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Abstract

The COVID-19 pandemic causes severe social001
and economic disruption around the world, rais-002
ing various subjects that are discussed or argued003
over on social media. Identifying pandemic-004
related named entities as expressed on social005
media is fundamental and important for un-006
derstanding the discussions on the pandemic.007
However, there is limited work on named entity008
recognition on this topic due to the following009
challenges: 1) annotated data is rare and in-010
sufficient to train a robust recognition model,011
and 2) named entity recognition in COVID-012
19 requires extensive knowledge of the pan-013
demic. To address this, we propose a novel014
entity knowledge augmentation for named en-015
tity recognition systems in COVID-19 tweets.016
Experiments carried out on the COVID-19017
tweets dataset show that our proposed entity018
knowledge augmentation improves NER per-019
formance, achieving an F1 score of 84.08.020

1 Introduction021

The COVID-19 pandemic has led to significant022

social and economic upheaval globally, sparking023

various topics of conversation and debate on so-024

cial media. Identifying pandemic-related entities025

mentioned on social media is crucial for compre-026

hending these discussions. Most existing named027

entity recognition datasets (Tjong Kim Sang and028

De Meulder, 2003; Pradhan et al., 2013; Strauss029

et al., 2016; Hou et al., 2020; Jiang et al., 2022) are030

not created with a focus on COVID-19 or public031

health research, making it difficult for epidemiolo-032

gists to use them for analyzing COVID-19 topics.033

From a public health research standpoint, Zhou034

et al. (2022a) released METS-CoV, a dataset of035

COVID-19 tweets annotated with seven types of en-036

tities, including four medical entity types (Disease,037

Drug, Symptom, and Vaccine) and three general038

entity types (Person, Location, and Organization).039

Given this dataset, a COVID-19 NER model can040

be designed and trained. However, the models on 041

these benchmarks have limited performance due 042

to the following challenges: 1) annotated data is 043

rare and insufficient to train a robust recognition 044

model, and 2) named entity recognition in COVID- 045

19 requires extensive medical knowledge of the 046

pandemic. 047

Recently, the widespread success of large lan- 048

guage models in various text processing tasks has 049

ushered in a new training paradigm. Recent models 050

based on large language models demonstrate supe- 051

riority in named entity recognition (Meoni et al., 052

2023; Sharma et al., 2023). We base our COVID- 053

19 NER models on large language models, lever- 054

aging their superior text representation capabili- 055

ties. We propose a LLM-based Entity Knowledge 056

Augmentation (LLM-EKA) to enrich the COVID- 057

19-related knowledge of the models. The proposed 058

knowledge augmentation can be decoupled to en- 059

hance other domain-specific NER models. 060

The framework of LLM-EKA, as shown in Fig- 061

ure 1, consists of demonstration selection, entity 062

augmentation, and instance augmentation. The 063

demonstration selection aims to extract informa- 064

tive examples from the training data, and the ex- 065

tracted examples are used as demonstrations for 066

NER model training. The entity augmentation is 067

applied to obtain domain-specific entities via pre- 068

trained language models. The instance augmenta- 069

tion generates domain-specific training instances 070

via prompts according to the selected demonstra- 071

tions and augmented domain-specific entities. 072

The experiments carried out on the benchmark 073

METS-CoV show that the NER models equipped 074

with the proposed LLM-EKA outperform the base- 075

line model by obtaining an F1 score of 84.10. The 076

main contributions of this work are summarized as 077

follows: 078

• We investigate named entity recognition in 079

COVID-19 tweets from medical research per- 080
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Original sentence

What odds that Jakob has spent lockdown tidying 

his sock draw ? Bound to have done #TheArchers

@LangmanVince People would be crazy to make 

their kids get the covid vaccine !

Today I wrote 3 songs all feeling achy and sicky

and yes covid vaccines . Ohhhhhhh dear.

Slected sentence

@LangmanVince People would be crazy to 

make their kids get the covid vaccine !

Today I wrote 3 songs all feeling achy and 

sicky and yes covid vaccines . Ohhhhhhh dear .

Prompt template

There are some entities about COVID-19 [ENTITY_TYPE], 

such as[ENTITY_ EXAMPLE], please generate 

[ENTITY_ NUMS] new entities of the same type.
Original entity set

Diseases: autoimmune, pneumonia…

Drug: Coronil, Ivermectin…

Vaccine-related: Moderna, Pfizer…

Symptom: sneezing, cough…

Generated sentence

Vaxzevria vaccine has been proven safe and effective in 

combating COVID-19. Trust in science and get 

vaccinated to protect yourself and others.

Experiencing altered mental status and loss of appetite 

after receiving the Ad26.COV2.S vaccine. It's important 

to monitor and report any post-vaccine symptoms. 

#COVID19.

Prompt

Take the sentence as an example “Today I wrote 3 songs all 

feeling achy and sicky and yes covid vaccines . Ohhhhhhh

dear ” , please generate a new covid-19 tweet which only 

has the  symptom entities altered mental status and loss of 

appetite , vaccine-related entity Ad26.COV2.S vaccine,

without introducing any other named entity.

Augmented entity set

Diseases: TIA, Heart failure…

Drug: Camostat, Mesylate…

Vaccine-related:BBV152, CoronaVac…

Symptom: Throat pain, Body tremors…

Prompt

There are some entities about COVID-19 Drug, such as 

CORONIL, IVERMECTIN, please generate 30 new entities 

of the same type.

GPT-3.5-Turbo

Under-sampling

Prompt template

Take the sentence as an example [SENTENCE] , please 

generate a new covid-19 tweet which only has the 

[ENTITY_TYPE], without introducing any other named 

entity.

GPT-3.5-Turbo

Quality control

Demonstration Selection

Entity Augmentation

Instance Augmentation

Figure 1: Framework of the LLM-based Entity Knowledge Augmentation

spectives that contribute to public health con-081

cerns.082

• We propose a novel framework of entity083

knowledge augmentation for named entity084

recognition in COVID-19 tweets. The pro-085

posed method can be decoupled to enhance086

other named entity recognition models.087

• Our final model, equipped with the proposed088

entity knowledge augmentation, achieves089

state-of-the-art results on the standard bench-090

mark. The code is released at https://091

anonymous.092

2 Related Work093

Named Entity Recognition is widely investigated094

as a conventional task in NLP. Recent work has fo-095

cused on specific domains, which are often limited096

to small-scale training data.097

Domain Transfer Domain transfer aims to alle-098

viate the data scarcity issue by transferring knowl-099

edge from source domains to target domains. This100

line of research on NER enhances the generaliza-101

tion of models by aligning the entity knowledge of102

source domains with the target domains (Daumé III,103

2007; Kim et al., 2015; Lee et al., 2018; Lin and104

Lu, 2018; Wang et al., 2018; Yang et al., 2018; Jia105

et al., 2019; Wang et al., 2020; Liu et al., 2020).106

Moreover, some related works (Cui et al., 2021; Ma107

et al., 2022; Ding et al., 2022; Chen et al., 2023; 108

Fang et al., 2023) have been done in few-shot set- 109

tings. However, these methods are based on the 110

assumption that the label spaces between the source 111

domain and target domain are aligned. 112

Data Augmentation Data augmentation meth- 113

ods aim to directly expand the scale of training 114

data to alleviate the data scarcity in low-resource 115

domains. This line of research on NER focuses on 116

rewriting and generating training instances (Dai 117

and Adel, 2020; Ding et al., 2020; Zhou et al., 118

2022b). Moreover, Ye et al. (2024) leverage LLMs 119

to generate a large quantity of diverse and high- 120

quality new data for NER. However, these methods 121

suffer from a lack of domain-specific knowledge 122

and are not well-suited to NER in domains that 123

require extensive knowledge. 124

3 Methodology 125

Named entity recognition is modeled as a sequence 126

labeling task, where the input is a sequence of 127

words, X = [x1, x2, . . . , xn], and the output is 128

a sequence of labels, Y = [y1, y2, . . . , yn], where 129

n is the length of the input sentence. We use the 130

BIOES labeling system for NER. 131

3.1 Named Entity Recognition Model 132

We use a pre-trained language model to obtain the 133

hidden representation, H = [h1, h2, . . . , hn] for 134
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the input sentence, X = [x1, x2, . . . , xn], where135

hi is the hidden representation of i-th word xi:136

H = [h1, h2, . . . , hn] = LLM(x1, x2, . . . , xn).
(1)137

The hidden representation hi is transformed into138

the logits oi using a linear layer:139

oi = Whi + b, (2)140

where W and b are tunable parameters. The label141

yi is predicted by applying the argmax function142

over the logits:143

yi = argmax
c

oi,c (3)144

where c indexes over the possible labels.145

In training, we employ the cross-entropy loss146

function to measure the discrepancy between the147

predicted logits and the true labels:148

L = − 1

n

n∑
i=1

log p(yi | xi) (4)149

where p(yi | xi) is the probability assigned to the150

true label by the model, which is obtained via a151

softmax operation over the logits:152

p(yi = c | xi) =
exp(oi,c)∑C

k=1 exp(oi,k)
(5)153

where C is the number of possible labels.154

3.2 LLM-based Entity Knowledge155

Agumentation156

The framework of LLM-EKA consists of demon-157

stration selection, entity augmentation, and in-158

stance augmentation.159

Demonstration Selection We select demonstra-160

tion sentences from the training data, aiming to161

ensure that the demonstrations are domain-specific162

representatives containing COVID-19 entities, such163

as symptoms, drugs, vaccine-related entities, and164

diseases. We choose sentences that contain only165

domain-specific entities and filter out sentences166

that contain only general entity types (Person, Lo-167

cation, and Organization). Additionally, we rule168

out the sentences that have more than 6 entities169

by quality control, because these sentences are so170

complex that they can degrade the LLM genera-171

tion. Table 1 shows the entity distribution which172

has the significant entity imbalance issue. We ap-173

plied under-sampling methods to mitigate the bias174

towards majority class entities and achieve a more175

balanced data distribution.176

Category Count Ratio

General Entity 3,108 56.32%

Person 1,387 25.13%
Location 608 11.02%
Organization 1,113 20.17%

Domain-specific Entity 2,411 43.68%

Vaccine-related 356 6.45%
Symptom 1,204 21.81%
Drug 428 7.76%
Disease 423 7.66%

Table 1: The entity distribution across categories in
METS-CoV.

Entity Augmentation We augment the entities 177

by leveraging the capabilities of large language 178

models, aiming to enrich knowledge of COVID- 179

19 and generate new domain-specific entities. We 180

design targeted prompts based on original domain- 181

related entities. The prompt template is “There are 182

some entities about COVID-19 [ENTITY_TYPE] 183

such as [ENTITY_EXAMPLE]. Please generate 184

[ENTITY_NUMS] new entities of the same type." 185

Given the prompt template, we generate prompts 186

according to training data entities. Taking symp- 187

toms as an example, the generated prompt is: 188

"There are some entities about COVID-19 symp- 189

toms such as coughing up blood, burning sensation 190

in lungs, and head hurts. Please generate 30 new 191

entities of the same type." We use the generated 192

prompts to query GPT-3.5-Turbo and obtain the 193

corresponding augmented entities. 194

Instance Augmentation We generate new 195

COVID-19 tweets by querying GPT-3.5-Turbo 196

using a prompt template “Take the sentence as an 197

example [SENTENCE], please generate a new 198

COVID-19 tweet which only has the [ENTITY], 199

without introducing any other named entity." The 200

prompts have demonstration slot, [SENTENCE], 201

filled by sentences selected from the demonstration 202

selection, aiming to guide LLM to generate tweets 203

with high quality and consistency in structure and 204

style. The entity slot, [ENTITY], are filled by 205

domain-specific entities obtained from the entity 206

augmentation. We merge the augmented data with 207

original training data to train the NER model. 208
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Models Location Organization Person Symptom Vaccine-related Disease Drug Average

CRF 76.37±0.62 54.64±2.08 64.43±1.59 74.05±0.56 84.85±0.82 73.61±0.44 77.34±1.60 71.58±0.54
WLSTM + CCNN + CRF 82.15±0.44 62.79±0.91 81.38±0.44 78.12±0.51 89.11±0.36 76.12±0.76 80.41±0.58 78.10±0.19
RoBERTa-lagrge 85.85±2.12 73.78±0.72 86.79±0.44 81.32±0.67 90.42±1.12 76.84±0.57 86.79±0.78 82.55±0.27

COVID-TWITTER-BERT 85.68±0.92 76.27±0.64 91.29±0.42 81.85±0.53 90.44±0.94 77.48±0.81 86.35±0.96 83.88±0.20
LLM-DA (Ye et al., 2024) 85.78±0.66 75.16±0.51 89.82±0.95 80.88±0.38 88.90±0.70 76.75±0.72 86.49±0.55 82.96±0.17
LLM-EKA-1000 86.33±0.57 76.98±0.27 90.62±0.58 82.16±0.21 90.46±1.05 77.46±0.88 87.12±0.95 84.08±0.10
LLM-EKA-all 85.30±0.50 78.69±0.24 90.88±0.40 82.08±0.10 90.65±0.80 77.37±1.11 86.16±0.48 84.05±0.05

Table 2: The results on test data in the standard benchmark. LLM-EKA-n is the COVID-TWITTER-BERT equipped
with the proposed knowledge augmentation method, where n is the number of augmented training instances and all
means that we use the all augmented instances. The bold are the best results.

4 Experiments209

The experiments are conducted on the METS-CoV210

benchmark (Zhou et al., 2022a).211

4.1 Settings212

We set the temperature to 1 to fully leverage the213

diversity generation capabilities of the GPT-3.5-214

turbo model, leading to more varied and diverse215

outputs. We set the batch size to 8 and employ216

the AdamW optimizer with a learning rate of 3e-5.217

The models are trained for 100 epochs, and the218

best performing model on the validation set is se-219

lected for final testing. We use the micro F1 score220

as evaluation metrics. We use CRF and WSLTM221

+ CCN + CRF to represent traditional NER mod-222

els, and RoBERTa-large as a pre-trained language223

model. Additionally, COVID-TWITTER-BERT224

serves as our baseline due to its capability in rep-225

resenting COVID-19 tweets. COVID-TWITTER-226

BERT equipped with our entity knowledge aug-227

mentation is our final model.228

4.2 Results229

Table 2 shows the results on the test data across dif-230

ferent models. Pre-trained language models signif-231

icantly outperforms the traditional LSTM models232

with CRF. COVID-TWITTER-BERT outperforms233

RoBERTa because it has the ability to represent the234

COVID-19 tweets with help of the pre-training on235

tweets. Equipped with our proposed entity knowl-236

edge augmentation, the final model achieves the237

best results on the benchmarks.238

4.3 Analysis239

The Scale of Augmented Instances We experi-240

ment with different amounts of augmented samples,241

1000 and 1831 samples (all), and merge them with242

the training data.Table 2 shows that using 1000243

augmented samples, the model can achieves the244

marginal improvement with low variance. How-245

ever, as the size of the augmented instance increase, 246

the performance of models have no further improve- 247

ments. 248

Comparison with Data Augmentations We 249

reimplement LLM-DA method to obtain the same 250

scale of augmented instance for comparison to 251

our method. Table 2 shows that LLM-DA, with 252

an average score of 82.96, underperforms com- 253

pared to our final model. A possible reason is that 254

LLM-DA is designed for few-shot entity recogni- 255

tion, and as the number of training instances in- 256

creases, the additional context appears to introduce 257

noise, adversely affecting performance. However, 258

our method demonstrates marginal improvements 259

across different sample sizes, indicating a more 260

robust approach to handling augmented data. 261

Entity Type We perform a fine-grained analysis 262

of the performance of different entity types across 263

models. The models built on COVID-TWITTER- 264

BERT has significant improvement in recognizing 265

person entities. One reason for this is that person 266

names in tweets are user IDs, which are difficult 267

for models to recognize without pre-training on 268

tweets. The final models achieve improvements in 269

recognizing symptom and vaccine-related entities. 270

5 Conclusion 271

We present a novel LLM-based entity knowl- 272

edge augmentation for named entity recognition in 273

COVID-19 tweets for public health research. LLM- 274

EKA leverages the sophisticated contextual reason- 275

ing capabilities and extensive knowledge base of 276

LLMs to augment entity knowledge and improve 277

recognition performance. Our proposed methods 278

are general and can be decoupled to enhance other 279

domain-specific NER models. The experimental 280

results demonstrate that LLM-EKA is capable of 281

addressing the challenges associated with scarce 282

annotated data and the need for domain-specific 283

expertise in COVID-19 NER tasks. 284
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Limitations285

The proposed LLM-based entity knowledge aug-286

mentation adopt the GPT-3.5-Turbo. So the per-287

formance of the final models are limited to the288

outcomes of the GPT-3.5-Turbo.289

Ethnic Statement290

The instances generated by querying GPT-3.5-291

Turbo is controlled by the prompts. Therefore, we292

foresee no ethical concerns in this work.293
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