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Abstract

The COVID-19 pandemic causes severe social
and economic disruption around the world, rais-
ing various subjects that are discussed or argued
over on social media. Identifying pandemic-
related named entities as expressed on social
media is fundamental and important for un-
derstanding the discussions on the pandemic.
However, there is limited work on named entity
recognition on this topic due to the following
challenges: 1) annotated data is rare and in-
sufficient to train a robust recognition model,
and 2) named entity recognition in COVID-
19 requires extensive knowledge of the pan-
demic. To address this, we propose a novel
entity knowledge augmentation for named en-
tity recognition systems in COVID-19 tweets.
Experiments carried out on the COVID-19
tweets dataset show that our proposed entity
knowledge augmentation improves NER per-
formance, achieving an F1 score of 84.08.

1 Introduction

The COVID-19 pandemic has led to significant
social and economic upheaval globally, sparking
various topics of conversation and debate on so-
cial media. Identifying pandemic-related entities
mentioned on social media is crucial for compre-
hending these discussions. Most existing named
entity recognition datasets (Tjong Kim Sang and
De Meulder, 2003; Pradhan et al., 2013; Strauss
etal., 2016; Hou et al., 2020; Jiang et al., 2022) are
not created with a focus on COVID-19 or public
health research, making it difficult for epidemiolo-
gists to use them for analyzing COVID-19 topics.
From a public health research standpoint, Zhou
et al. (2022a) released METS-CoV, a dataset of
COVID-19 tweets annotated with seven types of en-
tities, including four medical entity types (Disease,
Drug, Symptom, and Vaccine) and three general
entity types (Person, Location, and Organization).
Given this dataset, a COVID-19 NER model can

be designed and trained. However, the models on
these benchmarks have limited performance due
to the following challenges: 1) annotated data is
rare and insufficient to train a robust recognition
model, and 2) named entity recognition in COVID-
19 requires extensive medical knowledge of the
pandemic.

Recently, the widespread success of large lan-
guage models in various text processing tasks has
ushered in a new training paradigm. Recent models
based on large language models demonstrate supe-
riority in named entity recognition (Meoni et al.,
2023; Sharma et al., 2023). We base our COVID-
19 NER models on large language models, lever-
aging their superior text representation capabili-
ties. We propose a LLM-based Entity Knowledge
Augmentation (LLM-EKA) to enrich the COVID-
19-related knowledge of the models. The proposed
knowledge augmentation can be decoupled to en-
hance other domain-specific NER models.

The framework of LLM-EKA, as shown in Fig-
ure 1, consists of demonstration selection, entity
augmentation, and instance augmentation. The
demonstration selection aims to extract informa-
tive examples from the training data, and the ex-
tracted examples are used as demonstrations for
NER model training. The entity augmentation is
applied to obtain domain-specific entities via pre-
trained language models. The instance augmenta-
tion generates domain-specific training instances
via prompts according to the selected demonstra-
tions and augmented domain-specific entities.

The experiments carried out on the benchmark
METS-CoV show that the NER models equipped
with the proposed LLM-EKA outperform the base-
line model by obtaining an F1 score of 84.10. The
main contributions of this work are summarized as
follows:

* We investigate named entity recognition in
COVID-19 tweets from medical research per-
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Figure 1: Framework of the LLM-based Entity Knowledge Augmentation

spectives that contribute to public health con-
cerns.

* We propose a novel framework of entity
knowledge augmentation for named entity
recognition in COVID-19 tweets. The pro-
posed method can be decoupled to enhance
other named entity recognition models.

* Qur final model, equipped with the proposed
entity knowledge augmentation, achieves
state-of-the-art results on the standard bench-
mark. The code is released at https://
anonymous.

2 Related Work

Named Entity Recognition is widely investigated
as a conventional task in NLP. Recent work has fo-
cused on specific domains, which are often limited
to small-scale training data.

Domain Transfer Domain transfer aims to alle-
viate the data scarcity issue by transferring knowl-
edge from source domains to target domains. This
line of research on NER enhances the generaliza-
tion of models by aligning the entity knowledge of
source domains with the target domains (Daumé 111,
2007; Kim et al., 2015; Lee et al., 2018; Lin and
Lu, 2018; Wang et al., 2018; Yang et al., 2018; Jia
et al., 2019; Wang et al., 2020; Liu et al., 2020).
Moreover, some related works (Cui et al., 2021; Ma

et al., 2022; Ding et al., 2022; Chen et al., 2023;
Fang et al., 2023) have been done in few-shot set-
tings. However, these methods are based on the
assumption that the label spaces between the source
domain and target domain are aligned.

Data Augmentation Data augmentation meth-
ods aim to directly expand the scale of training
data to alleviate the data scarcity in low-resource
domains. This line of research on NER focuses on
rewriting and generating training instances (Dai
and Adel, 2020; Ding et al., 2020; Zhou et al.,
2022b). Moreover, Ye et al. (2024) leverage LLMs
to generate a large quantity of diverse and high-
quality new data for NER. However, these methods
suffer from a lack of domain-specific knowledge
and are not well-suited to NER in domains that
require extensive knowledge.

3 Methodology

Named entity recognition is modeled as a sequence
labeling task, where the input is a sequence of
words, X [€1,x2,...,2,], and the output is
a sequence of labels, Y = [y1,y2, ..., yn], Wwhere
n is the length of the input sentence. We use the
BIOES labeling system for NER.

3.1 Named Entity Recognition Model

We use a pre-trained language model to obtain the
hidden representation, H = [hy, ha, ..., hy,] for
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the input sentence, X = [x1,x9,...,Z,]|, where
h; is the hidden representation of ¢-th word x;:

H = [hy,ha, ..., hy] = LLM(21, 22, ..., 2y).
(1

The hidden representation h; is transformed into
the logits o; using a linear layer:

0; = th‘ + b, (2)

where W and b are tunable parameters. The label
y; is predicted by applying the argmaz function
over the logits:

Yi = argmaxo; . 3)
C

where c indexes over the possible labels.

In training, we employ the cross-entropy loss
function to measure the discrepancy between the
predicted logits and the true labels:

1 n
L=——> logp(yi | z:) 4)
i=1

where p(y; | ;) is the probability assigned to the
true label by the model, which is obtained via a
softmax operation over the logits:
exp(0i.c)
Y1 exp(0i k)

where C' is the number of possible labels.

plyi=clzi) = ©))

3.2 LLM-based Entity Knowledge
Agumentation

The framework of LLM-EKA consists of demon-
stration selection, entity augmentation, and in-
stance augmentation.

Demonstration Selection We select demonstra-
tion sentences from the training data, aiming to
ensure that the demonstrations are domain-specific
representatives containing COVID-19 entities, such
as symptoms, drugs, vaccine-related entities, and
diseases. We choose sentences that contain only
domain-specific entities and filter out sentences
that contain only general entity types (Person, Lo-
cation, and Organization). Additionally, we rule
out the sentences that have more than 6 entities
by quality control, because these sentences are so
complex that they can degrade the LLM genera-
tion. Table 1 shows the entity distribution which
has the significant entity imbalance issue. We ap-
plied under-sampling methods to mitigate the bias
towards majority class entities and achieve a more
balanced data distribution.

Category ‘ Count Ratio
General Entity | 3,108 56.32%
Person 1,387 25.13%
Location 608 11.02%
Organization 1,113 20.17%
Domain-specific Entity | 2,411 43.68%
Vaccine-related 356 6.45%
Symptom 1,204 21.81%
Drug 428  7.76%
Disease 423 7.66%

Table 1: The entity distribution across categories in
METS-CoV.

Entity Augmentation We augment the entities
by leveraging the capabilities of large language
models, aiming to enrich knowledge of COVID-
19 and generate new domain-specific entities. We
design targeted prompts based on original domain-
related entities. The prompt template is “There are
some entities about COVID-19 [ENTITY_TYPE]
such as [ENTITY_EXAMPLE]. Please generate
[ENTITY_NUMS] new entities of the same type."
Given the prompt template, we generate prompts
according to training data entities. Taking symp-
toms as an example, the generated prompt is:
"There are some entities about COVID-19 symp-
toms such as coughing up blood, burning sensation
in lungs, and head hurts. Please generate 30 new
entities of the same type." We use the generated
prompts to query GPT-3.5-Turbo and obtain the
corresponding augmented entities.

Instance Augmentation We generate new
COVID-19 tweets by querying GPT-3.5-Turbo
using a prompt template “Take the sentence as an
example [SENTENCE], please generate a new
COVID-19 tweet which only has the [ENTITY],
without introducing any other named entity." The
prompts have demonstration slot, [SENTENCE],
filled by sentences selected from the demonstration
selection, aiming to guide LLM to generate tweets
with high quality and consistency in structure and
style. The entity slot, [ENTITY], are filled by
domain-specific entities obtained from the entity
augmentation. We merge the augmented data with
original training data to train the NER model.



Models Location  Organization Person Symptom Vaccine-related Disease Drug Average

CRF 76.37+0.62  54.64+2.08  64.43+1.59 74.05+0.56 84.85+0.82 73.61+0.44 77.34+1.60 71.58+0.54
WLSTM + CCNN + CRF ~ 82.15£0.44  62.79£091  81.38+0.44 78.12+0.51 89.11+0.36 76.12+0.76  80.41+0.58 78.10+0.19
RoBERTa-lagrge 85.85+2.12  73.78+0.72  86.79+0.44 81.32+0.67 90.42+1.12 76.84+0.57 86.79+0.78 82.55+0.27
COVID-TWITTER-BERT 85.68+0.92  76.27+0.64  91.29+0.42 81.85+0.53 90.44+0.94 77.48+0.81 86.35+0.96 83.88+0.20
LLM-DA (Ye et al., 2024) 85.78+0.66  75.16+0.51  89.82+0.95 80.88+0.38 88.90+0.70 76.75+0.72  86.49+0.55 82.96+0.17
LLM-EKA-1000 86.33+0.57  76.98+0.27  90.62+0.58 82.16+0.21 90.46+1.05 77.46+0.88 87.12+0.95 84.08+0.10
LLM-EKA-all 85.30£0.50  78.69+0.24  90.88+0.40 82.08+0.10 90.65+0.80 77.37+1.11 86.16+0.48 84.05+0.05

Table 2: The results on test data in the standard benchmark. LLM-EKA-n is the COVID-TWITTER-BERT equipped
with the proposed knowledge augmentation method, where 7 is the number of augmented training instances and all
means that we use the all augmented instances. The bold are the best results.

4 Experiments

The experiments are conducted on the METS-CoV
benchmark (Zhou et al., 2022a).

4.1 Settings

We set the temperature to 1 to fully leverage the
diversity generation capabilities of the GPT-3.5-
turbo model, leading to more varied and diverse
outputs. We set the batch size to 8 and employ
the AdamW optimizer with a learning rate of 3e-5.
The models are trained for 100 epochs, and the
best performing model on the validation set is se-
lected for final testing. We use the micro F1 score
as evaluation metrics. We use CRF and WSLTM
+ CCN + CREF to represent traditional NER mod-
els, and RoBERTa-large as a pre-trained language
model. Additionally, COVID-TWITTER-BERT
serves as our baseline due to its capability in rep-
resenting COVID-19 tweets. COVID-TWITTER-
BERT equipped with our entity knowledge aug-
mentation is our final model.

4.2 Results

Table 2 shows the results on the test data across dif-
ferent models. Pre-trained language models signif-
icantly outperforms the traditional LSTM models
with CRF. COVID-TWITTER-BERT outperforms
RoBERTa because it has the ability to represent the
COVID-19 tweets with help of the pre-training on
tweets. Equipped with our proposed entity knowl-
edge augmentation, the final model achieves the
best results on the benchmarks.

4.3 Analysis

The Scale of Augmented Instances We experi-
ment with different amounts of augmented samples,
1000 and 1831 samples (all), and merge them with
the training data.Table 2 shows that using 1000
augmented samples, the model can achieves the
marginal improvement with low variance. How-

ever, as the size of the augmented instance increase,
the performance of models have no further improve-
ments.

Comparison with Data Augmentations We
reimplement LLM-DA method to obtain the same
scale of augmented instance for comparison to
our method. Table 2 shows that LLM-DA, with
an average score of 82.96, underperforms com-
pared to our final model. A possible reason is that
LLM-DA is designed for few-shot entity recogni-
tion, and as the number of training instances in-
creases, the additional context appears to introduce
noise, adversely affecting performance. However,
our method demonstrates marginal improvements
across different sample sizes, indicating a more
robust approach to handling augmented data.

Entity Type We perform a fine-grained analysis
of the performance of different entity types across
models. The models built on COVID-TWITTER-
BERT has significant improvement in recognizing
person entities. One reason for this is that person
names in tweets are user IDs, which are difficult
for models to recognize without pre-training on
tweets. The final models achieve improvements in
recognizing symptom and vaccine-related entities.

5 Conclusion

We present a novel LLM-based entity knowl-
edge augmentation for named entity recognition in
COVID-19 tweets for public health research. LLM-
EKA leverages the sophisticated contextual reason-
ing capabilities and extensive knowledge base of
LLMs to augment entity knowledge and improve
recognition performance. Our proposed methods
are general and can be decoupled to enhance other
domain-specific NER models. The experimental
results demonstrate that LLM-EKA is capable of
addressing the challenges associated with scarce
annotated data and the need for domain-specific
expertise in COVID-19 NER tasks.



Limitations

The proposed LLM-based entity knowledge aug-
mentation adopt the GPT-3.5-Turbo. So the per-
formance of the final models are limited to the
outcomes of the GPT-3.5-Turbo.

Ethnic Statement

The instances generated by querying GPT-3.5-
Turbo is controlled by the prompts. Therefore, we
foresee no ethical concerns in this work.
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