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Abstract
Effective conversational search demands a deep001
understanding of user intent across multiple002
dialogue turns. Users frequently use abbre-003
viations and shift topics in the middle of004
conversations, posing challenges for conven-005
tional retrievers. While query rewriting tech-006
niques improve clarity, they often incur sig-007
nificant computational cost due to additional008
autoregressive steps. Moreover, although LLM-009
based retrievers demonstrate strong perfor-010
mance, they are not explicitly optimized to011
track user intent in multi-turn settings, often012
failing under topic drift or contextual ambigu-013
ity. To address these limitations, we propose014
ContextualRetriever, a novel LLM-based015
retriever that directly incorporates conversa-016
tional context into the retrieval process. Our017
approach introduces: (1) a context-aware em-018
bedding mechanism that highlights the cur-019
rent query within the dialogue history; (2)020
intent-guided supervision based on high-quality021
rewritten queries; and (3) a training strategy022
that preserves the generative capabilities of the023
base LLM. Extensive evaluations across multi-024
ple conversational search benchmarks demon-025
strate that ContextualRetriever significantly026
outperforms existing methods while incurring027
no additional inference overhead.028

1 Introduction029

The rapid advancement of chatbots has significantly030

increased demand for conversational search en-031

gines (Gao et al., 2023; Mo et al., 2024). These032

systems must accurately retrieve information from033

large document collections to provide reliable,034

factual responses. Traditional search engines pri-035

marily handle single-turn queries and struggle036

in multi-turn conversational contexts, particularly037

when users heavily rely on abbreviated or context-038

dependent queries, as exemplified by q2 in Figure 1.039

Thus, effective contextualization, which involves040

understanding user intent throughout the conversa-041

tion, is crucial for accurate retrieval.042

𝑞!:
𝑎!:
𝑞":

Where will EMNLP 2025 be held? I'm planning to attend the conference.
EMNLP 2025 will be held in China.
Do you know the specific region? I want to book a hotel nearby.

What city and venue in China 
will host EMNLP 2025, and are 
there hotels nearby?

𝑞"# :

Rewriting, then Retrieval Ours: Direct Retrieval

Multi-turn Dialogue

Rewritten Query

Method Infer. time↓ Performance↑

Naive unified LLM retriever 80.3 ms 64.2%
+ Rewriting (on its own) 1100.5 ms 77.2%

Ours (internalized contextualizing) 80.5 ms 91.9%

Figure 1: Potential of LLM-based retriever to con-
textualize the query in conversational search. Even
with a naive unified LLM retriever can be improved
after query rewriting on its own (64.2% → 77.2%). No-
table retrieval performance (91.9%) from the proposed
ContextualRetriever by better leveraging the con-
textual understanding capability of LLMs, eliminating
additional inference overhead.

A common strategy is query rewriting (Lin et al., 043

2020; Mo et al., 2023), which reformulates abbre- 044

viated or ambiguous user queries into fully speci- 045

fied ones by integrating conversational context (see 046

Figure 1, blue box). Despite improved clarity, this 047

approach necessitates additional rewriting models, 048

significantly increasing inference time and compu- 049

tational overhead. 050

Recent approaches aim to build retrievers by di- 051

rectly fine-tuning Large Language Models (LLMs), 052

leveraging their inherent language understanding 053

capabilities (Jiang et al., 2023; Bai et al., 2023; 054

Touvron et al., 2023). LLM-based retrievers such 055

as SFR Embedding (Meng et al., 2024) and NV- 056

Embed (Lee et al., 2024; Moreira et al., 2024) apply 057

contrastive learning to pretrained LLMs, optimiz- 058

ing them specifically for retrieval tasks. Unified 059

retrievers, such as GritLM (Muennighoff et al., 060

2024) and OneGen (Zhang et al., 2024), handle 061

generation and retrieval tasks via multi-task learn- 062
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ing within a single model. However, these methods063

primarily target single-turn queries and have not064

fully utilized LLMs’ ability to model multi-turn065

conversational context. To incorporate conversa-066

tional history, ChatRetriever (Mao et al., 2024)067

compresses prior turns into a limited number of068

special tokens. However, this compression strategy069

quickly saturates, yielding only marginal improve-070

ments as more tokens are added. This suggests a071

key limitation of current approaches: they fail to072

deeply embed rich conversational history into the073

retrieval representation itself.074

Although prior work has made meaningful075

progress, few studies have fully leveraged the lan-076

guage understanding capabilities of LLMs to con-077

textualize conversational queries. We hypothesize078

that LLM-based retrievers possess strong potential079

for modeling user intent across turns, but this ability080

remains underutilized in current designs. To vali-081

date this hypothesis, we examine GritLM, a unified082

LLM retriever trained for both generation and re-083

trieval. We compare its retrieval performance when084

using embeddings derived from its own rewritten085

queries versus embeddings obtained directly from086

the original user queries. As shown in Figure 1,087

rewritten queries yield significantly better retrieval088

accuracy, suggesting that the model captures user089

intent and context well during the rewriting step.090

However, this contextual understanding is not ef-091

fectively reflected in the retrieval embeddings gen-092

erated from the original queries, indicating that the093

model’s ability to embed conversational context094

remains underexploited. This insight motivates our095

work: we aim to directly encode user intent and dia-096

logue context into the retrieval representation itself,097

enabling LLM-based retrievers to fully capitalize098

on their inherent contextual understanding ability.099

To address this limitation, we introduce100

ContextualRetriever, a novel approach de-101

signed to better harness LLMs for retrieval in multi-102

turn conversations. ContextualRetriever com-103

prises three core components: First, it employs a104

context-aware embedding mechanism that empha-105

sizes the current query while encoding the full dia-106

logue. Retrieval embeddings are computed solely107

from the current query segment, maintaining focus108

on the immediate information need while ground-109

ing it in broader conversational context. Second,110

it leverages intent-guided supervision by aligning111

model-generated embeddings with those derived112

from high-quality rewritten queries. These rewrit-113

ten queries clarify user intent, allowing the model114

to learn intent-aware representations without re- 115

quiring an explicit rewriting step at inference time. 116

Third, it incorporates generation loss during train- 117

ing to preserve the LLM’s intrinsic language un- 118

derstanding capabilities. This allows the model to 119

retain its general linguistic competence, which is 120

essential for interpreting ambiguous or context- 121

dependent queries. 122

We evaluate ContextualRetriever on four 123

standard conversational search benchmarks: Topi- 124

OCQA (Adlakha et al., 2022), QReCC (Anantha 125

et al., 2021), TREC-CAsT (Dalton et al., 2020, 126

2021), and ORConvQA (Qu et al., 2020). Our 127

method consistently outperforms strong baselines, 128

demonstrating that embedding user intent directly 129

into the retrieval space substantially improves 130

multi-turn conversational search without introduc- 131

ing additional inference overhead. 132

2 Related Works 133

2.1 Dense Retrieval 134

Information retrieval has evolved from traditional 135

lexical matching methods such as BM25 and TF- 136

IDF (Robertson et al., 2009; Ramos et al., 2003) to 137

dense retrieval approaches (Karpukhin et al., 2020; 138

Khattab and Zaharia, 2020). Dense retrievers en- 139

code queries and passages into vector embeddings 140

and perform retrieval based on their similarity. 141

Early dense retrievers built on BERT (Kenton 142

and Toutanova, 2019) leverage its contextual rep- 143

resentation power (Xiao et al., 2023; Wang et al., 144

2020). More recent approaches (Meng et al., 2024; 145

Lee et al., 2024; Moreira et al., 2024; Li et al., 146

2024) utilize larger pre-trained LLMs to take ad- 147

vantage of superior language understanding. How- 148

ever, these models are typically trained on isolated 149

query-passage pairs, which limits their ability to 150

understand conversational context. Unified LLM re- 151

trievers such as GritLM (Muennighoff et al., 2024) 152

and OneGen (Zhang et al., 2024) attempt to com- 153

bine generation and retrieval in a single model for 154

efficiency, but they fall short in embedding rich 155

conversational context during retrieval. 156

2.2 Conversational Search 157

Most dense retrievers are trained on single-turn set- 158

tings with clearly stated information needs. In con- 159

trast, conversational search introduces challenges 160

such as ambiguity and context dependence. Query 161

rewriting approaches (Lin et al., 2020; Mo et al., 162

2023) reformulate conversational queries into self- 163
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(a)

…

ContextualRetriever

Emb Emb Emb

Rewriter

CCL IGL

(b)

❄

🔥

…

ContextualRetriever

Emb

…

Avg.

What is the Venice of China?
Suzhou
What's a famous tourist spot there?
Humble Administrator's Garden
Are there any museums around?

𝑞! 𝑎! 𝑞" 𝑎" 𝑞#

𝑞! 𝑎! 𝑞" 𝑎" 𝑞# 𝑝# 𝑞#$

The Suzhou Museum, located near the 
Humble Administrator's Garden, ...

Are there museums near the Humble 
Administrator's Garden in Suzhou?

𝑞!:
𝑎!:
𝑞":
𝑎":
𝑞#:

𝑝#:

𝑞#$ :

Figure 2: Overview of our ContextualRetriever. (a) ContextualRetriever processes the entire conversation
history including the current query, but extracts retrieval embeddings specifically focused on the current query. (b)
ContextualRetriever with the frozen rewriter is trained to align the query embeddings with both relevant passage
embeddings and rewritten query embeddings for effective context understanding through Conversational Contrastive
Learning (CCL) and User Intent-Guided Learning (IGL).

contained forms, but they incur significant compu-164

tational overhead due to their reliance on a separate165

rewriting model.166

Recent efforts have aimed to integrate conver-167

sational context directly into retrievers. CQE (Lin168

et al., 2021) and CONVAUG (Chen et al., 2024)169

generate context-aware embeddings via contrastive170

learning and data augmentation, respectively, but171

they do not explicitly model contextual ability. Con-172

vDR (Yu et al., 2021) and DiSCo (Lupart et al.,173

2024) leverage knowledge distillation from rewrit-174

ten queries to embed context, though their effective-175

ness heavily depends on the quality of the rewriting176

model. Shortcut Dependency (Kim and Kim, 2022)177

improves retrieval robustness by mitigating short-178

cut learning from topical cues, but it lacks deeper179

semantic modeling of dialogue context. ChatRe-180

triever (Mao et al., 2024) leverages LLMs by en-181

coding dialogue history into special tokens, but its182

performance quickly saturates, yielding marginal183

gains as context length increases. In contrast, our184

approach leverages the contextual capabilities of185

LLM by combining query rewriting–based super-186

vision with generation-based training. This allows187

the model to encode both explicit intent signals and188

implicit contextual information without relying on189

external rewriting modules.190

3 Method191

3.1 Task Definition192

Conversational search (Mo et al., 2024) aims to193

retrieve relevant passages from a collection P =194

{p1, . . . , pm} for each query in multi-turn dia-195

logues. At the n-th conversation turn, the goal is196

to retrieve top-k passages for the current query qn 197

by leveraging the conversation history {qi, ai}n−1
i=1 , 198

where qi and ai denote the query and response at 199

the i-th turn, respectively. The retriever R(·) en- 200

codes both passages and queries into a shared em- 201

bedding space. Each passage is pre-encoded offline, 202

while the current query, together with its conversa- 203

tion history, is encoded during inference. Retrieval 204

is performed by computing the cosine similarity 205

between the query and passage embeddings. 206

3.2 Construction of Training Set 207

We introduce a dynamic dialogue history sampling 208

strategy, creating varied training instances from 209

conversation histories given a target query-passage 210

pair (qn, pn). Specifically, we randomly select a 211

starting point i (i<n) and include all subsequent 212

queries and responses [qi, ai, . . . , qn] to form train- 213

ing pairs with the relevant passage pn. This ap- 214

proach (1) augments the training data, (2) exposes 215

the model to diverse context lengths, and (3) im- 216

proves robustness to varying conversational his- 217

tories. Our experiments confirm that this strategy 218

significantly boosts the model’s capacity to incor- 219

porate conversational context and generate high- 220

quality retrieval embeddings (Table 6). 221

3.3 Retrieval Embedding Extraction 222

We design our retriever based on a decoder-only 223

LLM architecture, following the previous LLM- 224

based retrievers. As illustrated in Fig. 2(a), while 225

our model takes the entire conversation history 226

as input, it selectively extracts embeddings only 227

from the tokens corresponding to the current query. 228
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This selective extraction enables the model to ef-229

fectively utilize the conversational history as con-230

textual cues while ensuring the retrieval remains231

strongly aligned with the intent of the current query.232

This approach mitigates the risk of excessively pri-233

oritizing prior conversation context, which could234

otherwise hinder retrieval accuracy by overshad-235

owing the immediate query intent. The retrieval236

embedding for the current query is computed by237

average pooling the sequence embeddings of the238

last m elements:239

eqn = AvgPool({R([qi, ai, . . . , qn])j}Nj=N−m+1),
(1)240

where R([qi, ai, . . . , qn])j represents the embed-241

ding for the j-th token within the sequence. Here,242

m and N denote the token length of the current243

query and input conversation, respectively.244

3.4 Training for Conversational Search245

3.4.1 Conversational Contrastive Learning246

We optimize the retriever to distinguish relevant247

from irrelevant passages using a contrastive learn-248

ing objective applied to our constructed conversa-249

tional dataset:250

LCCL = − log
f(qn, pn)

f(qn, pn) +
∑

pk∈P−
n
f(qn, pk)

,

(2)251

where f(qn, pn) = exp((eqn · epn)/τ) is a similar-252

ity function with temperature τ , and P−
n denotes253

a set of negative passages for query qn. This con-254

trastive framework serves two key purposes. First,255

it shapes the embedding space by pulling relevant256

query-passage pairs closer and pushing negatives257

apart. Second, because query embeddings are com-258

puted with the full dialogue context, LCCL implic-259

itly encourages the model to encode contextual260

information that improves retrieval performance.261

3.4.2 User Intent-Guided Learning262

To further enhance our retriever’s ability to cap-263

ture user intent, we propose an intent-guided learn-264

ing approach that leverages signals from query265

rewriting. Our method employs LLMs as a query266

rewriter QR(·) to generate contextually explicit267

queries through carefully designed prompts (See268

Appendix A). The rewriter transforms abbreviated269

queries into self-contained formats by incorporat-270

ing relevant context from previous interactions. We271

introduce an embedding alignment loss that bridges272

the gap between the embeddings of the original and273

rewritten queries: 274

LIGL =
∥∥eqn − eq′n

∥∥2
2
, (3) 275

where q′n = QR([q1, a1, . . . , qn]) represents the 276

rewritten query. While conversational contrastive 277

learning optimizes query-passage relationships, 278

intent-guided learning focuses on aligning query 279

representations with their explicit, context-aware 280

counterparts. As shown in Fig. 2(b), these learn- 281

ing objectives work together to ensure our model 282

leverages comprehensive intent understanding to 283

achieve effective retrieval performance. 284

3.4.3 Preserving LLM Capabilities 285

To maintain the rich language understanding ca- 286

pabilities of the base LLM while optimizing for 287

retrieval performance, we introduce a generation- 288

based regularization technique that shares the same 289

computational path with retrieval. Specifically, we 290

employ a next-token prediction loss that encour- 291

ages the model to preserve its inherent ability to 292

generate contextually appropriate responses: 293

LG = −logP (R(an)|R([qi, ai, ..., qn, pn])), (4) 294

where the model predicts the next response an 295

given the conversation and relevant passage. 296

3.4.4 Final Training Objective 297

Our complete training objective is: 298

L = (1−λG)(LCCL+λIGLLIGL)+λGLG, (5) 299

where λIGL and λG control the balance among 300

the loss components. We refer to the final re- 301

triever trained with this complete objective as 302

ContextualRetriever. 303

4 Experiment 304

4.1 Experimental Setup 305

Datasets. We evaluate our approach on four 306

widely-used conversational search datasets: Top- 307

iOCQA (Adlakha et al., 2022), QReCC (Anantha 308

et al., 2021), TREC-CAsT (Dalton et al., 2020, 309

2021), and ORConvQA (Qu et al., 2020). All 310

datasets feature multi-turn conversational queries, 311

containing both current queries and conversation 312

history. TopiOCQA contains frequent topic shifts 313

within a conversation, requiring systems to deter- 314

mine whether to maintain or discard prior con- 315

text. QReCC and ORConvQA are relatively topic- 316

consistent, where the primary challenge is resolv- 317
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Table 1: Retrieval performance comparison: Baseline
models with and without our approach.

Method
TopiOCQA CAsT-19 CAsT-20

MRR↑ Hit@100↑ nDCG@3↑

BGE-large 16.1 46.7 36.5 20.1
+ ours + 7.8 + 16.1 + 13.2 + 14.8

SFR Embedding 17.8 57.3 32.6 24.5
+ ours + 12.4 + 17.4 + 8.2 + 9.6

GritLM 24.3 68.5 30.7 18.2
+ ours + 17.9 + 23.4 + 31.6 + 28.6

ing context-dependent expressions such as pro-318

nouns and ellipses by referencing previous con-319

versation turns. TREC-CAsT 2019 and 2020 fea-320

ture evolving user information needs within a con-321

trolled experimental setup. Conversations average322

around 9 to 10 turns and are manually curated323

to ensure coherence and diversity. We train our324

ContextualRetriever on TopiOCQA’s training325

split and evaluate it on all four datasets: in-domain326

(TopiOCQA) and out-of-domain (QReCC, TREC-327

CAsT, ORConvQA). Statistics of each dataset are328

reported in Appendix B.329

Evaluation. We employ standard information re-330

trieval metrics to evaluate retrieval effectiveness, in-331

cluding Mean Reciprocal Rank (MRR), normalized332

Discounted Cumulative Gain at rank 3 (nDCG@3),333

and Hit Rate at rank k (Hit@k). MRR captures334

how early the first relevant document appears in335

the ranking. nDCG@3 evaluates both the presence336

and ranking quality of relevant documents within337

the top-3 results. Hit@k denotes the proportion of338

queries where at least one relevant document is339

retrieved within the top-k candidates.340

Implementation details. We apply LoRA-based341

fine-tuning of our method to three different re-342

trievers: BGE-large (Xiao et al., 2023), SFR Em-343

bedding (Meng et al., 2024), and GritLM (Muen-344

nighoff et al., 2024). As shown in Table 1, our345

method consistently improves performance across346

all models, with particularly strong gains when347

applied to GritLM. We attribute this compatibil-348

ity to GritLM’s joint training objective for genera-349

tion and retrieval, which aligns naturally with our350

generation-preserving learning objective. Given351

this synergy, we select GritLM as the base retriever352

for our main experiments. We use LoRA with the353

following hyperparameters: 1 training epoch, batch354

size of 24, learning rate of 1e-4, LoRA rank of 16,355

and Adam optimizer. The weights for intent-guided356

learning (λIGL) and generation loss (λG) are set to357

1.0 and 0.2, respectively.358

4.2 Baselines 359

Query rewriter. We consider three query rewrit- 360

ing approaches: T5QR (Lin et al., 2020), 361

GritLM (Muennighoff et al., 2024), and GPT-4- 362

Turbo (Achiam et al., 2023). T5QR is a dedicated 363

query rewriting model fine-tuned from the T5-base 364

architecture (Raffel et al., 2020) using the Topi- 365

OCQA training set. In contrast, GritLM and GPT- 366

4-Turbo are general-purpose language models that 367

we leverage for prompt-based query rewriting, fol- 368

lowing recent trends in LLM-driven conversational 369

rewriting (Ye et al., 2023) (see Appendix A). 370

Retriever. We consider two types of dense re- 371

trievers. First, we evaluate BERT-based mod- 372

els, including MiniLM (Wang et al., 2020) and 373

BGE-large (Xiao et al., 2023), which are effi- 374

cient and strong general-purpose retrievers (Muen- 375

nighoff et al., 2022). Second, we evaluate LLM- 376

based retrievers, including SFR Embedding (Meng 377

et al., 2024), a retrieval-specialized Mistral-7B 378

model; GritLM (Muennighoff et al., 2024), a 379

unified retriever-generator also based on Mistral- 380

7B; and ChatRetriever (Mao et al., 2024), a 381

conversationally-tuned retriever built on Qwen- 382

7B (Bai et al., 2023). For fair comparison, we re- 383

evaluate all baselines under our evaluation setup. 384

Baseline configurations and query input types. 385

We compare different query input strategies. In 386

the rewriting setup, a query rewriter takes the con- 387

versation history and current query to produce a 388

rewritten query, which is passed to the retriever. 389

Without rewriting, we consider three variants: (1) 390

Current: using only the current query; (2) Window: 391

the current query with the last three query-response 392

turns; and (3) Full: the entire conversation history 393

concatenated with the current query. 394

4.3 Main Results 395

Table 2 presents the comparative evaluation 396

of our approach against existing methods. 397

On TopiOCQA, a benchmark known for its 398

challenging topic shifts within conversations, 399

ContextualRetriever achieves state-of-the-art 400

performance. On QReCC, our method outperforms 401

most baselines and shows competitive results even 402

against GPT-4-Turbo rewrites. Without requiring 403

a rewriting process, ContextualRetriever con- 404

sistently outperforms GritLM applied to rewrit- 405

ten queries. This indicates that our method ef- 406

fectively leverages rewritten training queries and 407

the inherent generative capability of pre-trained 408
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Table 2: Retrieval performance (%) of different retrievers and query rewriting approaches on TopiOCQA
and QReCC datasets. Best and second-best results are indicated in bold and underlined, respectively. Human
rewrites are not included for TopiOCQA as they are not provided in the original dataset.

Retriever Query Rewriter Query Type
TopiOCQA QReCC

MRR↑ Hit@20↑ Hit@100↑ MRR↑ Hit@20↑ Hit@100↑

MiniLM
-

Current 3.7 9.1 13.2 4.2 10.2 14.6
Window 11.1 25.8 37.5 19.7 62.1 78.1

Full 10.0 24.7 36.5 19.3 61.5 79.6

GritLM
Rewritten

19.8 43.6 56.5 21.5 59.9 75.7
Human - - - 21.1 60.8 77.1

Bge-large

-
Current 4.9 10.7 14.4 4.6 11.1 13.9
Window 16.1 33.4 46.7 22.3 69.1 83.9

Full 13.5 29.3 42.0 21.3 67.4 84.0

T5QR

Rewritten

18.9 42.2 55.3 16.3 49.7 64.2
GritLM 28.3 53.0 64.1 26.0 73.7 86.2

GPT-4-Turbo 37.2 71.2 82.5 28.6 80.2 92.0
Human - - - 26.3 73.9 86.8

SFR Embedding

-
Current 6.1 11.3 15.0 5.3 12.8 16.1
Window 17.8 41.2 57.3 22.8 71.4 87.2

Full 14.1 31.8 46.9 21.7 68.3 86.8

T5QR

Rewritten

20.6 44.8 56.6 17.7 52.7 68.4
GritLM 31.6 57.5 67.7 26.6 74.9 87.9

GPT-4-Turbo 40.5 76.3 86.6 28.3 79.0 91.6
Human - - - 27.5 76.4 89.7

GritLM

-
Current 2.2 10.9 11.3 3.7 9.2 12.5
Window 24.3 53.4 68.5 24.9 72.5 88.2

Full 20.7 47.7 64.2 24.0 72.8 86.8

T5QR

Rewritten

23.6 49.3 66.2 14.7 44.4 60.6
GritLM 31.7 66.4 77.2 26.1 74.1 88.8

GPT-4-Turbo 35.9 69.5 83.6 26.5 74.5 88.4
Human - - - 23.2 65.6 80.7

ChatRetriever - Full 38.1 71.1 84.2 36.5 82.4 91.4

ContextualRetriever (ours) - Full 42.2 81.7 91.9 36.8 82.7 91.5

LLMs to contextualize retrieval without needing409

explicit rewriting at inference time. Furthermore,410

our method clearly surpasses ChatRetriever demon-411

strating that our objective-driven approach to mod-412

eling contextual understanding yields more robust413

performance.414

Impact of query input types. Experimental results415

reveal substantial performance differences across416

query input configurations. The Current setting per-417

forms poorly due to its inability to resolve abbre-418

viations and lack of contextual cues. Comparisons419

between Window and Full configurations highlight420

key trade-offs: Window efficiently captures recent421

context but may overlook long-range dependencies,422

while Full offers broader coverage at the risk of423

introducing noise from irrelevant turns. Although424

dataset-specific input tuning can yield marginal im-425

provements, it lacks generality and relies on heuris-426

tic decisions. In contrast, ContextualRetriever427

processes the full dialogue holistically and learns428

to attend to relevant context.429

Effectiveness of query rewriting. The impact of 430

query rewriting varies across datasets. In Topi- 431

OCQA, rewriting consistently improves retrieval 432

performance by resolving context-dependent refer- 433

ences and handling topic shifts. LLM-based rewrit- 434

ers such as GritLM and GPT-4-Turbo perform well, 435

effectively capturing nuanced contextual signals. 436

In contrast, T5QR exhibits limited capability, pri- 437

marily resolving surface-level references such as 438

pronouns (e.g., replacing “it” with its referent). In 439

QReCC, however, rewriting can degrade perfor- 440

mance. This degradation is often caused by over- 441

summarization or loss of critical information dur- 442

ing rewriting, which removes details necessary for 443

accurate retrieval. In such cases, preserving the 444

original conversational structure proves more effec- 445

tive than rewriting. 446

Analysis of retriever performance. Our analy- 447

sis indicates that preserving the generative capac- 448

ity of LLMs plays a crucial role in conversational 449

retrieval. Compared to conventional BERT-based 450
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Table 3: nDCG@3 performance on the TREC-CAsT
benchmark. * indicates the result reported in the orig-
inal ChatRetriever paper; other results are reproduced.
+ Response denotes the use of retrieved responses as
additional conversational context.

Method CAsT-19 CAsT-20

Conversational Query Rewriting
*LLM4CS 51.5 45.5

Dense Retrieval
Bge-large 36.5 20.1
SFR Embedding 32.6 24.5
GritLM 30.7 18.2

Conversational Dense Retrieval
*ConvDR 43.9 32.4
*LeCoRE 42.2 29.0
*ChatRetriever 52.1 40.0
ChatRetriever 54.1 38.7
ContextualRetriever (ours) 62.3 46.8

+ Response 63.4 50.6

models and LLM-based retrievers trained solely451

with retrieval objectives (i.e., SFR Embedding),452

both our model and GritLM incorporate genera-453

tion loss during training. While all retrievers per-454

form similarly on single-turn queries, regardless455

of whether the query is original or rewritten, per-456

formance gaps widen significantly in multi-turn457

settings (Window and Full). This difference is par-458

ticularly pronounced on TopiOCQA, which involve459

complex topic shifts.460

Performance on TREC-CAsT. On the TREC-461

CAsT benchmark, ContextualRetriever also de-462

livers strong performance. Notably, our method463

achieves substantial gains over prior approaches464

(Table 3). It outperforms recent conversational465

search methods, including LLM-based query466

rewriting (e.g., LLM4CS (Mao et al., 2023a))467

and dense retrievers such as ConvDR (Yu et al.,468

2021), LeCoRE (Mao et al., 2023b), and ChatRe-469

triever (Mao et al., 2024). This result demonstrates470

that even in well-structured evaluation settings, our471

contextual embedding contributes significantly to472

improved retrieval quality.473

In Appendix C and E, further analysis reveals474

that both our embedding extraction strategy and475

proposed loss substantially contribute to the per-476

formance gains. We also include evaluation results477

on ORConvQA to confirm the generalizability of478

our method. Additionally, we report generation per-479

formance to validate that our model preserves the480

language capabilities of the underlying LLM while481

optimizing for retrieval.482

Table 4: Number of parameters (Params.) and inference
time for query rewriters and retrievers.

Model Query Type Params. Inference Time

Rewriter
T5QR Full 223M 156.5ms
GritLM Full 7241M 1064.7ms
GPT-4-Turbo Full – 1293.6ms

Retriever
BGE-large Window 335M 18.4ms
GritLM (Current) Current 7241M 35.8ms
GritLM (Window) Window 7241M 44.8ms
GritLM (Full) Full 7241M 80.3ms
ChatRetriever Full 7721M 101.4ms
ContextualRetriever Full 7241M 80.5ms

4.4 Analysis 483

Computational cost. Table 4 summarizes the com- 484

putational requirements of various query rewriters 485

and retrievers, in terms of model parameters and 486

average inference time. Inference time was mea- 487

sured across 160 samples (10 conversations with 488

1–16 turns) using an Intel Xeon Gold 6342 CPU 489

and a single NVIDIA RTX A5000 GPU. 490

Among query rewriters, we observe substantial 491

differences in both model size and efficiency. All 492

rewriters rely on autoregressive decoding for query 493

generation, which introduces significant latency 494

at inference time. This includes T5QR as well as 495

LLM-based models such as GritLM and GPT-4 496

Turbo (accessed through OpenAI’s API services). 497

Larger models generally produce higher-quality 498

rewrites, with GPT-4 Turbo delivering the best per- 499

formance but also incurring the highest cost due to 500

its increased model complexity. 501

For retrieval, BGE-large achieves the lowest in- 502

ference time among all evaluated retrievers, reflect- 503

ing its compact architecture but also its relatively 504

lower retrieval performance compared to larger 505

models. Both ContextualRetriever and ChatRe- 506

triever eliminate the need for separate rewriters 507

and provide end-to-end solutions for conversational 508

search. Notably, ContextualRetriever further 509

outperforms ChatRetriever in performance, achiev- 510

ing a better balance between effectiveness and effi- 511

ciency. This supports the advantage of our retriever 512

design in real-world, latency-sensitive applications. 513

Ability to capture user intent. To evaluate how 514

well models track evolving user intent throughout a 515

dialogue, we conduct a turn-by-turn analysis com- 516

paring our method with GritLM and ChatRetriever. 517

This analysis considers not only Hit@k but also 518

whether the retrieved passages reflect the model’s 519

ability to isolate the current information need from 520

7



(a) (b)

Figure 3: (a) Hit@100 and (b) Historical Interference Rate (HIR@100) of our ContextualRetriever, ChatRe-
triever, and GritLM across conversation turns. HIR@100 measures how often a model retrieves passages related to
previous queries rather than the current one.

earlier conversational turns.521

Figure 3(a) reports Hit@100 across dialogue522

turns. Retrieval performance initially improves, as523

early turns include information that directly sup-524

ports subsequent queries without significant topic525

shifts. However, as the conversation progresses, am-526

biguity and context dependencies accumulate, mak-527

ing retrieval more difficult. GritLM’s performance528

declines sharply, indicating difficulty in maintain-529

ing contextual alignment. ChatRetriever is rela-530

tively more stable, while our model consistently531

achieves higher hit rates, especially in later turns532

where accurate disambiguation becomes critical.533

To further analyze this behavior, we compute534

Historical Interference Rate (HIR@100), shown in535

Figure 3(b), which measures how often retrieved536

passages align with ground-truth passages from537

previous turns rather than the current one. A higher538

HIR@100 indicates that a model is overly influ-539

enced by earlier queries, retrieving outdated or540

irrelevant content. GritLM exhibits the highest541

HIR@100, often retrieving passages aligned with542

dominant earlier topics regardless of their current543

relevance. This suggests that the model relies on544

lexical or shallow semantic cues rather than mod-545

eling evolving user intent. ChatRetriever performs546

better, aided by conversational finetuning, but still547

suffers from interference. In contrast, our model548

consistently achieves lower HIR@100 across all549

turns, demonstrating greater robustness in distin-550

guishing the current query from prior context.551

This behavioral distinction is critical. While552

prior methods may appear context-aware, they of-553

ten depend on memorization or anchoring to pre-554

viously relevant contexts. Our model more faith-555

fully tracks shifting user intent, enabling adaptive556

retrieval even in semantically entangled conver-557

sations. These findings reinforce our core design 558

intuition: optimizing for intent-aware representa- 559

tions yields models that are not only accurate but 560

also resilient to context interference and shortcut 561

behaviors. These properties are particularly impor- 562

tant in multi-turn settings where user goals evolve 563

continuously. 564

5 Conclusions 565

We introduced ContextualRetriever, a unified 566

retriever that generates context-aware embeddings 567

without relying on external query rewriting. Our 568

method integrates user intent understanding di- 569

rectly into the retrieval process by leveraging 570

both conversational context and generation loss 571

during training. Through extensive evaluations 572

on four benchmark datasets, we demonstrate 573

that ContextualRetriever not only improves re- 574

trieval accuracy but also generalizes well across 575

diverse conversational styles and structures. These 576

results suggest that integrating intent modeling 577

within the retriever itself provides a scalable and ro- 578

bust solution for multi-turn conversational search. 579

6 Limitations 580

Our current implementation adopts LoRA-based 581

parameter-efficient tuning due to resource con- 582

straints. While this setup yields strong perfor- 583

mance, full-model fine-tuning at scale may further 584

improve generalization and stability. Extending 585

ContextualRetriever to support full-parameter 586

optimization, along with training on more diverse 587

topic shift scenarios, could lead to a more versatile 588

conversational retriever capable of handling single- 589

turn, multi-turn, and generative tasks. We leave this 590

as a promising direction for future work. 591
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Appendix

Learning Contextual Retrieval for Robust Conversational QA

A Prompt Template for Query Rewriting782

We utilize rewritten queries for intent-guided learn-783

ing, as described in Eq. 3. To generate accurate784

rewritings during training, we leverage both the785

gold context and the gold response. For each train-786

ing instance, we employ the GPT-4-Turbo model787

with the following prompt template. Note that the788

prompt includes three few-shot examples, which789

are manually selected. The rewritten queries in790

these examples were generated by human anno-791

tators.792

Prompt template for query rewriting for training set

Given a prev ious conversat ion , a cu r ren t quest ion ,
r e l a t e d contex t regard ing the cu r ren t quest ion ,
and a ground t r u t h response , your task i s to
r e w r i t e the cu r ren t quest ion to make i t c l e a r e r
and more e x p l i c i t . In your rewr i t e , please
avoid using pronouns or any abbrev ia ted terms .
The aim i s to ensure t h a t the cu r ren t quest ion
stands alone , so t h a t LLM can get the r e l a t e d
contex t and a r r i v e a t the ground t r u t h response
w i thou t needing a d d i t i o n a l i n f o rma t i on .
Do not use any a d d i t i o n a l comments such as
" Here i s a r e w r i t t e n vers ion o f the cu r ren t
quest ion : " . Only generate a r e w r i t t e n quest ion .

Examples : { Example1 } { Example2 } { Example3 }

Previous Conversat ion : { Previous conversat ion }
Current Question : { Question }
Context : { Context }
Ground Truth Response : { Gt_response }
Output :

793

During evaluation, we adopt two prompt-based794

query rewriters: GritLM and GPT-4-Turbo. Unlike795

in training, gold context and gold responses are not796

available at test time. Therefore, rewriting must be797

performed solely based on the prior conversation798

history and the current user question. The prompt799

template used for GritLM and GPT-4-Turbo during800

evaluation is provided below:801

Prompt template for query rewriting in evaluation

Given a prev ious conversat ion and a cu r ren t
quest ion , your task i s to r e w r i t e the cu r ren t
quest ion to make i t c l e a r e r and more e x p l i c i t .
In your rewr i t e , please avoid using pronouns
or any abbrev ia ted terms . The aim i s to ensure
t h a t the cu r ren t quest ion stands alone , so t h a t
the r e t r i e v e r can get the r e l a t e d contex t .
I f the o r i g i n a l quest ion i s a l ready c lear ,
you can use the o r i g i n a l quest ion .

Example : { Example1 } { Example2 } { Example3 }

Previous Conversat ion : { Previous conversat ion }
Current Question : { Question }
Rewri te Output :

802

For GritLM, we enclose the prompt with <|user|> 803

token and add <|assistant|> token before the output. 804

B Evaluation Datasets 805

We summarize the statistics of the evaluation 806

datasets in Table 5. Our model is trained on the 807

TopiOCQA training split and evaluated on the de- 808

velopment sets of all datasets. 809

Table 5: Statistics of the datasets, including the number
of conversations (C), queries (Q), and passages (P).

Statistics
TopiOCQA QReCC CAsT-19 CAsT-20 ORConvQA

Train Test Test Test Test Test

C 3,509 205 2,775 50 25 490
Q 45,450 2,514 16,451 479 208 3,430
P 25M 54M 38M 11M

C Ablation Studies 810

All ablation results are reported on a sampled small 811

passage set (5% of the full dataset), which differs 812

from the main evaluation setup. This allows effi- 813

cient comparison while preserving relative perfor- 814

mance trends. 815

C.1 Effect of dialogue history sampling 816

As shown in Table 6, our dialogue history sampling 817

strategy (Sec. 3.2) significantly outperforms the 818

baseline that uses the original training set without 819

augmentation, under the same number of training 820

epochs. These results highlight the effectiveness 821

of our method in exposing the model to diverse 822

conversational contexts and better capturing user 823

intent.

Table 6: Performance comparison (%) between baseline
and our sampling strategy.

Sampling strategy
TopiOCQA

nDCG@3 Hit@5

Baseline 39.3 80.9
Dialogue history sampling (ours) 45.5 88.3

824

C.2 Impact of embedding extraction methods 825

We analyze our embedding extraction approach de- 826

scribed in Sec. 3.3, which encodes the full conver- 827

sation but uses only the current query’s embeddings 828

for retrieval. Table 7 shows that using all output em- 829

beddings leads to performance degradation, despite 830
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access to full context. This validates our choice to831

maintain query-focused representations while still832

leveraging broader dialogue context during encod-833

ing.

Table 7: Performance comparison (%) of different re-
trieval embedding extraction methods.

Retrieval Embeddings Retriever
TopiOCQA

nDCG@3 Hit@5

Full conversation GritLM 15.9 41.5

Current query-focused
GritLM 29.2 64.0

ContextualRetriever 45.5 88.3

834

C.3 Contribution of learning objectives835

Table 8 reports the incremental impact of each836

learning objective. Adding Conversational Con-837

trastive Learning (CCL) to the base configuration838

substantially improves performance in multi-turn839

settings. Further gains are observed by incorporat-840

ing Intent-Guided Learning (IGL) and the Gener-841

ation Loss (G). These findings confirm that each842

component contributes to more effective retrieval843

representations for conversational queries.

Table 8: Impact of different learning components.

Method
TopiOCQA

nDCG@3 Hit@5

GritLM 23.3 58.0

+ LCCL 40.8 79.0
+ LCCL + LIGL 42.0 83.5

+ LCCL + LIGL + LG 45.5 88.3

844

D Generation Performance845

Our approach adopts a unified LLM architecture846

trained with an integrated generation loss, which847

preserves the model’s ability to generate fluent and848

contextually relevant responses. To evaluate this ca-849

pability, we compare our ContextualRetriever with850

GritLM using the following generation prompt:851

Prompt template for generation

<|embed | > \ n { Query } \ n < | user | > \ n { Context }
O p t i o n a l l y using the p r i o r conversat ion
and context , answer the l a s t query :
{ Current Query } \ n < | a s s i s t a n t | > \ n

852

D.1 Evaluation Methodology853

We assess generation performance using gold854

contexts with two metrics: (1) Lexical Match-855

ing (Wang et al., 2023; Izacard and Grave, 2021),856

which measures whether the generated answer con- 857

tains any reference answer span; and (2) Correct- 858

ness (Zhong et al., 2024), which uses GPT-4-Turbo 859

to score semantic correctness with the following 860

evaluation prompt: 861

Prompt template for measuring correctness

Evaluates i f the response conta ins the c o r r e c t
answer to the probing quest ion
( l a b e l s : (0 : wrong , 0.5 : p a r t i a l , 1 : c o r r e c t )
You should r e t u r n on ly d i g i t 0 , 0 .5 , or 1 .
response : { response } answer : { answer }

862

D.2 Results and Analysis 863

As shown in Table 9, our model achieves superior 864

generation accuracy compared to GritLM, validat- 865

ing the effectiveness of our approach in maintaining 866

robust generation capabilities. 867

Table 9: Generation performance of Unified LLM.

Model
Gen. performance (%)

Lexical Matching Correctness

GritLM 27.6 60.5
ContextualRetriever 31.7 70.3

Notably, our unified architecture enables efficient 868

cache sharing between retrieval and generation. 869

During inference, the query representations com- 870

puted for retrieval can be reused for generation 871

without incurring additional computational cost. 872

E Results on ORConvQA 873

We evaluate our model against various baselines 874

on the ORConvQA dataset, which is character- 875

ized by consistent topic maintenance without shifts. 876

Our experiments reveal that Full setting achieves 877

the best performance due to the dataset’s prefer- 878

ence for comprehensive information preservation, 879

while query rewriting approaches showed lower 880

performance due to information loss. Notably, the 881

BERT-based retriever (Bge-large) demonstrates 882

strong performance on this dataset, primarily due to 883

the strong correlation between previous conversa- 884

tions and current queries, and limited requirement 885

for complex user intent understanding. Despite 886

GritLM’s relatively lower baseline performance, 887

our approach achieves state-of-the-art results, out- 888

performing both existing baselines and ChatRe- 889

triever across different query configurations. 890
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Table 10: Retrieval performance (%) of different retrievers and query rewriting approaches on ORConvQA.

Retriever Query Rewriter Query Type
ORConvQA

nDCG@3 Hit@5

MiniLM
-

Current 8.2 16.2
Window 46.5 74.1

Full 62.5 90.0

GritLM Rewritten 40.6 69.0

Bge-large

-
Current 12.3 20.6
Window 60.2 88.5

Full 71.4 97.0

T5QR

Rewritten

44.0 68.8
GritLM 56.0 84.3
GPT-4 65.4 94.2
Human 54.3 82.9

SFR Embedding

-
Current 11.7 20.1
Window 62.7 88.9

Full 72.9 94.4

T5QR

Rewritten

40.0 65.5
GritLM 48.9 77.8
GPT-4 59.0 89.3
Human 50.5 79.7

GritLM

-
Current 10.8 17.4
Window 59.1 84.4

Full 73.1 95.2

T5QR

Rewritten

36.9 59.2
GritLM 46.1 71.7
GPT-4 55.5 82.8
Human 45.5 71.1

ChatRetriever - Full 70.6 95.0

ContextualRetriever (ours) - Full 73.0 97.8
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