) achieve
the lowest loss.

F DETAILS ON PATHOLOGY INDUCED BY CURVATURE

As described in section 4.2, gradients from the on-manifold loss in eq. (10) cause the learned man-
ifold to increase curvature. This is visualized in the main text in fig. 2, where the left plot shows
that this loss leads to ever-increasing curvature. The reason is that the entropy of data projected to a
curved manifold is smaller than the entropy of data projected to a flat manifold.

Here, we provide intuition for why this happens for synthetic data where d is known and the data
could in principle be perfectly reconstructed. Figure 12 depicts projections of the data to possible
model manifolds of varying curvature κ. We parameterize the curvature by varying the radius R =
1/κ. One can observe that for with increasing curvature (i.e. decreasing radius), the data is projected
to an increasingly small region. Correspondingly, the entropy H(p̂data(x̂)) of the projected data
becomes arbitrarily negative (just like a Gaussian with low standard deviation has arbitrarily negative
entropy), lowering the achievable negative log-likelihood.

Adding reconstruction loss alone does not fix this pathology, which we illustrate in fig. 13: The
reconstruction loss saturates for small radii, but the best achievable negative log-likelihood (i.e. the
entropy of the data) continues to decrease with the radius. Thus, even when increasing β, the
minimal possible value of the total loss is still achieved by a spuriously curved manifold.
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