ROMA: REGULARIZATION FOR OUT-OF-DISTRIBUTION DETECTION WITH MASKED AUTOENCODERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Existing out-of-distribution (OOD) detection methods without outlier exposure learn effective in-distribution (ID) representations distinguishable for OOD samples, which have shown promising performance on many OOD detection tasks. However, we find a performance degradation in some challenging OOD detection, where pretrained networks tend to perform worse during the fine-tuning process, exhibiting the over-fitting of ID representations. Motivated by this observation, we propose a critical task of hidden OOD detection, wherein ID representations provide limited or even counterproductive assistance in identifying hidden OOD data. To address this issue, we introduce a novel Regularization framework for OOD detection with Masked Autoencoders (ROMA), which utilizes the masked image modeling task to regularize the network. With distribution-agnostic auxiliary data exposure, ROMA notably surpasses previous OOD detection methods in hidden OOD detection. Moreover, the robustness of ROMA is further evidenced by its state-of-the-art performance on benchmarks for other challenging OOD detection tasks.

024 025

026 027

003 004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

028 Neural networks are unreliable to provide predictions for samples that fall outside of the training 029 distribution (in-distribution), leading to insecurity of deep learning in safety-critical applications (Zhu et al., 2023; Caruana et al., 2015; Eykholt et al., 2018). Thus, it is important to enable the neural network to effectively distinguish such out-of-distribution (OOD) inputs from in-distribution (ID) 031 samples, which is the task of OOD detection. There is a rich line of research on OOD detection in recent years, which can be roughly divided into two categories: 1) Data-driven methods utilize 033 outlier exposure to let the network learn OOD features in a supervised way (Hendrycks et al., 2019b; 034 Mohseni et al., 2020), which require human effort to determine the distribution of outliers (Katz-Samuels et al., 2022). 2) Training-driven methods are based on the source data without outliers. These methods use source data to train or fine-tune the network for effective ID representation to distinguish 037 OOD samples (Bendale & Boult, 2016; Hendrycks & Gimpel, 2016; Liang et al., 2018; Wei et al., 2022). Due to additional human effort (Katz-Samuels et al., 2022), data-driven methods have limited application in the real world and the latter ones attract more attention from researchers. Although existing training-driven methods achieving good performance of OOD detection (Hsu et al., 2020; 040 Liu et al., 2020; Wang et al., 2022a), recent research discovers that there is significant performance 041 degradation in challenging OOD detection (Yang et al., 2022; Zhang et al., 2023b), indicating the 042 existence of specific OOD samples to trick the network with effective ID representation. 043

In our work, we address a novel OOD detection task (named hidden OOD detection) in the context of
image classification, wherein the ID representation offers limited or even counterproductive assistance
for OOD detection. Specifically, hidden OOD samples in this task exhibit a distinct distribution from
the ID samples in a generalized feature space but share similar features in the network's feature space
learned for ID representation. As ID representation is no longer effective to detect hidden OOD
samples, learning for ID objective makes it easier for those OOD samples to trick the network, which
poses a potential risk to training-driven OOD detection methods and constrains their upper bounds
for OOD detection.

To address this prospective over-fitting concern in OOD detection, we construct specific (ID, hidden OOD) pairs and propose a novel Regularization framework for OOD detection with Masked Autoencoders (ROMA). With great success of pre-trained masked autoencoders (MAE) (He et al., 2022a;

054 Feichtenhofer et al., 2022; Bai et al., 2023), the MAE with masked image modeling (MIM) (He 055 et al., 2022a; Bao et al., 2021) on large dataset extracts generalized features beneficial to numerous 056 downstream tasks. Inspired by this, ROMA adopts MAE pre-trained by MIM pretext task as the basic 057 network. During the fine-tuning process, ROMA enables the MAE to learn supervised classification 058 from source images and self-supervised reconstruction from masked auxiliary images simultaneously, regularizing the network to preserve generalized features against hidden OOD samples. It is noteworthy that auxiliary images in self-supervised reconstruction are totally unlabeled. Unlike methods 060 based on outliers mining, unlabeled data used for ROMA can be easily sampled from the pre-training 061 datasets or even the source data. 062

063 We extensively evaluate ROMA in hidden OOD detection and standard OOD detection benchmarks 064 based on OpenOOD (Yang et al., 2022). ROMA shows effective regularization for hidden OOD detection and improves the metrics (AUROC↑/FPR95↓) of OOD detection from 91.80%/33.88% 065 to 96.91%/19.92%. For benchmarks in OpenOOD, ROMA outperforms competitive baselines, 066 achieving state-of-the-art (SOTA) AUROC of 97.32%, 89.81%, and 79.23% in the challenging tasks 067 of near-OOD detection for CIFAR-10, CIFAR-100, and ImageNet-1K, respectively. Moreover, we 068 conduct benchmarks in OOD detection with uneven training distribution, where the robustness of 069 ROMA is verified by its minimal performance degradation. In summary, the contribution of this paper is three-fold: 071

- We introduce a hidden OOD detection, representing a unique scenario where the ID representation learned from the source data offers limited or even counterproductive assistance in detecting certain OOD samples.
- We propose a unified regularization framework ROMA, which utilizes masked image modeling to regularize the network with both effective ID representation and generalized features for OOD detection.
- Extensive experiments demonstrate that ROMA not only effectively implements hidden-OOD detection but also achieves SOTA performance in standard and other challenging OOD detection benchmarks.
- 2 RELATED WORK

073

075

076

077

078

079

081 082

083

084 Masked Autoencoders. Motivated by masked language modeling that is highly successful in NLP 085 (Kenton & Toutanova, 2019; Brown et al., 2020), MAE (He et al., 2022a) is introduced as a neural network pre-training framework that reconstructs the original image from its partial observation. 087 The pre-trained encoder of MAE can be fine-tuned in numerous downstream tasks with excellent 088 performance (Cai et al., 2023; Hess et al., 2023; Bachmann et al., 2022), which shows a broad impact 089 on visual recognition. As pre-trained networks have shown superiority in OOD detection (Li et al., 2023; Hendrycks et al., 2019c; Fort et al., 2021), it is reasonable for us to apply MAE, a more 091 effective pre-training framework, for OOD detection. Since MAE is totally unsupervised, ROMA 092 based on MAE frees itself from dependence on labeled auxiliary dataset, which is crucial for the practical deployment.

094 Challenging OOD Detection. Current OOD detection lacks generalized benchmarks (Yang et al., 095 2022) and most studies simply select publicly available classification datasets as ID or OOD samples. 096 These works can easily lead to a significant difference in the distribution of ID and OOD samples, 097 where most methods perform remarkably well. However, good performance in such benchmarks 098 does not imply effective OOD detection, given the complexity of real-world scenarios. Recent research starts to focus on this issue and proposes more challenging OOD detection. For instance, near-OOD detection (Yang et al., 2022; Park et al., 2023) addresses the presence of OOD samples 100 with finer-grained semantic shifts; full-spectrum OOD detection (Yang et al., 2023; Zhang et al., 101 2023b) is proposed to consider ID samples with covariate shifts; OOD detection with long-tailed 102 recognition (Wang et al., 2022b; Li et al., 2022) accounts for class imbalance in ID samples. In a 103 similar vein, our work introduces hidden OOD detection and examines the existence of certain OOD 104 samples in a generalized feature space. 105

 OOD Detection with Auxiliary datasets. OOD detection with outliers is effective but controversial.
 Initial works learn features for distinguishing ID and OOD samples (Hendrycks & Gimpel, 2016; Liu et al., 2020) based on outliers directly sampled from the distribution of the target OOD samples. 108 However, the distribution of the target OOD samples is commonly unknown. In this regard, some 109 methods explore leveraging information from natural outliers that do not rely on prior information of 110 the target OOD samples (Hendrycks et al., 2019b; Mohseni et al., 2020; Chen et al., 2021; Zhang 111 et al., 2023a), where diverse data are abundantly available. Although these methods no longer require 112 the outliers with specific distribution, they still need human effort to ensure distinct distributions between the outliers and ID samples (Katz-Samuels et al., 2022). Moreover, inappropriate outliers 113 can lead to adverse effects on OOD detection. There are also other works tending to generate virtual 114 outliers (Du et al., 2021; He et al., 2022b; Narayanaswamy et al., 2023). However, it is hard to ensure 115 the effectiveness of the features learned from these virtual outliers, as the features of virtual outliers 116 may significantly deviate from those of natural samples. In contrast to outliers, the auxiliary data 117 in ROMA does not require any outlier mining and is easily sampled from natural images, which is 118 promising for practical applications. 119

120 121

122

126

136

144

145

152 153

3 PRELIMINARIES

In this work, we consider OOD detection in the context of (supervised) image classification. The
 problem statement considering both standard OOD detection and hidden OOD detection is described
 in this section.

127 3.1 STANDARD OOD DETECTION

128 OOD detection can be formulated as a binary classification problem. The input space and target space 129 are denoted by \mathcal{X} and $\mathcal{Y} = \{1, 2, ..., K\}$, where K is the number of ID classes. The training dataset 130 $\mathcal{D}_{in} = \{(\mathbf{x}_i, y_i) | \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{Y}, i \in [1, N]\}$ is sampled from the in-distribution $p_{in}(\mathbf{x}, y)$, where N131 is the size of \mathcal{D}_{in} . Let \mathcal{P}_{in} denote the marginal distribution of $p_{in}(\mathbf{x}, y)$ on \mathcal{X} . Thus, the goal of OOD 132 detection is to infer whether the given input $\mathbf{x}_{test} \in \mathcal{X}$ is sampled from the \mathcal{P}_{in} or not (\mathcal{P}_{out}). \mathcal{P}_{out} 133 can be any distribution that does not overlap with \mathcal{P}_{in} . Methods for detecting $\mathcal{D}_{out} \sim \mathcal{P}_{out}$ focus on 134 building an effective detector $G(\cdot)$ based on networks, of which the decision is made via a threshold 135 comparison:

$$G(\mathbf{x}) = \text{ID}, \text{if } S(\mathbf{x}) \ge \gamma; \text{otherwise}, G(\mathbf{x}) = \text{OOD},$$

137 where samples with lower confidence scores $S(\mathbf{x})$ are classified as OOD and γ is the threshold. As 138 OOD detection is expected to accurately identify OOD samples without affecting the performance 139 of the original task, the ID classification accuracy of $\mathbf{x}_{in} \sim \mathcal{P}_{in}$ is also important for benchmarks 140 (Yang et al., 2022). For datesets of OOD detection, standard benchmarks utilize different public 141 classification datasets to form (ID, OOD) pairs like (CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 142 2009)). These (ID, OOD) pairs need to meet the requirement that datasets for ID and OOD do not 143 share the same categories.

3.2 HIDDEN OOD DETECTION

The architecture of an classification network can be understood as consisting of an encoder and a decoder, where the encoder $Encoder(\cdot)$ is used to learn features for distinguishing \mathbf{x}_{in} from different categories and the decoder is a linear $Classifier(\cdot)$. $Encoder(\cdot)$ transfers the input \mathbf{x} into the feature space \mathcal{H} , which is then mapped into the target space \mathcal{Y} by $Classifier(\cdot)$. Specifically, the encoder generates the corresponding feature $\mathbf{h} = Encoder(\mathbf{x})$, where $\mathbf{h} \in \mathbb{R}^d$ and d is the dimension of \mathbf{h} . The classifier is employed to predict the label of \mathbf{x} according to \mathbf{h} :

$$logits = \mathbf{W}^T \mathbf{h} + \mathbf{b}, \ p(y|\mathbf{x}) = Softmax(logits), \ \hat{y} = \operatorname*{argmax}_k p(y=k|\mathbf{x}),$$

where $\mathbf{W} \in \mathbb{R}^{d \times K}$ and $\mathbf{b} \in \mathbb{R}^{K}$ are the weight and bias of the classifier, respectively. $logits \in \mathbb{R}^{K}$ represents the energy of each class and the higher energy corresponds to the fact that more effective features representing a specific class from \mathcal{H} can be extracted. $p(y|\mathbf{x})$ is the probability distribution obtained by Softmax function in target space \mathcal{Y} , and \hat{y} is the final prediction of the network.

159 Considering OOD detection, we use $\mathcal{P}_{out}^{\mathcal{H}}$ and $\mathcal{P}_{in,k}^{\mathcal{H}}$ to denote the distribution of $\mathbf{x}_{out} \sim \mathcal{P}_{out}$ in 160 \mathcal{H} and the distribution of ID samples belonging to the k-th class of $\mathbf{x}_{in} \sim \mathcal{P}_{in}$ in \mathcal{H} , respectively. 161 For $\forall k \in \mathcal{Y}$, following the assumption that there is certain difference between $\mathbf{h}_{out} \sim \mathcal{P}_{out}^{\mathcal{H}}$ and $\mathbf{h}_{in,k} \sim \mathcal{P}_{in,k}^{\mathcal{H}}$, deep learning-driven OOD detection methods try to build effective $G(\cdot)$ based on \mathbf{h} , 162 *logits*, and $p(y|\mathbf{x})$. Learned from the ID classification task, the approximated feature space \mathcal{H} for 163 ID representation is proven to be effective to distinguish OOD samples, which is considered as the 164 core of OOD detection (Li et al., 2023; 2024). In current benchmarks for OOD detection, strong 165 classification capabilities always lead to good performance in OOD detection (Vaze et al., 2021), 166 while OOD samples hard to be distinguished by ID representation in \mathcal{H} are rarely noticed.

167 To highlight these OOD samples and thus address the phenomenon that good ID classification 168 performance leads to poor OOD detection, we propose a task of hidden OOD detection focusing on 169 specific OOD samples $\hat{\mathbf{x}}_{out} \in \mathcal{D}_{out}$ whose $\hat{\mathcal{P}}_{out}^{\mathcal{H}}$ will get close to $\mathcal{P}_{in,k}^{\mathcal{H}}$ during the learning process of 170 $\overline{\mathcal{H}}$. Hence, the $\widehat{\mathbf{x}}_{out}$ satisfies 171

$$\lim_{\mathcal{H}\to\bar{\mathcal{H}}} G_{\mathcal{H}}(\widehat{\mathbf{x}}_{out}) = \text{ID}, \ s.t. \ G_{\widehat{\mathcal{H}}}(\widehat{\mathbf{x}}_{out}) = \text{OOD},$$

173 where $G_{\mathcal{H}}(\cdot)$ is the detector $G(\cdot)$ when the feature space of network is \mathcal{H} , and $\hat{\mathcal{H}}$ represents a 174 generalized feature space. For these OOD samples, features for ID representation have limited or 175 even negative assistance, which make them easier to trick the network with ID supervised-learning. 176 We use a toy example of (ID, hidden OOD) pair found in ImageNet-30 (Hendrycks et al., 2019c) 177 to showcase the blind spot for ID representation (more examples are shown in Appendix A.4). 178 Specifically, the (ID, hidden-OOD) example can be expressed as ({ 'Dragonfly', 'Tank' }, 'Forklift' }) 179 (Figure 1a), where \mathcal{D}_{in} contains images labeled dragonfly and tank, and \mathbf{x}_{out} is sampled from images labeled forklift. We apply a pre-trained $Encoder(\cdot)$ to fine-tune on \mathcal{D}_{in} , whose \mathcal{H} will be changed 181 from a generalized feature space \mathcal{H} to a specific feature space \mathcal{H} . As displayed in Figure 1b, the performance of OOD detection is worse as the training progresses. This over-fitting phenomenon 182 indicates that most forklift images can be considered hidden-OOD in this case and the learning of the 183 specific \mathcal{H} for ID representation will make the network blind to hidden OOD samples. 184

Figure 1: The performance (FPR951 and AUROC¹) of OOD detection in the fine-tuning process of the pre-trained network released by MAE on a (ID, hidden-OOD) pair (a), where (b) is fine-tuned with normal cross-entropy loss and (c) is fine-tuned with ROMA. The confidence score is based on Mahalanobis distance (Lee et al., 2018).

4 METHODS

172

185

186

187

188

189

190

191

192 193 194

195

196

197

198 199

200 201

202

203

204 205

206

In this section, we first introduce how to find samples from standard datasets for the benchmark of hidden OOD detection. We then elucidate the masked image modeling crucial for aiding hidden OOD detection and finally introduce the regularization framework ROMA.

4.1 HIDDEN OOD SAMPLES MINING

Labeled dataset X_{in} like CIFAR (Krizhevsky & Hinton, 2009) are widely used to benchmark OOD 207 208 detection and we will show our method to construct hidden OOD dataset \mathbf{X}_{out} from the corresponding 209 OOD dataset \mathbf{X}_{out} . We assume that the pre-trained network has a generalized feature space \mathcal{H} as the 210 large-scale pre-training dataset \mathbf{X}_P like ImageNet (Deng et al., 2009) is distributed widely beyond \mathbf{X}_{in} ; the fine-tuned network has the feature space \mathcal{H} for ID representation as the recognition of \mathbf{X}_{in} is 211 the main objective. FPR represents the probability that the ID sample \mathbf{x}_{in} is incorrectly identified as 212 OOD by $G(\cdot)$. Therefore, we can calculate the corresponding threshold $\gamma_{\widehat{\mathcal{H}}}$ and $\gamma_{\overline{\mathcal{H}}}$ based on selected 213 $\operatorname{FPR}_{\widehat{\mathcal{H}}}$, $\operatorname{FPR}_{\overline{\mathcal{H}}}$ and $S_{\widehat{\mathcal{H}}}(\cdot)$, $S_{\overline{\mathcal{H}}}(\cdot)$. Here, we use $S_{\mathcal{H}}(\cdot)$ based on Mahalanobis distance (Lee et al., 214 2018) 215 S

$$\mathcal{S}_{\mathcal{H}}(\mathbf{x}) = -\min_{i} (\mathbf{h} - \boldsymbol{\mu}_{i})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{h} - \boldsymbol{\mu}_{i})^{T}$$

where **h** represents the feature of an input **x**. μ and Σ are the class mean representation and the covariance matrix derived from training data. It is noted that the training data is regarded as one category for $S_{\widehat{\mathcal{H}}}(\cdot)$ and K categories for $S_{\overline{\mathcal{H}}}(\cdot)$. Hence, two detectors $G_{\widehat{\mathcal{H}}}(\cdot)$ and $G_{\overline{\mathcal{H}}}(\cdot)$ are acquired with the thresholds $\gamma_{\widehat{\mathcal{H}}}$ and $\gamma_{\overline{\mathcal{H}}}$, able to detect \mathbf{X}_{out} with FPR $_{\widehat{\mathcal{H}}}$ and FPR $_{\overline{\mathcal{H}}}$, respectively. As shown in the Figure 2a, when FPR $_{\widehat{\mathcal{H}}} = \text{FPR}_{\overline{\mathcal{H}}}$, A - B contains OOD samples exposed to $G_{\widehat{\mathcal{H}}}(\cdot)$ while hidden from $G_{\overline{\mathcal{H}}}(\cdot)$. Hence, we can collect hidden OOD samples from

$$\mathbf{X}_{out} = A - B, \ s.t. \ FPR_{\widehat{\mathcal{H}}} \leq FPR_{\overline{\mathcal{H}}}$$

224 Taking $\text{FPR}_{\hat{\mathcal{H}}} = 0.8\%$, $\text{FPR}_{\bar{\mathcal{H}}} = 6\%$, CIFAR-100 (Krizhevsky & Hinton, 2009) as \mathbf{X}_{in} and 225 ImageNet (Deng et al., 2009) as \mathbf{X}_P , $\widehat{\mathbf{X}}_{out}$ with 2925 samples can be collected from the corresponding 226 OOD dataset \mathbf{X}_{out} in OpenOOD (Yang et al., 2022). Subsequently, we evaluate various competitive 227 methods to detect these samples. It is noteworthy that hidden OOD samples exist in a widespread 228 OOD distribution \mathcal{P}_{out} and the construction of specific \mathbf{X}_{out} aims to bring the over-fitting in OOD 229 detection from obscurity to the surface. Results in Figure 2b, c show that all methods exhibit 230 continuous deteriorating trends to detect \mathbf{X}_{out} as the training progresses, underscoring the tangible 231 threat posed by hidden OOD samples. On the other hand, the existence of hidden OOD samples fundamentally limits the performance of OOD detection methods based on ID representation. 232

233 234 235

237

238

239

240

241

242

243

244

222 223

Figure 2: (a) The Venn diagram of OOD samples, where S stands for general OOD samples in \mathbf{X}_{out} , A and B represent OOD samples that can be detected by $G_{\widehat{\mathcal{H}}}(\cdot)$ and $G_{\overline{\mathcal{H}}}(\cdot)$, respectively. The dynamics of AUROC (b) and FPR95 (c) of hidden OOD detection in the fine-tuning process of the pre-trained network with previous OOD detection methods and our ROMA (d).

245 246 247

4.2 ENCODER WITH MASKED IMAGE MODELING

For hidden OOD detection, $Encoder(\cdot)$ is expected to learn $\hat{\mathcal{H}}$ for generalized representation. Outlier exposure seems to be a potential way to regularize $Encoder(\cdot)$ to learn $\hat{\mathcal{H}}$. However, it will introduce external human efforts to find outliers(Katz-Samuels et al., 2022). Once there are ID samples in outliers, the outlier exposure will actually decrease the performance of ID recognition and OOD detection. Recent research (MOOD (Li et al., 2023)) found that reconstruction-based pretext tasks can provide a generally efficacious prior beneficial for the network in learning intrinsic data distributions, which significantly improves the network's performance in standard OOD detection. Inspired by this great success, we next present our framework to regularize $Encoder(\cdot)$ based on MAE.

256 With masked image modeling (MIM), MAE enables the encoder to learn \mathcal{H} based on pixel-level 257 understanding rather than patterns from classification. Thus, we utilize the identical architectures 258 of $Encoder(\cdot)$ and $Decoder(\cdot)$ in MAE for feature extracting and reconstruction. Besides, an extra 259 linear $Classifier(\cdot)$ is applied for classification. Both reconstruction and classification tasks share 260 the same $Encoder(\cdot)$. Specifically, $Encoder(\cdot)$ is a ViT (Dosovitskiy et al., 2020), whose input 261 is a subset of visible patches of the image x. The x after tokenisation following previous setups 262 (Arnab et al., 2021; Dosovitskiy et al., 2020) is $\mathbf{v} = Tokenise(\mathbf{x}) + \mathbf{p}$, where \mathbf{p} denotes the positional embeddings. For $\mathbf{v} \in \mathbb{R}^{n \times d}$, n is the total number of tokens and d is the vector dimension. Random 263 subsets of these tokens are masked with the ratio α and the rest unmasked tokens $\mathbf{u} = Mask(\mathbf{v}, \alpha)$ are 264 processed by $Encoder(\cdot)$ with output $\mathbf{s} = Encoder(\mathbf{u})$, where $\mathbf{s} \in \mathbb{R}^{(1-\alpha) \cdot n \times d}$. For $Classifier(\cdot)$, 265 the mask ratio α is $\alpha_C = 0$ and then s is averaged into feature $\mathbf{h} \in \mathbb{R}^d$ as the input. We have 266

267
$$\mathcal{L}_C(f_C(\mathbf{x}, \alpha_C), y) = \text{CrossEntropy}(Classifier(\mathbf{h}), y),$$
268

where $f_C(\cdot)$ represents the cascade operation of $Encoder(\cdot)$ and $Classifier(\cdot)$. For $Decoder(\cdot)$, the mask ratio α is α_M and the masked tokens $\mathbf{m} \in \mathbb{R}^{\alpha_M \cdot n \times d}$ are then inserted back into \mathbf{s} whilst adding new positional embeddings, by which we denote $\mathbf{z} = \text{Unshuffle}(\mathbf{s}, \mathbf{m}) \in \mathbb{R}^{n \times d}$ as the input. Finally, $Decoder(\cdot)$ processes \mathbf{z} to reconstruct the original input \mathbf{x} corresponding to the tokens in pixel space $\tilde{\mathbf{x}}$. We have

$$\mathcal{L}_M(f_M(\mathbf{x}, \alpha_M), \mathbf{x}) = \mathbb{E}(\|Decoder(\mathbf{z}) - \widetilde{\mathbf{x}}\|^2),$$

where $f_M(\cdot)$ represents the cascade operation of $Encoder(\cdot)$ and $Decoder(\cdot)$.

4.3 **REGULARIZATION FRAMEWORK**

The two branches share the same $Encoder(\cdot)$. The feature **h** of the in-distribution image goes through a $Classifier(\cdot)$ followed by a Softmax function. In the reconstruction branch, there is a $Decoder(\cdot)$ whose input is the embedding **z** of the natural images.

Figure 3: Overview of ROMA. The network includes two branches: reconstruction branch for natural images without considering distribution and the classification branch for ID images.

Training procedure. The overall training workflow consists of three steps: 1) pre-trains $Encoder(\cdot)$ in MIM task on large-scale pre-training dataset \mathbf{X}_P . 2) constructs data pair $(\mathbf{x}_{in}, \mathbf{x}_A)$ for input, where \mathbf{x}_A is the auxiliary image randomly sampled from the candidate pool \mathbf{X}_P . 3) fine-tunes the two branches together with the encoder using $(\mathbf{x}_{in}, \mathbf{x}_A)$ whose target is $(y_{in}, \tilde{\mathbf{x}}_A)$.

Training objective. The original training objective of normal classification is $\mathbb{E}_{(\mathbf{x},y)\sim \mathcal{D}_{in}}[\mathcal{L}(f(\mathbf{x}),y)]$, where $f(\cdot)$ is the network. To achieve superior performance in both hidden OOD and standard OOD detection, we propose ROMA with MIM regularization. As shown in Figure 3, the in-distribution images are fed into $Encoder(\cdot)$ and the feature vector **h** is sent to the classification branch. Meanwhile, self-supervised learning (SSL) of the auxiliary images is performed on the reconstruction branch, serving two purposes: 1) regularization for ID features learning. The network is only allowed to see part of the image space to realize correct reconstruction, reducing the over-fitting of ID representation learned for classification. 2) regularization for generalized features learning. ROMA regularizes the network to reconstruct masked auxiliary images instead of in-distribution images, encouraging the network to represent a more generalized feature space \mathcal{H} . Thus, the training objective of ROMA is a combination of the learning objective for ID classification together with MIM regularization, which can be formulated as:

$$\mathbb{E}_{(\mathbf{x},y)\sim\mathcal{D}_{in}}[\mathcal{L}_C(f_C(\mathbf{x},\alpha_C),y)] + \lambda \mathbb{E}_{\mathbf{x}\sim\mathbf{x}_A}[\mathcal{L}_M(f_M(\mathbf{x},\alpha_M),\mathbf{x})].$$

OOD inference. During the testing procedure, only $Encoder(\cdot)$ and classification branch are retained. Since the regularization process focuses on the feature space \mathcal{H} , $S_{\mathcal{H}}(\cdot)$ based on Mahalanobis distance (Lee et al., 2018) is applied for OOD inference. Results in Figure 1c and Figure 2d show that ROMA alleviates the over-fitting in hidden OOD detection and there is a discernible trend indicating improved performance throughout the fine-tuning process. Further evaluation will be shown in the section 5.2.

5 EXPERIMENTS

In this section, we present extensive experiments to validate the superiority of ROMA, which improves standard OOD detection while effectively resisting hidden-OOD attacks. We provide comparisons

with previous competitive OOD detection methods and ROMA shows SOTA performance in most
 challenging tasks. Additionally, we perform ablation experiments to further elucidate ROMA's
 performance.

328 5.1 EXPERIMENTAL SETUP

Datasets. Following the standard OOD detection benchmarks based on OpenOOD (Yang et al., 2022), we use CIFAR-10, CIFAR-100, and ImageNet as ID datasets. For standard OOD detection, we use all far-OOD and near-OOD datasets corresponding to the selected ID datasets, which are summarized by OpenOOD. For hidden OOD detection, we use CIFAR-10, CIFAR-100, and BIMCV (Vayá et al., 2020) as ID datasets, and utilized our hidden-OOD finding strategy in the section 4.1 to find hidden OOD samples from their OOD datasets.

Training details. We evaluate numerous OOD detection methods with pre-trained networks, all of which are pre-trained on ImageNet (corresponding to X_P). As OpenOOD concludes that vision transformer does not necessarily perform better than ResNet, we fine-tune two networks based on ResNet-18/50 (He et al., 2016) and ViT-B-16 (Dosovitskiy et al., 2020) in all benchmarks, and choose the one with better AUROC for OOD detection in the following evaluation. Appendix A.2 shows more details of training settings. For hyper-parameters of ROMA, we use $\lambda = 1$ and $\alpha_M = 0.75$.

Evaluation metrics. We evaluate the performance of OOD detection by measuring the following
metrics: 1) the false positive rate (FPR95) of OOD examples when the true positive rate of indistribution examples is 95%; 2) the area under the receiver operating characteristic curve (AUROC);
and 3) the ID classification accuracy (ID-ACC).

347 5.2 RESULTS

346

348 Hidden OOD detection benchmarks. We first conduct hidden OOD detection benchmarks with 349 competitive baseline methods, including MSP (Hendrycks & Gimpel, 2016), ODIN (Liang et al., 350 2018), MDS (Lee et al., 2018), EBO (Liu et al., 2020), MLS (Hendrycks et al., 2019a), ViM (Wang 351 et al., 2022a), KNN (Sun et al., 2022), GEN (Liu et al., 2023), CIDER (Ming et al., 2022), OE 352 (Hendrycks et al., 2019b), MOOD (Li et al., 2023), and ROMA. Among them, MOOD and ROMA 353 require \mathbf{X}_P to be incorporated into the subsequent training phase following pre-training, while OE 354 necessitates the utilization of auxiliary images as outliers. To make a fair comparison with other 355 *post-hoc* methods, auxiliary images used by MOOD, ROMA, and OE are randomly sampled from X_P and the amount of auxiliary images equals to the amount of ID images. As Table 1 shows, compared 356 to directly using the pre-trained network for hidden OOD detection, the performance of all methods 357 has declined after ID-ACC converged. This confirms that the learning of ID representations indeed 358 causes some OOD samples to be hidden-to-detect. The results demonstrate that ROMA with effective 359 regularization significantly outperforms other methods, achieving the best metrics of AUROC and 360 FPR95. Although OE is widely regarded as an excellent regularization method for OOD detection, 361 its performance is even worse than *post-hoc* methods when outliers contain in-distribution samples. 362

Table 1: Comparison between previous methods and ROMA in hidden OOD detection. PT represents the method of directly using the pre-trained ViT network and $S_{\mathcal{H}}(\cdot)$ for OOD detection. With the setting of FPR_{$\hat{\mathcal{H}}$} = 0.8%, FPR_{$\hat{\mathcal{H}}$} = 6%, there are 173, 91, and 2925 hidden OOD samples collected for the ID datasets of BIMCV, CIFAR-10, and CIFAR-100, respectively.

ID DATASET	PT	MSP	ODIN	MDS	EBO	MLS	VIM	KNN	GEN	CIDER	LOGIT	OE	MOOD	ROMA
BIMCV	AUROC↑ 99.98	83.52	99.11	92.52	83.52	83.52	92.13	98.48	83.52	58.27	23.03	73.22	99.84	99.97
	FPR95↓ 0.11	41.53	6.85	23.46	41.53	41.53	21.1	15.38	41.53	97.76	100	73.85	0.56	0
	ID-ACC↑ -	73.06	73.06	73.06	73.06	73.06	73.06	73.06	73.06	73.06	67.79	63.64	73.4	75.42
CIFAR-10	AUROC↑ 99.73	75.71	73.79	89.43	79.19	79.17	89.78	68.97	95.75	81.38	89.07	92.77	96.85	97.94
	FPR95↓ 0.8	49.7	79.14	23.95	53.6	53.6	22.37	68.39	50.95	52.32	31.04	30.81	19.59	8.74
	ID-ACC↑ -	97.86	97.86	97.86	97.86	97.86	97.86	97.86	97.86	97.72	94.43	94.13	98.22	98.36
CIFAR-100	AUROC↑ 99.87	64.7	60.75	87.13	76.35	75.14	87.39	74.67	63.83	71.31	72.4	75.25	91.83	96.91
	FPR95↓ 0.54	68.01	79.79	27.76	65.51	66.18	28.54	49.96	68.2	71.28	69.13	68.19	31.51	19.92
	ID-ACC↑ -	85.79	85.79	85.79	85.79	85.79	85.79	85.79	85.79	85.72	75.84	74.78	85.06	85.8

374 375

372 373

Standard OOD detection benchmarks. We further evaluate the performance of ROMA in standard
 OOD detection. As shown in Table 2, ROMA still achieves SOTA performance with averaged
 AUROC/FPR95 of 91.27%/25.89%. For the most challenging task, near-OOD detection for ImageNet,

378ROMA improves the SOTA AUROC/FPR95 from 77.03% (VIM)/66.99% (OE) to 79.23%/65.10%.379The results are remarkable as ROMA is totally pre-trained and regularized with unlabeled images380from ImageNet. Obviously, ROMA enables the network to detect more OOD samples that the
methods learning $\bar{\mathcal{H}}$ for ID representation are blind to.

Table 2: Comparison between previous methods and ROMA. Full results are shown in Appendix A.3.

		CIFA	R-10			CIFA	R-100			IMAGE	NET-1K		AVE	DACE
	NEAR	-OOD	FAR	OOD	NEAF	R-00D	FAR	OOD	NEAF	R-OOD	FAR	-OOD	AVE	KAUE
	FPR95↓	AUROC↑												
MSP	53.58	87.69	31.23	91.03	54.55	80.38	58.89	77.65	81.85	73.52	51.69	86.04	53.29	83.17
ODIN	84.73	80.37	61.06	87.24	58.42	79.78	57.71	79.48	86.25	68.15	84.88	73.29	70.77	78.59
MDS	63.82	79.96	55.21	80.70	88.15	52.71	79.20	63.07	68.65	75.18	29.87	91.49	61.88	75.01
EBO	68.18	86.95	40.41	91.80	55.71	80.76	56.27	79.78	93.19	62.41	85.35	78.98	64.75	80.88
MLS	68.14	86.87	40.40	91.66	55.57	80.97	56.43	79.67	92.25	68.30	79.23	83.54	63.41	82.54
VIM	51.78	87.74	31.09	91.42	63.09	74.84	49.94	81.82	73.73	77.03	29.18	92.84	46.44	85.39
KNN	35.67	90.58	24.71	92.94	61.16	80.25	54.43	81.81	70.47	74.11	31.93	90.81	44.13	85.86
GEN	57.86	87.80	33.58	91.57	54.01	81.34	57.73	79.32	70.78	76.30	32.23	91.35	48.60	85.21
CIDER	31.36	90.7	19.17	95.05	72.02	73.10	54.22	80.49	71.69	68.97	28.69	92.18	42.82	84.84
LOGIT	28.00	92.62	12.65	97.03	64.91	77.76	56.02	80.62	68.56	74.62	31.32	91.54	40.98	86.55
OE	20.63	94.8	12.86	95.75	29.91	88.47	53.24	82.86	66.99	75.71	53.64	84.34	39.97	87.02
MOOD	15.00	96.65	2.18	99.25	40.42	89.14	23.15	90.55	73.39	72.06	35.41	88.78	28.65	90.18
OURS	13.01	97.32	1.64	99.47	34.46	89.81	28.24	87.30	65.10	79.23	26.46	92.06	25.89	91.27

OOD detection with uneven distribution. To assess ROMA's robustness, we examine the OOD detection performance when ID representation degrades as the unevenness of ID distribution increases. In this experiment, we modify the in-distribution unevenness of \mathcal{D}_{in} . Specifically, we leave one class unchanged and sample randomly 10% to 40% images from each of the rest nine classes to form an uneven ID dataset. This process is repeated ten times to generate ten uneven ID datasets and all methods are trained and evaluated on these datasets. The averaged performance is displayed in Table 3. Results show that metrics of both near-OOD and far-OOD detection degrade with the increasing unevenness of in-distribution. However, ROMA still outperforms other methods and has the minimal degradation. For the most challenging scenario with the sampling ratio of 10%, ROMA still maintains considerable AUROC/FPR95 of 95.13%/20.66% and 98.15%/5.28% in near-OOD and far-OOD detection respectively. Results further demonstrate effective regularization of ROMA for generalized features learning, which enables the network to maintain robust OOD detection even if ID representation has certain degradation.

Table 3: Performance of OOD detection with uneven training distribution. To form dataset with uneven in-distribution, we leave one class unchanged while randomly sampling images from each of the rest classes at the sampling ratio from 0.1 to 0.4. The original ID dataset is CIFAR-10.

4	1	1
	1	
4	1	2

		Rati	o 0.1		1	Rati	o 0.2			Rati	o 0.4	
	NEAF	₹-00D	FAR	-00D	NEAL	R-00D	FAR	-OOD	NEAF	R-00D	FAR	-00D
	FPR95↓	AUROC↑										
MSP	65.88	73.46	62.49	73.49	53.89	80.63	48.59	81.93	46.60	84.91	39.05	86.57
ODIN	66.78	75.87	57.39	79.14	59.27	81.18	47.59	84.90	60.16	83.28	45.67	87.62
MDS	89.20	55.45	79.82	61.62	85.29	59.25	75.14	66.81	75.49	67.77	63.49	73.04
EBO	64.06	77.25	60.17	76.79	54.64	82.71	48.35	83.78	51.25	85.96	42.75	87.49
MLS	64.05	77.09	60.27	76.65	54.62	82.61	48.43	83.69	51.25	85.89	42.79	87.43
VIM	66.86	75.79	58.29	78.28	56.81	80.67	45.76	84.83	49.79	84.67	36.88	88.28
KNN	87.71	40.56	82.59	44.39	68.77	74.85	57.65	79.63	47.60	85.59	37.13	88.14
GEN	65.69	73.81	62.59	73.90	54.12	80.49	49.07	81.68	47.24	84.85	39.80	86.44
CIDER	93.84	47.27	88.14	46.81	91.01	40.36	89.02	40.81	75.38	63.72	70.85	65.86
LOGIT	77.56	70.67	60.30	77.81	57.48	81.58	39.59	88.79	42.85	87.41	26.57	93.18
OE	66.85	74.83	64.68	66.19	50.64	83.52	47.22	76.98	33.89	90.54	29.08	88.35
MOOD	22.59	94.92	7.99	97.41	19.18	95.71	5.34	98.25	17.28	96.24	3.80	98.79
OURS	20.66	95.13	5.28	98.15	18.10	95.88	3.67	98.75	14.02	97.11	2.87	99.09

Ablation study of ROMA. In this section, we conduct ablations for ROMA in hidden OOD and standard OOD detection, where the ID dataset is CIFAR-100. For standard OOD detection, we show the average results of near-OOD and far-OOD detection. We first evaluate the effectiveness of designed training procedures (pre-training, fine-tuning, and self-supervised learning) for ROMA and results are shown in Table 4a. Compared with traditional fine-tuning procedure, ROMA improves the performance of both hidden OOD and standard OOD detection. We proceed to conduct ablation experiments varying the number N_A of auxiliary images \mathbf{x}_A (Table 4b) and the candidate dataset for SSL (Table 4c). Results demonstrate that increasing the number of auxiliary images within the training process for SSL does not consistently yield improved OOD detection metrics. Thus, it is

432 advisable to utilize an equal number of auxiliary images as the number (N) of ID images, striking a 433 balance between computational resources and performance. Regarding the candidate dataset, ROMA 434 with auxiliary images \mathbf{x}_A sampled from ImageNet (\mathbf{X}_P) shows superior performance in hidden OOD 435 detection as it has broad distribution for more generalized features learning. Notably, ROMA with \mathbf{x}_A 436 exclusively sampled from in-distribution (training) images achieves the best performance in standard OOD detection, underscoring the inherent advantage of the MIM task itself for OOD detection and 437 the blind spots for standard OOD detection. 438

439 Table 4: Results of ablation study on (a) MIM pre-training (PT), fine-tuning (FT), and self-supervised 440 learning (SSL); (b) the number (N_A) of auxiliary images; (c) candidate dataset for SSL. 441

/1 /	1	
Z . Z . Z		

452 453

454

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473 474

475

476 477

478

(a) Ablations on PT, FT, and SSL. (b) Ablations on N_A . (c) Ablations on the SSL dataset.

TASK	pt ft ssl $ $ FPR95 \downarrow AU	JROC↑	TASK	N_A	$ FPR95\downarrow$	AUROC↑	TASK	SSL DATASET	FPR95↓	AUROC↑
HIDDEN	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	98.73 91.8 51.87 96.91	HIDDEN	$\begin{array}{c} 0.5 \times N \\ 1.0 \times N \\ 2.0 \times N \\ 5.0 \times N \end{array}$	37.47 19.92 40.57 41.37	87.4 96.91 85.19 84.42	Hidden	IMAGENET-1K Places365 CIFAR-10 In-distribution	19.92 45.84 35.94 33.53	96.91 80.95 91.77 92.53
Standard	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	39.70 38.20 53.09 38.14	STANDARD	$\begin{array}{c} 0.5 \times N \\ 1.0 \times N \\ 2.0 \times N \\ 5.0 \times N \end{array}$	30.31 30.31 32.08 32.33	90.01 88.14 89.31 89.13	STANDARD	IMAGENET-1K PLACES365 CIFAR-10 IN-DISTRIBUTION	30.31 37.15 26.54 26.32	88.14 85.58 90.98 90.99

DISCUSSION 5.3

With the reasoning ability learned from the MIM task in pre-training step and reconstruction branch, ROMA is actually able to process masked images on the classification branch. Specifically, α_C in the training procedure can be set to a non-zero value and each ID image will be randomly masked in each 455 training epoch. During the testing procedure, the network is allowed to see the whole ID image and there is no masked patch, corresponding to $\alpha_C = 0$. Under this condition, adversarial training (ADV) with one step towards ID-supervised learning and one step backwards self-supervised learning may be more appropriate than directly sum up the weighted loss (SUM) of $\mathbb{E}_{(\mathbf{x},y)\sim \mathcal{D}_{in}}[\mathcal{L}_C(f_C(\mathbf{x},\alpha_C),y)]$ and $\mathbb{E}_{\mathbf{x} \sim \mathbf{x}_A} [\mathcal{L}_M(f_M(\mathbf{x}, \alpha_M), \mathbf{x})]$. As shown in Figure 4, we deploy ROMA with $\alpha_C = 0.75$ in hidden OOD detection of CIFAR-100. The results demonstrate that this masking operation will further deepen the regularization of ID representation and reduce the computing resources required for training. The price in exchange is a reduction of arround 5% in ID-ACC. Overall, ROMA showcases more possibilities of MIM-based regularization so that trade-offs can be taken among the performance in ID recognition, OOD detection, and computing resources.

Figure 4: Results for ROMA fine-tuning with $\alpha_C = 0.75$ v.s. $\alpha_C = 0$. We show the (a) AUROC, (b) FPR95, (c) ID-ACC, and (d) averaged running time of an epoch for ROMA in hidden OOD detection.

CONCLUSION 6

479 In this paper, we introduce a task of hidden OOD detection, which exhibits the over-fitting of ID 480 representation in OOD detection. To alleviate this problem, we propose a regularization framework for 481 OOD detection with masked autoencoders (ROMA), utilizing masked image modeling to regularize 482 the network to learn generalized features. With high proportion of masking, ROMA enables the 483 network to perform well in both hidden OOD and standard OOD detection. This method can be easily adopted in practical settings as it can be applied with unlabeled auxiliary images regardless of 484 distribution. We hope that our insights inspire future research to explore methods for OOD detection 485 considering hidden OOD samples, which are critical complements to the standard OOD detection.

486 REFERENCES

510

- Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid.
 Vivit: A video vision transformer. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 6836–6846, 2021.
- 491 Roman Bachmann, David Mizrahi, Andrei Atanov, and Amir Zamir. Multimae: Multi-modal multi492 task masked autoencoders. In *European Conference on Computer Vision*, pp. 348–367. Springer,
 493 2022.
- Yutong Bai, Zeyu Wang, Junfei Xiao, Chen Wei, Huiyu Wang, Alan L Yuille, Yuyin Zhou, and
 Cihang Xie. Masked autoencoders enable efficient knowledge distillers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24256–24265, 2023.
- Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
 In *International Conference on Learning Representations*, 2021.
- Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1563–1572, 2016.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Zhixi Cai, Shreya Ghosh, Kalin Stefanov, Abhinav Dhall, Jianfei Cai, Hamid Rezatofighi, Reza Haffari, and Munawar Hayat. Marlin: Masked autoencoder for facial video representation learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1493–1504, 2023.
- Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. Intelligible
 models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In *Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 1721–1730, 2015.
- Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu Liang, and Somesh Jha. Atom: Robustifying out-ofdistribution detection using outlier mining. In *Machine Learning and Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September*13–17, 2021, Proceedings, Part III 21, pp. 430–445. Springer, 2021.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee, 2009.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
 is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2020.
- 527 Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don't know by virtual
 528 outlier synthesis. In *International Conference on Learning Representations*, 2021.
- Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep learning visual classification. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1625–1634, 2018.
- 534 Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al. Masked autoencoders as spatiotemporal
 535 learners. Advances in neural information processing systems, 35:35946–35958, 2022.
- Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of out-of-distribution detection. *Advances in Neural Information Processing Systems*, 34:7068–7081, 2021.
- 539 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2016.

540 541 542	Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In <i>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</i> , pp. 16000–16009, 2022a
543	Dundong Ha Zhangui Han Vienkei Lu, and Vilang Vin Donf. goliable outlier surthesis under poiss.
544	feature space for out-of-distribution detection. In <i>Proceedings of the 30th ACM International</i>
545	Conference on Multimedia, pp. 4242–4251, 2022b.
540	
548	Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples in neural networks. In <i>International Conference on Learning Representations</i> , 2016.
550	Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joe Kwon, Mohammadreza Mostajahi
551	Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-world settings.
552	univ preprin univ.1911.11102, 2019d.
555 555	Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier exposure. <i>Proceedings of the International Conference on Learning Representations</i> , 2019b.
556	Dan Hendrycks, Mantas Mazeika, Sauray Kadayath, and Dawn Song, Using self-supervised learning
557	can improve model robustness and uncertainty. Advances in neural information processing systems.
558	32, 2019c.
559	
560	Georg Hess, Johan Jaxing, Elias Svensson, David Hagerman, Christoffer Petersson, and Lennart
561	condings of the IEEE/CVE Winter Conference on Applications of Computer Vision pp. 350–359
562	2023.
563	
564	Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-of-
565	distribution image without learning from out-of-distribution data. In <i>Proceedings of the IEEE/CVF</i> Conference on Computer Vision and Pattern Recognition pp. 10951–10960, 2020
567	2
568	Julian Katz-Samuels, Julia B Nakhleh, Robert Nowak, and Yixuan Li. Training ood detectors in their
569	natural habitats. In International Conference on Machine Learning, pp. 10848–10865. PMLR,
570	2022.
571	Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
572 573	bidirectional transformers for language understanding. In <i>Proceedings of NAACL-HLT</i> , pp. 4171–4186, 2019.
574	
575	A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. <i>Handbook of</i>
576	Systemic Autoimmune Diseases, 1(4), 2009.
577	Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
578	out-of-distribution samples and adversarial attacks. Advances in neural information processing
579	systems, 31, 2018.
580	Rolian Li Zongho Han Haining Li Huazhu Fu and Changeine Zhane. Trustusenthy lass tailed
581	classification. In Proceedings of the IEEE/CVE Conference on Computer Vision and Pattern
582	Recognition, pp. 6970–6979, 2022.
58/	Lingues Li Densenne Chen Zenie He Cheerer Ve Chu Lin and Lines Lie Dethicking out of
585	distribution (ood) detection: Masked image modeling is all you need. In <i>Proceedings of the</i>
586	<i>IEEE/CVF conference on computer vision and pattern recognition</i> , pp. 11578–11589, 2023.
587	,
588	Jingyao Li, Pengguang Chen, Shaozuo Yu, Shu Liu, and Jiaya Jia. Moodv2: Masked image modeling
589	for out-of-distribution detection. arXiv preprint arXiv:2401.02611, 2024.
590	Shivu Liang, Yixuan Li, and R Srikant. Enhancing the reliability of out-of-distribution image
591	detection in neural networks. In International Conference on Learning Representations, 2018.
592	
593	Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection. Advances in neural information processing systems, 33:21464–21475, 2020.

613

624

- Xixi Liu, Yaroslava Lochman, and Christopher Zach. Gen: Pushing the limits of softmax-based out-of-distribution detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23946–23955, 2023.
- Yifei Ming, Yiyou Sun, Ousmane Dia, and Yixuan Li. How to exploit hyperspherical embed dings for out-of-distribution detection? In *The Eleventh International Conference on Learning Representations*, 2022.
- Sina Mohseni, Mandar Pitale, JBS Yadawa, and Zhangyang Wang. Self-supervised learning for
 generalizable out-of-distribution detection. *Proceedings of the AAAI Conference on Artificial Intelligence*, 34(04):5216–5223, 2020.
- Vivek Narayanaswamy, Yamen Mubarka, Rushil Anirudh, Deepta Rajan, and Jayaraman J Thiagarajan. Exploring inlier and outlier specification for improved medical ood detection. In *Proceedings* of the IEEE/CVF International Conference on Computer Vision, pp. 4589–4598, 2023.
- Jaewoo Park, Yoon Gyo Jung, and Andrew Beng Jin Teoh. Nearest neighbor guidance for out-of distribution detection. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 1686–1695, 2023.
- Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest neighbors. In *International Conference on Machine Learning*, pp. 20827–20840. PMLR, 2022.
- Maria De La Iglesia Vayá, Jose Manuel Saborit, Joaquim Angel Montell, Antonio Pertusa, Aurelia
 Bustos, Miguel Cazorla, Joaquin Galant, Xavier Barber, Domingo Orozco-Beltrán, Francisco
 García-García, et al. Bimcv covid-19+: a large annotated dataset of rx and ct images from covid-19
 patients. arXiv preprint arXiv:2006.01174, 2020.
- Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: A good
 closed-set classifier is all you need. In *International Conference on Learning Representations*, 2021.
- Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with virtual logit matching. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4921–4930, 2022a.
- Haotao Wang, Aston Zhang, Yi Zhu, Shuai Zheng, Mu Li, Alex J Smola, and Zhangyang Wang. Partial and asymmetric contrastive learning for out-of-distribution detection in long-tailed recognition. In *International Conference on Machine Learning*, pp. 23446–23458. PMLR, 2022b.
- Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li. Mitigating neural network
 overconfidence with logit normalization. In *International Conference on Machine Learning*, pp. 23631–23644. PMLR, 2022.
- Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng, Haoqi
 Wang, Guangyao Chen, Bo Li, Yiyou Sun, et al. Openood: Benchmarking generalized out-of distribution detection. Advances in Neural Information Processing Systems, 35:32598–32611,
 2022.
- Jingkang Yang, Kaiyang Zhou, and Ziwei Liu. Full-spectrum out-of-distribution detection. *International Journal of Computer Vision*, pp. 1–16, 2023.
- Jingyang Zhang, Nathan Inkawhich, Randolph Linderman, Yiran Chen, and Hai Li. Mixture outlier
 exposure: Towards out-of-distribution detection in fine-grained environments. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 5531–5540, 2023a.
- Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, Yueqian Lin, Haoran Zhang, Yiyou Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Yixuan Li, Ziwei Liu, Yiran Chen, and Li Hai. Openood v1.5: Enhanced benchmark for out-of-distribution detection. *arXiv preprint arXiv:2306.09301*, 2023b.
- Jianing Zhu, Hengzhuang Li, Jiangchao Yao, Tongliang Liu, Jianliang Xu, and Bo Han. Unleashing
 mask: Explore the intrinsic out-of-distribution detection capability. In *International Conference on Machine Learning*, 2023.

APPENDIX А

648

649 650

651

652

653 654 655

656

657 658 659

660

661

662

663

668 669

670

671

672

673 674 675

676

677

678

The supplementary material serves as a repository for additional content, including algorithm, experimental configuration, detailed results, etc. These valuable assets are not be accommodated in the main paper due to page limitations.

A.1 ALGORITHM

The algorithm of ROMA (includes pre-training, fine-tuning, and inferring) is shown in Algorithm 1.

Algorithm 1 ROMA-based Out-of-distribution Detection Algorithm

Require: Large-scale set \mathbf{X}_P for pre-training, in-distribution set \mathbf{X}_{train} for fine-tuning, auxiliary set \mathbf{X}_A for SSL, test set \mathbf{X}_{test} for inferring, masking ratio α , required True Positive Rate $\eta\%$ **Ensure:** Is $\mathbf{x}_{test} \in \mathbf{X}_{test}$ OOD or not?

1: Pre-train f_{mae} on \mathbf{X}_P by minimizing

$$\mathcal{L}_M(f_{MAE}(\mathbf{x}_P, \alpha_M), \mathbf{x}_P)$$

2: Fine-tune the $Encoder(\cdot)$ of f_{mae} on \mathbf{X}_{train} and \mathbf{X}_A by minimizing

$$\mathbb{E}_{(\mathbf{x},y)\sim\mathcal{D}_{in}}[\mathcal{L}_C(f_C(\mathbf{x},\alpha_C),y)] + \lambda \mathbb{E}_{\mathbf{x}\sim\mathbf{x}_A}[\mathcal{L}_M(f_M(\mathbf{x},\alpha_M),\mathbf{x})]$$

3: $\mathbf{h}_0 = Encoder(\mathbf{x}, \alpha_C = 0)$ for $\mathbf{x} \in \mathbf{X}_{train} \cup \mathbf{X}_{test}$

4: Use \mathbf{h}_0 to calculate $S(\mathbf{x}_{test})$ for $\mathbf{x}_{test} \in \mathbf{X}_{test}$ and $S(\mathbf{x}_{train})$ for $\mathbf{x}_{train} \in \mathbf{X}_{train}$, where $S(\cdot)$ is defined by

$$S(\mathbf{x}) = -\min(\mathbf{h}_0 - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}^{-1} (\mathbf{h}_0 - \boldsymbol{\mu}_i)$$

where μ and Σ are the mean and covariance of \mathbf{h}_0 of the in-distribution set \mathbf{X}_{train}

5: Compute threshold γ as the η percentile of $S(\mathbf{x}_{train})$.

6: if $S(\mathbf{x}_{test}) > \gamma$ then

 \mathbf{x}_{test} is OOD 7:

8: end if

682 683

684

687

691

A.2 EXPERIMENTAL CONFIGURATION

We directly employ the pre-trained network released by MAE (He et al., 2022a) including a ViT-B-16 685 as encoder, a relatively small ViT as decoder and a classifier head corresponding to ID classes. 686 During the training process, we follow MAE and represent the image as a sequence of discrete tokens obtained by an image tokenizer. We randomly crop and resize images in both training datasets and 688 auxiliary images to 224×224 . Then we split each 224×224 image into a 14×14 grid of image 689 patches, where each patch is 16×16 . The patches are linearly-connected and input to the ViT-based 690 encoder. After that, the generated embeddings of ID samples and auxiliary samples are then passed through classifier for classification and decoder for masked image reconstruction, respectively. Our 692 augmentation policy includes random resized cropping, horizontal flipping, and color jittering. We 693 train ROMA on CIFAR-10, CIFAR-100, and hidden-OOD datasets using $1 \times NVIDIA$ RTX 3090 GPU and on ImageNet-1k using $8 \times$ NVIDIA RTX 3090 GPU. More configuration details in the 694 experiments are shown in Table 5 and Table 6. 695

6	9	6
6	9	7

8			Encod	ER		CLASSIFIER		
9	BACKBONE	Embed Dim	Depth	HEAD NUMBER	EMBED DIN	1 DEPTH	HEAD NUMBER	MLP RATIO
0 1	VIT-BASE	768	12	12	512	8	16	4

⁶⁷⁹ 680 681

702		Table 6	5: Configur	ation of th	e training	paramete	ers.	
703			U		U	1		
704	LEARNING	WARMUP	FROCUS	ACCUM	LAYER	Drop	WEIGHT	BATCH
705	RATE	EPOCHS	LFUCHS	ITER	DECAY	РАТН	DECAY	Size
706	5E-4	5	100	4	0.65	0.1	0.05	128
707								
700								

A.3 DETAILED RESULTS FOR STANDARD OPENOOD BENCHMARKS

OpenOOD (Yang et al., 2022) subdivides standard OOD detection into two tasks: near-OOD and far-OOD detection. For benchmarks of CIFAR-10 shown in Table 7, (ID, OOD) pairs of (CIFAR-10, CIFAR-100) and (CIFAR-10, TinyImageNet) are used for near-OOD detection; (ID, OOD) pairs of (CIFAR-10, MNIST), (CIFAR-10, SVHN), (CIFAR-10, Texture), and (CIFAR-10, Places365) are used for far-OOD detection. For benchmarks of CIFAR-100 shown in Table 8, (ID, OOD) pairs of (CIFAR-100, CIFAR-10) and (CIFAR-100, TinyImageNet) are used for near-OOD detection; (ID, OOD) pairs of (CIFAR-100, MNIST), (CIFAR-100, SVHN), (CIFAR-100, Texture), and (CIFAR-100, Places365) are used for far-OOD detection. For benchmarks of ImageNet-1K shown in Table 9, (ID, OOD) pairs of (ImageNet-1K, SSB-Hard) and (ImageNet-1K, NINCO) are used for near-OOD detection; (ID, OOD) pairs of (ImageNet-1K, iNaturalist), (ImageNet-1K, Texture), and (ImageNet-1K, OpenImage-O) are used for far-OOD detection.

Table 7: Detailed performance on CIFAR-10.

	CIFA	R-100	TINYIM	IAGENET	MN	VIST	SV	/HN	TEX	TURE	PLAC	CES365
	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑
MSP	59.82	86.73	47.33	88.64	19.22	93.95	23.82	91.68	40.20	89.13	41.67	89.35
ODIN	84.87	79.55	84.59	81.18	15.39	96.60	69.04	84.62	83.19	83.86	76.62	83.87
MDS	66.33	79.47	61.30	80.44	74.73	65.90	39.63	88.67	35.98	91.43	70.50	76.79
EBO	72.69	85.55	63.68	88.35	15.49	96.32	29.34	92.60	60.43	88.63	56.38	89.63
MLS	72.66	85.49	63.63	88.26	15.53	96.12	29.26	92.46	60.44	88.55	56.38	89.51
VIM	57.11	86.67	46.46	88.80	30.79	89.50	21.57	93.56	22.13	94.66	49.89	87.95
KNN	39.19	89.60	32.14	91.57	21.72	94.11	21.62	92.85	24.93	92.99	30.57	91.82
GEN	63.63	86.71	52.09	88.89	18.01	95.00	24.08	92.18	46.12	89.36	46.12	89.74
CIDER	34.98	89.39	27.74	92.01	19.11	94.70	8.21	98.31	24.02	93.86	25.34	93.35
LOGIT	32.92	91.28	23.08	93.97	3.58	99.24	5.00	98.98	20.70	95.21	21.31	94.70
OE	33.68	91.50	7.59	98.10	28.66	88.60	2.16	99.31	8.33	97.97	12.31	97.13
MOOD	28.84	93.56	1.16	99.75	1.44	99.72	7.29	97.28	0.00	100.00	0.00	99.99
OURS	24.56	94.96	1.47	99.68	1.97	99.55	4.32	98.39	0.01	99.99	0.27	99.94

Table 8: Detailed performance on CIFAR-100.

	CIFA	AR-10	TinyIm	IAGENET	MN	IIST	SV	/HN	Tex	TURE	PLAC	CES365
	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑
MSP	59.12	78.54	49.98	82.22	63.47	73.54	55.44	79.37	61.24	78.07	55.40	79.61
ODIN	60.98	78.03	55.86	81.53	50.36	82.09	62.16	75.56	59.83	80.46	58.51	79.80
MDS	92.08	49.56	84.22	55.86	75.04	61.77	75.78	63.40	79.88	71.33	86.09	55.78
EBO	58.88	79.01	52.53	82.51	57.57	77.30	50.84	82.67	60.21	79.33	56.47	79.81
MLS	58.93	79.20	52.21	82.74	57.93	76.91	51.14	82.33	60.24	79.36	56.38	80.06
VIM	71.20	71.70	54.99	77.98	48.36	80.94	44.73	83.87	46.26	86.39	60.41	76.09
KNN	73.31	77.00	49.00	83.49	55.51	79.44	50.38	83.87	52.57	84.14	59.27	79.78
GEN	58.56	79.39	49.44	83.28	61.42	75.66	53.68	81.53	60.78	79.53	55.03	80.57
CIDER	82.71	67.55	61.44	78.65	75.32	68.14	17.82	97.17	54.43	82.21	69.30	74.43
LOGIT	77.83	72.84	51.99	82.67	51.56	83.11	40.73	85.54	77.67	73.41	54.11	80.43
OE	59.69	77.03	0.13	99.90	58.28	79.24	38.94	92.20	58.87	80.65	56.87	79.35
MOOD	63.33	81.42	17.50	96.86	67.34	68.41	14.26	95.81	0.21	99.85	10.78	98.11
OURS	52.53	82.73	16.38	96.88	86.73	58.72	23.22	91.28	0.63	99.74	2.36	99.46

A.4 DETAILED RESULTS FOR TOY DATASETS OF HIDDEN OOD DETECTION

Based on the same pre-trained network, we evaluate both our ROMA and traditional fine-tuning on
the eight toy datasets. The detailed metrics are listed in Table 10. In the first table, three (ID, hidden
OOD) pairs are collected from ImageNet-30. In the second table, the first two (ID, hidden OOD)
pairs are collected from ImageNet-30, and the last one is selected from ImageNet-10. In the third
table, the first (ID, hidden OOD) pair is collected from ImageNet-10, and the other is selected from
CIFAR-100. As shown in Table 11, the average results show that the traditional fine-tuning procedure

leads to a degradation (from AUROC/FPR95 of 87.51%/40.80% to 85.18%/49.76%) in hidden OOD detection while ROMA improves the metrics to 90.31%/29.84%.

	SSB-	HARD	NI	NCO	INATU	RALIST	TEX	TURES	OPENI	MAGE-O
	FPR95↓	AUROC↑								
MSP	86.41	68.94	77.28	78.11	42.40	88.19	56.46	85.06	56.19	84.86
ODIN	86.45	66.94	86.05	69.35	79.35	78.1	85.46	72.86	89.82	68.93
MDS	83.6	68.61	53.71	81.75	21.56	93.59	37.49	89.81	30.56	91.05
EBO	92.24	58.80	94.14	66.02	83.56	79.30	83.66	81.17	88.82	76.48
MLS	91.52	64.20	92.97	72.40	72.94	85.29	78.94	83.74	85.82	81.60
VIM	90.04	69.42	57.41	84.64	17.59	95.72	40.35	90.61	29.61	92.18
KNN	86.22	65.98	54.73	82.25	27.75	91.46	33.23	91.12	34.82	89.86
GEN	82.23	70.09	59.33	82.51	22.92	93.54	38.30	90.23	35.47	90.27
CIDER	82.69	59.34	56.46	78.60	28.70	90.76	20.86	96.38	36.52	89.39
LOGIT	82.08	65.70	55.04	81.73	20.75	94.57	40.82	89.30	32.38	90.75
OE	74.91	71.76	59.08	79.66	47.25	87.26	59.38	82.56	54.31	83.21
MOOD	86.93	64.12	59.85	80.00	31.49	88.13	33.50	91.17	41.24	87.03
OURS	80.85	73.17	49.35	85.28	17.62	94.04	36.10	89.64	25.65	92.50

Table 9: Detailed performance on ImageNet-1K.

Table 10: Detailed performance in toy datasets of hidden OOD detection comparing our ROMA with traditional fine-tuning.

	ID: Ambulance, Strawberry hidden-OOD: Tank			ID: CLOCK, AMBULANCE HIDDEN-OOD: PARKING METER				ID: AIRLINER, TOASTER HIDDEN-OOD: TANK				
Еросн	RC FPR95↓	MA AUROC↑	Fini FPR95↓	etune AUROC↑	RC FPR95↓	MA AUROC↑	Fini FPR95↓	etune AUROC↑	RC FPR95↓	MA AUROC↑	Fini FPR95↓	ETUNE AUROC ⁻
0	0.220	0.962	0.220	0.962	0.430	0.933	0.430	0.933	0.190	0.962	0.190	0.962
5	0.220	0.957	0.570	0.895	0.440	0.897	0.890	0.648	0.040	0.986	0.090	0.973
10	0.260	0.958	0.760	0.882	0.140	0.972	0.740	0.815	0.060	0.982	0.150	0.956
15	0.140	0.973	0.520	0.914	0.130	0.973	0.650	0.856	0.120	0.974	0.130	0.960
20	0.130	0.974	0.520	0.921	0.110	0.973	0.650	0.861	0.100	0.974	0.130	0.950
25	0.130	0.975	0.520	0.919	0.120	0.975	0.580	0.877	0.090	0.977	0.130	0.960
30	0.120	0.975	0.460	0.930	0.120	0.975	0.610	0.871	0.070	0.981	0.100	0.969
	ID	: Forklif	T, REVOL	VER	I	D: DRAGO	nfly, Ta	NK	I	D: AUTOM	iobile, C	AT
	ID HIDI	: Forklif den-OOD:	T, REVOL	VER OBILE	I HI	D: DRAGO DDEN-OO	nfly, Ta D: Forki	NK LIFT	I	D: Autom hidden-O(IOBILE, C OD: True	AT CK
Еросн	ID HIDI RC FPR95↓	: Forklif den-OOD: DMA AUROC↑	t, Revol Snowm Fini FPR95↓	.ver obile etune AUROC↑	I HI RC FPR95↓	D: Drago dden-OO DMA AUROC↑	nfly, Ta D: Forki Fini FPR95↓	nk Lift Etune AUROC↑	I FPR95↓	D: Autom hidden-O()MA AUROC↑	IOBILE, C DD: Tru⊄ Fini FPR95↓	AT CK ETUNE AUROC
Еросн 0	ID HID RC FPR95↓ 0.160	: Forklif den-OOD: DMA AUROC† 0.967	T, REVOL SNOWM FINI FPR95↓ 0.160	ver obile etune AUROC↑ 0.967	I HI RC FPR95↓ 0.190	D: DRAGO DDEN-OO DMA AUROC↑ 0.962	nfly, Ta D: Forki Fini FPR95↓ 0.190	NK LIFT ETUNE AUROC↑ 0.962	I FPR95↓ 0.809	D: AUTOM HIDDEN-OO DMA AUROC↑ 0.776	IOBILE, C DD: True FINI FPR95↓ 0.809	AT CK ETUNE AUROC 0.776
Еросн 0 5	ID HID FPR95↓ 0.160 0.060	:: Forklif Den-OOD: DMA AUROC↑ 0.967 0.983	T, REVOL SNOWM FINE FPR95↓ 0.160 0.300	VER OBILE ETUNE AUROC↑ 0.967 0.938	I HI RC FPR95↓ 0.190 0.060	D: DRAGO DDEN-OO DMA AUROC† 0.962 0.986	NFLY, TA D: FORKI FINH FPR95↓ 0.190 0.240	NK LIFT ETUNE AUROC↑ 0.962 0.955	I FPR95↓ 0.809 0.829	D: AUTOM HIDDEN-OO DMA AUROC† 0.776 0.799	IOBILE, C DD: True FINI FPR95↓ 0.809 0.835	AT CK ETUNE AUROC 0.776 0.792
Еросн 0 5 10	ID HID RC FPR95↓ 0.160 0.060 0.030	E: FORKLIF DEN-OOD DMA AUROC↑ 0.967 0.983 0.981	T, REVOL SNOWM FINI FPR95↓ 0.160 0.300 0.150	VER OBILE ETUNE AUROC↑ 0.967 0.938 0.961	I HI FPR95↓ 0.190 0.060 0.040	D: DRAGO DDEN-OO DMA AUROC↑ 0.962 0.986 0.988	NFLY, TA D: FORKI FINH FPR95↓ 0.190 0.240 0.250	NK LIFT ETUNE AUROC↑ 0.962 0.955 0.949	I FPR95↓ 0.809 0.829 0.861	D: AUTOM HIDDEN-OO DMA AUROC↑ 0.776 0.799 0.787	IOBILE, C DD: TRU FINI FPR95↓ 0.809 0.835 0.824	AT CK ETUNE AUROC 0.776 0.792 0.817
Еросн 0 5 10 15	ID HID FPR95↓ 0.160 0.060 0.030 0.040	1: FORKLIF DEN-OOD DMA AUROC↑ 0.967 0.983 0.981 0.986	T, REVOL SNOWM FINE FPR95↓ 0.160 0.300 0.150 0.080	VER OBILE ETUNE AUROC↑ 0.967 0.938 0.961 0.974	I HI FPR95↓ 0.190 0.060 0.040 0.070	D: DRAGO DDEN-OO DMA AUROC↑ 0.962 0.986 0.988 0.985	NFLY, TA D: FORKI FINI FPR95↓ 0.190 0.240 0.250 0.320	NK LIFT AUROC↑ 0.962 0.955 0.949 0.938	I FPR95↓ 0.809 0.829 0.861 0.816	D: AUTOM HIDDEN-OO DMA AUROC↑ 0.776 0.799 0.787 0.808	OBILE, C DD: TRU FINI FPR95↓ 0.809 0.835 0.824 0.835	AT CK ETUNE AUROC 0.776 0.792 0.817 0.794
Еросн 0 5 10 15 20	ID HID FPR95↓ 0.160 0.060 0.030 0.040 0.060	: FORKLIF DEN-OOD: DMA AUROC↑ 0.983 0.981 0.986 0.983	T, REVOL SNOWM FINI FPR95↓ 0.160 0.300 0.150 0.080 0.110	VER OBILE ETUNE AUROC↑ 0.967 0.938 0.961 0.974 0.968	I HI FPR95↓ 0.190 0.060 0.040 0.070 0.050	D: DRAGO DDEN-OO DMA AUROC↑ 0.962 0.986 0.988 0.985 0.985	NFLY, TA D: FORKI FINF FPR95↓ 0.190 0.240 0.250 0.320 0.440	NK LIFT ETUNE AUROC↑ 0.962 0.955 0.949 0.938 0.926	I FPR95↓ 0.809 0.829 0.861 0.816 0.857	D: AUTOM HIDDEN-OO DMA AUROC↑ 0.776 0.799 0.787 0.808 0.783	OBILE, C DD: TRU FINI FPR95↓ 0.809 0.835 0.824 0.835 0.853	AT CK ETUNE AUROC 0.776 0.792 0.817 0.794 0.784
Еросн 0 5 10 15 20 25	ID HID FPR95↓ 0.160 0.060 0.030 0.040 0.060 0.020	: FORKLIF DEN-OOD: DMA AUROC↑ 0.983 0.981 0.986 0.983 0.989	T, REVOL SNOWM FINI FPR95↓ 0.160 0.300 0.150 0.080 0.110 0.110	VER OBILE ETUNE AUROC↑ 0.967 0.938 0.961 0.974 0.968 0.971	I HI FPR95↓ 0.190 0.060 0.040 0.070 0.050 0.060	D: DRAGO DDEN-OO DMA AUROC↑ 0.962 0.986 0.988 0.985 0.985 0.985 0.981	NFLY, TA D: FORKI FINE FPR95↓ 0.190 0.240 0.250 0.320 0.320 0.440 0.390	NK LIFT ETUNE AUROC↑ 0.962 0.955 0.949 0.938 0.926 0.927	I FPR95↓ 0.809 0.829 0.861 0.816 0.857 0.815	D: AUTOM HIDDEN-OO DMA AUROC↑ 0.776 0.799 0.787 0.808 0.783 0.818	OBILE, C DD: TRU0 FINI FPR95↓ 0.809 0.835 0.824 0.835 0.853 0.853 0.838	AT CK ETUNE AUROC 0.776 0.792 0.817 0.794 0.784 0.789

		HIDDEN-C	OD: Shi	P	HIDDEN-OOD: PINE TREE				
	RC	MA	Fine	ETUNE	RC	MA	Fine	ETUNE	
Epoch	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	
0	0.465	0.859	0.465	0.859	0.800	0.579	0.800	0.579	
5	0.459	0.886	0.679	0.821	0.800	0.652	0.750	0.615	
10	0.510	0.875	0.637	0.826	0.840	0.607	0.840	0.626	
15	0.371	0.913	0.561	0.848	0.740	0.658	0.830	0.635	
20	0.385	0.907	0.587	0.849	0.760	0.585	0.840	0.585	
25	0.371	0.916	0.585	0.852	0.790	0.649	0.790	0.601	
30	0.385	0.907	0.573	0.839	0.790	0.616	0.820	0.561	

Table 11: Average results of hidden OOD detection in toy datasets comparing our ROMA with traditional fine-tuning.

	RC	MA	FINETUNE		
Еросн	FPR95↓	AUROC↑	FPR95↓	AUROC↑	
0	40.80	87.51	40.80	87.51	
15	30.34	90.88	49.08	86.49	
30	29.84	90.31	49.76	85.18	