
LEARNING LARGE-SCALE KERNEL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper concerns large-scale training of Kernel Networks, a generalization of
kernel machines that allows the model to have arbitrary centers. We propose a
scalable training algorithm – EigenPro 3.0 – based on alternating projections with
preconditioned SGD for the alternating steps. This is the first linear space algo-
rithm for training kernel networks, which enables training models with large num-
ber of centers. In contrast to classical kernel machines, but similar to neural net-
works, our algorithm enables decoupling the learned model from the training set.
This empowers kernel models to take advantage of modern methodologies in deep
learning, such as data augmentation. We demonstrate the promise of EigenPro 3.0
on several experiments over large datasets. We also show data augmentation can
improve performance of kernel models.

1 INTRODUCTION

Kernel Machines are predictive models described by the non-parametric estimation problem,

min
f∈H

L(f) :=
1

2

n∑

i=1

L(yi, f(xi)) + λ ‖f‖2H , (1)

where H is a reproducing kernel Hilbert space (RKHS), and (X,y) = {xi, yi}ni=1 are training
samples. By the representer theorem Wahba (1990), the solution to this problem has the form,

f̂(x) =
n∑

i=1

αiK(x,xi) ∈H, (2)

where K is the reproducing kernel corresponding to H. The weights α = (αi) ∈ Rn are chosen to
fit (X,y). For example, kernel ridge regression takes the square loss L(u, v) = (u − v)2, and the
weights α ∈ Rn of the learned model are the unique solution to the n×n linear system of equations,

(K(X,X) + λIn)α = y, (3)
where [K(X,X)]ij = K(xi,xj) is the matrix of pairwise kernel evaluations between samples.

However, observe that the kernel machine from equation (2), is strongly coupled to the training
set, i.e., predictions from a learned model require access to the entire training dataset. There is
no explicit control on the model size, it is always the same as the size of the dataset n. Such a
coupling is inconvenient from an engineering perspective, and limits the scalability to large datasets
for inference as well as for training. For instance, when fresh training samples are available, a larger
system of equations needs to be solved, from scratch, to retrain the model.

In contrast, neural networks are decoupled from the training set. In particular, a pretrained neural
network can be finetuned without any access to the original dataset. This decoupling affords the
practitioner tremendous flexibility and is crucial for large-scale learning.

Deep learning methodologies take advantage of this scalability. For example, data augmentation is
a widely used training technique to boost performance of neural networks, see Shorten & Khosh-
goftaar (2019) for a review. Here, we augment the training set with artificial samples, which are
obtained via perturbations or transformations to the true samples. For kernel machines, data aug-
mentation means increasing the size of the dataset, and hence implicitly also the model size. Hence,
data augmentation is prohibitively expensive for learning standard kernel machines.

Kernel Networks generalize kernel machines by allowing the flexibility to choose arbitrary centers.
Perhaps most importantly, this leads the learned model to be decoupled from the training set.

1

Definition 1 (Kernel Network). Given a kernel K(·, ·), a set of centers Z := {zi}pi=1, and weights
α = (αi) ∈ Rp, a kernel network is a function x %→ f(x;Z,α) given by

f(x;Z,α) =
p∑

i=1

αiK(x, zi). (4)

We refer to p as the model size, since there are p degrees of freedom for the predictor.

Note that by definition, kernel networks do not require access to the training set to make predictions.
This helps inference as well as training when p ' n, and enables models to be trained on large-
scale datasets. This also provides explicit capacity control by choosing p. Such a control is lacking
in classical kernel machines since the model size is always n.

Kernel networks are classically studied in machine learning in the form of RBF networks, which cor-
respond to radial kernels K(x, z) = φ(‖x− z‖). RBF networks were introduced by Broomhead
& Lowe (1988) as a function approximation technique. Like neural networks, they are universal
approximators for functions in Lp(Rd), see Park & Sandberg (1993); Poggio & Girosi (1990). Our
definition extends to all positive definite kernels. This extension allows using kernels like the Con-
volutional Neural Tangent Kernel, which is neither radial nor rotationally invariant, among others.

1.1 PRIOR WORK

In the case when Z = X , which corresponds to standard kernel machines, there exist several solvers
Wang et al. (2019); Gardner et al. (2018a); van der Wilk et al. (2020). For certain special kernels Si
et al. (2014) enable speed-ups depending on the scale hyperparameter.

Classical procedures to learn kernel networks in their full generality, are to plug-in the functional
form of equation (4) to solve problem (1). For example for the square loss, the solution satisfies,

(K(X,Z)"K(X,Z) + λK(Z,Z))α = K(X,Z)"y, (5)
where K(X,Z) ∈ Rn×p is the pairwise kernel evaluation between data xi and centers zj . Notice
when λ is small, the solution converges to K(X,Z)†y, which involves the pseudo-inverse. For other
loss functions, iterative methods such as gradient descent can be used for minimizing the objective
in terms of the weights α. Several regularized ERM approaches have been studied, see Que &
Belkin (2016) and Scholkopf et al. (1997) for a review and comparisons. These methods suffer from
poorly conditioned matrices, which significantly limits their rate of convergence. See Figure 3 in the
Appendix for a deeper discussion on this approach and a comparison with problem-specific solvers.

Nyström approximation: Kernel networks with Z ⊂ X have been studied extensively following
Williams & Seeger (2000). This is perhaps the predominant strategy for applying kernel machines
at scale, in the general case when random feature are hard to compute. Methods such as NYTRO
Camoriano et al. (2016), and FALKON Rudi et al. (2017) are designed to work with such models.
These methods require quadratic memory in terms of the model size. For example Meanti et al.
(2020) only train models with 100,000 centers. Scaling these methods to higher model sizes is
memory intensive. While these methods were not designed to train kernel networks in their gener-
ality, they perform surprisingly well for this task in high dimensions, since the distribution of the
centers often closely resembles the distribution of the data. However one must exercise caution for
training general kernel networks using these methods, i.e., when Z)⊂ X .

Random features model: Decoupled models for kernel machines have been considered earlier,
perhaps most elegantly in the Random Features framework by Rahimi & Recht (2007). However,
it is not straightforward to find the correct distribution that yields a desired target kernel, since
sampling from the Fourier measure is not always tractable in high dimensions, especially for kernels
that are not rotation invariant.

Gaussian Process: In the literature on GPs, sparse GPs Titsias (2009) is similar to kernel networks
considered above. These models have so-called inducing points that reduce the model complexity.
While several follow-ups such as Wilson & Nickisch (2015) and Gardner et al. (2018b) have been
applied in practice, they require quadratic memory in terms of the number of inducing points, pre-
venting scaling to large models. Indeed the inducing points interpretation is perhaps the most useful
in choosing ‘good’ centers for kernel networks.

2

EigenPro: (short for Eigenspace Projections) is an iterative algorithm for kernel regression, i.e.,
when Z = X . It solves the linear system (3) by taking advantage of the problem structure. The algo-
rithm applies a preconditioned Richarson iteration Richardson (1911), based on projecting gradients
to certain eigenspaces of K(X,X). EigenPro 2.0 Ma & Belkin (2019) improved upon EigenPro 1.0
Ma & Belkin (2017) by reducing the computational and memory costs for the preconditioner, by
applying a stochastic approximation for estimating, and projecting onto the relevant eigenspaces.

EigenPro 2.0 cannot solve the general problem of learning a kernel machine, i.e., when Z)= X. Our
extension EigenPro 3.0, proposed in this paper fills this gap.

1.2 MAIN CONTRIBUTIONS

We develop a scalable iterative algorithm for learning kernel networks with a low memory foot-
print. Our training algorithm is derived using alternating but separate eigenspace projection steps.
Importantly, our preconditioning preserves the decoupling between the model and the training set.
EigenPro serves as the basis for our approach, and we use the same form for the preconditioner for
more general problem of learning kernel networks. Our algorithm requires an additional projection
step neccessary for this problem, which can be solved by a decoupled instance of EigenPro.

The focus of this paper is the design of the algorithm for training kernel networks in full generality
with a linear space complexity in terms of the model size. We omit generalization and optimization
properties of the algorithm, and will consider them in follow-up works. As such, these methods
are expected to converge and behave well with analyses from linear systems and convex quadratic
optimization being directly applicable. Furthermore, our method converges to a consistent estimator
if we consider a student-teacher setup with known model centers.

Some noteworthy highlights of our training algorithm – EigenPro 3.0 – are:

1. Model decoupled from training data: Our algorithm fully respects the decoupling between the
model and training data, and allows for any configuration of model centers. In particular, we do
not require any label information on the centers. The flexibility of a decoupled model allows us
to apply data augmentation for learning kernel networks. We demonstrate a gain in performance
with this approach. We can also train overparameterized kernel networks with p > n.

2. Linear space complexity: Our algorithm can run with O(p) memory, and O(p2) computations
per iteration. Consequently, we can handle very large model sizes with a potential to scale
much further. For example in our numerical experiments, we have trained models with 512,000
degrees of freedom. To our knowledge, this is the first general kernel network of this size trained
with ≤ 100 GB RAM.

Organization: In Section 3, we derive a vanilla version of our algorithm as a function space
projected preconditioned gradient descent, with a decoupled model-agnostic preconditioner. In Sec-
tion 4, we introduce several stochastic approximations that make our algorithm much faster and
makes it scalable to large-scale datasets. Section 5 demonstrate the scalability of our algorithm to
large datasets and large models over several datasets. Proofs are relegated to the Appendix.

2 PRELIMINARIES AND NOTATION

In what follows, functions are lowercase letters a, sets are uppercase letters A, vectors are lowercase
bold letters a, matrices are uppercase bold letters A, operators are caligraphic letters A, spaces and
subspaces are bolfdace caligraphic letters A. Subscripts to sets, vectors, matrices indicate size.

If K is a reproducing kernel for an RKHS H, then we have

〈a,K(·,x)〉H = a(x) ∀ a ∈H, 〈K(·,x),K(·, z)〉H = K(x, z) = K(z,x). (6)

Evaluations and kernel matrices: The vector of evaluations of a function f over a set X =
{xi}ni=1 is f(X) := (f(xi)) ∈ Rn. We denote the kernel matrices K(X,Z) ∈ Rn×p,
K(X,X) ∈ Rn×n,K(Z,Z) ∈ Rp×p, and K(Z,X) = K(X,Z)". Similarly, K(·, X) ∈ H1×n,

3

and K(·, Z) ∈H1×p, and for a set A = {ai}ki=1, and a vector α = (αi) ∈ Rk, we use the notation

K(·, A)α :=
k∑

i=1

K(·,ai)αi ∈H, K(z, A)α :=
k∑

i=1

K(z,ai)αi ∈ R. (7)

Finally, for an operator A, a function a, and a set A = {ai}ki=1, by

A{a} (A) := (b(ai)) ∈ Rk where b = A (a) , (8)

Definition 2. [Top-q eigensystem] Let λ1 > λ2 > . . . > λn, be the eigenvalues of a her-
mitian matrix A ∈ Rn×n, i.e., for unit-norm ei, we have Aei = λiei. Then we call the
tuple (Λq,Eq,λq+1) the top-q eigensystem, where Λq = diag(λ1,λ2, . . . ,λq) ∈ Rq×q , and
Eq = [e1, e2, . . . ,Eq] ∈ Rn×q .

Fréchet derivative: Given a function J : H → R, the Frech’et derivative of J with respect to f is
a linear functional, denoted ∇fJ , such that

lim
‖h‖H→0

|J(f + h)− J(f)−∇fJ(h)|
‖h‖H

= 0. (9)

Since ∇fJ is a linear functional, it lies in the dual space H∗. Since H is a Hilbert space, it is
self-dual, whereby H∗ = H. If L is the square loss for a given dataset (X,y), i.e., L(f) :=
1
2

∑n
i=1(f(xi) − yi)2 we can apply the chain rule, and using equation (6), and the fact that

∇f 〈f, g〉H = g, we get, that the Fréchet derivative at f = f0 is,

∇fL(f0) =
n∑

i=1

(f0(xi)− yi)∇ff(xi)=
n∑

i=1

(f0(xi)−yi)K(·,xi) = K(·, X)(f0(X)− y). (10)

Hessian operator: The Hessian operator ∇2
fL : H→H for the square loss is given by,

K :=
n∑

i=1

K(·,xi)⊗K(·,xi), K{f} (z) :=
n∑

i=1

K(z,xi)f(xi) = K(z, X)f(X). (11)

Note that K is surjective on X , and hence invertible when restricted to X . Note that when xi
i.i.d.∼ P,

for some measure P, the above summation, on rescaling by 1
n , converges due to strong law as,

lim
n→∞

K {f}
n

= TK {f} :=

∫
K(·,x)f(x) dP(x), (12)

which is an integral operator. The following lemma relates the spectra of K and K(X,X).
Proposition 1 (Nyström extension). For 1 ≤ i ≤ n, let λi be an eigenvalue of K, and ψi its unit
H-norm eigenfunction, i.e., K{ψi} = λiψi. Then λi is also an eigenvalue of K(X,X). Moreover
if ei, is its unit-norm eigenvector, i.e., K(X,X)ei = λiei, we have,

ψi = K(·, X)
ei√
λi

. (13)

We review EigenPro 2.0 which is a closely related algorithm for kernel regression, i.e., when Z = X .

Background on EigenPro (short for Eigenspace Projections): Proposed in Ma & Belkin (2017),
EigenPro 1.0 is an iterative solver for solving the linear system in equation (3) based on a precondi-
tioned stochastic gradient descent in the Hilbert space,

f t+1 = f t − η · P
{
∇fL(f

t)
}
. (14)

Here P is a preconditioner. Due to its iterative nature, EigenPro can handle λ = 0 in equation
equation (3), corresponding to the problem of kernel interpolation, since in that case, the learned
model satisfies f(xi) = yi for all samples in the training set.

It can be shown that the following iteration in Rn

αt+1 = αt+1 − η(In −Q)(K(X,X)αt − y), (15)

4

emulates equation (14) in H, see Lemma 3 in the Appendix. The above iteration is a preconditioned
version of the Richardson iteration, Richardson (1911), with well-known convergence properties.
Here, Q as a rank-q symmetric matrix obtained from the top-q eigensystem of K(X,X), with
q ' n.

The preconditioner, P acts to flatten the spectrum of the Hessian K. In Rn, the matrix In −Q has
the same effect on K(X,X). The largest stable learning rate is then 2

λq+1
instead of 2

λ1
. Hence a

larger q, allows faster training when P is chosen appropriately.

EigenPro 2.0 proposed in Ma & Belkin (2019), applies a stochastic approximation for P based on the
Nyström extension. We apply EigenPro 2.0 to perform an inexact projection step in our algorithm.

3 EigenPro 3.0: PROJECTED PRECONDITIONED GRADIENT DESCENT

In this section we derive EigenPro 3.0exact-projection, a precursor to EigenPro 3.0, for learning a
kernel network. This algorithm is based on a function space projected gradient method. However it
does not scale well. In Section 4 we make it scalable by applying stochastic approximations, which
finally yields EigenPro 3.0 (Algorithm 1).

We want to solve the following constrained infinite dimensional problem,

minimize
f

L(f) =
n∑

i=1

(f(xi)− yi)
2, subject to f ∈ Z := span

(
{K(·, zj)}pj=1

)
. (16)

Thus the learned model f is a linear combination of functions {K(zj , ·)}pj=1, just like Definition 1.
We will apply the function-space projected gradient method to solve this problem,

f t+1 = projZ
(
f t − ηP

{
∇fL(f

t)
})

, where projZ (u) := argmin
f∈Z

‖u− f‖2H , (17)

where ∇fL(f t) is the Fréchet derivative at f t as given in equation (10), P is a preconditioning
operator given in equation (25), η is a learning rate, and projZ : H → Z is the projection operator
that projects functions from H onto the subspace Z .
Remark 1. Note that even though equation (17) is an iteration over functions which are infinite
dimensional objects {f t}t≥0, we can represent this iteration in finite dimensions as {αt}t≥0 , where
αt ∈ Rp. To see this, observe that f t ∈ Z , whereby we express it as,

f t = K(·, Z)αt ∈H, for an αt ∈ Rp. (18)
Furthermore, the evaluation of the function f t above at X , is

f t(X) = K(X,Z)αt ∈ Rn. (19)

Gradient: Due to equations (10) and (19) together, the gradient is given by the function,
∇fL(f

t)=K(·, X)(f t(X)−y)=K(·, X)(K(X,Z)αt−y) ∈ X := span({K(·,xi)}ni=1) . (20)
Observe that the gradient does not lie in Z and hence a step of gradient descent would leave Z, and
the constraint is violated. This necessitates a projection onto Z . For finitely generated subspaces
such as Z , the projection operation involves solving a finite dimensional linear system.

H-norm projection: Functions in Z can be expressed as K(·, Z)θ. Hence we can rewrite the
projection problem in equation (17) as a minimization in Rp, with θ as the unknowns. Observe that,

argmin
f

‖f − u‖H = argmin
f

‖f − u‖2H = argmin
f

〈f, f〉H − 2 〈f, u〉H

since ‖u‖2H does not affect the solution. Further, using f = K(·, Z)θ, we can show that
〈f, f〉H − 2 〈f, u〉H = θ"K(Z,Z)θ − 2θ"u(Z). (21)

This yields a simple method to calculate the projection onto Z.

projZ{u} = argmin
f∈Z

‖f − u‖H = K(·, Z)θ̂ = K(·, Z)K(Z,Z)−1u(Z) ∈ Z, (22)

where θ̂ = argmin
θ∈Rp

θ"K(Z,Z)θ − 2θ"u(Z) = K(Z,Z)−1u(Z). (23)

Notice that θ̂ above is linear in u, and f t(Z) = K(Z,Z)αt. Hence we have the following lemma.

5

Algorithm 1 EigenPro 3.0
Require: Data (X,y), centers Z, batch size m,

Nyström size s,, preconditioner level q.
1: Fetch subsample Xs ⊆ X of size s
2: (E,Λ)← top-q eigensystem of K(Xs, Xs)
3: C=K(Z,Xs)E(Λ−1−λq+1Λ−2)E" ∈ Rp×s

4: while Stopping criterion is not reached do
5: Fetch minibatch (Xm,ym)
6: gm ← K(Xm, Z)α− ym

7: h← K(Z,Xm)gm −CK(Xs, Xm)gm
8: θ ← EigenPro 2.0(Z,h)
9: α← α− n

mη θ
10: end while

Algorithm 2 EigenPro 3.0 exact-projection
Require: Data (X, y), centers Z, initialization

α0, preconditioning level q.
1: (E,Λ)← top-q eigensystem of K(X,X)
2: Q← E(Iq − λq+1Λ−1)E" ∈ Rn×n

3: while Stopping criterion not reached do
4: g ← K(X,Z)α− y
5: h← K(Z,X)(In −Q)g
6: θ ← K(Z,Z)−1h
7: α← α− η θ
8: end while

EigenPro 2.0(Z,h) approximates K(Z,Z)−1h
See Table 1 for comparison of costs.

Proposition 2 (Projection). The projection step in equation (17) can be simplified as,

f t+1 = f t − ηK(·, Z)K(Z,Z)−1
(
P
{
∇fL(f

t)
}
(Z)

)
∈ Z. (24)

Hence, in order to perform the update, we only need to know P {∇fL(f t)} (Z), which can be
evaluated efficiently for a suitably chosen preconditioner.

Data preconditioner agnostic to model: Just like with usual gradient descent, the largest stable
learning rate is governed by the largest eigenvalue of the Hessian of the objective in equation (16),
which is given by equation (11). The preconditioner P in equation (17) acts to reduce the effect of
a few large eigenvalues. We choose P given in equation (25), just like Ma & Belkin (2017).

P := I −
q∑

i=1

(
1− λq+1

λq

)
ψi ⊗ ψi : H→H. (25)

Recall from Section 2 that ψi are eigenfunctions of the Hessian K, characterized in Proposition 1.
Note that this preconditioner is independent of Z. Since∇fL(f t) ∈ X , we only need to understand
P on X . Let (Λq,Eq) be the top-q eigensystem of K(X,X), see Def. 2. Define the rank-q matrix,

Q = Eq(Iq − λq+1Λ
−1
q)E"

q ∈ Rn×n. (26)

The following lemma outlines the computation involved in preconditioning.
Proposition 3 (Preconditioner). The action of P from equation (25) on functions in X is given by,

P {K(·, X)a} = K(·, X)(In −Q)a, ∀a ∈ Rm. (27)

Since we know from equation (20) that ∇fL(f t) = K(·, X)(K(X,Z)αt − y), we have,

P
{
∇fL(f

t)
}
(Z) = K(Z,X)(In −Q)(K(X,Z)αt − y). (28)

The following lemma combines this with Proposition 2 to get the update equation from Algorithm 2.
Lemma 1 (Algorithm 2 iteration). The following iteration in Rp emulates equation (17) in H,

αt+1 = αt − ηK(Z,Z)−1K(Z,X)(In −Q)(K(X,Z)αt − y). (29)

Algorithm 2 does not scale well to large models and large datasets. We now propose stochastic
approximations that drastically make it scalable to both large models as well as large datasets.

4 SCALING UP COMPUTATIONS VIA MULTIPLE STOCHASTIC
APPROXIMATIONS

Algorithm 2 suffers from 3 main issues. It requires — (i) access to entire dataset of size O(n) at
each iteration, (ii) O(n2) memory to calculate the preconditioner Q, and (iii) O(p3) for the matrix
inversion corresponding to an exact projection. This prevents scalability to large n and p.

6

Computation Memory

setup per iteration
EigenPro 3.0 sq2 mp+ms+ qs+ ps+ Tep2 s2 + sm+Mep2

EigenPro 3.0exact-projection nq2 + p3 np+ nq pn+ n2

FALKON p3 np p2

Table 1: (Order complexity analysis.) Table 4 in the Appendix clearly states all symbols. Here
Tep2 is the time it takes to run EigenPro 2.0 for the approximate projection. In practice we only run 1
epoch of EigenPro 2.0 for large scale experiments for which Tep2 = O(p2). Similarly, Mep2 = O(p)
is the memory rquired for running EigenPro 2.0. We assume the cost of a single kernel evaluation is
O(1) and the number of targets is O(1).

16 64 256 500 2000

85

86

87

88

89
CIFAR5M*

16 64 256 500 2000

55

60

65

70

75

CIFAR5M

EP3: 16000

KR : 16000

EP3: 64000

KR : 64000

EP3: 256000

KR : 256000

16 64 256 500 1000

50

55

60

65

ImageNet*

16 64 256 500 2000

67

68

69

70

71

72

HIGGS

16 64 256 500 2000

50

56

62

68

74

80

MNIST8M

Number of training samples (×1000)

T
es

t
ac

cu
ra

cy
(%

)

Figure 1: (Large scale training.) We randomly subsample to get model centers. The Kernel Regres-
sion (KR) baselines (dashed) are obtained from a standard kernel machine over the centers and their
corresponding labels. Solid lines shows the performance of kernel networks trained using our algo-
rithm, for varying number of training samples. Similar to neural networks, performance improves
with more training samples. This is consistent across data sets.
∗ we applied a feature extraction before applying the kernel.

In this section we present 3 stochastic approximation schemes — stochsatic gradients, Nyström pre-
conditioning, and inexact projection — that drastically reduce the computational cost and memory
requirements. These approximations together give us Algorithm 1.

Algorithm 2 emulates equation (17), whereas Algorithm 1 is designed to emulate its approximation,

f t+1 = f t − n
mη · p̃rojZ

(
Ps

{
∇̃fL(f

t)
})

, (30)

where ∇̃fL(f t) is a stochastic gradient obtained from a subsample of size m, Ps is a preconditioner
obtained via a Nyström extension based preconditioner from a subset of size s, and p̃rojZ is an
inexact projection using EigenPro 2.0 to solve the projection equation K(Z,Z)θ = h.

7

Stochastic gradients: We can replace the gradient with stochastic gradients, whereby ∇̃fL(f t)
only depends on a batch (Xm,ym) of size m, denoted Xm = {xij}mj=1 and ym = (yij) ∈ Rm,

∇̃fL(f
t) =

m∑

j=1

(f(xij)− yij)K(·,xij) = K(·, Xm)(K(Xm, Z)α− ym) ∈ X . (31)

Remark 2. Here we need to scale the learning rate by n
m , to get unbiased estimates of ∇fL(f t).

Nyström preconditioning: We obtain an approximation for the preconditioner P from equa-
tion (25), which requires access to all samples. We use the Nystrom extension, see Williams &
Seeger (2000). Consider a subset of size s, Xs = {xik}

s
k=1 ⊆ X . We introduce the Nyström

preconditioner,

Ps := I −
s∑

i=1

(
1−

λsq+1

λsi

)
ψs
i ⊗ ψs

i . (32)

where ψs
i are eigenfunctions of Ks :=

∑s
k=1 K(·,xik)⊗K(·,xik). Note that Ks ≈ s

nK since both
approximate TK as shown in equation (12). However the scaling doesn’t affect the preconditioner
Ps, since ψs

i are unit norm. This preconditioner was first proposed in Ma & Belkin (2019).

Next, we need to understand the action of Ps on elements of X . Let (Eq,Λq) be the top-q eigensys-
tem of K(Xs, Xs). Define the rank-q matrix,

Qs := Eq(Is − λq+1Λ
−1
q)Λ−1

q E"
q ∈ Rs×s. (33)

Lemma 2 (Nyström preconditioning). Let a ∈ Rm, and Xm chosen like in equation (31), then,

Ps {K(·, Xm)a} = K(·, Xm)a−K(·, Xs)QsK(Xs, Xm)a. (34)

Consequently, using equation (31), we get,

Ps

{
∇̃fL(f

t)
}
(Z)=

(
K(Z,Xm)−K(Z,Xs)QsK(Xs, Xm)

)(
K(Xm, Z)αt−ym

)
∈ Rp. (35)

Inexact projection: The projection step in Algorithm 2 requires the inverse of K(Z,Z) which is
computationally expensive. However this step is solving the p× p linear system

K(Z,Z)θ =
(
K(Z,Xm)−K(Z,Xs)QsK(Xs, Xm)

)(
K(Xm, Z)αt − ym

)
. (36)

Notice that this is the kernel interpolation problem EigenPro 2.0 can solve. This leads to the update,

αt+1 = αt − n

m
η θ̂T (EigenPro 3.0 update)

where θ̂T is the solution to equation (36) after T steps of EigenPro 2.0 given in Algorithm 3 in the
Appendix. Algorithm 1 implements the update above. Furthermore, EigenPro 2.0 itself applies a
preconditioner which only depends on Z, no dependence on X , thus maintaining the decoupling.
Remark 3 (Details on inexact-projection using EigenPro 2.0). We apply T steps of EigenPro 2.0
for the approximate projection. This algorithm itself applies a fast preconditioned SGD to solve the
problem. The algorithm needs no hyperparameters adjustment. More details in the Appendix.

Complexity analysis: We compare the order complexity of the run-time and memory requirement
of Algorithm 1 before and after stochastic approximations with FALKON solver in Table 1.

5 NUMERICAL EXPERIMENTS

We perform experiments on these datasets: (1) CIFAR10, Krizhevsky et al. (2009), (2) CIFAR5M,
Nakkiran et al. (2020), (3) ImageNet, Deng et al. (2009), (4) MNIST, LeCun (1998), (5) MNIST8M,
Loosli et al. (2007), (6) Fashion-MNIST, Xiao et al. (2017), and (7) HIGGS, Baldi et al. (2014). All
experiments are performed with the Laplacian kernel with a fixed bandwidth=5. In some cases, we
perform a feature extraction using MobileNetv2 pretrained on the ImageNet dataset. The pre-trained
model was obtained from Wightman (2019). Details on our implementation are in Appendix C. We
treat K-class classification problems as k independent regression problems with targets from {0, 1} .

8

0 25 50 75 100
85

86

87

88

89

90
T

es
t

ac
cu

ra
cy

(%
)

CIFAR10 (p = 50000)

MixUp

random cropping+fliping

w/o augmentation

0 25 50 75 100
85

86

87

88

89

FashionMNIST (p = 60000)

AWGN σ
2
= 0.1

AWGN σ
2
= 0.3

AWGN σ
2
= 0.5

w/o augmentation

0 25 50 75 100
94

95

96

97

98

MNIST (p = 60000)

AWGN σ
2
= 0.1

AWGN σ
2
= 0.3

AWGN σ
2
= 0.5

w/o augmentation

Number of epochs

Figure 2: (Data augmentation.) We used the entire datasets as the model centers. We then trained
the model on the augmented set. For CIFAR10 dataset, we apply MixUp and Crop+Flip augmenta-
tions, whereas for MNIST and FashionMNIST we add white gaussian noise with different variances.
Performance improves by ∼ 1.5% which is comparable to the gains seen by neural networks. The
model without augmentation uses EigenPro 2.0 to solve the kernel regression problem on the dataset.

Large scale training: In this experiment, we want to demonstrate we can learn models with
256,000 centers and 2,000,000 training samples. We also see that increasing the number of samples
on a fixed model increases performance of the model. As a baseline, we compare with a standard
kernel machine with the same model size p (i.e., a kernel machine trained on the p centers).

We apply our Algorithm 1 to train a model with p centers which are a random subset of dataset with
n samples. We then systematically study the performance as we vary n as well as p. Figure 1 shows
that for a fixed model size adding more data improves performance significantly.

Data augmentation: Data augmentation is an important tool for enhancing the performance of
deep networks. We demonstrate how this can improve performance of kernel models.

We conduct our experiment on CIFAR10 with feature extraction, raw images of MNIST and Fash-
ionMNIST. For CIFAR10 augmentation, we performed random cropping and flipping before feature
extraction. Also for CIFAR10, we tried mix-up augmentation method in Zhang et al. (2017) after
feature extraction. For MNIST and FashionMNIST augmentation we added Gaussian noise with
different variances. In all cases, we used the entire training set as the centers and we generated aug-
mented data set using the same training set. We performed 100 epochs for all of them. This means
augmentation makes each data set effectively ≈ 100× in size.

Figure 2 shows we have significant improvements in accuracy. We show results for the Laplacian
kernel with a fixed bandwidth. We did not tune for the optimal bandwidth.

Flexible choice of model centers: In our model, the centers zi do not need to be a subset of the
training samples. More importantly, the model is agnostic to labels at these points, in contrast to
Falkon Rudi et al. (2017). In this experiment we show an example choice of centers that yields
better performance than sub-sampling the dataset. We choose centers as the centroids from a K-
means clustering procedure with K = p using Omer (2020).

Comparison to other works: We demonstrate, in Table 3, that existing methods on center-based
kernel regression for large data sets fail when number of centers are large. We compared our method
with FALKON Rudi et al. (2017) and Gpytorch Gardner et al. (2018a). We used fixed 100GB RAM
in all methods. For Gpytorch we tried to reproduce the version Rudi et al. (2017) used in their ex-
periment, stochastic variational GPs (SVGP). We noticed they used SVGP with very small number
of centers ≈ 2000. We could not run Gpytorch with large number of centers. Also, note FALKON
orginally did not have any notion of centers. They only used sub-sampling for more efficient com-
putation. However, we found out that their code can also be used when centers are not a sub-set of
the original data.

1Here we store the full K(Z,Z) matrix on GPU. This is not possible for larger number of centers.

9

Dataset Model Solver p = 100 p = 1000 p = 10000

k−means EP3.0 (ours) 36.24 45.12 52.72
CIFAR10 random EP3.0 (ours) 33.37± 0.50 44.19± 0.09 49.92± 0.08

(n = 50000) random FALKON 34.16±0.36 44.44±0.14 50.40±0.12

CIFAR10 k−means EP3.0 (ours) 82.69 86.58 89.11
(MobileNetV2) random EP3.0 (ours) 74.29± 0.44 84.38± 0.15 86.58± 0.06

(n = 50000) random FALKON 74.57±0.71 84.81±0.14 86.82±0.09

k−means EP3.0 (ours) 91.89 95.96 97.69
MNIST random EP3.0 (ours) 87.24± 0.015 94.96± 0.102 97.31± 0.004

(n = 60000) random FALKON 88.43± 0.604 95.39± 0.047 97.64± 0.080

k−means EP3.0 (ours) 78.66 85.55 88.13
FashionMNIST random EP3.0 (ours) 76.24± 0.003 84.59± 0.069 87.84± 0.036

(n = 60000) random FALKON 77.33± 0.631 85.15± 0.214 88.27 ± 0.093

Table 2: (Flexible model.) The separation between model and data empowers us to choose model
centers which better represent the underlying data distribution. We compare two model types, and
two solvers. The k−means model, as suggested by Que & Belkin (2016), chooses centers to be
k−means of the training set, whereas the random model chooses a random subset to be the centers.
Choosing centers as k−means improves the performance, especially when model size p is consider-
ably smaller than dataset size n.

Model Size EigenPro 3.0 EigenPro 3.01 FALKON Gpytorch

p = 32K (CIFAR5M) 87.92% (727.78s) 87.93% (322.45s) 88.04% (163.59s) —

p = 64K(CIFAR5M) 88.15% (2178.8s) 88.14 % (515.94s) 87.23% (368.892s) —

p = 128K(CIFAR5M) 88.35% (7453.772s) — — —

p = 256K(CIFAR5M) 88.46% (24386.28s) — — —

p = 512K(CIFAR5M) 88.55% (71784.23s) — — —

Table 3: (Large model size.) We preformed this experiment on extracted feature of CIFAR5M
dataset. This shows that both Gpytorch and FALKON fail for large number of centers. Also, note
that we are not using any tricks to optimize our algorithm for best time performance. However, if
we could store the whole K(Z,Z) matrix, third column, we can get a significant speed up.

6 CONCLUSION

Kernel networks, unlike kernel machines are a class of kernel models decoupled from the training
dataset. In this paper we presented a fast and scalable training algorithm — EigenPro 3.0 — for
learning general kernel networks on large scale datasets, in a manner that preserves the decoupling
property of the learned model, and does not require label information at the model centers.

The method relies on alternating projection operations with preconditioning, one dependent only on
the training data, while the other only on the model centers. We proposed stochastic approximations
that make our algorithm scalable to large datasets as well as large model sizes. The algorithm has
a linear space complexity in terms of the number of model centers and does not require any matrix
inversion.

Through numerical experiments, we provided evidence that demonstrates the promise of this algo-
rithm on several datasets from across problem domains. In particular, we showed kernel models can
benefit from data augmentation without increasing the model complexity. Our algorithm enables
various modern machine learning techniques for training kernel methods. The next step is to scale
up the algorithm to train large models with millions of centers and billions of samples.

10

REFERENCES

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature communications, 5(1):1–9, 2014.

David S Broomhead and David Lowe. Radial basis functions, multi-variable functional interpolation
and adaptive networks. Technical report, Royal Signals and Radar Establishment Malvern (United
Kingdom), 1988.

Raffaello Camoriano, Tomás Angles, Alessandro Rudi, and Lorenzo Rosasco. Nytro: When sub-
sampling meets early stopping. In Artificial Intelligence and Statistics, pp. 1403–1411. PMLR,
2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. Gpytorch:
Blackbox matrix-matrix gaussian process inference with gpu acceleration. Advances in neural
information processing systems, 31, 2018a.

Jacob Gardner, Geoff Pleiss, Ruihan Wu, Kilian Weinberger, and Andrew Wilson. Product kernel in-
terpolation for scalable gaussian processes. In International Conference on Artificial Intelligence
and Statistics, pp. 1407–1416. PMLR, 2018b.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Citeseer, 2009.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Gaëlle Loosli, Stéphane Canu, and Léon Bottou. Training invariant support vector machines using
selective sampling. Large scale kernel machines, 2, 2007.

Siyuan Ma and Mikhail Belkin. Diving into the shallows: a computational perspective on large-scale
shallow learning. Advances in neural information processing systems, 30, 2017.

Siyuan Ma and Mikhail Belkin. Kernel machines that adapt to gpus for effective large batch training.
Proceedings of Machine Learning and Systems, 1:360–373, 2019.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of sgd in modern over-parametrized learning. International Conference on Machine
Learning, pp. 3325–3334, 2018.

Giacomo Meanti, Luigi Carratino, Lorenzo Rosasco, and Alessandro Rudi. Kernel methods through
the roof: handling billions of points efficiently. Advances in Neural Information Processing
Systems, 33:14410–14422, 2020.

Preetum Nakkiran, Behnam Neyshabur, and Hanie Sedghi. The deep bootstrap framework: Good
online learners are good offline generalizers. arXiv preprint arXiv:2010.08127, 2020.

Sehban Omer. fast_pytorch_kmeans. https://github.com/DeMoriarty/fast_
pytorch_kmeans, 2020.

Jooyoung Park and Irwin W Sandberg. Approximation and radial-basis-function networks. Neural
computation, 5(2):305–316, 1993.

Tomaso Poggio and Federico Girosi. Networks for approximation and learning. Proceedings of the
IEEE, 78(9):1481–1497, 1990.

Qichao Que and Mikhail Belkin. Back to the future: Radial basis function networks revisited. In
Artificial intelligence and statistics, pp. 1375–1383. PMLR, 2016.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

11

https://github.com/DeMoriarty/fast_pytorch_kmeans
https://github.com/DeMoriarty/fast_pytorch_kmeans

Lewis Fry Richardson. Ix. the approximate arithmetical solution by finite differences of physical
problems involving differential equations, with an application to the stresses in a masonry dam.
Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a
Mathematical or Physical Character, 210(459-470):307–357, 1911.

Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. Falkon: An optimal large scale kernel
method. Advances in neural information processing systems, 30, 2017.

Bernhard Scholkopf, Kah-Kay Sung, Christopher JC Burges, Federico Girosi, Partha Niyogi,
Tomaso Poggio, and Vladimir Vapnik. Comparing support vector machines with gaussian kernels
to radial basis function classifiers. IEEE transactions on Signal Processing, 45(11):2758–2765,
1997.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1–48, 2019.

Si Si, Cho-Jui Hsieh, and Inderjit Dhillon. Memory efficient kernel approximation. In International
Conference on Machine Learning, pp. 701–709. PMLR, 2014.

Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In Artificial
intelligence and statistics, pp. 567–574. PMLR, 2009.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop,
D. Lifka, G. D. Peterson, R. Roskies, J. Scott, and N. Wilkins-Diehr. Xsede: Accelerating scien-
tific discovery. Computing in Science & Engineering, 16(05):62–74, sep 2014. ISSN 1558-366X.
doi: 10.1109/MCSE.2014.80.

Mark van der Wilk, Vincent Dutordoir, ST John, Artem Artemev, Vincent Adam, and James
Hensman. A framework for interdomain and multioutput gaussian processes. arXiv preprint
arXiv:2003.01115, 2020.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Grace Wahba. Spline models for observational data. SIAM, 1990.

Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q Weinberger, and Andrew Gordon
Wilson. Exact gaussian processes on a million data points. Advances in Neural Information
Processing Systems, 32, 2019.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel machines.
Advances in neural information processing systems, 13, 2000.

Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable structured gaussian pro-
cesses (kiss-gp). In International conference on machine learning, pp. 1775–1784. PMLR, 2015.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

12

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

