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Abstract001

As artificial intelligence surpasses human capa-002
bilities in text generation, the necessity to au-003
thenticate the origins of AI-generated content004
has become paramount. Unbiased watermarks005
offer a powerful solution by embedding statisti-006
cal signals into language model-generated text007
without distorting the quality. In this paper,008
we introduce MCMARK, a family of unbiased,009
Multi-Channel-based watermarks. MCMARK010
works by partitioning the model’s vocabulary011
into segments and promoting token probabili-012
ties within a selected segment based on a wa-013
termark key. We demonstrate that MCMARK014
not only preserves the original distribution of015
the language model but also offers significant016
improvements in detectability and robustness017
over existing unbiased watermarks. Our ex-018
periments with widely-used language models019
demonstrate an improvement in detectability of020
over 10% using MCMARK, compared to exist-021
ing state-of-the-art unbiased watermarks. This022
advancement underscores MCMARK’s poten-023
tial in enhancing the practical application of024
watermarking in AI-generated texts.025

1 Introduction026

As artificial intelligence outstrips human ability027

in text generation, verifying the authenticity and028

source of AI-created texts is increasingly cru-029

cial. Watermarking of language models (Aaron-030

son, 2022; Kirchenbauer et al., 2023a; Christ et al.,031

2023; Kuditipudi et al., 2023; Hu et al., 2023; Wu032

et al., 2023) offers an effective method to differ-033

entiate between texts generated by humans and034

machines. This approach involves covertly em-035

bedding a statistical signal within the text via a036

watermark generator that uses specific watermark037

keys. Detection of this statistical signal is carried038

out using statistical hypothesis testing, enabling the039

confirmation of the text’s provenance.040

Watermarks that do not introduce distortion041

(Aaronson, 2022; Christ et al., 2023; Kuditipudi042

et al., 2023; Hu et al., 2023; Wu et al., 2023) are par- 043

ticularly crucial in the watermarking of language 044

models. These watermarks are essential as they are 045

provably capable of maintaining the original output 046

distribution of the language model. The expected 047

distribution of the watermarked model, conditioned 048

on the watermark keys, aligns perfectly with that 049

of the original language model, thus maintaining 050

utility and relevance in practical applications. 051

However, current unbiased watermarking ap- 052

proaches face practical challenges. For instance, 053

the unbiased watermark (Hu et al., 2023) requires 054

access to language model (LM) prompts and APIs, 055

EXP-edit (Kuditipudi et al., 2023) incurs a sub- 056

stantial time cost for detection, and DiPmark (Wu 057

et al., 2023) exhibits lower detection accuracy com- 058

pared to biased watermarks like those reported in 059

(Kirchenbauer et al., 2023a). Consequently, en- 060

hancing the practicality of watermarks is an im- 061

perative issue. In our work, we introduce a novel 062

family of unbiased watermarks, termed MCMARK, 063

which exhibit enhanced detectability and robust- 064

ness. In MCMARK, we partition the vocabulary 065

into l segments. During the watermark genera- 066

tion process, a watermark key is used to randomly 067

select a segment. Then, the token probabilities 068

within the selected segment are promoted using our 069

MCMARK-based unbiased algorithm. During de- 070

tection, the presence of the watermark is detected 071

by verifying whether the current token corresponds 072

to the segment associated with the watermark key. 073

Our contribution can be summarized as follows: 074

• We introduced MCMARK, a family of unbi- 075

ased watermarks that provably preserve the 076

output distribution of language models. MC- 077

MARK is adaptable, robust to text modifica- 078

tion, and does not require access to prompt 079

and language model APIs during detection. 080

• We theoretically demonstrate that when the 081

number of segments equals two, MCMARK 082
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offers superior detectability compared to DiP-083

mark(Wu et al., 2023) and STA-1 (Mao et al.,084

2024). We further discuss the trade-offs be-085

tween detectability and robustness in MC-086

MARK.087

• Through comprehensive experiments, we val-088

idate the unbiasedness, detectability, and ro-089

bustness of MCMARK on popular language090

models, such as LLAMA-3. Our results show091

an over 10% improvement in detectability092

compared to the state-of-the-art unbiased wa-093

termarks.094

2 Related Work095

Statistical watermarks. Kirchenbauer et al.096

(2023a) refined the statistical watermarking frame-097

work initially introduced by Aaronson (2022),098

showcasing the efficacy of this technique via com-099

prehensive experiments on large language models.100

They divided the language model tokens into red101

and green lists and favored the green list tokens102

by adjusting their logits with a fixed increment δ.103

Zhao et al. (2023) introduced a unigram watermark104

approach that employs single-gram hashing to gen-105

erate watermark keys, enhancing the robustness of106

statistical watermarks. Liu et al. (2023b) further107

increased the robustness of statistical watermark-108

ing by using the semantics of generated texts as109

watermark keys. Additionally, Liu et al. (2023a)110

developed a scheme for unforgeable watermarks111

that utilizes neural networks to alter token distribu-112

tions, moving away from conventional watermark113

keys. Nevertheless, such methods can substantially114

alter the text distribution, potentially diminishing115

the quality of the content.116

Unbiased watermarks. To maintain the original117

output distribution in watermarked content, several118

researchers have investigated novel approaches for119

token distribution modification. Aaronson (2022)120

pioneered an unbiased watermarking method using121

Gumbel-max to adjust token distribution and em-122

ploying prefix n-grams as watermark keys. Christ123

et al. (2023) used inverse sampling for modifying124

the token distributions of watermarked content on a125

binary language model with watermark keys based126

on token positioning. ITS-edit and EXP-edit (Ku-127

ditipudi et al., 2023) utilized inverse-sampling and128

Gumbel-max respectively for modifying the token129

distributions of watermarked content, with a prede-130

termined watermark key list. Hu et al. (2023) com-131

bined inverse-sampling and γ-reweight strategies132

for watermarking, though their detection method is 133

not model-agnostic. DiPmark (Wu et al., 2023) en- 134

hanced the γ-reweight technique and introduced a 135

model-agnostic detector. STA-1 (Mao et al., 2024) 136

optimized the quality of the watermarked text under 137

the low-entropy scenarios. 138

3 Preliminary 139

Notation. We follow the notations in the previous 140

work (Hu et al., 2023; Wu et al., 2023; Mao et al., 141

2024) to represent the generation task of LLMs. 142

Let the set of vocabulary tokens be denoted by V 143

with cardinality N = |V |. We define V , which 144

includes all possible token sequences of any length 145

including zero. In the context of a language model, 146

token sequences are generated in response to a spe- 147

cific prompt. The probability of generating the 148

next token xt+1 from V , conditioned on the pre- 149

ceding token sequence x1, . . . , xt, is represented 150

as PM (xt+1 | x1:t). 151

In the watermark generator, the LLM utilizes a
private key k ∈ K to reweight the distribution from
PM (xt+1 | x1:t) to PM,w(xt+1 | x1:t, k), where
PM,w indicates a watermarked model and the pri-
vate key k is randomly selected from a key space
K according to a known distribution PK(k). Ac-
cording to (Hu et al., 2023), an unbiased watermark
requires that the expectation of the reweighted dis-
tribution equals that of the original distribution,
i.e.,

Ek∼PK [PM,w(xt+1 | x1:t, k)] = PM (xt+1 | x1:t).

During watermark detection, the user only has 152

access to the watermark key, the reweight strategy, 153

and the generated audio. The detector employs a 154

hypothesis testing approach to ascertain the pres- 155

ence of the watermark signal. The null hypothesis 156

H0 is defined as “The content is generated without 157

the presence of watermarks". The detector adopts a 158

score function based on the watermark key and the 159

reweight strategy, which exhibits statistical bias be- 160

tween the watermarked and unwatermarked token 161

sequences. 162

4 Method 163

Definition 4.1 (Distribution Channel). Given the 164

original LM distribution PM (·|x1:t), the reweight- 165

ing method and the key space, we define each 166

unique watermarked distribution PM,w(·|x1:t, k) 167

as a distribution channel. The set of distribution 168
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channels is the set of all possible LM distributions169

after watermarking, i.e., {PM,w(·|x1:t, k)|k ∈ K}.170

For example, for the inverse-sampling and the171

Gumbel-max method, the set of distribution chan-172

nels is {δ(x)|x ∈ V }, where δ is the Dirac dis-173

tribution, δ(x) means the probability of sampling174

token x is 1. It is easy to see the cardinality of the175

distribution channel set is |V |.176

We can define the unbiased watermark from177

the perspective of distribution channels. Let178

{P1, . . . , Pl} be a set of distribution channels. De-179

fine Ki as the subset of watermark keys that satisfy180

PM,w(· | x1:t, k) = Pi for all k ∈ Ki. An unbiased181

watermark should meet the following condition:182

∀x ∈ V , it should have:183

l∑
i=1

Pi(x)Ek∼PK

[
1{k∈Ki}

]
= PM (x | x1:t).184

4.1 MCMARK Overview185

By utilizing the distribution channels, we can de-186

sign a new watermarking framework. During gen-187

eration, the watermark key is used to pseudoran-188

domly select one of these channels as the basis for189

the next token distribution. For detection, the algo-190

rithm verifies whether a given token was generated191

by our model by assessing whether the token aligns192

with the recovered distribution channel it. The de-193

tailed algorithms for the generation and detection194

processes are provided in Alg. 3 and Alg. 4.195

Based on this framework, we propose MCMARK,196

a family of Multi-Channel-based unbiased water-197

marking algorithms. MCMARK operates by con-198

structing a set of l distribution channels. We divide199

the vocabulary V into l equal parts, V1, . . . , Vl. For200

each distribution channel Pi, we increase the prob-201

ability of tokens in Vi. During detection, given202

the recovered distribution channel index it, if the203

generated token xt ∈ Vit , we assume this token is204

generated by the watermarked distribution. The de-205

tailed algorithms for the generation and detection206

processes are shown in Alg. 1 and Alg. 2.207

The effectiveness of our proposed wa-208

termarking approach hinges on designing209

optimal distribution channels that maximize210

Eit∈{1,2,··· ,l}
∑

x∈Vit
Pit(x), that is if the selected211

channel is it, the probability of generating tokens212

within Vit should be maximized to ensure that213

more tokens can be effectively detected.214

In the following sections, we detail the process215

for obtaining the optimal distribution channels.216

Unwatermarked
Distribution: 

Distribution
Channel 1: 
Distribution

Channel 2: 

Unbiasedness
requirements:

Figure 1: Illustration of the optimal solution for the
binary channel example, where we set the red and green
list token probabilities to Pr = 0.3 and Pg = 0.7 re-
spectively.

4.2 Finding Unbiased Watermarks as an 217

Optimization Problem 218

A binary channel example. Using the con- 219

cept of distribution channels, we can explore 220

new unbiased watermarks by identifying sets 221

{P1, . . . , Pl} and {K1, . . . ,Kl}. Consider the sim- 222

plest case where l = 2 and Ek∼PK [1k∈K1 ] = 223

Ek∼PK [1k∈K2 ] = 1
2 . In this scenario, the wa- 224

termark possesses two distribution channels with 225

equal probability. To ensure detectability of the 226

watermark (in the presence of a watermark key), 227

the distributions P1 and P2 must be sufficiently dis- 228

tinct. A practical approach involves dividing all 229

tokens into two lists, red and green. In distribution 230

channel P1, we increase the sum of the probability 231

of tokens in the red list (P1r :=
∑

x∈Vr
P1(x)), 232

and in distribution channel P2, we increase the 233

probability of tokens in the green list (P2g). Let 234

Pr and Pg denote the cumulative probabilities of 235

the red and green tokens in the original language 236

model distribution, respectively. The probabilities 237

P1r, P1g, P2r, P2g must satisfy the following con- 238

straints for maintaining unbiased properties: 239
P1r + P1g = 1,
P2r + P2g = 1,
P1r + P2r = 2Pr,
P1g + P2g = 2Pg.

(1) 240

The first two constraints ensure that the sum of 241

probabilities within a distribution equals 1, while 242

the last two constraints are necessary to uphold the 243

unbiased nature of the watermark. 244

In order to maximize the detection efficiency, we
expect the variation between P1 and P2 to be as
large as possible. Thus our optimization objective
is

maxP1r + P2g.

Assuming w.l.o.g. Pr ≤ 0.5, it is easy to identify 245

the optimal solution is P1r = 2Pr and P2g = 1 246

with the constrains in Eq. 1. See Figure 1 for an 247

illustration of the optimal solution. In this con- 248

figuration, the probabilities of all red tokens are 249
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doubled in the first distribution channel, while the250

probabilities of all green tokens are doubled in both251

channels.252

Optimization problem. We can generalize the bi-253

nary case (l = 2) to more complex scenarios. Con-254

sider Ek∼PK [1k∈K1 ] = · · · = Ek∼PK [1k∈Kl
] = 1

l .255

Similarly to the l = 2 case, we can divide the256

token set into l equal parts, V1, . . . , Vl, where257

|Vi| = |V |
l . For each distribution channel Pi, we in-258

crease the probability of tokens in Vi. Denoting by259

Pi,Vj :=
∑

x∈Vj
Pi(x) the probability of part Vj in260

channel Pi, and PVj the sum of token probabilities261

within Vj (i.e. Ex∼PM
[1x∈Vj ]), we formulate the262

following optimization problem:263

max

l∑
i=1

Pi,Vi ,

s.t.

{∑l
j=1 Pi,Vj = 1, ∀i = 1, . . . , l,∑l
i=1 Pi,Vj = lPVj , ∀j = 1, . . . , l.

(2)264

The constraint
∑l

j=1 Pi,Vj = 1 ensures that the265

total probability within each distribution channel266

Pi sums to 1. This requirement guarantees that267

each Pi represents a valid probability distribution.268

Additionally, the constraint
∑l

i=1 Pi,Vj = lPVj en-269

sures that the expected probability of Vj across all270

distribution channels equals the original probability271

of Vj in the model distribution PM . This maintains272

the unbiased nature of the watermark.273

Optimization Solution. Given that274

max
∑l

i=1 Pi,Vi ≤
∑l

i=1maxPi,Vi , we first275

calculate each maxPi,Vi individually and then276

demonstrate the feasibility of
∑l

i=1maxPi,Vi .277

With the constraint
∑l

i=1 Pi,Vj = lPVj ,278

we have Pi,Vi ≤ min{1, lPVi} and279

maxPi,Vi = min{1, lPVi}. Therefore, we280

obtain:281

max
l∑

i=1

Pi,Vi ≤
l∑

i=1

min{1, lPVi}.282

We now show that
∑l

i=1min{1, lPVi} is feasible.283

We propose one solution:284

Pi,Vj =

{
min{1, lPVi}, if i = j,

(1− lPVi)+(lPVj − 1)+, if i ̸= j.
(3)285

where (1 − lPVi)+ := max{0, 1 − lPVi} and286

(lPVj − 1)+ := max{0, lPVj − 1}. Please refer287

Expanding  times

Original Unwatermarked
Distribution Distribution Channels

Redistribute the part larger than 1:

Figure 2: Illustration of the optimal solution (Eq. 3) for
creating the distribution channels for MCMARK.

Figure 2 for an illustration of the optimal solution. 288

The token probabilities within a channel are given 289

by Pi(x) =
Pi,Vj

PVj
PM (x|x1:t),∀x ∈ Vj . 290

4.3 Watermarking Methodology 291

With the optimization solution defined, we can es- 292

tablish our watermarking algorithm. Following the 293

approach outlined in (Kirchenbauer et al., 2023a), 294

we utilize a fixed secret key sk and the n-gram pre- 295

ceding content xt−n:t−1 as the watermark key to 296

generate the token xt. During watermark genera- 297

tion, we first split the vocabulary into l parts and 298

compute the set of distribution channels according 299

to Eq. 3. We then pseudorandomly select a prob- 300

ability channel based on the watermark key and 301

sample the next token from the selected probability 302

channel. The detailed algorithm is presented in 303

Algorithm 1. 304

During detection, we are given the generated 305

content and the secret key. With this information, 306

we can recover the index it of the probability chan- 307

nel used for generating the token xt at step t. As 308

in Pit , we increase the probability of tokens in Vit , 309

thus we can detect the watermark signal by check- 310

ing whether xt is in Vit or not. We define a hy- 311

pothesis test with null hypothesis H0: the content 312

is generated without watermarking. Denoted by 313

x1:T a given content sequence, we can use the test 314

statistic Φ(x1:T ) =
∑T

t=1 1xt∈Vit
, where it is the 315

index of the probability channel at step t recovered 316

from the watermark keys. 317

Under the null hypothesis, Φ(x1:T ) follows a 318

binomial distribution with a success rate of 1
l . Thus, 319

we have the following tail bound: 320

Pr(Φ(x1:T ) ≥ z) =

T∑
i=⌈z⌉

(
T

i

)(
1

l

)i(
l − 1

l

)T−i

321

The theoretical false positive rate is therefore: 322
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T∑
i=Φ(x1:T )

(
T

i

)(
1

l

)i( l − 1

l

)T−i

(4)323

Algorithm 1 MCMARK generator.

1: Input: pretrained LM PM , secret key sk,
prompt x−m:0, generate length T ∈ N.

2: for t = 1, . . . , T do
3: Split the vocabulary into l parts

{V1, ..., Vl}.
4: Get the probability distribution of t-th to-

ken PM (· | x−m:t−1).
5: Get PVj =

∑
x∈Vj

PM (x | x−m:t−1), j =

1, ..., l
6: Generate the distribution channels

{P1, ..., Pl} by Eq. 3
7: Pseudorandomly select a probability

channel Pi based on the watermark key
(sk,xt−n:t−1).

8: Sample the next token xi from Pi.
9: return x1:T .

324

Algorithm 2 MCMARK detector.
1: Input: pretrained LM PM , generated tokens

x1:T , false positive rate threshold p0.
2: Initialize Φ = 0
3: for t = 1, . . . , T do
4: Recover the index of the selected distribu-

tion channel it based on the watermark key.
5: Φ = Φ+ 1xt∈Vit

.

6: Get theoretical false positive rate p by Eq. 4.
7: if p ≤ p0 then
8: return x1:T is watermarked.
9: else

10: return x1:T is not watermarked.

4.4 Theoretical analysis325

During the watermark detection process, situations326

may arise where the current token xt is sampled327

from the distribution channel Pit but does not be-328

long to the designated subset Vit . This discrepancy329

occurs when Ex∼PM
[1x∈Vit

] < 1
l . Under such330

conditions, detection of the watermark signal is not331

possible even though xt is generated from the wa-332

termarked distribution. This leads us to define the333

true-negative rate, which quantifies the frequency334

of these undetectable instances, as follows:335

Definition 4.2 (Expected True-Negative Rate). 336

We define the true-negative rate, denoted as 337

PTN (x, PM,w(· | k),Φ), as the probability that a 338

token is generated from the watermarked distribu- 339

tion (true) but cannot be detected by the watermark 340

detector (negative): PTN (x, PM,w(· | k),Φ) := 341

Pr({x ∼ PM,w(· | k),Φ(x) = 0}). The expected 342

true-negative rate is then defined as 343

ETN := Ek∼PK [PTN (x, PM,w(· | k),Φ)]. 344

The true-negative rate is relevant for many 345

statistical watermarks, including Soft water- 346

mark (Kirchenbauer et al., 2023a), γ-reweight (Hu 347

et al., 2023), DiPmark (Wu et al., 2023), and STA- 348

1 (Mao et al., 2024). Notably, γ-reweight is a spe- 349

cial case of DiPmark. In the subsequent analysis, 350

we will compare the expected true-negative rates 351

of DiPmark, STA-1, and our proposed method. 352

Both DiPmark and STA-1 implement a red-green 353

list strategy. We denote the red list probability as 354

PVr := Ex∼PM
[1x∈Vr ]. The expected true nega- 355

tive rate of DiPmark (EDiP
TN ), STA-1 (ESTA

TN ) and 356

MCMARK (EMCmark
TN ) are given by: 357


EDiP

TN = max{PVr − α, 0}+max{PVr − (1− α), 0}.
ESTA

TN = P 2
Vr
.

EMCmark
TN =

∑l
i=1 max{0, 1/l − PVi}.

358

If the probabilities PVi are evenly distributed, 359

that is, PVi = 1
l , then the expected true-negative 360

rate for MCMARK, EMCmark
TN , equals zero, and 361

watermark signals are embedded uniformly across 362

all tokens. In practice, increasing l tends to re- 363

sult in more unevenly distributed PVi . In the most 364

extreme case, when l = |V |, each segment Vi con- 365

tains exactly one token, which represents the most 366

uneven distribution of PVi and thus the expected 367

true-negative rate will be large. 368

To compare with DiPmark and STA-1, we con- 369

sider a special case of MCMARK where l = 2, 370

meaning there are two distribution channels, and 371

the vocabulary is segmented into a red and a green 372

list. In this scenario, the expected true-negative rate 373

for MCMARK simplifies to: 374

EMCmark
TN = max

{
0,

1

2
− PVr

}
+max

{
0, PVr − 1

2

}
=

∣∣∣∣12 − PVr

∣∣∣∣ . (5) 375

Note that all of EDiP
TN , ESTA

TN , and EMCmark
TN are 376

correlated with PVr . Assuming a uniform distri- 377

bution of PVr on [0, 1], we compute EPVr
[EDiP

TN ], 378
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Figure 3: Validating unbiased property of MCMARK. Top: text summarization task with perplexity metric. bottom:
machine translation task with BLEU metric.

Table 1: Detectability comparison with LLama2 and C4 dataset on text generation task. Notice, as the detectors of
ITS-edit and EXP-edit do not provide a theoretical guarantee of the false positive rate, we report the true positive
rate at the empirical false positive rate instead. ’-’ refers to unavailable results. The lack of results for ITS-edit and
EXP-edit at an FPR of 0.01% is because, in their original setting, the lowest achievable FPR does not reach 0.01%.

TPR@FPR=1%↑ TPR@FPR=0.1%↑ TPR@FPR=0.01%↑ Median p-value↓

KGW(δ=0.5) 38.78% 19.16% 10.20% 2.809e-2
KGW(δ=1.0) 86.88% 74.44% 61.55% 5.494e-6
KGW(δ=1.5) 96.69% 93.83% 90.08% 1.556e-12
KGW(δ=2.0) 99.34% 98.79% 97.79% 6.580e-22
Unigram(δ=0.5) 78.63% 63.51% 47.54% 1.607e-4
Unigram(δ=1.0) 96.99% 92.59% 88.08% 1.745e-9
Unigram(δ=1.5) 98.94% 97.54% 96.13% 1.051e-16
Unigram(δ=2.0) 99.88% 99.52% 98.93% 5.387e-25

ITS-edit 61.77% 54.49% - 4.000e-4
EXP-edit 89.01% 86.35% - 2.000e-4
γ-reweight 89.17% 81.79% 75.83% 4.467e-8
DiPmark(α=0.4) 87.66% 78.77% 71.77% 1.236e-7
DiPmark(α=0.3) 81.88% 69.88% 61.65% 5.284e-6
STA-1 84.93% 71.58% 57.76% 2.656e-5

MCMARK(l=20) 98.96% 98.38% 97.69% 8.098e-30

EPVr
[ESTA

TN ], and EPVr
[EMCmark

TN ] as (α− 1
2)

2+ 1
4 ,379

1
3 , and 1

4 , respectively. This implies that MCMARK380

achieves superior detectability compared to DiP-381

mark and STA-1, as indicated by the lower ex-382

pected true negative rate. Furthermore, the vari-383

ances of EDiP
TN , ESTA

TN , and EMCmark
TN are calculated384

as 5
48 − (α− 1

2)
2
[
(α+ 1

6)
2 + 1

18

]
, 4
45 , and 1

48 , re-385

spectively. Given that in DiPmark α ≤ 1
2 , MC-386

MARK also achieves the minimum variance among387

all three methods. This indicates that MCMARK388

can more consistently generate watermarked sen-389

tences with a low true negative rate.390

4.5 Robustness-detectability trade-off391

An adversary may attempt to alter the output to-392

ken to disrupt the watermark detection. In MC-393

MARK detection, if a token xt is modified to x′t394

and x′t /∈ Vit , the watermark signal is effectively395

removed. Consequently, the probability that a wa-396

termark is removed due to such an alteration is 397

given by |Vit |
|V | . Given that |Vit | =

|V |
l , the proba- 398

bility that a watermark is removed simplifies to 1
l 399

Therefore, increasing l decreases the robustness of 400

the watermark, as it increases the likelihood that an 401

adversary can successfully remove the watermark 402

by modifying the token. 403

On the other hand, we show that moderately 404

increasing l can enhance the detectability of the 405

watermark (see Appendix B for a detailed discus- 406

sion). Thus, we identify a fundamental trade-off: 407

increasing the number of distribution channels l 408

enhances the detectability of the watermark, yet it 409

simultaneously reduces its robustness. We empiri- 410

cally validate our analysis in Figure 5 and 6. 411

5 Experiments 412

The experiments consist of two main parts. First, 413

we validate that our proposed method is unbiased 414
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Figure 4: Comparative analysis of MCMARK against SOTA unbiased watermarks across various language models
and datasets on watermark detectability.

by demonstrating that its output quality for machine415

translation and text summarization tasks is similar416

to the baseline without watermarking. Second, we417

showcase the effectiveness of MCMARKthrough418

comprehensive experiments on text generation. Af-419

ter that, we discuss the robustness of our method420

and the detectability-robustness trade-off in MC-421

MARK. The detailed experimental settings can be422

found in Appendix C.423

5.1 Unbiased Property Validation424

Since MCMARK is provably unbiased, we use this425

empirical experiment as a support for this prop-426

erty. We follow the evaluation process of (Hu et al.,427

2023). Specifically for MCMARK, we select num-428

ber of the distribution channels l from the set {2, 3,429

4, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 4000,430

8000, 16000, 32000}. Upon examining Figure 3,431

we find across all l values, the BLEU scores in the432

machine translation tasks and the perplexity values433

in the text summarization tasks remain consistently434

similar between MCMARK and the original lan-435

guage model. In appendix Table 3 and Table 4,436

we provide additional unbiasedness evaluation on437

both biased and unbiased watermarks, the results438

indicate that MCMARK can preserve the LM distri-439

bution compared to the biased watermarks.440

5.2 Detectability441

Following the evaluation metric of the previous442

works (Kuditipudi et al., 2023; Wu et al., 2023), we443

report the true positive rate at guaranteed false pos- 444

itive rates, i.e., TPR@FPR={1%, 0.1%, 0.01%}. 445

Notice, as the detectors of ITS-edit and EXP-edit 446

do not provide a theoretical guarantee, we report 447

the true positive rate at the empirical false positive 448

rate following their original setting. From Table 1, 449

we see that MCMARK achieved the best detectabil- 450

ity comparing with all unbiased watermarks, at 451

least 14% improvement on all TPR@FPR metrics. 452

Besides, MCMARK outperformed the biased wa- 453

termarking algorithm KGW and Unigram when 454

δ ∈ {0.5, 1.0, 1.5}, and achieved comparable per- 455

formance with them when δ = 2.0. In Figure 4, 456

we present a comparative analysis of MCMARK 457

against SOTA unbiased watermarks across various 458

language models and datasets. Our method, rep- 459

resented by the last bar in each plot, consistently 460

outperforms all comparisons across the board. Fur- 461

ther experimental results are detailed in Figure 7. 462

Time Efficiency. Similar to the KGW watermark, 463

Unigram, and DiPmark, the time cost introduced 464

by the MCMARK generator occurs only during the 465

modification of token probabilities in the genera- 466

tion process. Additionally, the MCMARK detector 467

is model-agnostic. Empirically, the time efficiency 468

of the MCMARK method matches that of KGW, Un- 469

igram, γ-reweight, DiPmark, and STA-1. Notably, 470

the detectors of ITS-edit and EXP-edit require thou- 471

sands of inferences (Wu et al., 2023), which signif- 472

icantly reduces their detection efficiency compared 473
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Table 2: Robustness comparison of unbiased watermarks, we use metrics TPR@FPR=0.1% and the median p-value.

ϵ=0.05 ϵ=0.1 ϵ=0.2
TPR↑ p-value↓ TPR↑ p-value↓ TPR↑ p-value↓

ITS-edit 50.40% 7.998e-4 43.69% 6.399e-3 33.90% 4.839e-2
EXP-edit 81.35% 2.000e-4 78.27% 2.000e-4 74.88% 2.000e-4
γ-reweight 72.38% 4.241e-6 59.40% 1.975e-4 31.07% 1.195e-2
DiPmark(α=0.4) 69.63% 8.154e-6 58.13% 1.975e-4 29.06% 1.996e-2
DiPmark(α=0.3) 59.53% 1.363e-4 46.24% 2.123e-3 20.59% 4.059e-2
STA-1 60.84% 2.253e-4 47.15% 1.462e-3 21.35% 1.843e-2

MCMARK(l=20) 97.11% 6.068e-23 96.07% 2.140e-18 88.79% 3.731e-10
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Figure 5: Median p-value vs number of distribution
channels l in MCMARK.
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Figure 6: TPR@FPR=0.1% vs number of distribution
channels l in MCMARK.

to other methods.474

5.3 Robustness475

We compare the robustness of MCMARK (l = 20)476

with the SOTA unbiased watermark approaches477

ITS-edit, EXP-edit, γ-reweight, DiPmark, and478

STA-1. In this context, we use the text gen-479

eration task with 1,000 generated sequences on480

LLaMA-2. For robustness evaluation, we manipu-481

late ϵ ∈ {0.05, 0.1, 0.2} portion of the text tokens482

through token replacement attack (Kirchenbauer483

et al., 2023b; Wu et al., 2023; Chen et al., 2024).484

In Table 2, we present the TPR at an FPR of 485

0.1% and the median p-value for various water- 486

marks across different attack strengths, denoted by 487

ϵ. MCMARK consistently demonstrates superior 488

robustness, outperforming all baseline methods in 489

effectively detecting watermarked sentences. 490

5.4 Detectability-robustness trade-off 491

In Section 4.5, we discuss the detectability- 492

robustness trade-off of MCMARK w.r.t. l. In this 493

experiment, we empirically verify this trade-off 494

by comparing the TPR@FPR=0.1% and the me- 495

dian p-value with the number of the distribution 496

channels l ∈{2, 3, 4, 5, 10, 20, 50, 100, 200, 500, 497

1000, 2000, 4000, 8000, 16000, 32000}. We use 498

Llama2 model with C4 subset on the text gener- 499

ation task. For robustness evaluation, we mod- 500

ify ϵ ∈ {0.05, 0.1, 0.2} portion of the text tokens 501

through token replacement attack (Kirchenbauer 502

et al., 2023b; Wu et al., 2023; Chen et al., 2024). 503

In Figures 5 and 6, we report on the detectability 504

of MCMARK using two metrics: TPR@FPR=0.1% 505

and median p-value. The robustness of MCMARK 506

initially increases with l before subsequently de- 507

creasing, aligning with the analysis presented in 508

Section 4.5. 509

6 Conclusion 510

In summary, we present MCMARK, a novel family 511

of unbiased watermarks that significantly enhance 512

detectability and robustness in large language mod- 513

els without distorting text output. Our experimental 514

results demonstrate a more than 10% improvement 515

in detectability over existing state-of-the-art unbi- 516

ased watermarking approaches, validated across 517

various models and datasets. MCMARK represents 518

a significant advancement in the practical applica- 519

tion of watermarking technology in LMs. 520
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Limitations521

There is an inherent trade-off between the robust-522

ness and detectability of our proposed MCMARK.523

Increasing the number of distribution channels l524

can potentially enhance detectability but reduce ro-525

bustness against attacks where an adversary may526

modify output tokens to disrupt the watermark de-527

tection.528
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A Algorithms646

Algorithm 3 Generation framework.
1: Input: pretrained LM PM , prompt x−m:0,

generate length T ∈ N.
2: for t = 1, . . . , T do
3: Get the probability distribution of t-th to-

ken PM (· | x−m:t−1).
4: Generate the probability channels

{P1, ..., Pl}
5: Pseudorandomly select a probability chan-

nel Pi based on the watermark key.
6: Sample the next token xi from Pi.
7: return x1:T .

Algorithm 4 Detection framework.
1: Input: pretrained LM PM , generate length

T ∈ N, generated tokens x1:T .
2: for t = 1, . . . , T do
3: Recover the index of the selected distribu-

tion channel it based on the watermark key.
4: Check whether token xi is generated from

the it-th distribution channel.

B Robustness-detectability trade-off647

An adversary may attempt to alter the output to-648

ken to disrupt the watermark detection. In MC-649

MARK detection, if a token xt is modified to x′t650

and x′t /∈ Vit , the watermark signal is effectively651

removed. Consequently, the probability that a wa-652

termark is removed due to such an alteration is653

given by |Vit |
|V | . Given that |Vit | =

|V |
l , the proba-654

bility that a watermark is removed simplifies to 1
l655

Therefore, increasing l decreases the robustness of656

the watermark, as it increases the likelihood that an657

adversary can successfully remove the watermark658

by modifying the token.659

On the other hand, moderately increas-660

ing l can enhance the detectability of the661

watermark. Recall that Pr(Φ(x1:T ) ≥662

z) =
∑T

i=⌈z⌉
(
T
i

) (
1
l

)i ( l−1
l

)T−i
. The deriva-663

tive with respect to l of each term in the664

sum is given by: d
dl

((
1
l

)i ( l−1
l

)T−i
)

=665 (
1
l

)i+2 ( l−1
l

)T−i
(
−il + (T − i) l

l−1

)
, indicating666

that when l ≥ 2 and i > T
2 ,

(
1
l

)i ( l−1
l

)T−i
667

decreases with increasing l. Typically, the score668

Φ(x1:T ) is greater than T
2 , so increasing l may669

reduce the detection p-value. This reduction makes 670

the statistical distinction between watermarked 671

and unwatermarked text more significant, thereby 672

improving the detectability of the watermark. 673

Thus, we identify a fundamental trade-off: in- 674

creasing the number of distribution channels l 675

enhances the detectability of the watermark, yet it 676

simultaneously reduces its robustness. 677

However, blindly increasing l may also lead to 678

bad detectability. The detectability is not only re- 679

lated to the distribution of Φ(x1:n) under the null 680

hypothesis but also the scale of Φ(x1:n). If l is too 681

large, the expected true negative rate EMCmark
TN = 682∑l

i=1max{0, 1/l − pVi} might be poor, since pVi 683

are more likely to be unevenly distributed. We 684

empirically validate our analysis in Figure 5 and 6. 685

C Experimental settings 686

687

Baselines We evaluate the performance of our 688

methods against various baselines, including two 689

biased watermarking approaches, KGW (Kirchen- 690

bauer et al., 2023a) and Unigram (Zhao et al., 691

2023), as well as five unbiased watermarking al- 692

gorithms, ITS-edit (Kuditipudi et al., 2023), EXP- 693

edit (Kuditipudi et al., 2023), γ-reweight (Hu et al., 694

2023), DiPmark (Wu et al., 2023) and STA-1 (Mao 695

et al., 2024). 696

Models and Datasets we ustilize Llama-2-7b- 697

chat-hf (Touvron et al., 2023), Llama-3.2-3B- 698

Instruct (Dubey et al., 2024), Mistral-7B-Instruct- 699

v0.3 (Jiang et al., 2023), Phi-3.5-mini-instruct (Ab- 700

din et al., 2024)for text generation tasks to evaluate 701

the effectiveness of our proposed MCMARK. 702

Following Kirchenbauer et al. (2023a); Hu et al. 703

(2023), we use a subset from the C4 dataset (Raffel 704

et al., 2020) for text generation experiments. Addi- 705

tionally, we also include three MMW datasets (Piet 706

et al., 2023), Dolly CW (Conover et al., 2023) and 707

two tasks from WaterBench (Tu et al., 2023). 708

For unbiasedness validation, we adopt the set- 709

tings from Hu et al. (2023); Wu et al. (2023), em- 710

ploying MBart (Liu et al., 2020) for machine trans- 711

lation and BART (Lewis, 2019) for text summariza- 712

tion. 713

In the machine translation experiments, we use 714

the WMT16 ro-en dataset (Bojar et al., 2016). For 715

text summarization, while for text summarization, 716

we utilize the CNN/DailyMail dataset (See et al., 717

2017). 718
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Watermarking parameters. We evaluate the de-719

tectability of MCMARK on the text generation720

task with different language models. We gener-721

ate 1,000 examples for each tasks. We use the722

prefix 2-gram together with a secret key as the723

watermark keys. We select α ∈ {0.3, 0.4} for DiP-724

mark, and δ ∈ {0.5, 1.0, 1.5, 2.0} and γ = 0.5725

for KGW watermark (Kirchenbauer et al., 2023a),726

δ ∈ {0.5, 1.0, 1.5, 2.0} for Unigram (Zhao et al.,727

2023). For ITS-edit (Kuditipudi et al., 2023), EXP-728

edit (Kuditipudi et al., 2023), γ-reweight (Hu et al.,729

2023) and STA-1 (Mao et al., 2024), we follow the730

settings in the original papers. For MCMARK we731

set the number of distribution channels l = 20.732

D Additional Experiments733

In this section, we provide additional comparative734

analysis regarding the unbiased property and de-735

tectability of MCMARK. We also include an abla-736

tion study on the number of distribution channels l737

in MCMARK.738

Unbiased Property. In Tables 3 and 4, we con-739

duct an additional evaluation of unbiasedness for740

both biased and unbiased watermarks. The results741

confirm that MCMARK effectively preserves the742

language model’s distribution, outperforming the743

biased watermark alternatives.744

Detectability. In Figure 7, we assess the detectabil-745

ity of MCMARK on tasks such as MMW Book Re-746

port, Longform QA, and Finance QA. The results747

demonstrate that MCMARK consistently exhibits748

superior detectability across all tested models and749

datasets.750

Ablation Study with l. In Figures 8, 9, 10, and751

11, we present an analysis of the relationship be-752

tween detectability and the number of distribution753

channels l in MCMARK. Our findings indicate that754

detectability initially increases and then decreases755

with respect to l, illustrating a critical trade-off in756

the parameter’s configuration.757

Table 3: Unbiasedness evaluation on text summarization
tasks.

BERT Score↑ PPL↓ Rouge-1↑

Baseline 0.3175 6.3932 0.3768

KGW(δ=0.5) 0.3152 6.4894 0.3746
KGW(δ=1.0) 0.3125 6.8647 0.3742
KGW(δ=1.5) 0.3067 7.4633 0.3673
KGW(δ=2.0) 0.2996 8.4847 0.3605

Unigram(δ=0.5) 0.3160 6.5302 0.3754
Unigram(δ=1.0) 0.3132 6.8145 0.3717
Unigram(δ=1.5) 0.3081 7.4693 0.3647
Unigram(δ=2.0) 0.2990 8.4182 0.3545

ITS-edit 0.3147 6.5302 0.3758
EXP-edit 0.3209 5.9945 0.3775
γ-reweight 0.3164 6.4414 0.3765
DiPmark(α = 0.4) 0.3178 6.4127 0.3773
DiPmark(α = 0.3) 0.3169 6.3867 0.3765
STA-1 0.3182 6.4118 0.3777

MCMARK(l=20) 0.3168 6.3864 0.3763

Table 4: Unbiasedness evaluation on machine transla-
tion tasks.

BERT Score↑ BLEU↑

Baseline 0.5576 20.35

KGW(δ=0.5) 0.5560 20.25
KGW(δ=1.0) 0.5555 20.02
KGW(δ=1.5) 0.5489 18.95
KGW(δ=2.0) 0.5420 18.28

Unigram(δ=0.5) 0.5570 20.49
Unigram(δ=1.0) 0.5576 20.02
Unigram(δ=1.5) 0.5459 19.05
Unigram(δ=2.0) 0.5330 18.51

ITS-edit 0.5700 21.29
EXP-edit 0.5600 20.00
γ-reweight 0.5548 20.12
DiPmark(α = 0.4) 0.5614 20.65
DiPmark(α = 0.3) 0.5563 20.48
STA-1 0.5532 19.83

MCMARK(l=20) 0.5588 20.16
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Figure 7: Comparative analysis of MCMARK against SOTA unbiased watermarks across various language models
and datasets on watermark detectability.
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Figure 8: Left: Median p-value vs number of distribution channels l in MCMARK with Mistral-7B. Right:
TPR@FPR=0.1% vs number of distribution channels l in MCMARK with Mistral-7B.
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Figure 9: Left: Median p-value vs number of distribution channels l in MCMARK with Llama2-7B. Right:
TPR@FPR=0.1% vs number of distribution channels l in MCMARK with Llama2-7B.
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Figure 10: Left: Median p-value vs number of distribution channels l in MCMARK with Llama3-7B. Right:
TPR@FPR=0.1% vs number of distribution channels l in MCMARK with Llama3-7B.

2 3 4 5 10 20 50 167 501
1002

2004
4008

8016
16032

32064

Number of distribution channels l

10

20

30

40

50

60

70

80

90

100

TP
R@

FP
R=

0.
1%

MMW Book Report
MMW Fake News
MMW Story
Dolly CW
WaterBench Longform QA
WaterBench Finance QA

(a) TPR@FPR=0.1% vs l
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(b) Median p-value vs l

Figure 11: Left: Median p-value vs number of distribution channels l in MCMARK with Phi3.5-Mini. Right:
TPR@FPR=0.1% vs number of distribution channels l in MCMARK with Phi3.5-Mini.
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