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ABSTRACT

The versatility of diffusion models in generating customized images from few samples raises signif-
icant privacy concerns, particularly regarding unauthorized modifications of private content. This
concerning issue has renewed the efforts in developing protection mechanisms based on adversarial
attacks, which generate effective perturbations to poison diffusion models. Our work is motivated by
the observation that these models exhibit a high degree of abstraction within their semantic latent
space (termed ‘h-space’), which encodes critical high-level features for generating coherent and
meaningful content. In this paper, we propose a novel anti-customization approach, called HAAD
(h-space based Adversarial Attack for Diffusion models) that leverages adversarial attacks to craft
perturbations based on the h-space that can efficiently degrade the image generation process. Building
upon HAAD, we further introduce a more efficient variant, HAAD-KV, that constructs perturbations
solely based on the KV parameters of the h-space. This strategy offers a stronger protection, that
is computationally less expensive. Despite their simplicity, our methods outperform state-of-the-art
adversarial attacks, highlighting their effectiveness.
[Warning: This paper may contain images that could produce visual discomfort.]
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1 Introduction

Diffusion Models [7, 8, 9] are the current state of the art for image generation, outperforming GANs in terms of
image quality and mode coverage [10, 11]. With the introduction of large-scale diffusion models, [14, 12, 13] able to
generate intricate details and complex patterns via textual prompts, we achieve unmatched accuracy and robustness
towards generating high-fidelity images. Image editing [20, 21], image-to-image translation [22], text-to-3D images
synthesis [23, 24, 25], video generation [26, 27, 28], anomaly detection in medical images [29], etc. are few of the
many applications of diffusion models. One application that has become extremely popular due to its versatility and
ease of use is the customization of diffusion models with personal content [48, 47, 46]. These models have the ability to
create personalized content from few user images by fine-tuning a pre-trained diffusion model (e.g. Stable Diffusion) in
order to learn how to bind an unique token to a novel concept. Consequently, we can generate novel views in different
contexts and visualize them under different artistic styles.

Few-shot image customization leverages diffusion models to create user-tailored content, adapting the output to fit
particular preferences. This opens new ways of creating a more engaging and meaningful interaction with AI systems.
The ability of diffusion models to learn and adapt to specific user inputs has revolutionized the field of personalized
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content creation, making it more accessible and impactful across various industries, such as visual arts (artworks),
virtual reality, gaming, and e-commerce. While these customization approaches are powerful tools for generating
user-specific content, they also represent significant privacy risks. Malicious individuals could exploit the vulnerability
of this technology to produce and spread deceptive images (‘deep fakes’) that are visually indistinguishable from
genuine ones [30]. The negative effects of privacy risks induced by deep fakes could span from information leakage,
unauthorized reproduction of artwork [31, 32] to extreme cases where it could severely impact an individual’s personal
life and reputation [33].

In order to prevent these privacy risks, there are currently some efforts that explore protection mechanisms that can
prevent against the malicious use of customized diffusion models [41]. The main idea of the anti-customization
methods is to obtain a protected image i.e an adversarial example, from a text-to-image (T2I) diffusion model, with
the well-known Projected Gradient Descent (PGD) algorithm [56]. This protected image when used by an attacker to
train a diffusion model, leads to its poisoning, thereby successfully preventing it from generating good images. For a
pictorial representation of this flow, refer to Figure 1. Recently, both targeted and untargeted approaches have been
proposed for attacking the T2I diffusion models with adversarial examples [62, 60]. Targeted attacks are designed to
disrupt a model’s functionality by forcing it to produce a specific, predetermined output (e.g. by altering a generated
image to match a specific pattern) [82]. On the other hand, untargeted attacks [53, 63, 65] disrupt the overall model’s
functionality, without guiding it towards a specific output. One of the limitations of targeted attacks is that they may
leave visible traces of the specific pattern in the protected image, which a skillful person could potentially analyze in
order to purify and recover the original output.

This remarkable capability of diffusion models to generate user-specific content is rooted in their underlying semantic
latent space [34], termed ‘h-space’, which is responsible for generating high-quality images, coherent with the user’s
input. h-space represents the deep features from the middle-block of the U-Net architecture within the denoiser
component of the diffusion model (see Fig. 2). Leveraging this high degree of abstraction within the h-space, we
propose an adversarial attack which serves as an anti-customization method, named HAAD (h-space based Adversarial
Attack for Diffusion models). The imperceptible perturbations introduced by our approach disrupts the model’s ability
to maintain consistency with user-specific input, effectively interfering with the generation of personalized content and
hence, providing a strong protection to the personal data. Building on prior works [46, 16] that emphasize the critical
role of cross-attention mechanisms in guiding semantic alignment and content fidelity within diffusion models, we
further construct a more efficient variant of our method, termed HAAD-KV. Instead of considering the entire h-space,
HAAD-KV focuses solely on disrupting the key (K) and value (V) parameters within the cross-attention layer of
the U-Net’s h-space. This targeted intervention leverages the high semantic influence of the attention pathway while
requiring significantly fewer parameter(∼0.05%) updates w.r.t. HAAD. As a result, HAAD-KV achieves enhanced
attack performance with reduced computational overhead.

We summarize our contributions in the list below:

• we propose HAAD, a simple yet effective and robust approach for privacy protection by constructing a
perturbation based on the ‘h-space’ of diffusion models.

• additionally, we introduce a more efficient variant, by focusing only on the KV parameters of the cross-attention
layer (HAAD-KV), which provides increased protection at a small fraction of computational cost.

• we show through extensive comparison with several models and validation datasets that our approach and its
variant not only outperform state-of-the-art methods based on adversarial attack, but also present increased
robustness against a variety of purification strategies.

2 Related Work

2.1 Personalized Diffusion Models

The personalization of text-to-image (T2I) diffusion models has gained significant attention due to their ability to
generate user-specific content. This process typically requires only a few reference images (commonly 3–5, or around
20 for high-quality face images) and trains a model to associate a unique identifier with the target concept, bridging the
gap between generic AI-generated imagery and highly customized visual content. Early approaches to personalization
focused on text embedding adaptation rather than model fine-tuning. Textual Inversion [48] pioneered this direction
by learning a compact text embedding vector to represent a new concept through inverting visual examples into the
pretrained model’s text space. While parameter-efficient, this method relies heavily on the pretrained knowledge and
struggles to capture complex visual details compared to fine-tuning. By better fine-tuning the model, DreamBooth
[47] achieves improved personalized generation. While effective, this approach is computationally expensive and risks

2



(a) Image Protection

Adversarial 
Attack Methods 
for Protection

Output

Protected Images

ε+

Input

(b) Fine-tuning

Concept 
Learning 
Methods

Personalized T2I DM

Images

DMε

Protected Images, T2I DM

OutputInput

sks+

Text Embedding

(c) Inference

Text Prompt

OutputInput

Noisy Inference results

a photo of a
 sks person

DM

Personalized T2I DM

+ DM

Figure 1: A step-by-step explanation of protection against customization by few-shot personalization methods using
adversarial perturbations: a) Starting with a set of clean images, these methods obtain the protected images using
adversarial attack methods (e.g. PGD); b) During fine-tuning, a diffusion model is personalized with these protected
images leading to a poisoned model; c) at inference, the poisoned model will not be able to generate good customized
images.

overfitting. To mitigate this, Custom Diffusion (CD) [46] introduces and fine-tunes additional cross-attention layers
while keeping the original model frozen. This selective adaptation significantly reduces computational costs while
preserving the model’s generalization, offering a more efficient and scalable solution for personalization. Another
method which provides an efficient way for parameter fine-tuning is SVDiff [49]. SVDiff uses Singular Value
Decomposition (SVD) to create a low-rank approximation of weight updates potentially offering even greater parameter
efficiency. More recent approaches include [50, 51, 52].

2.2 Anti-Customization of Diffusion Models

A number of recent works have explored adversarial attacks as a protection method to counter unauthorized customiza-
tion using diffusion models. Among the earliest, AdvDM [60] introduces the idea of generating adversarial noise during
training by maximizing the model’s original loss function, thereby preventing effective learning from perturbed inputs.
While effective in scenarios such as artwork protection, its optimization focuses on the training loss rather than internal
semantics, making the protection susceptible to adaptation by personalized models.

Other approaches, such as PhotoGuard [62], Mist [61], and ACE [82], generate visually imperceptible noise using
fixed global patterns—ranging from random noise to high-frequency Moiré textures—to guide model outputs toward
predefined targets or degradation. However, these patterns operate at the pixel level, lacking alignment with the model’s
internal representations. As a result, they often fail to disrupt semantics consistently in the generated content. Worse
yet, they may leave visually detectable patterns.

Several methods attempt to improve the generality and robustness of the protection by introducing perturbations at the
training stage. Anti-DreamBooth [53] and its extension MetaCloak [54] inject perturbations using surrogate models,
sometimes combining loss components to induce instability in the model’s optimization. However, these approaches
still do not leverage the semantic abstraction capacity of diffusion models, instead relying on large-scale or iterative
optimization that is costly and often model-specific.
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CAAT [63] takes a more parameter-efficient route by targeting only the cross-attention layers in the customized diffusion
(CD) model, noting that these components undergo the most change during personalization. While this improves
efficiency, it treats the attention modules as a monolithic block and does not distinguish between different attention
projections.

In this work, we overcome both semantic and efficiency limitations through two key innovations. First, we propose
HAAD, which injects perturbations into the h-space, which leads to stronger misalignment between input identity and
output semantics, even under small noise budgets. Second, we introduce a more efficient variant, HAAD-KV, that
perturbs only the KV parameters of the cross-attention layer within the h-space. Together, these innovations result
in a stronger, more resilient protection that outperforms prior state-of-the-art approaches in both effectiveness and
computational efficiency.

3 Method

3.1 Latent Diffusion Models

A diffusion model consists of a forward process where the input image is disrupted by adding noise in multiple steps
and a reverse (i.e. generative) process where the final image is obtained by applying multiple denoising steps. A latent
diffusion model (LDM)[14] is a diffusion model where the diffusion processes are applied to the latent space instead of
the image space. LDM consists of two main components: (i) an autoencoder (E) that transforms an image x into a latent
code z0 = E(x), while the decoder (D) reconstructs the latent code back to the original image such that D(E(x)) ≈ x;
and (ii) a diffusion model (parameterized by θ), which applies the diffusion processes on the latent space, commonly a
U-Net [71] based model which can be conditioned using class labels, segmentation masks, or textual input. Let τθ(y)
represent the conditioning mechanism (e.g. prompt) that converts a condition y into a conditioning vector and t ∈ T be
the number of steps of the diffusion process. The reconstruction loss used to train the model is :

LLDM = Ez0,y,ϵ∼N (0,1)∥ϵ− ϵθ(zt, t, τθ(y))∥22, (1)

where, ϵθ is the conditional U-Net [71] that predicts the noise added in the denoising step.

3.2 Adversarial Attacks on Diffusion Models

Adversarial attacks compute a subtle, human-imperceptible perturbation, added to the input data which gets grossly
misclassified. It exposes the brittleness of deep learning classification models which obtain super-human performance.
An adversarial attack is formulated as follows: given an input x, obtain a perturbed input x′ such that :

argmax
x′

Lϕ(x
′) s.t. ||x′ − x||∞ ≤ η (2)

where, Lϕ is the classification loss function i.e. cross-entropy used to train the model with parameters ϕ. We use
the ℓ∞-norm to control the noise budget given by η. Commonly, the strong iterative PGD algorithm [56] is used to
construct the adversarial attack. For diffusion models, the main focus of this work, the above objective remains the
same: obtaining an adversarial image x′ from a clean image x perturbed with an imperceptible noise (within η-budget).

3.3 HAAD: h-space based Adversarial Attack on Diffusion Models

The remarkable capability of diffusion models to generate user-specific content is rooted in their underlying semantic
latent space [34]. This semantic latent space (‘h-space’), represents the deep features from the middle-block of the
U-Net architecture (see Fig. 2). Kwon et al [34] found that the h-space exhibits nice properties like homogeneity,
linearity, robustness, and consistency across timesteps, similar to the latent space in GANs. By exploring the properties
of this space, researchers have been able to discover meaningful semantic directions that have application to image
editing (manipulating facial appearance) [36, 37, 39, 38]and image-to-image translation [35].

Inspired by the strong properties of the h-space, we devise an adversarial attack leveraging this rich semantic feature
(illustrated in Figure 2). We use the gradient of the reconstruction loss (LLDM) restricted to the h-space to construct the
adversarial perturbation using the iterative PGD method.

Let Wh represent the features (weights) of the h-space, and δ denote the adversarial perturbation added to disrupt the
semantic structure of the h-space. The perturbation is computed iteratively using the Projected Gradient Descent(PGD)
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Figure 2: Block diagram of HAAD method constructing the perturbed image x+ δ based on the gradient of the loss
function wrt to the h-space. Only h-space is optimized during training, while the rest of the model is kept frozen.

method approximately formulated as:

xt+1 = Πη

(
xt + α · sign

(
∇xtLLDM(xt,W t

h)
))

,

where: LLDM is the reconstruction loss (Eq 1), Πη(·) is the projection operator ensuring that ∥δ∥∞ ≤ η, where η is the
noise budget, α is the step size for the gradient update, t represents the current iteration. W t

h indicates that the gradients
were calculated with the updated h-space after t step.

Following, we explain the reasoning behind training the model simultaneously while constructing the attack. Adversarial
attacks can be constructed either to the full model or selectively to specific components. Attacks that are integrated
into the training loop—such as those embedded within fine-tuning processes—interact with the model’s learning
dynamics. These methods can adaptively influence the model’s parameter updates, leading to more effective adversarial
perturbations. The same strategy was also employed by CAAT. In HAAD, we only update the parameters corresponding
to the h-space using the default optimization setting for the Stable Diffusion. By restricting the update to the h-space,
we ensure that the learned semantic features are directly affected by the adversarial perturbation while keeping the rest
of the model intact. This tightly integrated training strategy enables the perturbation to interfere more effectively with
the internal learning process of diffusion models—resulting in robust, semantically aligned protection that are highly
transferable across personalization settings.

During training, we jointly perform two complementary operations within each optimization step. First, we compute
the loss LLDM used in latent diffusion models, and then apply a PGD step to determine a noise vector that maximizes
the disruption of the reconstruction objective when injected into the image. This perturbation is added to the training
images before the next iteration, encouraging the model to learn under adverse semantic conditions. This is repeated
operation leads to a stronger protection.

Algorithm 1, presents the pseudocode of our untargeted adversarial attack to generate perturbations based on the h-space
as protection against unauthorized customization by a diffusion model. In our implementation, we freeze the entire
diffusion model, only keeping the h-space trainable and iteratively update its weights (similar to CAAT[63]), while
constructing the attack perturbation to obtain strong protection.

HAAD-KV: An Improved Variant of HAAD. While HAAD introduces adversarial noise into the h-space to disrupt
high-level semantic representations, we further refine this strategy by narrowing the scope of perturbation to the key
(K) and value (V) parameters within the cross-attention layers in the h-space. This variant, referred to as HAAD-KV,
leverages the fact that cross-attention plays a pivotal role in text-to-image diffusion models by creating an alignment
between the input prompt and the generated visual content.

The motivation behind HAAD-KV stems from two key observations. First, during the personalization process, the
cross-attention layers —especially the KV parameters — undergo substantial adaptation to capture new concepts. These
components control how visual features attend to the semantic prompt over time, making them critical to preserving
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Algorithm 1 HAAD: h-space based Adversarial Attack
Input: Image x, h-space parameters Wh, step length α, epochs N , budget η, learning rate l
Output: Perturbed image x′

1: Initialize δ
2: for n = 1→ N do
3: ∇Wh

,∇x ← ∇LDM (Wh, x+ δ)
4: Wh ←Wh − l∇Wh

▷ h-space weight updated.
5: δ ← δ + α sgn (∇x) ▷ perturbation δ updated.
6: if δ > η then
7: δ ← clip(δ,−η, η) ▷ ensures ||δ||∞ ≤ η
8: end if
9: x′ ← x+ δ

10: end for

Clean No Attack AdvDM ACE ACE+ CAAT HAAD HAAD-KV

Figure 3: Images generated by popular diffusion models for customization: LoRA+Dreambooth (first two rows),
Custom Diffusion (bottom two rows), using different adversarial protection methods with a noise budget of 4/255.

identity and fidelity in customized generation. Second, by focusing the attack on these parameters, we are able to
maximize semantic disruption while updating only a minimal subset of parameters, thereby improving computational
efficiency and reducing the perceptual footprint of the perturbation.

In practice, HAAD-KV operates similarly to HAAD in terms of optimization: we retain the PGD-based perturbation
strategy guided by the reconstruction loss LLDM, but constrain the perturbation injection and gradient updates only to
the KV parameters of the cross-attention layer within the h-space. All other parts of the model remain frozen.

This approach not only enhances the interpretability of the attack — by isolating the exact mechanism through which
text-image alignment is corrupted—but also leads to stronger overall attack performance. As demonstrated in our
experiments (Section 4), HAAD-KV consistently achieves greater degradation of personalized content than HAAD,
despite requiring fewer parameter updates. These results highlight HAAD-KV as a highly effective and efficient
protection strategy against unauthorized diffusion model customization. In Supp. Material, Sec. 6.7, we present a
theoretical framework and supporting analysis that illustrates the relationship within the h-space - specifically the key
and value (KV) parameters in cross-attention layers - and the model’s semantic structure. We show that targeting these
components can lead to significant semantic misalignment, thereby enhancing the strength of the protection.
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Table 1: Comparison of our methods with other adversarial attack methods on LoRA+DB and CD. bold indicates the
best, while underline indicates the second best. HAAD-KV achieves the best performance in 10 out of 12 metric-dataset
combinations

CelebA-HQ WikiArt

LoRA+DB CD LoRA+DB CD
CI ↑ CS ↓ FDFR ↑ ISM ↓ CI ↑ CS ↓ FDFR ↑ ISM ↓ CI ↑ CS ↓ CI ↑ CS ↓

No Attack 21.32 83.13 0.005 0.6904 20.89 85.64 0.005 0.6907 34.62 64.51 34.22 66.36
AdvDM 24.02 76.79 0.005 0.7633 23.87 77.23 0.015 0.6721 35.32 61.12 36.45 61.85

ACE 28.22 72.26 0.015 0.6081 26.65 73.47 0.055 0.6065 37.01 58.69 49.12 59.84
ACE+ 28.67 73.14 0.000 0.6097 28.20 74.01 0.045 0.6069 37.11 59.16 52.90 60.13
CAAT 30.96 72.17 0.080 0.5547 29.31 73.26 0.185 0.5763 37.52 58.64 51.17 59.73

HAAD 29.10 72.06 0.085 0.5175 29.10 73.35 0.150 0.5657 37.66 58.59 52.14 59.78
HAAD-KV 31.82 71.91 0.100 0.5083 29.52 72.98 0.185 0.5606 37.88 58.26 52.86 59.52

4 Experimental Results

No Attack

HAAD

HAAD-KV

Figure 4: Visualization of the cross attention map of each token in the h-space block during inference time: No Attack
(first row), HAAD (middle row), and HAAD-KV (bottom row).

4.1 Experimental Setup

Datasets. For the validation of our methods, we conducted experiments on two widely used datasets: CelebA-HQ [69]
and WikiArt [83] datasets. For CelebA-HQ, we select 200 images, corresponding to 10 persons (20 images per person),
ensuring diversity in terms of gender, ethnicity and age. Similarly, for WikiArt, we choose 200 paintings from 10 artists
(20 paintings per artist).

Customization Methods. We evaluate the effectiveness of our protection approach by applying it to several widely used
customization pipelines. Specifically, we test on LoRA+DreamBooth [81, 47] (abbreviated as LoRA+DB) and Custom
Diffusion (CD) [46], both of which represent state-of-the-art few-shot personalized concept learning approaches. These
models capture different paradigms of personalization: LoRA+DB relies on parameter-efficient adaptation, while CD
focuses on fine-tuning only the additional attention layers—providing a comprehensive evaluation ground for our
methods. To ensure the reproducibility of our results, we use the publicly available code repositories for each method
and follow their official hyper-parameter settings throughout our experiments.

Comparison with SotA. We compare the performance of HAAD and HAAD-KV with several representative adversarial
based protection approaches, including AdvDM [60], ACE, ACE+ [82], and CAAT [63]. These methods have been
widely used in recent studies on protecting content from unauthorized diffusion model customization and provide a
solid baseline for evaluating the effectiveness and efficiency of our proposed attacks.
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Details of the Adversarial Attacks. Our methods were computed based on SD1.5 as the reference model, as it is the
most commonly deployed diffusion model. HAAD training focuses exclusively on the h-space of Diffusion model
[15], using a batch size of 1, the learning rate of 1× 10−5 for 250 training steps. Mixed precision of bf16 is employed.
The conditioning prompt used was "photo of a sks person/painting", where the ‘sks’ user-specific token is initialized
with ‘ktn’. For the PGD attack, we set α = 5 × 10−3 (step size) and a noise budget of η = 4/255 in ℓ∞-norm. All
the experiments were run on a server with NVidia A40 GPU. For reproducibility, we provide all the settings in Supp.
Material, Tables 7 and 8.

Adversarial perturbation based anti-customization methods have studied their impact using different noise budgets (η).
AdvDM was among the first works to report with a larger noise budget of η = 32/255 and similarly, CAAT with 0.1 (≈
25.5/255). Larger budgets tend to introduce perceptible noise that a human can easily detect visually, making them less
suitable for real-world applications. Recently, ACE used a challenging setting with the noise budget of η = 4/255,
where the noise in the perturbed image is indeed imperceptible. We choose the same strict setting of η = 4/255 in all
our experiments to show that our approach works in the strictest condition. However, we perform a study to show the
results of our approach with varying noise budgets (refer to Supp. Material, Figure 5 and Table 9).

Evaluation metrics. To assess the effectiveness of the evaluated protection methods, we adopted several quantitative
metrics. CLIP Image-to-Image Similarity (CLIP-SIM) [73](shortened CS in tables), measures semantic similarity
between generated and reference images based on CLIP embeddings. Lower scores indicate stronger protection and
semantic misalignment. We additionally use CLIP-IQA [73] (shortened CI in tables), which evaluates perceptual
image quality from a CLIP perspective. Higher CI scores reflect lower image quality and thus stronger disruption. For
CelebA-HQ, we include two face-specific metrics: Face Detection Failure Rate (FDFR) [75], where higher values
indicate successful degradation of facial content, and Identity Score Matching (ISM) [76], where lower values indicate
better obfuscation of personal identity.

4.2 Qualitative Evaluation

Figure 3 shows that our attack significantly outperforms other approaches across LoRA+DB and CD. For LoRA+DB,
our method introduces visible alterations both at the structural and semantic levels. For instance, we observe changes in
facial attributes such as hair color, and in the case of art images, significant distortion of the main subject along with
noticeable shifts in artistic style. For CD, the facial outputs undergo even more pronounced stylistic transformations,
deviating substantially from the identity of the source individual. In artwork cases, the protected input leads to generation
of entirely different visual compositions, often replacing the original subject with incoherent or unrelated patterns.
Additional visual comparisons for each model and content type can be found in Supp. Material, Figures 10, 11, 13, and
14.

4.3 Quantitative Evaluation

Table 1 summarizes the quantitative comparison between our methods (HAAD and HAAD-KV) and several state-of-
the-art adversarial based protection techniques across two personalization settings: LoRA+DB and Custom Diffusion
(CD). We evaluate performance using a range of perceptual, structural, and semantic metrics across both CelebA-HQ
and WikiArt datasets.

We observe that HAAD achieves competitive performance, often outperforming AdvDM, ACE, and ACE+, and
performing comparably to CAAT in several settings. Notably, HAAD achieves second-best results in most metrics and
occasionally surpasses CAAT, particularly on CelebA-HQ in terms of ISM and FDFR.

However, once the attack is restricted to only the KV parameters in the cross-attention layer, i.e. the HAAD-KV variant,
our method consistently achieves the best performance across nearly all metrics and setups. On the CelebA-HQ dataset,
HAAD-KV achieves the best performance across all four metrics: it attains the highest CLIP-IQA (CI) and Face
Detection Failure Rate (FDFR), as well as the lowest Identity Score Matching (ISM) and CLIP-SIM (CS), demonstrating
its strong ability to degrade image quality, obscure identity, and disrupt semantic consistency. On the WikiArt dataset,
HAAD-KV consistently ranks first or second in both CI and CS, confirming its effectiveness in protecting artistic
content from unauthorized replication. When compared to CAAT, HAAD-KV achieves lower semantic similarity
(CS), better perceptual degradation (CI), and more substantial structural distortion, indicating a clear advantage in both
performance and efficiency.

These findings highlight the strength of our approach in disrupting both perceptual and semantic fidelity. By consistently
outperforming existing methods across diverse models and datasets, HAAD-KV demonstrates its practical effectiveness
as a generalizable protection against unauthorized customization.
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User study: We conducted an user study to evaluate how perceptually imperceptible the adversarial perturbations
added to the images will be when used as a protection mechanism. The results are reported in Supp. Material, Sec. 6.8.

4.4 Protection Explainability and Parameter Efficiency

To better understand the mechanism behind the effectiveness of our approach, we conduct a comparative analysis
between HAAD and HAAD-KV from two complementary perspectives: semantic disruption in attention maps and
training parameter efficiency.

We begin by visualizing the cross-attention maps corresponding to in the h-space during inference (Figure 4). We
compare three settings: clean images (No attack), protected images with HAAD, and protected images with HAAD-KV.
Red color highlights areas of the image which shows strong connection between text token and the generated image,
while the blue color indicates the absence of such connection.

In the ‘No attack’ case, attention is tightly focused on meaningful facial regions (e.g., forehead and chin) and all
non-relevant areas remain dark blue, indicating strong token-to-concept alignment.

With HAAD, attention becomes more erratic and partially misaligned. While central features still attract some focus,
peripheral areas like the hairline and sides of the head begin to receive attention, showing that semantic grounding is
weakening.

HAAD-KV results in further disruption. HAAD-KV leads to a complete loss of structure: the attention no longer
clusters around any discernible region. Instead, it is diffusely spread across the background and unrelated parts of the
image, with weak, scattered activations appearing in regions such as the neck, shoulders, or background textures. The
map is characterized by widespread low-intensity coloring and an absence of concentrated attention hotspots, indicating
that the model has effectively lost its ability to anchor the "sks" token to any consistent visual concept.

We also compare the parameter efficiency of different methods by reporting the number of trainable parameters
updated while introducing the protection into the clean images (Table 2). HAAD-KV requires the fewest updated
parameters—significantly fewer than all other baselines—while still achieving top performance. This highlights its
lightweight nature and confirms that perturbing only the KV parameters in the cross-attention layer is sufficient to
disrupt the personalization process effectively. A more complete visualization, involving other methods considered in
this paper, is provided in Supp. Material, Figure 9.

Table 2: Number of updated parameters while introducing the protection into the clean images (in millions).

AdvDM ACE ACE+ CAAT HAAD HAAD-KV

859.52 123.06 123.06 19.17 97.03 5.24

4.5 Generalization and Robustness Analysis

In this section, we study the impact of our methods on various operations: (a) purification methods (as studied in
[82]) (b) prompt invariance (as studied by [53]) (c) image editing (example SDEdit[84] as studied by ACE) and
(d) transferability to different models (as studied by ACE).

4.5.1 Robustness to Purification Methods

To evaluate the robustness of the protection introduced by adversarial perturbations, we follow prior work [82] to test
whether common image pre-processing techniques can “purify” the perturbed images which could restore the original
functionality of the diffusion model. Specifically, we apply a set of standard transformations including Gaussian noise
(σ = 4, 8), Gaussian blur (kernel size 3, 5), JPEG compression (quality 20, 70), resizing (including two setups: 2×
up-scaling + recovering (2×) and 0.5× down-scaling + recovering (0.5×)), and super-resolution (SR) [89] to the
protected image.

We report CLIP-IQA (CI) scores under several representative purification settings in Table 3, including Gaussian noise
(σ = 8), Gaussian blur (kernel size 5), JPEG (Q = 70), resizing with 0.5× and SR. A higher CI score indicates stronger
protection. HAAD-KV consistently achieves the best performance across all shown methods, while HAAD ranks
second in most cases. These results suggest that both variants are robust against common purification techniques. For a
more complete analysis, refer to Supp. Material, Table 10 and Figure 6.
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Table 3: CLIP-IQA scores under selected purification settings.

Protection / Defense Gaussian Gaussian JPEG Resizing SR
noise (σ = 8) blur (ker. 5) (Q = 70) (0.5×)

AdvDM 20.91 29.62 21.94 22.02 33.23
ACE 25.96 28.55 23.11 25.91 35.26

ACE+ 24.68 29.35 22.89 26.06 34.76
CAAT 27.81 33.33 26.05 26.38 35.55

HAAD 28.71 33.12 28.87 26.37 35.71
HAAD-KV 29.15 33.61 29.26 27.88 36.84

4.5.2 Prompt Invariant Protection

To evaluate the impact of the robustness of our methods against different prompts, we conduct inference using a diverse
set of prompts [53] that describe different contexts and poses. Here we aim to assess whether protection remains
effective when the prompt is changed while keeping the protected image fixed. We perform this experiment with six
different prompts: "a dslr portrait of sks person", "a photo of sks person looking at the mirror", "a photo of sks person
sitting on a chair", "a photo of sks person sitting on the floor", "a photo of sks person wearing glasses", "a photo of sks
person talking on the phone".

Table 4 shows the quantitative results of "a dslr portrait of sks person". Across all metrics, We can observe HAAD
and HAAD-KV achieve the best or second-best performances consistently, demonstrating the strong generalization to
unseen contexts. Additional results for all six inference prompts are provided in Supp. Material, Table 12 and Figure 7.
These results confirm that our method generalizes effectively to diverse and unconstrained generation scenarios while
remaining robust even when prompt semantics shift significantly.

Table 4: Quantitative results with a different prompt "a dslr portrait of sks person" during inference.

"a dslr portrait of sks person"

CI ↑ CS ↓ FDFR ↑ ISM ↓
AdvDM 18.12 76.91 0.005 0.6366

ACE 25.96 74.47 0.010 0.5921
ACE+ 25.77 75.10 0.007 0.5954
CAAT 29.48 74.88 0.060 0.5917

HAAD 29.37 73.85 0.090 0.5899
HAAD-KV 30.37 72.09 0.115 0.5682

4.5.3 Protection against Image Editing

While our primary goal was protection against concept-level customization, we also explore the potential of our method
towards image editing through a preliminary study on SDEdit [84]—a popular image-to-image editing framework
based on diffusion models. Although SDEdit is not explicitly designed for concept learning, it can be used to make
modifications to personal images with a prompt, raising practical concerns for misuse in identity editing. Table 5 reports
performance using two evaluation metrics: Multi-Scale SSIM (MS) and CLIP-SIM (CS). Our method achieves the
lowest scores across both metrics, suggesting that the perturbations remain partially effective even under this distinct
editing paradigm. Notably, HAAD-KV achieves the best overall results on both datasets. More qualitative comparisons
are shown in Supp. Material, Figures 12, 15. These results suggest that our method is not limited to text-to-image
customization, but it may also offer a generalized protection against diffusion model-based image editing. While not
our main focus, this preliminary study indicates that our attack strategy retains effectiveness even under structurally
guided editing, laying a foundation for future research into editing-aware protections.

4.5.4 Transferability to different models

Transferability is an essential aspect of any protection method, as real-world scenario misuse may occur across diverse
diffusion model architectures and versions. If a protection is tightly coupled to a specific model, it can be easily
circumvented by switching to a different backbone. To evaluate this, we assess the robustness of our method on
LoRA+Dreambooth in Table 13. For this experiment, multiple versions of Stable Diffusion (i.e., v1.4, v1.5, v2.1)
are used in turn to generate adversarial perturbations (“Attacker”) and then evaluated on all three models (“Target”),
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Table 5: Comparison of our methods with other adversarial attack methods on SDEdit. bold is the best, while underline
indicates the second best. HAAD and HAAD-KV achieves the best performance.

CelebA-HQ WikiArt

MS ↓ CS ↓ MS ↓ CS ↓
No Attack 0.3637 79.26 0.1433 79.68
AdvDM 0.3561 77.90 0.1421 77.38

ACE 0.3393 75.53 0.1411 75.39
ACE+ 0.3366 76.27 0.1352 76.47
CAAT 0.3488 77.16 0.1374 76.11

HAAD 0.3360 76.10 0.1293 75.85
HAAD-KV 0.3349 75.58 0.1208 75.75

Table 6: CLIP IQA scores for Transferability of HAAD across different versions of SD.

Target SD1.4 SD1.5 SD2.1

No Attack 18.89 21.32 19.18
SD1.4 27.51 29.38 30.36
SD1.5 29.32 29.10 30.55
SD2.1 29.27 26.81 29.62

covering both forward and backward transfer. Across all settings, HAAD retains strong protection ability, with minimal
performance drop when transferred across SD versions. This demonstrates that our attack is not tied to a specific
version but generalizes well within the Stable Diffusion family. In addition, we conducted a preliminary study on
Stable Diffusion 3 (SD3) [86], a recently released model based on DiT (Diffusion Transformer) architecture. Using
perturbations generated on SD1.5, we apply them to SD3 and observe visual degradation in both facial identity and
artistic structure (refer Supp. Material, Figure 8). While these results are not yet conclusive, they suggest that our
method may have initial transferability potential beyond UNet-based backbones, laying the groundwork for further
exploration. More visual results on SD 1.4–2.1 are provided in Supp. Material, Table 14.

5 Conclusion

In this work, by exploiting the semantic structure of the latent space of the U-Net (h-space), we introduced HAAD
and its more efficient variant HAAD-KV, two simple yet effective adversarial strategies designed to protect against
unauthorized few-shot image personalization by diffusion models. HAAD, by focusing on the whole h-space, disrupts
the alignment between user-specific tokens and visual concepts. HAAD-KV, the computationally efficient variant, finds
the perturbation based only on the KV parameters of the cross-attention layer in h-space, achieving stronger protection
with fewer trainable parameters. Extensive experiments across diverse personalization frameworks (LoRA+DB, CD)
and datasets (CelebA-HQ, WikiArt) showed that our approaches consistently outperform existing methods, both in
semantic distortion and perceptual degradation. We also conducted comprehensive robustness studies under standard
image purification transformations, varying prompts, and multiple Stable Diffusion versions (including image editing
as an additional use-case), validating the generalizability and transferability of our methods. Preliminary results on
SD3 and SDEdit suggested that our approach may extend to broader generative pipelines, opening new directions for
editing-aware and architecture-agnostic defenses. Overall, HAAD and HAAD-KV demonstrated that leveraging latent
semantics offers a promising and efficient pathway towards safeguarding personal content in generative models.
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6 Supplementary Material

The supplementary contains experimental details and additional results for the experiments in the main paper.

6.1 Experimental Details : Hyperparameters

Table 7: Hyperparameters for different attack methods. The parameters for all the methods are set to their default
settings. Noise budget of η = 4/255 was used in all our study.

Parameters AdvDM CAAT ACE HAAD

train steps 1000 250 50 250
learning rate 1× 10−4 1× 10−5 5× 10−6 1× 10−5

α 2/255 5× 10−3 5× 10−3 5× 10−3

Table 8: Hyperparameters for different custom diffusion models, with their default settings.

Parameters LoRA+DB CD

train steps 1000 250
learning rate 5× 10−5 1× 10−5

batchsize 1 2
LoRA rank 4 -

6.2 Results with different noise budgets η (HAAD vs HAAD-KV)

An increased noise budget (η) could result in perturbations that become more perceptible to the human eye. Figure 5 and
Table 9 show the effectiveness of attack with different noise budgets. At a low noise budget of 4/255 we find it hard to
observe any visible change in the perturbation added to the image, hence, considered imperceptible to humans, but still
creates noticeble changes to features in the generated image. At noise budget of greater than 8/255, the perturbations
start becoming more pronounced (observable with zoom in Figure 5) and resulting in the creation of faint artificial
patterns (e.g., grid-like stripes) in the generated images. At a higher noise budget of 16/255, the adversarial samples
exhibit the largest change, resulting in the generated images to be almost completely unrecognizable. This noise level
ensures the highest level of privacy protection, as the images become highly blurred and indistinct.

The results show that HAAD-KV offers better protection than HAAD. At the same time, even with a small noise budget
of 4/255, our methods remains highly effective and are comparable to other methods operating at higher noise levels
(> 8/255).

Table 9: A quantitative comparison of HAAD and HAAD-KV on LoRA+DB with CelebA-HQ.

CI ↑ FDFR ↑ ISM ↓
HAAD HAAD-KV HAAD HAAD-KV HAAD HAAD-KV

4/255 29.10 29.52 0.085 0.100 0.5175 0.5083
8/255 37.70 40.01 0.110 0.180 0.4517 0.4384

16/255 46.11 48.41 0.690 0.820 0.2905 0.2357

16



No Attack η=4/255 η=8/255 η=16/255

Perturbed
Image

HAAD

Perturbed
Image

HAAD-KV

Figure 5: Comparison between HAAD (first two rows) and HAAD-KV (second two rows) for varying noise budgets
of {0, 4/255, 8/255, 16/255} (from left to right). We observe a consistent degradation of the generated images (using
LoRA+DB as customization method).

17



6.3 Qualitative and quantitative results comparison of robustness between adversarial methods.

In this section, we show the effect of purification methods on the protection added by different adversarial methods. We
include the various tests applied in [63, 82]. These results corroborate our conclusion: HAAD-KV not only introduces
visually imperceptible perturbations but also withstands “purification” techniques that could otherwise neutralize
fixed-pattern attacks like ACE or CAAT. Figure 6 provides a visual comparison of the outputs from different methods
after applying the corresponding purification method. It can be seen that baseline methods often are able to recover
partially recognizable content, while HAAD-KV protection consistently leads to distorted, incoherent generations —
demonstrating its robustness and practical effectiveness.

Table 10: Quantitative results for different attack methods under different purification.

CLIP IQA (CI) ↑
Defense Gaussian noise Gaussian blur JPEG Resizing SR

Parameter σ = 4 σ = 8 K = 3 K = 5 Q = 20 Q = 70 2× 0.5×
AdvDM 22.71 20.91 24.88 29.62 32.91 21.94 26.23 22.02 33.23

ACE 26.16 25.96 26.12 28.55 33.65 23.11 27.54 25.91 35.26
ACE+ 23.18 24.68 25.78 29.35 33.34 22.89 28.78 26.06 34.76
CAAT 28.91 27.81 31.90 33.33 34.84 26.05 32.00 26.38 35.55

HAAD 28.86 28.71 30.37 33.12 36.18 28.87 33.92 26.37 35.71
HAAD-KV 31.51 29.15 31.16 33.61 39.62 29.26 34.85 27.88 36.84

CLIP SIM (CS) ↓
AdvDM 82.41 81.51 80.24 78.83 78.94 80.43 79.18 81.31 77.72

ACE 80.53 80.24 78.56 77.67 78.69 81.05 80.49 80.85 77.54
ACE+ 81.07 80.79 78.94 77.81 78.87 80.58 79.78 80.77 77.94
CAAT 75.41 75.68 75.57 74.67 78.28 79.96 78.27 79.39 76.14

HAAD 74.63 74.19 75.91 74.58 74.57 78.89 78.12 77.03 75.31
HAAD-KV 68.95 72.53 75.41 74.13 75.11 77.91 76.93 68.98 72.63

We even evaluated the robustness of our protection against recent purification techniques proposed in [90], specifically
Noisy Upscaling [90] and Impress [91]. The goal is to determine if these purification methods could remove or reduce
the protection by the adversarial perturbation, thereby restoring the image’s utility for personalization. Table 11,
summarizes the impact of these methods on the image quality. We observe that, Noisy Scaling severely degrades
the image quality, which is evidenced by the sharp drop in SSIM (0.3463) and PSNR (23.36). In contrast, Impress
better preserves the perceptual quality, though it reduces fidelity compared to the original protected image. Notably,
we used the purified images from both methods as inputs for LoRA+DreamBooth. In both cases, the personalization
process failed to faithfully reconstruct the target identity. This demonstrates that HAAD-KV perturbations are robust,
withstanding purification attempts and effectively preventing unauthorized customization.

Table 11: Evaluation of purification techniques against HAAD-KV protection. While purification methods like Noisy
Upscaling and Impress alter image quality metrics, HAAD-KV remains effective, preventing personalization, even after
purification efforts.

Method SSIM ↑ PSNR ↑ CLIP-SIM(CS) ↓
No Attack (Original) 1.0000 ∞ 83.13
HAAD-KV 0.9862 59.95 71.91

Purification applied to HAAD-KV protected Image:
Noisy Upscaling 0.3463 23.36 77.62
Impress 0.9209 32.84 74.64
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Figure 6: Qualitative results for different attack methods under different purification.
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6.4 Qualitative and quantitative results with different prompts.

Table 12: Prompt-Invariant Performance across Six Prompts. Quantitative results (CI, CS, FDFR, ISM) for all tested
prompts, evaluating the robustness of defense methods under prompt variation. bold is the best, while underline
indicates the second best. HAAD and HAAD-KV achieves the best performance.

"a dslr portrait of sks person" "a photo of sks person looking at the mirror"

CI ↑ CS ↓ FDFR ↑ ISM ↓ CI ↑ CS ↓ FDFR ↑ ISM ↓
AdvDM 18.12 76.91 0.005 0.6366 23.43 74.75 0.050 0.5568

ACE 25.96 74.47 0.010 0.5921 29.60 76.09 0.025 0.5923
ACE+ 25.77 75.10 0.007 0.5954 29.25 75.80 0.010 0.5908
CAAT 29.48 74.88 0.060 0.5917 29.04 74.40 0.060 0.5388

HAAD 29.37 73.85 0.090 0.5899 31.51 69.76 0.115 0.5118
HAAD-KV 30.37 72.09 0.115 0.5682 29.76 72.65 0.145 0.5304

"a photo of sks person sitting on a chair" "a photo of sks person sitting on the floor"

CI ↑ CS ↓ FDFR ↑ ISM ↓ CI ↑ CS ↓ FDFR ↑ ISM ↓
AdvDM 28.12 70.97 0.150 0.4338 33.24 66.76 0.105 0.5168

ACE 33.73 66.96 0.255 0.3944 34.81 63.67 0.215 0.4728
ACE+ 32.57 67.52 0.220 0.4086 34.02 63.89 0.190 0.4871
CAAT 33.96 66.73 0.280 0.3853 35.15 62.43 0.260 0.4440

HAAD 35.36 64.98 0.312 0.3712 35.56 61.02 0.305 0.4117
HAAD-KV 35.68 64.13 0.345 0.3508 35.82 60.49 0.320 0.4051

"a photo of sks person wearing glasses" "a photo of sks person talking on the phone"

CI ↑ CS ↓ FDFR ↑ ISM ↓ CI ↑ CS ↓ FDFR ↑ ISM ↓
AdvDM 22.87 75.78 0.010 0.6076 20.78 78.67 0.025 0.7341

ACE 23.55 74.21 0.050 0.5745 31.58 73.69 0.095 0.6504
ACE+ 23.21 75.02 0.035 0.5924 30.24 74.13 0.070 0.6697
CAAT 23.56 73.75 0.105 0.5554 32.81 73.43 0.115 0.6332

HAAD 23.99 73.06 0.155 0.5302 33.43 72.56 0.190 0.6279
HAAD-KV 24.18 72.87 0.185 0.5217 33.51 71.78 0.235 0.6261
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AdvDM ACE ACE+ CAAT HAAD HAAD-KV

Figure 7: Results with different prompts during inference. (Row 1) "a dslr portrait of sks person", (Row 2) "a photo of
sks person looking at the mirror", (Row 3) "a photo of sks person sitting on a chair", (Row 4) "a photo of sks person
sitting on the floor", (Row 5) "a photo of sks person wearing glasses",(Row 6) "a photo of sks person talking on the
phone".
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6.5 Transferability study using HAAD : Qualitative results.

Table 13: Transferability of HAAD across different versions of SD.

Target SD1.4 SD1.5 SD2.1
Attacker LoRA+DB SDEdit LoRA+DB SDEdit LoRA+DB SDEdit

CI ↑ MS ↓ CS ↓ CI ↑ MS ↓ CS ↓ CI ↑ MS ↓ CS ↓
No Attack 18.89 0.3694 75.01 21.32 0.3637 79.26 19.18 0.3782 74.67

SD1.4 27.51 0.3498 73.56 29.38 0.3444 73.62 30.36 0.3587 72.93
SD1.5 29.32 0.3479 73.23 29.10 0.3360 75.80 30.55 0.3568 72.85
SD2.1 29.27 0.3455 73.18 26.81 0.3435 73.23 29.62 0.3561 72.72

Table 14: Transferability of HAAD among the different versions of SD. We observe consistent degradation for all the
methods.

Target SD1.4 SD1.5 SD2.1

Attacker LoRA+DB SDEdit LoRA+DB SDEdit LoRA+DB SDEdit

No Attack

SD1.4

SD1.5

SD2.1
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No Attack

HAAD

No Attack

HAAD

Figure 8: SD1.5 is used as the ‘Attacker’ and SD3 as the ‘Target’ model (used to generate the shown images). The
figure highlights perceptible distortions in facial features, especially the eyes, while art images undergo distinct stylistic
alterations.
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6.6 Visualization of cross-attention maps for all the attack methods.

No Attack

ACE

CAAT

HAAD

HAAD-KV

HAAD-KV

HAAD-KV

Figure 9: Visualization of the cross attention map of each token during inference time for different adversarial attack
methods on LoRA+DB with a sample of CelebA-HQ dataset.
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6.7 Theoretical Framework.

h-space Perturbation and Semantic Misalignment. Let Wh denote the features (weights) of the h-space of the U-Net,
which encodes high-level semantic content during the diffusion process. For the HAAD attack, we iteratively compute
adversarial perturbation for the protection of the input image x with projected gradient descent(PGD) which maximizes
the reconstruction loss LLDM. Each step updates the semantic features as given by:

W ′
h = Wh + l∇Wh

LLDM(x), (3)

where, l is the learning rate. The final protected image is denoted as x′ = x+ δ, and its corresponding semantic features
are encoded in W ′

h.

This update induces a linear shift in the h-space, modifying the intermediate representation in a direction aligned
with∇Wh

, which was adversarially chosen to degrade the semantic consistency. Since the cross-attention mechanism
depends on the alignment between the textual prompt and the latent features in the h-space, this shift weakens the
model’s ability to associate prompt tokens (e.g., “sks”) with relevant visual features, which finally affects the image
generation process.

When an attacker trains a new personalization model with the protected image x′, it starts to operate on the clean
semantic representation encoded in Wh. Afterwards, at the end of the personalization process, the resulting h-space
parameters are denoted as W ′′

h . Because the training began with x′ and Wh, we expect: W ′′
h ≈ W ′

h, implying that
the learned representation converges towards a similar semantically misaligned features (weights) (W ′

h). This is
straightforward since x′ carries the semantic misalignment information encoded in the perturbation.

Consequently, at inference time, the model’s attention fails to bind the user-specific token (e.g., “sks”) to the correct
semantic features, due to the distortion introduced by the perturbation ∆Wh = W ′′

h −Wh. This semantic misalignment
in the attention mechanism results in visibly degraded or incoherent image generations. Thus, perturbations in h-space
not only alter intermediate representations but also disrupt the prompt-to-concept mapping, offering an effective and
semantically grounded defense against unauthorized personalization.

The role of KV layers towards Perturbation and Semantic Misalignment. HAAD-KV extends the above intuition by
focusing the adversarial update specifically on the cross-attention layers inside the h-space block, and only modifying
the key WK and value WV projection matrices.

During few-shot personalization, these matrices adapt to encode how each visual element should respond to the
tokenized concept. HAAD-KV injects perturbations only into WK and WV , thereby corrupting the model’s ability to
compute meaningful attention maps. In other words, the perturbed matrices W ′

K and W ′
V are given by:

W ′
K = WK + l∇WK

LLDM(x),

W ′
V = WV + l∇WV

LLDM(x)

This formulation is similar to equation (3). As a result, the perturbed attention becomes:

Attention(Q,K ′, V ′) = softmax
(
QK ′⊤
√
d

)
V ′

where, the K ′ and V ′ are the resultant perturbed matrices, induced by W ′
K and W ′

V , respectively. Since this mis-
alignment occurs at the point where identity tokens are explicitly bound to visual representations, the model fails to
personalize effectively during training.

In conclusion, HAAD-KV thus offers a focused and computationally efficient attack: by perturbing only a small fraction
(∼5% of the total parameters in h-space) of model parameters (those with high semantic content), it results in maximum
distortion of the personalization mechanism with minimal perceptual footprint.

Analysis of representational disruption in h-space. To quantitatively evaluate that our method alters the core semantic
structure, we perform a Principal Component Analysis (PCA) on the activations within the h-space. This analysis aims
to measure the alignment of the primary directions of variance between representations of clean and protected images.
We computed the cosine similarity between the top-k principal components derived from clean image activations and
those from images protected by HAAD-KV.

Description of the PCA method: PCA identifies the orthogonal directions, or Principal Components (PCs), that capture
the maximum variance within the h-space activations. The “top-k components” refer to the first k PCs that represent the
most significant semantic patterns in the data. We then use cosine similarity to measure the alignment between the PCs
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derived from clean images with those from their protected counterparts. A cosine similarity value close to 1.0 implies
that the components are highly aligned, meaning the clean and protected images share the same core semantic structure.
Conversely, a value close to 0.0 indicates orthogonality, meaning their semantic structures are fundamentally different
and uncorrelated.

The results presented in Table 15, clearly reveal a systematic and noise budget dependent impact of HAAD-KV. At a
low perturbation budget of η = 4/255, we already observe a significant drop in alignment, with the cosine similarity
for the top-5 components being 0.2961. This indicates that even at low perturbation budget the protection begins to
alter the primary semantic features. As the perturbation budget increases to η = 8/255 and η = 16/255, respectively,
this trend is further amplified. For instance, at η = 16/255, the similarity of the top-5 components drops to 0.1382.
This demonstrates that larger protection budgets lead to a greater divergence in semantic representation. Furthermore,
this effect is consistent when more components were considered (i.e., k is increased from 5 to 50), confirming that the
semantic shift is not limited to only the top few dominant features but across the semantic latent space.

Table 15: Cosine similarity between the top-k principal components of h-space activations for clean versus HAAD-KV
protected images. The consistently low similarity scores across different perturbation budgets (η) demonstrate a
significant semantic drift induced by HAAD-KV.

Perturbation (η) Top-k Principal Components

k = 5 k = 10 k = 20 k = 50

4/255 0.2961 0.1413 0.0668 0.0243
8/255 0.2171 0.1111 0.0603 0.0245
16/255 0.1382 0.0672 0.0351 0.0135

6.8 User study.

To empirically verify that the injected noise is imperceptible to humans, we carried out a user study with the CelebA-HQ
dataset, containing face images. For each noise budget η ∈ {4/255, 8/255, 16/255} we sampled 10 identities, and for
every identity selected 3 high-resolution photographs, yielding 30 original–perturbed pairs per η value. Twenty-six
volunteers (26×30 = 780 judgements per budget) were shown each pair side-by-side and asked “Which image is
perturbed?” with three choices: (A) first, (B) second, or (C) “both images are the same.”

Table 16 reports the scores obtained for the three noise budgets, including the Error Rate and Z-score derived from
Thurstone’s Case V model[92]. In this study, the Error Rate represents the fraction of times volunteers failed to correctly
identify the perturbed image (Accuracy(%) is given by {100-(Error Rate*100)}%). A higher error rate signifies that the
introduced noise is less perceptible(imperceptible) and is hard to be detected by human eyes. The Z-score quantifies
perceptual discriminability, with a higher value indicating easier detection. The Standard Deviation (STD) of the
Z-score measures the level of agreement among the participants, where a lower STD indicates a more consistent
perceptual experience across the group.

The analysis reveals a strong correspondence between the metrics. Specifically, for η = 16/255, a high positive Z-score
of “1.23” indicates that the perturbation was clearly perceptible, a conclusion strongly supported by the very low error
rate of “0.117” (88.3% accuracy) and low STD (0.29). And the low STD (0.29) for this budget shows a strong consensus
that many were able to detect the perturbation in the image. For η = 8/255, the Z-score is near zero (“0.28”) suggesting
discrimination was at a threshold level with a mix of both partial detection and low perception, which is corroborated by
the high STD (“0.34”) and a moderate error rate of “0.392” (60.8% accuracy). Critically, for η = 4/255, the negative
Z-score of “-0.39” confirms the images were perceptually indistinguishable. This is strongly demonstrated by the error
rate of “0.650”, which translates to an accuracy of 35%—statistically identical to random chance for this 3-choice
task. The low STD (“0.25”) for this budget further shows a strong consensus that no difference could be spotted. This
confirms that at the strictest budget (4/255), participants performed at chance level, indicating that the perturbations are
visually indistinguishable in practice.

Noise budget η Mean Z-Score STD Error Rate
4/255 -0.39 0.25 0.650
8/255 0.28 0.34 0.392
16/255 1.23 0.29 0.117

Table 16: Thurstone Case V results and corresponding error rates. The Z-scores and error rates provide complementary
evidence for the (in)discriminability of perturbations.
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6.9 Qualitative results for different attack methods under different customization models.

Data No attack AdvDM CAAT ACE ACE+ HAAD HAAD-KV

Figure 10: Comparison between different attack methods on CelebA-HQ dataset. The customization model used to
generate the images is LoRA+DB.
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Data No attack AdvDM CAAT ACE ACE+ HAAD HAAD-KV

Figure 11: Comparison between different attack methods on CelebA-HQ dataset. The customization model used to
generate the images is CD.
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Data No attack AdvDM CAAT ACE ACE+ HAAD HAAD-KV

Figure 12: Comparison between different attack methods on CelebA-HQ dataset. The customization model used to
generate the images is SDEdit.
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Data No attack AdvDM CAAT ACE ACE+ HAAD HAAD-KV

Figure 13: Comparison between different attack methods on WikiArt dataset. The customization model used to generate
the images is LoRA+DB.
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Data No attack AdvDM CAAT ACE ACE+ HAAD HAAD-KV

Figure 14: Comparison between different attack methods on WikiArt dataset. The customization model used to generate
the images is CD.
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Data No attack AdvDM CAAT ACE ACE+ HAAD HAAD-KV

Figure 15: Comparison between different attack methods on WikiArt dataset. The customization model used to generate
the images is SDEdit.
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