
Semi-supervised organ segmentation with Mask
Propagation Refinement and Uncertainty

Estimation for CT Volume Labeling

Minh-Khoi Pham1,2[0000−0003−3211−9076],

Thang-Long Nguyen-Ho1,2[0000−0003−1953−7679] ⋆,

Thao Thi Phuong Dao1,2,3,5[0000−0002−0109−1114],

Tan-Cong Nguyen1,2,4[0000−0001−8834−8092], and

Minh-Triet Tran1,2,3[0000−0003−3046−3041]

1 University of Science, Ho Chi Minh City, Vietnam
2 Viet Nam National University, Ho Chi Minh City, Vietnam
3 John von Neumann Institute, Ho Chi Minh City, Vietnam

4 University of Social Sciences and Humanities, Ho Chi Minh City, Vietnam
5 Department of Otolaryngology, Thong Nhat Hospital, Tan Binh District, Ho Chi

Minh City

Abstract. We present a novel two-staged method that employs various
2D-based techniques to deal with the 3D segmentation task. In most of
the previous challenges, it is unlikely for 2D CNNs to be comparable
with other 3D CNNs since 2D models can hardly capture temporal in-
formation. In light of that, we propose using the recent state-of-the-art
technique in video object segmentation, combining it with other semi-
supervised training techniques to leverage the extensive unlabeled data.
Moreover, we introduce a way to generate pseudo-labeled data that is
both plausible and consistent for further retraining by using uncertainty
estimation. Overall, our method achieves 0.7841 DSC on the validation
set of FLARE22.

Keywords: 2D semi-supervised segmentation · Mask Propagation · Un-
certainty Estimation

1 Introduction

Subclinical examination plays an important role in all medical treatment pro-
cesses. With the help of deep learning algorithms, human abdominal organs can
be identified automatically with effectiveness and efficiency; thus enabling doc-
tors for faster diagnoses. For deep learning agents to achieve high performance,
it often comes with a vast amount of high-quality labeled data for the training
⋆ The first two authors share the equal contribution.
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stage. However, obtaining a sufficient amount of medical data is quite expensive
and time-consuming, not to mention the need for medical labels to be evaluated
by experts to ensure accuracy for usability. Because of the lack of useful data
and scarce medical experts, it makes the problem becomes more challenging to
tackle for today’s machines.

Since last year, the FLARE22 challenge has introduced a problem in a specific
scenario where a shortage of labeled medical data occurs. The included dataset
contains only 50 labeled CT volumes whereas 2000 unlabeled others are given.
With the provision of an enormous quantity of non-annotated data, participants
are required to utilize them to boost the accuracy of their methods for the
segmentation task, as well as optimize their solution for practical applicability.

Past solutions mostly approached the problem by inheriting 3D techniques,
which usually demand great computing resources. In fact, the original CT vol-
umes must be resampled to a smaller size to fit these 3D-based approaches, then
the prediction of these models must also be post-processed back to its preceding
sizes, which can damage the precision of the prediction. In terms of that, other
teams proposed 2D-based solutions which can leverage the ability to split the
CT volumes into batches of slices for efficient processing. But in reality, these
techniques face serious performance issues due to the incapability of capturing
the temporal information of CT slices. Therefore, to overcome these drawbacks,
we propose a pipeline, which works completely with only 2D image slices, that
can comprehend information from all three planes of a volume.

Furthermore, to make use of a huge number of unlabeled data, two of the
most common semi-supervised learning methods are consistency regularization
and pseudo-labeling. Consistency-based methods train the model to produce
the same pseudo-label for two different views (strong and weak augmentations)
of an unlabeled sample, while pseudo-labeling converts model predictions on
unlabeled samples into soft or hard labels as optimization targets. However, both
of the methods suffer from the noise caused by the model trained on different
data distribution (between labeled and unlabeled data). To address the above
challenges, we propose a simple technique via modeling uncertainty that can be
applied to filter out only potentially good pseudo labels for retraining.

Overall, our main contributions are as follows:

– We propose a 2D-based segmentation pipeline that can fully exploit infor-
mation of all three dimensions of a CT volume by integrating temporal po-
sitional encoding and mask propagation .

– Simple enough, we come up with a uncertainty estimation technique to se-
lectively choose which pseudo labels are useful for next cycle of training.

2 Method

2.1 Preprocessing

For preprocessing, we apply the Windowing technique [2] with different levels
and widths to target specific parts of human organs. Windowing, also known
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Fig. 1. Windowing CT

as grey-level mapping, contrast stretching, histogram modification, or contrast
enhancement is the process in which the CT image grayscale component of an
image is manipulated via the CT numbers; doing this will change the appearance
of the picture to highlight particular structures. The brightness of the image is
adjusted via the window level. The contrast is adjusted via the window width. In
our experiments, we create 3 different versions of a single slice by highlighting the
abdomen, chest, and spine groups and stacking them to one as a three-channel
image (Fig. 1).

In addition, we choose the axial plane to cut the slices from the CT volumes
since this plane has various dimension sizes. Due to some relatively small organs,
it might be better to keep the original size of the slices without any cropping,
resampling, or resizing methods. The image is rotated to a predefined angle, then
divided by 255 for normalization before going through the next step.

2.2 Proposed Method

Our method composes of two main modules: the Reference module and the
Propagation module, as can be seen in Fig 2.

In the beginning, we uniformly select only k slices from the CT Volume to be
our initial candidates. Next, these slices are processed by using the Windowing
technique (described in Section 2.1). Afterward, these slices are put through the
Reference module (described in Section 2.2), which performs the standard mul-
ticlass segmentation, then the preliminary k masks can be obtained. With these
pairs of potential slices and masks as prior knowledge, the Propagation module
(described in 2.2) can utilize them to propagate the objects’ transformation in-
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Fig. 2. Our overall proposed pipeline. Firstly, the entire CT Volume is processed using
windowing CT to get a stack of three-channel slices. Then the slices progress through
the Reference module to obtain a minimal number of preliminary masks. Lastly, the
Propagation module refine these initial masks to finalize the result.

formation to the remaining slices across the CT volume length. The final output
of this module is a 3D dense mask prediction, with each voxel indicating a class.

Reference module This module is expected to provide a suggestion of a mini-
mal amount of slices and predicted masks that might contain the most informa-
tion describing the entire CT Volume. Fig 3 describes the details of this module.

To utilize the enormous number of unlabeled data, we apply the recent semi-
supervised method that performs effectively on several other datasets, which is
called Cross Pseudo Supervision (CPS) [7] (yellow cube in Fig. 3). CPS enables
the usage of unlabeled data by following the dual students technique, where
two models are trained simultaneously on labeled data while generating pseudo
data for their "peer" to learn. In the testing phase, two models predict the same
image, and the result is aggregated by summing up.

We adopt two prominent state-of-the-arts 2D segmentation models with
highly different learning paradigms for this CPS framework, which is TransUNet
[5] and DeeplabV3+ [6]. While DeeplabV3+ traditionally focuses more on the
local information, transformers model the long-range relation, so the cross train-
ing can help to learn a unified segmenter with these two properties at the same
time. In short, we choose TransUNet and DeeplabV3+ due to their ability to
compensate each other for better performance. [13]

In addition, we also propose a both logical and specialist-based strategy to
choose which slices can be further used to boost the performance of the Prop-
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Fig. 3. The reference module. The semi-supervised technique CPS is applied in both
the training and inference stage to enhance the precision of model prediction. Strategies
are used to smartly choose slices that are informative for the next stage.

agation module. The goal of this action is to preserve only some of the most
useful information for the refinement stage.

To elaborate on these strategies, prior to being put into the CPS module for
prediction, a small number of slices are uniformly sampled from the processed
CT volume. After CPS produces segmentation masks for these slices, another
selection step is performed to pick only some of the masks that contain the
organs having the largest areas.

Although we have employed a semi-supervised learning technique for the
Reference module, it still lacks information on the axial plane of the CT volume.
Therefore, we simply resolve that by embedding the slices’s relative position
on the axial dimension as a feature vectors and input them to both networks
TransUnet and DeeplabV3+ to learn. The rationale behind this is that, with
additional temporal knowledge, models are expected to capture the position
constraint for each organ’s appearance, hence provide better prediction.

Propagation module This module aims to utilize prior knowledge of given
annotated slices from the Reference module to make prediction on the remaining
slices, this mechanism can be referred as mask (or label) propagation.

Intuitively, the conventional 2D CNNs cannot comprehend the third dimen-
sion information within a CT volume. Thus, in hope of the ability to capture
the "temporal" information along the axial plane, we adapt the Space-Time
Correspondence Networks (STCN) [8], which is a semi-supervised segmentation
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algorithm that has achieved promising results on Video object segmentation
problem, to this 3D manner.

Bidirectional STCN

Timesteps: T
(axial plane)

T - 1T – k1 T + 1 T + k2

… …

Propagation module

Fig. 4. The propagation module. From an annotated slice of CT, at timestep T, STCN
can make use of that to spread the information through the entire defined range [T −
k1, T + k2].

Basically, STCN proposes the use of a memory bank that stores information
about previous frames and their corresponding masks and uses them later as
prior knowledge. To generate the mask for the current frame, a pairwise affinity
matrix is calculated between the query frame and memory frames based on
negative squared Euclidean distance, then it is used for supporting the current
mask generation. [8]

Different from the original STCN, we slightly modify it to match the current
problem. In the original work, they use only a single dense mask to propagate
through the entire video, therefore for the model to perfectly work, that selected
mask must contain information about all available classes. For our case to achieve
that, we enable the usage of multiple masks for propagation, so that all of these
masks should contain enough information about every organs. We also allow the
STCN to work in a bidirectional way to enhance the refinement. Fig 4 illustrates
this process.

Specially, STCN can be simply trained in the binary manner, meaning that
each of the abdominal organs can be learned separately. Therefore, the knowledge
can be transferred well between different organ classes.
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Pseudo labeling with Uncertainty Estimation Given a vast amount of
unlabeled CT volumes, we apply a uncertainty estimation technique to effectively
maximize the utilization of the data.

Firstly, several CPS models are trained on the provided labeled data. Then,
we use these trained CPS models to obtain pseudo masks on the unlabeled set.
Inspired from [20], we calculate the dice scores between these pseudo masks
and the aggregated one. The mean of these dice scores will be compared with
a threshold to determine whether the aggregated pseudo masks are qualified.
Simply speaking, consensus-based assessment is used to evaluate the quality of
pseudo labels.

We determine a single score for the ith volume in the unlabeled set as the
formulation below:

scorei =
1

K ×M

Ki

∑
k=1

M

∑
m=1

DSC(Yk,i
m ,Yk,i

AV G) (1)

dsc = 2∣X ∩ Y ∣
∣X ∣ + ∣Y ∣

(2)

DSC represents the Dice Score evaluation metric calculating the overlapping
area of prediction X and ground truth Y . Here Yk,i

m indicates the mth model’s
output of the kth slice of volume i while Yk,i

AV G is the mask averaged from all
M models for the same slice. The easier the sample is, the more inclined the
segmentation models are to get similar outputs. In contrast, hard samples are
more likely to be segmented differently by different models. Hence, we use the
proposed score to measure the certainty between models’ predictions. A higher
score gives more credibility to the prediction, as it is more consistent.

All aggregated samples that have high certainty are then reused for the next
supervised training cycle. And after the training finishes, the same labeling pro-
cess is repeated until all aforementioned models achieve satisfactory performance
or every unlabeled data has been used.

Loss function For the Reference module, we use the prevalent combination of
dice loss and cross-entropy loss with smoothing value to alleviate the imbalanced
number of the small organs, which occurs due to our splitting into slices process.
The same settings are used for CPS in its supervised branch whereas only the
dice loss is set up for the unsupervised branch.

For the Propagation module, we implement the online hard example cross
entropy (OhemCE or Bootstrapping CE) [21] and also calculate the Lovasz loss
[3] at the same time. OhemCE can help reduce the contribution of the back-
ground label to the final loss. And since STCN is trained on the binary task,
OhemCE can direct the model to focus on visible difficult objects. Meanwhile,
Lovasz loss is commonly used in past research and competitions.
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2.3 Post-processing

We do not use any post-processing techniques because no complex pre-processing
ones are used, and we conduct all our experiments on the original-sized image
volumes apart from the orientation settings. Thus, before submitting it to the
evaluation system, the mask must be transformed back to the original orienta-
tion.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [19], KiTS [10,11], AbdomenCT-1K [15],
and TCIA [9]. The training set includes 50 labelled CT scans with pancreas
disease and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas
diseases. The validation set includes 50 CT scans with liver, kidney, spleen, or
pancreas diseases. The testing set includes 200 CT scans where 100 cases has
liver, kidney, spleen, or pancreas diseases and the other 100 cases has uterine
corpus endometrial, urothelial bladder, stomach, sarcomas, or ovarian diseases.
All the CT scans only have image information and the center information is not
available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 18.04.5 LTS
CPU Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz
RAM 1×32GB;
GPU (number and type) One Quadro RTX 5000 16G
CUDA version 11.6
Programming language Python 3.10
Deep learning framework Pytorch (Torch 1.11.0, torchvision 0.12.0)
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Training protocols Currently, we find that using only simple 2D transform
functions such as horizontal/vertical flipping or rotating might be enough for
both modules to generalize. In the training stage, the Reference module follow
traditional training process, in which two models are concurrently trained. For
the Propagation module, we inherit the same process as in [8] which samples 3
neighboring slices at a time.

Table 2 and Table 3 mention the training protocols for Reference module
and Propagation module, respectively. In both settings, we use the original-sized
images, which is [512,512] for the training and inference phases.

Table 2. Training protocols for Reference module: CPS of TransUnet and Efficientnet
DeeplabV3+

Network initialization Random initialization
Batch size 2 (labeled) + 2 (unlabeled)
Patch size None
Total iterations 50000
Optimizer AdamW
Initial learning rate (lr) 0.0001
Lr decay schedule multiplied by 0.5 for every iteration at [40000,45000]
Training time 48 hours
Number of model parameters 105M (TransUnet Resnet50) + 11M (Efficientnet DeeplabV3+) 6

Number of flops 108G (TransUnet Resnet50) + 1,3G (Efficientnet DeeplabV3+) 7

Table 3. Training protocols for Propagation module: STCN with Resnet backbone

Network initialization Random initialization
Batch size 8
Patch size None
Total iterations 50000
Optimizer AdamW
Initial learning rate (lr) 0.0001
Lr decay schedule multiplied by 0.5 for every iteration at [40000,45000]
Training time 48 hours
Number of model parameters 54,416,065 8
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4 Results & Discussion

Quantitative results Here we present both quantitative and qualitative results
of our proposed method. We also include the ablation study (Table 5) to further
analyze the effectiveness of each of our modules.

Table 4. Comparison between using and not using the pseudo labels as supervised
training data. The model that is used for the report is TransUnet. The highlighted
figures emphasize the highest values in each row.

Number of pseudo-labeled samples 0 200 700
Liver 0.9141 0.9555 0.9604

Right Kidney (RK) 0.645 0.7944 0.8014
Spleen 0.8071 0.9144 0.9255

Pancreas 0.6152 0.7309 0.7567
Aorta 0.8992 0.9272 0.9335

Inferior Vena Cava (IVC) 0.7398 0.7967 0.8207
Right Adrenal Gland (RAG) 0.5786 0.6507 0.6545
Left Adrenal Gland (LAG) 0.4376 0.6179 0.6138

Gallbladder 0.474 0.5889 0.5885
Esophagus 0.74 0.7784 0.7783
Stomach 0.7678 0.8403 0.8424

Duodenum 0.4425 0.5617 0.5679
Left Kidney (LK) 0.7015 0.8112 0.8026

Mean DSC 0.674 0.7668 0.7728

Some interesting insights can be spotted in Table 4. Overall, we can see that
using the pseudo-labeled data for training, helps boost the performance of the
model by a great amount. Unfortunately, we have yet to fully explore every
unlabeled sample (only 700 samples were used for training in our submission),
but intuitively, the number of used unlabeled samples is likely to be directly
proportional to the evaluation result. Another notable observation is that the
DSC for some small human organs (gallbladder and adrenal glands) can hardly
be improved because of the class imbalance problem (as referred in 4).

Table 5. Ablation experiment on each proposed modules and techniques.

No. CPS Windowing CT Uncertainty Estimation Mask Propagation Mean DSC
1 0.547
2 ✓ 0.762
3 ✓ ✓ ✓ 0.770
4 ✓ ✓ ✓ ✓ 0.784

Table 5 shows that each module contributes to the final score of our submis-
sion. The third and fourth rows where both Cross Pseudo Supervision (CPS) and
Uncertainty Estimation (UE) is used mean that pseudo-labels that are qualified
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by UE are used as supervised inputs in CPS workflow whereas the remaining
unlabeled data are used as unsupervised inputs. Noticeably, in the fourth row,
with the Mask propagation (MP) applied, DSC score is enhanced. It is surprising
that MP only looks upon the minority of the slices to fully propagate through
the whole volume. The detailed evaluation for our final submission is shown in
Table 6.

Table 6. The final evaluation score for our final submission

Mean DSC Liver RK Spleen Pancreas Aorta IVC
0.7841 0.9591 0.8149 0.9244 0.7499 0.9383 0.8262
RAG LAG Gallbladder Esophagus Stomach Duodenum LK
0.6456 0.601 0.6877 0.7986 0.8446 0.5808 0.8219

Qualitative results Looking at examples that are well-predicted by our ap-
proach in Fig 5 (1b, 2b, 3b), it demonstrates good segmentation masks with clear
and smooth mask boundaries. Some small organs can also be seen segmented suc-
cessfully and precisely meaning that both proposed modules can work effectively
with organs having various sizes.

Fig. 5. Qualitative results from the validation set. We illustrate both well-segmented
and challenging examples for our proposed segmentation pipeline

On the other hand, our models suffer from various difficult cases where organs
are missing. Generally, there are two cases that negatively affects our approach:
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1. Relatively small organs (adrenal glands (Fig 5 (1e)), gallbladder (Fig 5 (1e)),
and esophagus (Fig 5 (3e))) account for the lowest DSC since they usually
are failed to be identified by the Reference module.

2. Other organs (pancreas (Fig 5 (1e)) and duodenum (Fig 5 (2e))) despite hav-
ing larger size, yet their lengths on the axial plane are short and sometimes
occluded by many surrounding organs, which can affects how the information
propagating through the slices, causing class confusion in the result.

Furthermore, due to the our two-staged pipeline, for the results of the second
stage to be good really relies on the first stage’ performance. If the reference stage
miss-segments any organ, that one will be missed during the entire propagation
process. Having said that, this issue mostly just occurs to organs that have
short-size length on the axial plane.

Limitation and future work Apparently, although our proposed method has
yet to achieve the high result, we believe it can be further improved if these lim-
itation that we identify here are solved. First of all, the problem of imbalanced
dataset has arisen because we perceive this as a 2D problem. Due to the slices
splitting process, small organs (such as pancreas, gallbladder or adrenal glands)
only appear in a small amount of slices, while larger objects have wider range
of appearance. Therefore, it leads to the problem of imbalanced dataset. We
tried some ways to tackle the problem, for instance: smart sampling, or imbal-
anced loss, however only slightly improvement was seen. Secondly, the proposed
approach is a two-stage method, the second stage is undoubtedly dependent of
the first one. If there are any organs that are missed by the Reference module,
it definitely cannot be recovered in the Propagation phase. Thus, more atten-
tion is needed for the Reference module. In the future, it is encouraged to focus
on boosting the performance of the Reference module by fully exploiting the
temporal information.

5 Conclusion

In summary, with new advancements in technology, there are endless possibilities
for what can be achieved. In the medical field, one of the most common problems
that doctors face is accurately segmenting 3D objects from 2D images or volume
sequences. Recently, we propose a novel two-stage pipeline that can leverage the
strength of many state-of-the-art 2D deep learning algorithms and techniques in
videos and images, into the task of 3D object segmentation. This proposal aims to
introduce a novel and inspirational approach to solving one of the most common
problems in the medical field. In addition, to break the barrier of differences in
medical pipeline processes, our solution is able to transfer and exploit the power
of multiple domain data in datasets creating more accurate results.
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