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ABSTRACT

Existing out-of-distribution (OOD) detection methods without outlier exposure
learn effective in-distribution (ID) representations distinguishable for OOD samples,
which have shown promising performance on many OOD detection tasks. However,
we find a performance degradation in some challenging OOD detection, where pre-
trained networks tend to perform worse during the fine-tuning process, exhibiting
the over-fitting of ID representations. Motivated by this observation, we propose a
critical task of hidden OOD detection, wherein ID representations provide limited
or even counterproductive assistance in identifying hidden OOD data. To address
this issue, we introduce a novel Regularization framework for OOD detection with
Masked Autoencoders (ROMA), which utilizes the masked image modeling task to
regularize the network. With distribution-agnostic auxiliary data exposure, ROMA
notably surpasses previous OOD detection methods in hidden OOD detection.
Moreover, the robustness of ROMA is further evidenced by its state-of-the-art
performance on benchmarks for other challenging OOD detection tasks.

1 INTRODUCTION

Neural networks are unreliable to provide predictions for samples that fall outside of the training
distribution (in-distribution), leading to insecurity of deep learning in safety-critical applications (Zhu
et al., 2023; Caruana et al., 2015; Eykholt et al., 2018). Thus, it is important to enable the neural
network to effectively distinguish such out-of-distribution (OOD) inputs from in-distribution (ID)
samples, which is the task of OOD detection. There is a rich line of research on OOD detection
in recent years, which can be roughly divided into two categories: 1) Data-driven methods utilize
outlier exposure to let the network learn OOD features in a supervised way (Hendrycks et al., 2019b;
Mohseni et al., 2020), which require human effort to determine the distribution of outliers (Katz-
Samuels et al., 2022). 2) Training-driven methods are based on the source data without outliers. These
methods use source data to train or fine-tune the network for effective ID representation to distinguish
OOD samples (Bendale & Boult, 2016; Hendrycks & Gimpel, 2016; Liang et al., 2018; Wei et al.,
2022). Due to additional human effort (Katz-Samuels et al., 2022), data-driven methods have limited
application in the real world and the latter ones attract more attention from researchers. Although
existing training-driven methods achieving good performance of OOD detection (Hsu et al., 2020;
Liu et al., 2020; Wang et al., 2022a), recent research discovers that there is significant performance
degradation in challenging OOD detection (Yang et al., 2022; Zhang et al., 2023b), indicating the
existence of specific OOD samples to trick the network with effective ID representation.

In our work, we address a novel OOD detection task (named hidden OOD detection) in the context of
image classification, wherein the ID representation offers limited or even counterproductive assistance
for OOD detection. Specifically, hidden OOD samples in this task exhibit a distinct distribution from
the ID samples in a generalized feature space but share similar features in the network’s feature space
learned for ID representation. As ID representation is no longer effective to detect hidden OOD
samples, learning for ID objective makes it easier for those OOD samples to trick the network, which
poses a potential risk to training-driven OOD detection methods and constrains their upper bounds
for OOD detection.

To address this prospective over-fitting concern in OOD detection, we construct specific (ID, hidden
OOD) pairs and propose a novel Regularization framework for OOD detection with Masked Autoen-
coders (ROMA). With great success of pre-trained masked autoencoders (MAE) (He et al., 2022a;
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Feichtenhofer et al., 2022; Bai et al., 2023), the MAE with masked image modeling (MIM) (He
et al., 2022a; Bao et al., 2021) on large dataset extracts generalized features beneficial to numerous
downstream tasks. Inspired by this, ROMA adopts MAE pre-trained by MIM pretext task as the basic
network. During the fine-tuning process, ROMA enables the MAE to learn supervised classification
from source images and self-supervised reconstruction from masked auxiliary images simultaneously,
regularizing the network to preserve generalized features against hidden OOD samples. It is note-
worthy that auxiliary images in self-supervised reconstruction are totally unlabeled. Unlike methods
based on outliers mining, unlabeled data used for ROMA can be easily sampled from the pre-training
datasets or even the source data.

We extensively evaluate ROMA in hidden OOD detection and standard OOD detection benchmarks
based on OpenOOD (Yang et al., 2022). ROMA shows effective regularization for hidden OOD
detection and improves the metrics (AUROC↑/FPR95↓) of OOD detection from 91.80%/33.88%
to 96.91%/19.92%. For benchmarks in OpenOOD, ROMA outperforms competitive baselines,
achieving state-of-the-art (SOTA) AUROC of 97.32%, 89.81%, and 79.23% in the challenging tasks
of near-OOD detection for CIFAR-10, CIFAR-100,and ImageNet-1K, respectively. Moreover, we
conduct benchmarks in OOD detection with uneven training distribution, where the robustness of
ROMA is verified by its minimal performance degradation. In summary, the contribution of this
paper is three-fold:

• We introduce a hidden OOD detection, representing a unique scenario where the ID repre-
sentation learned from the source data offers limited or even counterproductive assistance in
detecting certain OOD samples.

• We propose a unified regularization framework ROMA, which utilizes masked image
modeling to regularize the network with both effective ID representation and generalized
features for OOD detection.

• Extensive experiments demonstrate that ROMA not only effectively implements hidden-
OOD detection but also achieves SOTA performance in standard and other challenging OOD
detection benchmarks.

2 RELATED WORK

Masked Autoencoders. Motivated by masked language modeling that is highly successful in NLP
(Kenton & Toutanova, 2019; Brown et al., 2020), MAE (He et al., 2022a) is introduced as a neural
network pre-training framework that reconstructs the original image from its partial observation.
The pre-trained encoder of MAE can be fine-tuned in numerous downstream tasks with excellent
performance (Cai et al., 2023; Hess et al., 2023; Bachmann et al., 2022), which shows a broad impact
on visual recognition. As pre-trained networks have shown superiority in OOD detection (Li et al.,
2023; Hendrycks et al., 2019c; Fort et al., 2021), it is reasonable for us to apply MAE, a more
effective pre-training framework, for OOD detection. Since MAE is totally unsupervised, ROMA
based on MAE frees itself from dependence on labeled auxiliary dataset, which is crucial for the
practical deployment.

Challenging OOD Detection. Current OOD detection lacks generalized benchmarks (Yang et al.,
2022) and most studies simply select publicly available classification datasets as ID or OOD samples.
These works can easily lead to a significant difference in the distribution of ID and OOD samples,
where most methods perform remarkably well. However, good performance in such benchmarks
does not imply effective OOD detection, given the complexity of real-world scenarios. Recent
research starts to focus on this issue and proposes more challenging OOD detection. For instance,
near-OOD detection (Yang et al., 2022; Park et al., 2023) addresses the presence of OOD samples
with finer-grained semantic shifts; full-spectrum OOD detection (Yang et al., 2023; Zhang et al.,
2023b) is proposed to consider ID samples with covariate shifts; OOD detection with long-tailed
recognition (Wang et al., 2022b; Li et al., 2022) accounts for class imbalance in ID samples. In a
similar vein, our work introduces hidden OOD detection and examines the existence of certain OOD
samples in a generalized feature space.

OOD Detection with Auxiliary datasets. OOD detection with outliers is effective but controversial.
Initial works learn features for distinguishing ID and OOD samples (Hendrycks & Gimpel, 2016;
Liu et al., 2020) based on outliers directly sampled from the distribution of the target OOD samples.
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However, the distribution of the target OOD samples is commonly unknown. In this regard, some
methods explore leveraging information from natural outliers that do not rely on prior information of
the target OOD samples (Hendrycks et al., 2019b; Mohseni et al., 2020; Chen et al., 2021; Zhang
et al., 2023a), where diverse data are abundantly available. Although these methods no longer require
the outliers with specific distribution, they still need human effort to ensure distinct distributions
between the outliers and ID samples (Katz-Samuels et al., 2022). Moreover, inappropriate outliers
can lead to adverse effects on OOD detection. There are also other works tending to generate virtual
outliers (Du et al., 2021; He et al., 2022b; Narayanaswamy et al., 2023). However, it is hard to ensure
the effectiveness of the features learned from these virtual outliers, as the features of virtual outliers
may significantly deviate from those of natural samples. In contrast to outliers, the auxiliary data
in ROMA does not require any outlier mining and is easily sampled from natural images, which is
promising for practical applications.

3 PRELIMINARIES

In this work, we consider OOD detection in the context of (supervised) image classification. The
problem statement considering both standard OOD detection and hidden OOD detection is described
in this section.

3.1 STANDARD OOD DETECTION

OOD detection can be formulated as a binary classification problem. The input space and target space
are denoted by X and Y = {1, 2, ...,K}, where K is the number of ID classes. The training dataset
Din = {(xi, yi)|xi ∈ X , yi ∈ Y, i ∈ [1, N ]} is sampled from the in-distribution pin(x, y), where N
is the size of Din. Let Pin denote the marginal distribution of pin(x, y) on X . Thus, the goal of OOD
detection is to infer whether the given input xtest ∈ X is sampled from the Pin or not (Pout). Pout

can be any distribution that does not overlap with Pin. Methods for detecting Dout ∼ Pout focus on
building an effective detector G(·) based on networks, of which the decision is made via a threshold
comparison:

G(x) = ID, if S(x) ≥ γ; otherwise, G(x) = OOD,

where samples with lower confidence scores S(x) are classified as OOD and γ is the threshold. As
OOD detection is expected to accurately identify OOD samples without affecting the performance
of the original task, the ID classification accuracy of xin ∼ Pin is also important for benchmarks
(Yang et al., 2022). For datesets of OOD detection, standard benchmarks utilize different public
classification datasets to form (ID, OOD) pairs like (CIFAR-10, CIFAR-100 (Krizhevsky & Hinton,
2009)). These (ID, OOD) pairs need to meet the requirement that datasets for ID and OOD do not
share the same categories.

3.2 HIDDEN OOD DETECTION

The architecture of an classification network can be understood as consisting of an encoder and a
decoder, where the encoder Encoder(·) is used to learn features for distinguishing xin from different
categories and the decoder is a linear Classifier(·). Encoder(·) transfers the input x into the feature
space H, which is then mapped into the target space Y by Classifier(·). Specifically, the encoder
generates the corresponding feature h = Encoder(x), where h ∈ Rd and d is the dimension of h.
The classifier is employed to predict the label of x according to h:

logits = WT h + b, p(y|x) = Softmax(logits), ŷ = argmax
k

p(y = k|x),

where W ∈ Rd×K and b ∈ RK are the weight and bias of the classifier, respectively. logits ∈ RK

represents the energy of each class and the higher energy corresponds to the fact that more effective
features representing a specific class from H can be extracted. p(y|x) is the probability distribution
obtained by Softmax function in target space Y , and ŷ is the final prediction of the network.

Considering OOD detection, we use PH
out and PH

in,k to denote the distribution of xout ∼ Pout in
H and the distribution of ID samples belonging to the k-th class of xin ∼ Pin in H, respectively.
For ∀k ∈ Y , following the assumption that there is certain difference between hout ∼ PH

out and
hin,k ∼ PH

in,k, deep learning-driven OOD detection methods try to build effective G(·) based on h,
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logits, and p(y|x). Learned from the ID classification task, the approximated feature space H̄ for
ID representation is proven to be effective to distinguish OOD samples, which is considered as the
core of OOD detection (Li et al., 2023; 2024). In current benchmarks for OOD detection, strong
classification capabilities always lead to good performance in OOD detection (Vaze et al., 2021),
while OOD samples hard to be distinguished by ID representation in H̄ are rarely noticed.

To highlight these OOD samples and thus address the phenomenon that good ID classification
performance leads to poor OOD detection, we propose a task of hidden OOD detection focusing on
specific OOD samples x̂out ∈ Dout whose P̂H

out will get close to PH
in,k during the learning process of

H̄. Hence, the x̂out satisfies
lim

H→H̄
GH(x̂out) = ID, s.t. GĤ(x̂out) = OOD,

where GH(·) is the detector G(·) when the feature space of network is H, and Ĥ represents a
generalized feature space. For these OOD samples, features for ID representation have limited or
even negative assistance, which make them easier to trick the network with ID supervised-learning.
We use a toy example of (ID, hidden OOD) pair found in ImageNet-30 (Hendrycks et al., 2019c)
to showcase the blind spot for ID representation (more examples are shown in Appendix A.4).
Specifically, the (ID, hidden-OOD) example can be expressed as ({‘Dragonfly’,‘Tank’},{‘Forklift’})
(Figure 1a), where Din contains images labeled dragonfly and tank, and xout is sampled from images
labeled forklift. We apply a pre-trained Encoder(·) to fine-tune on Din, whose H will be changed
from a generalized feature space Ĥ to a specific feature space H̄. As displayed in Figure 1b, the
performance of OOD detection is worse as the training progresses. This over-fitting phenomenon
indicates that most forklift images can be considered hidden-OOD in this case and the learning of the
specific H̄ for ID representation will make the network blind to hidden OOD samples.

Figure 1: The performance (FPR95↓ and AUROC↑) of OOD detection in the fine-tuning process of
the pre-trained network released by MAE on a (ID, hidden-OOD) pair (a), where (b) is fine-tuned
with normal cross-entropy loss and (c) is fine-tuned with ROMA. The confidence score is based on
Mahalanobis distance (Lee et al., 2018).

4 METHODS

In this section, we first introduce how to find samples from standard datasets for the benchmark of
hidden OOD detection. We then elucidate the masked image modeling crucial for aiding hidden
OOD detection and finally introduce the regularization framework ROMA.

4.1 HIDDEN OOD SAMPLES MINING

Labeled dataset Xin like CIFAR (Krizhevsky & Hinton, 2009) are widely used to benchmark OOD
detection and we will show our method to construct hidden OOD dataset X̂out from the corresponding
OOD dataset Xout. We assume that the pre-trained network has a generalized feature space Ĥ as the
large-scale pre-training dataset XP like ImageNet (Deng et al., 2009) is distributed widely beyond
Xin; the fine-tuned network has the feature space H̄ for ID representation as the recognition of Xin is
the main objective. FPR represents the probability that the ID sample xin is incorrectly identified as
OOD by G(·). Therefore, we can calculate the corresponding threshold γĤ and γH̄ based on selected
FPRĤ, FPRH̄ and SĤ(·), SH̄(·). Here, we use SH(·) based on Mahalanobis distance (Lee et al.,
2018)

SH(x) = −min
i

(h − µi)
TΣ−1(h − µi),

4
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where h represents the feature of an input x. µ and Σ are the class mean representation and the
covariance matrix derived from training data. It is noted that the training data is regarded as one
category for SĤ(·) and K categories for SH̄(·). Hence, two detectors GĤ(·) and GH̄(·) are acquired
with the thresholds γĤ and γH̄, able to detect Xout with FPRĤ and FPRH̄, respectively. As shown
in the Figure 2a, when FPRĤ = FPRH̄, A − B contains OOD samples exposed to GĤ(·) while
hidden from GH̄(·). Hence, we can collect hidden OOD samples from

X̂out = A−B, s.t. FPRĤ ≤ FPRH̄.

Taking FPRĤ = 0.8%, FPRH̄ = 6%, CIFAR-100 (Krizhevsky & Hinton, 2009) as Xin and
ImageNet (Deng et al., 2009) as XP , X̂out with 2925 samples can be collected from the corresponding
OOD dataset Xout in OpenOOD (Yang et al., 2022). Subsequently, we evaluate various competitive
methods to detect these samples. It is noteworthy that hidden OOD samples exist in a widespread
OOD distribution Pout and the construction of specific X̂out aims to bring the over-fitting in OOD
detection from obscurity to the surface. Results in Figure 2b, c show that all methods exhibit
continuous deteriorating trends to detect X̂out as the training progresses, underscoring the tangible
threat posed by hidden OOD samples. On the other hand, the existence of hidden OOD samples
fundamentally limits the performance of OOD detection methods based on ID representation.

Figure 2: (a) The Venn diagram of OOD samples, where S stands for general OOD samples in
Xout, A and B represent OOD samples that can be detected by GĤ(·) and GH̄(·), respectively. The
dynamics of AUROC (b) and FPR95 (c) of hidden OOD detection in the fine-tuning process of the
pre-trained network with previous OOD detection methods and our ROMA (d).

4.2 ENCODER WITH MASKED IMAGE MODELING

For hidden OOD detection, Encoder(·) is expected to learn Ĥ for generalized representation. Outlier
exposure seems to be a potential way to regularize Encoder(·) to learn Ĥ. However, it will introduce
external human efforts to find outliers(Katz-Samuels et al., 2022). Once there are ID samples in
outliers, the outlier exposure will actually decrease the performance of ID recognition and OOD
detection. Recent research (MOOD (Li et al., 2023)) found that reconstruction-based pretext tasks can
provide a generally efficacious prior beneficial for the network in learning intrinsic data distributions,
which significantly improves the network’s performance in standard OOD detection. Inspired by this
great success, we next present our framework to regularize Encoder(·) based on MAE.

With masked image modeling (MIM), MAE enables the encoder to learn H based on pixel-level
understanding rather than patterns from classification. Thus, we utilize the identical architectures
of Encoder(·) and Decoder(·) in MAE for feature extracting and reconstruction. Besides, an extra
linear Classifier(·) is applied for classification. Both reconstruction and classification tasks share
the same Encoder(·). Specifically, Encoder(·) is a ViT (Dosovitskiy et al., 2020), whose input
is a subset of visible patches of the image x. The x after tokenisation following previous setups
(Arnab et al., 2021; Dosovitskiy et al., 2020) is v = Tokenise(x)+p, where p denotes the positional
embeddings. For v ∈ Rn×d, n is the total number of tokens and d is the vector dimension. Random
subsets of these tokens are masked with the ratio α and the rest unmasked tokens u = Mask(v, α) are
processed by Encoder(·) with output s = Encoder(u), where s ∈ R(1−α)·n×d. For Classifier(·),
the mask ratio α is αC = 0 and then s is averaged into feature h ∈ Rd as the input. We have

LC(fC(x, αC), y) = CrossEntropy(Classifier(h), y),

where fC(·) represents the cascade operation of Encoder(·) and Classifier(·). For Decoder(·),
the mask ratio α is αM and the masked tokens m ∈ RαM ·n×d are then inserted back into s whilst
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adding new positional embeddings, by which we denote z = Unshuffle (s,m) ∈ Rn×d as the input.
Finally, Decoder(·) processes z to reconstruct the original input x corresponding to the tokens in
pixel space x̃. We have

LM (fM (x, αM ), x) = E(∥Decoder(z)− x̃∥2),
where fM (·) represents the cascade operation of Encoder(·) and Decoder(·).

4.3 REGULARIZATION FRAMEWORK

The two branches share the same Encoder(·). The feature h of the in-distribution image goes through
a Classifier(·) followed by a Softmax function. In the reconstruction branch, there is a Decoder(·)
whose input is the embedding z of the natural images.

In-distribution images

Natural images

Classifier

Classification branch

En
co
de
r

h

z

D
ec
od
er

… …

Reconstruction branch

…

…

…

…

CLASS

Horse
Cat
···

Figure 3: Overview of ROMA. The network includes two branches: reconstruction branch for natural
images without considering distribution and the classification branch for ID images.

Training procedure. The overall training workflow consists of three steps: 1) pre-trains Encoder(·)
in MIM task on large-scale pre-training dataset XP . 2) constructs data pair (xin, xA) for input, where
xA is the auxiliary image randomly sampled from the candidate pool XP . 3) fine-tunes the two
branches together with the encoder using (xin, xA) whose target is (yin, x̃A).

Training objective. The original training objective of normal classification is E(x,y)∼Din
[L(f(x), y)],

where f(·) is the network. To achieve superior performance in both hidden OOD and standard
OOD detection, we propose ROMA with MIM regularization. As shown in Figure 3, the in-
distribution images are fed into Encoder(·) and the feature vector h is sent to the classification
branch. Meanwhile, self-supervised learning (SSL) of the auxiliary images is performed on the
reconstruction branch, serving two purposes: 1) regularization for ID features learning. The
network is only allowed to see part of the image space to realize correct reconstruction, reducing
the over-fitting of ID representation learned for classification. 2) regularization for generalized
features learning. ROMA regularizes the network to reconstruct masked auxiliary images instead
of in-distribution images, encouraging the network to represent a more generalized feature space Ĥ.
Thus, the training objective of ROMA is a combination of the learning objective for ID classification
together with MIM regularization, which can be formulated as:

E(x,y)∼Din
[LC(fC(x, αC), y)] + λEx∼xA [LM (fM (x, αM ), x)].

OOD inference. During the testing procedure, only Encoder(·) and classification branch are retained.
Since the regularization process focuses on the feature space H, SH(·) based on Mahalanobis distance
(Lee et al., 2018) is applied for OOD inference. Results in Figure 1c and Figure 2d show that ROMA
alleviates the over-fitting in hidden OOD detection and there is a discernible trend indicating improved
performance throughout the fine-tuning process. Further evaluation will be shown in the section 5.2.

5 EXPERIMENTS

In this section, we present extensive experiments to validate the superiority of ROMA, which improves
standard OOD detection while effectively resisting hidden-OOD attacks. We provide comparisons
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with previous competitive OOD detection methods and ROMA shows SOTA performance in most
challenging tasks. Additionally, we perform ablation experiments to further elucidate ROMA’s
performance.

5.1 EXPERIMENTAL SETUP

Datasets. Following the standard OOD detection benchmarks based on OpenOOD (Yang et al.,
2022), we use CIFAR-10, CIFAR-100, and ImageNet as ID datasets. For standard OOD detection,
we use all far-OOD and near-OOD datasets corresponding to the selected ID datasets, which are
summarized by OpenOOD. For hidden OOD detection, we use CIFAR-10, CIFAR-100, and BIMCV
(Vayá et al., 2020) as ID datasets, and utilized our hidden-OOD finding strategy in the section 4.1 to
find hidden OOD samples from their OOD datasets.

Training details. We evaluate numerous OOD detection methods with pre-trained networks, all
of which are pre-trained on ImageNet (corresponding to XP ). As OpenOOD concludes that vision
transformer does not necessarily perform better than ResNet, we fine-tune two networks based on
ResNet-18/50 (He et al., 2016) and ViT-B-16 (Dosovitskiy et al., 2020) in all benchmarks, and choose
the one with better AUROC for OOD detection in the following evaluation. Appendix A.2 shows
more details of training settings. For hyper-parameters of ROMA, we use λ = 1 and αM = 0.75.

Evaluation metrics. We evaluate the performance of OOD detection by measuring the following
metrics: 1) the false positive rate (FPR95) of OOD examples when the true positive rate of in-
distribution examples is 95%; 2) the area under the receiver operating characteristic curve (AUROC);
and 3) the ID classification accuracy (ID-ACC).

5.2 RESULTS

Hidden OOD detection benchmarks. We first conduct hidden OOD detection benchmarks with
competitive baseline methods, including MSP (Hendrycks & Gimpel, 2016), ODIN (Liang et al.,
2018), MDS (Lee et al., 2018), EBO (Liu et al., 2020), MLS (Hendrycks et al., 2019a), ViM (Wang
et al., 2022a), KNN (Sun et al., 2022), GEN (Liu et al., 2023), CIDER (Ming et al., 2022), OE
(Hendrycks et al., 2019b), MOOD (Li et al., 2023), and ROMA. Among them, MOOD and ROMA
require XP to be incorporated into the subsequent training phase following pre-training, while OE
necessitates the utilization of auxiliary images as outliers. To make a fair comparison with other
post-hoc methods, auxiliary images used by MOOD, ROMA, and OE are randomly sampled from XP

and the amount of auxiliary images equals to the amount of ID images. As Table 1 shows, compared
to directly using the pre-trained network for hidden OOD detection, the performance of all methods
has declined after ID-ACC converged. This confirms that the learning of ID representations indeed
causes some OOD samples to be hidden-to-detect. The results demonstrate that ROMA with effective
regularization significantly outperforms other methods, achieving the best metrics of AUROC and
FPR95. Although OE is widely regarded as an excellent regularization method for OOD detection,
its performance is even worse than post-hoc methods when outliers contain in-distribution samples.

Table 1: Comparison between previous methods and ROMA in hidden OOD detection. PT represents
the method of directly using the pre-trained ViT network and SH(·) for OOD detection. With the
setting of FPRĤ = 0.8%, FPRH̄ = 6%, there are 173, 91, and 2925 hidden OOD samples collected
for the ID datasets of BIMCV, CIFAR-10, and CIFAR-100, respectively.

ID DATASET PT MSP ODIN MDS EBO MLS VIM KNN GEN CIDER LOGIT OE MOOD ROMA

AUROC↑ 99.98 83.52 99.11 92.52 83.52 83.52 92.13 98.48 83.52 58.27 23.03 73.22 99.84 99.97
BIMCV FPR95↓ 0.11 41.53 6.85 23.46 41.53 41.53 21.1 15.38 41.53 97.76 100 73.85 0.56 0

ID-ACC↑ - 73.06 73.06 73.06 73.06 73.06 73.06 73.06 73.06 73.06 67.79 63.64 73.4 75.42
AUROC↑ 99.73 75.71 73.79 89.43 79.19 79.17 89.78 68.97 95.75 81.38 89.07 92.77 96.85 97.94

CIFAR-10 FPR95↓ 0.8 49.7 79.14 23.95 53.6 53.6 22.37 68.39 50.95 52.32 31.04 30.81 19.59 8.74
ID-ACC↑ - 97.86 97.86 97.86 97.86 97.86 97.86 97.86 97.86 97.72 94.43 94.13 98.22 98.36
AUROC↑ 99.87 64.7 60.75 87.13 76.35 75.14 87.39 74.67 63.83 71.31 72.4 75.25 91.83 96.91

CIFAR-100 FPR95↓ 0.54 68.01 79.79 27.76 65.51 66.18 28.54 49.96 68.2 71.28 69.13 68.19 31.51 19.92
ID-ACC↑ - 85.79 85.79 85.79 85.79 85.79 85.79 85.79 85.79 85.72 75.84 74.78 85.06 85.8

Standard OOD detection benchmarks. We further evaluate the performance of ROMA in standard
OOD detection. As shown in Table 2, ROMA still achieves SOTA performance with averaged
AUROC/FPR95 of 91.27%/25.89%. For the most challenging task, near-OOD detection for ImageNet,
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ROMA improves the SOTA AUROC/FPR95 from 77.03% (VIM)/66.99% (OE) to 79.23%/65.10%.
The results are remarkable as ROMA is totally pre-trained and regularized with unlabeled images
from ImageNet. Obviously, ROMA enables the network to detect more OOD samples that the
methods learning H̄ for ID representation are blind to.

Table 2: Comparison between previous methods and ROMA. Full results are shown in Appendix A.3.

CIFAR-10 CIFAR-100 IMAGENET-1K AVERAGENEAR-OOD FAR-OOD NEAR-OOD FAR-OOD NEAR-OOD FAR-OOD
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 53.58 87.69 31.23 91.03 54.55 80.38 58.89 77.65 81.85 73.52 51.69 86.04 53.29 83.17
ODIN 84.73 80.37 61.06 87.24 58.42 79.78 57.71 79.48 86.25 68.15 84.88 73.29 70.77 78.59
MDS 63.82 79.96 55.21 80.70 88.15 52.71 79.20 63.07 68.65 75.18 29.87 91.49 61.88 75.01
EBO 68.18 86.95 40.41 91.80 55.71 80.76 56.27 79.78 93.19 62.41 85.35 78.98 64.75 80.88
MLS 68.14 86.87 40.40 91.66 55.57 80.97 56.43 79.67 92.25 68.30 79.23 83.54 63.41 82.54
VIM 51.78 87.74 31.09 91.42 63.09 74.84 49.94 81.82 73.73 77.03 29.18 92.84 46.44 85.39
KNN 35.67 90.58 24.71 92.94 61.16 80.25 54.43 81.81 70.47 74.11 31.93 90.81 44.13 85.86
GEN 57.86 87.80 33.58 91.57 54.01 81.34 57.73 79.32 70.78 76.30 32.23 91.35 48.60 85.21
CIDER 31.36 90.7 19.17 95.05 72.02 73.10 54.22 80.49 71.69 68.97 28.69 92.18 42.82 84.84
LOGIT 28.00 92.62 12.65 97.03 64.91 77.76 56.02 80.62 68.56 74.62 31.32 91.54 40.98 86.55
OE 20.63 94.8 12.86 95.75 29.91 88.47 53.24 82.86 66.99 75.71 53.64 84.34 39.97 87.02
MOOD 15.00 96.65 2.18 99.25 40.42 89.14 23.15 90.55 73.39 72.06 35.41 88.78 28.65 90.18
OURS 13.01 97.32 1.64 99.47 34.46 89.81 28.24 87.30 65.10 79.23 26.46 92.06 25.89 91.27

OOD detection with uneven distribution. To assess ROMA’s robustness, we examine the OOD
detection performance when ID representation degrades as the unevenness of ID distribution increases.
In this experiment, we modify the in-distribution unevenness of Din. Specifically, we leave one
class unchanged and sample randomly 10% to 40% images from each of the rest nine classes to
form an uneven ID dataset. This process is repeated ten times to generate ten uneven ID datasets
and all methods are trained and evaluated on these datasets. The averaged performance is displayed
in Table 3. Results show that metrics of both near-OOD and far-OOD detection degrade with the
increasing unevenness of in-distribution. However, ROMA still outperforms other methods and has
the minimal degradation. For the most challenging scenario with the sampling ratio of 10%, ROMA
still maintains considerable AUROC/FPR95 of 95.13%/20.66% and 98.15%/5.28% in near-OOD and
far-OOD detection respectively. Results further demonstrate effective regularization of ROMA for
generalized features learning, which enables the network to maintain robust OOD detection even if
ID representation has certain degradation.

Table 3: Performance of OOD detection with uneven training distribution. To form dataset with
uneven in-distribution, we leave one class unchanged while randomly sampling images from each of
the rest classes at the sampling ratio from 0.1 to 0.4. The original ID dataset is CIFAR-10.

RATIO 0.1 RATIO 0.2 RATIO 0.4
NEAR-OOD FAR-OOD NEAR-OOD FAR-OOD NEAR-OOD FAR-OOD

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MSP 65.88 73.46 62.49 73.49 53.89 80.63 48.59 81.93 46.60 84.91 39.05 86.57
ODIN 66.78 75.87 57.39 79.14 59.27 81.18 47.59 84.90 60.16 83.28 45.67 87.62
MDS 89.20 55.45 79.82 61.62 85.29 59.25 75.14 66.81 75.49 67.77 63.49 73.04
EBO 64.06 77.25 60.17 76.79 54.64 82.71 48.35 83.78 51.25 85.96 42.75 87.49
MLS 64.05 77.09 60.27 76.65 54.62 82.61 48.43 83.69 51.25 85.89 42.79 87.43
VIM 66.86 75.79 58.29 78.28 56.81 80.67 45.76 84.83 49.79 84.67 36.88 88.28
KNN 87.71 40.56 82.59 44.39 68.77 74.85 57.65 79.63 47.60 85.59 37.13 88.14
GEN 65.69 73.81 62.59 73.90 54.12 80.49 49.07 81.68 47.24 84.85 39.80 86.44
CIDER 93.84 47.27 88.14 46.81 91.01 40.36 89.02 40.81 75.38 63.72 70.85 65.86
LOGIT 77.56 70.67 60.30 77.81 57.48 81.58 39.59 88.79 42.85 87.41 26.57 93.18
OE 66.85 74.83 64.68 66.19 50.64 83.52 47.22 76.98 33.89 90.54 29.08 88.35
MOOD 22.59 94.92 7.99 97.41 19.18 95.71 5.34 98.25 17.28 96.24 3.80 98.79
OURS 20.66 95.13 5.28 98.15 18.10 95.88 3.67 98.75 14.02 97.11 2.87 99.09

Ablation study of ROMA. In this section, we conduct ablations for ROMA in hidden OOD and
standard OOD detection, where the ID dataset is CIFAR-100. For standard OOD detection, we
show the average results of near-OOD and far-OOD detection. We first evaluate the effectiveness of
designed training procedures (pre-trainning, fine-tuning, and self-supervised learning) for ROMA and
results are shown in Table 4a. Compared with traditional fine-tuning procedure, ROMA improves
the performance of both hidden OOD and standard OOD detection. We proceed to conduct ablation
experiments varying the number NA of auxiliary images xA (Table 4b) and the candidate dataset
for SSL (Table 4c). Results demonstrate that increasing the number of auxiliary images within the
training process for SSL does not consistently yield improved OOD detection metrics. Thus, it is

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

advisable to utilize an equal number of auxiliary images as the number (N ) of ID images, striking a
balance between computational resources and performance. Regarding the candidate dataset, ROMA
with auxiliary images xA sampled from ImageNet (XP ) shows superior performance in hidden OOD
detection as it has broad distribution for more generalized features learning. Notably, ROMA with xA
exclusively sampled from in-distribution (training) images achieves the best performance in standard
OOD detection, underscoring the inherent advantage of the MIM task itself for OOD detection and
the blind spots for standard OOD detection.

Table 4: Results of ablation study on (a) MIM pre-training (PT), fine-tuning (FT), and self-supervised
learning (SSL); (b) the number (NA) of auxiliary images; (c) candidate dataset for SSL.
(a) Ablations on PT, FT, and SSL.

TASK PT FT SSL FPR95↓ AUROC↑

HIDDEN

√
× × 3.32 98.73√ √

× 33.88 91.8
×

√ √
92.73 51.87√ √ √
19.92 96.91

STANDARD

√
× × 20.60 89.70√ √

× 37.29 88.20
×

√ √
77.69 63.09√ √ √
30.31 88.14

(b) Ablations on NA.

TASK NA FPR95↓ AUROC↑

HIDDEN

0.5×N 37.47 87.4
1.0×N 19.92 96.91
2.0×N 40.57 85.19
5.0×N 41.37 84.42

STANDARD

0.5×N 30.31 90.01
1.0×N 30.31 88.14
2.0×N 32.08 89.31
5.0×N 32.33 89.13

(c) Ablations on the SSL dataset.

TASK SSL DATASET FPR95↓ AUROC↑

HIDDEN

IMAGENET-1K 19.92 96.91
PLACES365 45.84 80.95
CIFAR-10 35.94 91.77
IN-DISTRIBUTION 33.53 92.53

STANDARD

IMAGENET-1K 30.31 88.14
PLACES365 37.15 85.58
CIFAR-10 26.54 90.98
IN-DISTRIBUTION 26.32 90.99

5.3 DISCUSSION

With the reasoning ability learned from the MIM task in pre-training step and reconstruction branch,
ROMA is actually able to process masked images on the classification branch. Specifically, αC in the
training procedure can be set to a non-zero value and each ID image will be randomly masked in each
training epoch. During the testing procedure, the network is allowed to see the whole ID image and
there is no masked patch, corresponding to αC = 0. Under this condition, adversarial training (ADV)
with one step towards ID-supervised learning and one step backwards self-supervised learning may
be more appropriate than directly sum up the weighted loss (SUM) of E(x,y)∼Din

[LC(fC(x, αC), y)]
and Ex∼xA [LM (fM (x, αM ), x)]. As shown in Figure 4, we deploy ROMA with αC = 0.75 in hidden
OOD detection of CIFAR-100. The results demonstrate that this masking operation will further
deepen the regularization of ID representation and reduce the computing resources required for
training. The price in exchange is a reduction of arround 5% in ID-ACC. Overall, ROMA showcases
more possibilities of MIM-based regularization so that trade-offs can be taken among the performance
in ID recognition, OOD detection, and computing resources.

Figure 4: Results for ROMA fine-tuning with αC = 0.75 v.s. αC = 0. We show the (a) AUROC, (b)
FPR95, (c) ID-ACC, and (d) averaged running time of an epoch for ROMA in hidden OOD detection.

6 CONCLUSION

In this paper, we introduce a task of hidden OOD detection, which exhibits the over-fitting of ID
representation in OOD detection. To alleviate this problem, we propose a regularization framework for
OOD detection with masked autoencoders (ROMA), utilizing masked image modeling to regularize
the network to learn generalized features. With high proportion of masking, ROMA enables the
network to perform well in both hidden OOD and standard OOD detection. This method can be
easily adopted in practical settings as it can be applied with unlabeled auxiliary images regardless of
distribution. We hope that our insights inspire future research to explore methods for OOD detection
considering hidden OOD samples, which are critical complements to the standard OOD detection.
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A APPENDIX

The supplementary material serves as a repository for additional content, including algorithm,
experimental configuration, detailed results, etc. These valuable assets are not be accommodated in
the main paper due to page limitations.

A.1 ALGORITHM

The algorithm of ROMA (includes pre-training, fine-tuning, and inferring) is shown in Algorithm 1.

Algorithm 1 ROMA-based Out-of-distribution Detection Algorithm

Require: Large-scale set XP for pre-training, in-distribution set Xtrain for fine-tuning, auxiliary set
XA for SSL, test set Xtest for inferring, masking ratio α, required True Positive Rate η%

Ensure: Is xtest ∈ Xtest OOD or not?
1: Pre-train fmae on XP by minimizing

LM (fMAE(xP , αM ), xP )

2: Fine-tune the Encoder(·) of fmae on Xtrain and XA by minimizing

E(x,y)∼Din
[LC(fC(x, αC), y)] + λEx∼xA [LM (fM (x, αM ), x)]

3: h0 = Encoder(x, αC = 0) for x ∈ Xtrain ∪ Xtest

4: Use h0 to calculate S(xtest) for xtest ∈ Xtest and S(xtrain) for xtrain ∈ Xtrain, where S(·) is
defined by

S(x) = −min
i

(h0 − µi)
TΣ−1(h0 − µi)

where µ and Σ are the mean and covariance of h0 of the in-distribution set Xtrain

5: Compute threshold γ as the η percentile of S(xtrain).
6: if S(xtest) > γ then
7: xtest is OOD
8: end if

A.2 EXPERIMENTAL CONFIGURATION

We directly employ the pre-trained network released by MAE (He et al., 2022a) including a ViT-B-16
as encoder, a relatively small ViT as decoder and a classifier head corresponding to ID classes.
During the training process, we follow MAE and represent the image as a sequence of discrete tokens
obtained by an image tokenizer. We randomly crop and resize images in both training datasets and
auxiliary images to 224 × 224. Then we split each 224 × 224 image into a 14 × 14 grid of image
patches, where each patch is 16 × 16. The patches are linearly-connected and input to the ViT-based
encoder. After that, the generated embeddings of ID samples and auxiliary samples are then passed
through classifier for classification and decoder for masked image reconstruction, respectively. Our
augmentation policy includes random resized cropping, horizontal flipping, and color jittering. We
train ROMA on CIFAR-10, CIFAR-100, and hidden-OOD datasets using 1 × NVIDIA RTX 3090
GPU and on ImageNet-1k using 8 × NVIDIA RTX 3090 GPU. More configuration details in the
experiments are shown in Table 5 and Table 6.

Table 5: Parameters of the MAE.

ENCODER DECODER CLASSIFIER
BACKBONE EMBED DIM DEPTH HEAD NUMBER EMBED DIM DEPTH HEAD NUMBER MLP RATIO

VIT-BASE 768 12 12 512 8 16 4
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Table 6: Configuration of the training parameters.

LEARNING
RATE

WARMUP
EPOCHS

EPOCHS
ACCUM

ITER
LAYER
DECAY

DROP
PATH

WEIGHT
DECAY

BATCH
SIZE

5E-4 5 100 4 0.65 0.1 0.05 128

A.3 DETAILED RESULTS FOR STANDARD OPENOOD BENCHMARKS

OpenOOD (Yang et al., 2022) subdivides standard OOD detection into two tasks: near-OOD and
far-OOD detection. For benchmarks of CIFAR-10 shown in Table 7, (ID, OOD) pairs of (CIFAR-10,
CIFAR-100) and (CIFAR-10, TinyImageNet) are used for near-OOD detection; (ID, OOD) pairs of
(CIFAR-10, MNIST), (CIFAR-10, SVHN), (CIFAR-10, Texture), and (CIFAR-10, Places365) are
used for far-OOD detection. For benchmarks of CIFAR-100 shown in Table 8, (ID, OOD) pairs of
(CIFAR-100, CIFAR-10) and (CIFAR-100, TinyImageNet) are used for near-OOD detection; (ID,
OOD) pairs of (CIFAR-100, MNIST), (CIFAR-100, SVHN), (CIFAR-100, Texture), and (CIFAR-100,
Places365) are used for far-OOD detection. For benchmarks of ImageNet-1K shown in Table 9,
(ID, OOD) pairs of (ImageNet-1K, SSB-Hard) and (ImageNet-1K, NINCO) are used for near-OOD
detection; (ID, OOD) pairs of (ImageNet-1K, iNaturalist), (ImageNet-1K, Texture), and (ImageNet-
1K, OpenImage-O) are used for far-OOD detection.

Table 7: Detailed performance on CIFAR-10.

CIFAR-100 TINYIMAGENET MNIST SVHN TEXTURE PLACES365
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 59.82 86.73 47.33 88.64 19.22 93.95 23.82 91.68 40.20 89.13 41.67 89.35
ODIN 84.87 79.55 84.59 81.18 15.39 96.60 69.04 84.62 83.19 83.86 76.62 83.87
MDS 66.33 79.47 61.30 80.44 74.73 65.90 39.63 88.67 35.98 91.43 70.50 76.79
EBO 72.69 85.55 63.68 88.35 15.49 96.32 29.34 92.60 60.43 88.63 56.38 89.63
MLS 72.66 85.49 63.63 88.26 15.53 96.12 29.26 92.46 60.44 88.55 56.38 89.51
VIM 57.11 86.67 46.46 88.80 30.79 89.50 21.57 93.56 22.13 94.66 49.89 87.95
KNN 39.19 89.60 32.14 91.57 21.72 94.11 21.62 92.85 24.93 92.99 30.57 91.82
GEN 63.63 86.71 52.09 88.89 18.01 95.00 24.08 92.18 46.12 89.36 46.12 89.74
CIDER 34.98 89.39 27.74 92.01 19.11 94.70 8.21 98.31 24.02 93.86 25.34 93.35
LOGIT 32.92 91.28 23.08 93.97 3.58 99.24 5.00 98.98 20.70 95.21 21.31 94.70
OE 33.68 91.50 7.59 98.10 28.66 88.60 2.16 99.31 8.33 97.97 12.31 97.13
MOOD 28.84 93.56 1.16 99.75 1.44 99.72 7.29 97.28 0.00 100.00 0.00 99.99
OURS 24.56 94.96 1.47 99.68 1.97 99.55 4.32 98.39 0.01 99.99 0.27 99.94

Table 8: Detailed performance on CIFAR-100.

CIFAR-10 TINYIMAGENET MNIST SVHN TEXTURE PLACES365
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 59.12 78.54 49.98 82.22 63.47 73.54 55.44 79.37 61.24 78.07 55.40 79.61
ODIN 60.98 78.03 55.86 81.53 50.36 82.09 62.16 75.56 59.83 80.46 58.51 79.80
MDS 92.08 49.56 84.22 55.86 75.04 61.77 75.78 63.40 79.88 71.33 86.09 55.78
EBO 58.88 79.01 52.53 82.51 57.57 77.30 50.84 82.67 60.21 79.33 56.47 79.81
MLS 58.93 79.20 52.21 82.74 57.93 76.91 51.14 82.33 60.24 79.36 56.38 80.06
VIM 71.20 71.70 54.99 77.98 48.36 80.94 44.73 83.87 46.26 86.39 60.41 76.09
KNN 73.31 77.00 49.00 83.49 55.51 79.44 50.38 83.87 52.57 84.14 59.27 79.78
GEN 58.56 79.39 49.44 83.28 61.42 75.66 53.68 81.53 60.78 79.53 55.03 80.57
CIDER 82.71 67.55 61.44 78.65 75.32 68.14 17.82 97.17 54.43 82.21 69.30 74.43
LOGIT 77.83 72.84 51.99 82.67 51.56 83.11 40.73 85.54 77.67 73.41 54.11 80.43
OE 59.69 77.03 0.13 99.90 58.28 79.24 38.94 92.20 58.87 80.65 56.87 79.35
MOOD 63.33 81.42 17.50 96.86 67.34 68.41 14.26 95.81 0.21 99.85 10.78 98.11
OURS 52.53 82.73 16.38 96.88 86.73 58.72 23.22 91.28 0.63 99.74 2.36 99.46

A.4 DETAILED RESULTS FOR TOY DATASETS OF HIDDEN OOD DETECTION

Based on the same pre-trained network, we evaluate both our ROMA and traditional fine-tuning on
the eight toy datasets. The detailed metrics are listed in Table 10. In the first table, three (ID, hidden
OOD) pairs are collected from ImageNet-30. In the second table, the first two (ID, hidden OOD)
pairs are collected from ImageNet-30, and the last one is selected from ImageNet-10. In the third
table, the first (ID, hidden OOD) pair is collected from ImageNet-10, and the other is selected from
CIFAR-100. As shown in Table 11, the average results show that the traditional fine-tuning procedure
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leads to a degradation (from AUROC/FPR95 of 87.51%/40.80% to 85.18%/49.76%) in hidden OOD
detection while ROMA improves the metrics to 90.31%/29.84%.

Table 9: Detailed performance on ImageNet-1K.

SSB-HARD NINCO INATURALIST TEXTURES OPENIMAGE-O
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 86.41 68.94 77.28 78.11 42.40 88.19 56.46 85.06 56.19 84.86
ODIN 86.45 66.94 86.05 69.35 79.35 78.1 85.46 72.86 89.82 68.93
MDS 83.6 68.61 53.71 81.75 21.56 93.59 37.49 89.81 30.56 91.05
EBO 92.24 58.80 94.14 66.02 83.56 79.30 83.66 81.17 88.82 76.48
MLS 91.52 64.20 92.97 72.40 72.94 85.29 78.94 83.74 85.82 81.60
VIM 90.04 69.42 57.41 84.64 17.59 95.72 40.35 90.61 29.61 92.18
KNN 86.22 65.98 54.73 82.25 27.75 91.46 33.23 91.12 34.82 89.86
GEN 82.23 70.09 59.33 82.51 22.92 93.54 38.30 90.23 35.47 90.27
CIDER 82.69 59.34 56.46 78.60 28.70 90.76 20.86 96.38 36.52 89.39
LOGIT 82.08 65.70 55.04 81.73 20.75 94.57 40.82 89.30 32.38 90.75
OE 74.91 71.76 59.08 79.66 47.25 87.26 59.38 82.56 54.31 83.21
MOOD 86.93 64.12 59.85 80.00 31.49 88.13 33.50 91.17 41.24 87.03
OURS 80.85 73.17 49.35 85.28 17.62 94.04 36.10 89.64 25.65 92.50

Table 10: Detailed performance in toy datasets of hidden OOD detection comparing our ROMA with
traditional fine-tuning.

ID: AMBULANCE, STRAWBERRY ID: CLOCK, AMBULANCE ID: AIRLINER, TOASTER
HIDDEN-OOD: TANK HIDDEN-OOD: PARKING METER HIDDEN-OOD: TANK

ROMA FINETUNE ROMA FINETUNE ROMA FINETUNE
EPOCH FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
0 0.220 0.962 0.220 0.962 0.430 0.933 0.430 0.933 0.190 0.962 0.190 0.962
5 0.220 0.957 0.570 0.895 0.440 0.897 0.890 0.648 0.040 0.986 0.090 0.973
10 0.260 0.958 0.760 0.882 0.140 0.972 0.740 0.815 0.060 0.982 0.150 0.956
15 0.140 0.973 0.520 0.914 0.130 0.973 0.650 0.856 0.120 0.974 0.130 0.960
20 0.130 0.974 0.520 0.921 0.110 0.973 0.650 0.861 0.100 0.974 0.130 0.950
25 0.130 0.975 0.520 0.919 0.120 0.975 0.580 0.877 0.090 0.977 0.130 0.960
30 0.120 0.975 0.460 0.930 0.120 0.975 0.610 0.871 0.070 0.981 0.100 0.969

ID: FORKLIFT, REVOLVER ID: DRAGONFLY, TANK ID: AUTOMOBILE, CAT
HIDDEN-OOD: SNOWMOBILE HIDDEN-OOD: FORKLIFT HIDDEN-OOD: TRUCK

ROMA FINETUNE ROMA FINETUNE ROMA FINETUNE
EPOCH FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
0 0.160 0.967 0.160 0.967 0.190 0.962 0.190 0.962 0.809 0.776 0.809 0.776
5 0.060 0.983 0.300 0.938 0.060 0.986 0.240 0.955 0.829 0.799 0.835 0.792
10 0.030 0.981 0.150 0.961 0.040 0.988 0.250 0.949 0.861 0.787 0.824 0.817
15 0.040 0.986 0.080 0.974 0.070 0.985 0.320 0.938 0.816 0.808 0.835 0.794
20 0.060 0.983 0.110 0.968 0.050 0.985 0.440 0.926 0.857 0.783 0.853 0.784
25 0.020 0.989 0.110 0.971 0.060 0.981 0.390 0.927 0.815 0.818 0.838 0.789
30 0.030 0.988 0.130 0.965 0.040 0.983 0.430 0.922 0.832 0.800 0.858 0.757

ID: AIRPLANE, CAT ID: WILLOW TREE, APPLE
HIDDEN-OOD: SHIP HIDDEN-OOD: PINE TREE

ROMA FINETUNE ROMA FINETUNE
EPOCH FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
0 0.465 0.859 0.465 0.859 0.800 0.579 0.800 0.579
5 0.459 0.886 0.679 0.821 0.800 0.652 0.750 0.615
10 0.510 0.875 0.637 0.826 0.840 0.607 0.840 0.626
15 0.371 0.913 0.561 0.848 0.740 0.658 0.830 0.635
20 0.385 0.907 0.587 0.849 0.760 0.585 0.840 0.585
25 0.371 0.916 0.585 0.852 0.790 0.649 0.790 0.601
30 0.385 0.907 0.573 0.839 0.790 0.616 0.820 0.561

Table 11: Average results of hidden OOD detection in toy datasets comparing our ROMA with
traditional fine-tuning.

ROMA FINETUNE
EPOCH FPR95↓ AUROC↑ FPR95↓ AUROC↑
0 40.80 87.51 40.80 87.51
15 30.34 90.88 49.08 86.49
30 29.84 90.31 49.76 85.18
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