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ABSTRACT

Data augmentation is essential when applying machine learning (ML) in small-
data regimes. It generates new samples following the observed data distribution
while increasing their diversity and variability to help researchers and practitioners
improve their models’ robustness and, thus, deploy them in the real world. Nev-
ertheless, its usage in tabular data still needs to be improved, as prior knowledge
about the underlying data mechanism is seldom considered, limiting the fidelity
and diversity of the generated data. Causal data augmentation strategies have been
pointed out as a solution to handle these challenges by relying on conditional in-
dependence encoded in a causal graph. In this context, this paper experimentally
analyzed the acyclic-directed mixed graph (ADMG) causal augmentation method
considering different settings to support researchers and practitioners in under-
standing under which conditions prior knowledge helps generate new data points
and, consequently, enhances the robustness of their models. The results high-
lighted that the studied method (a) is independent of the underlying model mech-
anism, (b) requires a minimal number of observations that may be challenging in
a small-data regime to improve an ML model’s accuracy, (c) propagates outliers
to the augmented set degrading the performance of the model, and (d) is sensitive
to its hyperparameter’s value.

1 INTRODUCTION

Machine learning (ML) models require quality data to be able to discover helpful information, per-
form well on unseen data, and be robust to environmental changes. Although some models can
handle noisy and high-dimensional datasets, their usage in high-stake small-data regimes is usually
challenging. In this case, one can use data augmentation techniques to deal with the lack of training
data to improve models’ performance and limit overfitting by artificially increasing the number of
samples and the diversity of the training set (Van Dyk & Meng, 2001). They have been successfully
used in computer vision (CV) (Zhong et al., 2020; Hendrycks et al., 2021) and natural language pro-
cessing (NLP) (Xie et al., 2020; Hao et al., 2023) tasks, by providing model regularization during
training and consequently, helping reducing overfitting. Nonetheless, these techniques cannot be
easily extended to tabular or time series data (Talavera et al., 2022). Likewise, they usually focus on
increasing samples’ diversity or variability (Wen et al., 2021) and rarely both.

Knowing the underlying causal mechanism may help data augmentation techniques handle these
issues by taking advantage of partial knowledge encoded in a causal graph (CG). Thus, once one
has been built, we can use it to infer the conditional independence relations that a data distribution
should satisfy. As a result, one can combine data from an interventional distribution with augmented
and observed ones (Ilse et al., 2021) to improve both the diversity and variability of a dataset, hop-
ing to improve the robustness of an ML model. Such a strategy can be implemented by following
a causal boosting procedure (Little & Badawy, 2019) or exploring prior knowledge of conditional
independence encoded in a causal graph (Teshima & Sugiyama, 2021). The former generates new
samples by weighting the data coming from intervention distributions. In contrast, the latter gen-
erates new data samples by simultaneously considering all possible resampling paths from the con-
ditional empiric distribution of each variable assuming the existence of an acyclic-directed mixed
graph (ADMG) (Richardson, 2003).
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In this context, this paper experimentally1 assesses the characteristics of the ADMG data augmen-
tation method (Teshima & Sugiyama, 2021) (Section 2) under the fidelity, diversity, and generaliza-
tion (Alaa et al., 2022) perspective in a small-data regime configuration, considering different prob-
lem’s properties, and with the presence of noisy data (Section 3). The goal is to understand under
which conditions this method can help practitioners increase the robustness and deal with overfitting
of their ML models by augmenting their datasets using prior knowledge encoded in a causal graph.
Another objective comprises understanding under which conditions an inadequate parametrization
setting can lead to unexpected results; i.e., performance degradation.

2 ADMG DATA AUGMENTATION

In this section, the ADMG causal data augmentation method (Teshima & Sugiyama, 2021) is pre-
sented. From now on, we refer to this method as CausalDA.

Let us assume we want to train a model f using the loss L on the dataset D = (Dtrain, Dtest)
composed of a training and a testing set with d dimensions. Let us assume a known ADMG causal
graph G linking the d variables ordered according to the topological order induced by the graph G.

Let us use the following notations:

• n = |Dtrain| the number of training data

• Xk the kth data point of the training set Dtrain = {Xi}i∈[1,n]

• Xj
k the value taken by the jth variable of the kth training point, Xk = {X1

k , ..., X
d
k}

• XJ
k with J a set of variables, the value taken by the J variables of the kth training point

• Daug the augmented dataset using Dtrain

• Zi the ith augmented data point from Daug

• a(j) the ancestors of the variable j in the causal graph G

Daug is built as the cartesian product of all the observed variables in the training set:

Daug = {Zi}i∈[1,nd], Zi = {X1
i1
, ..., Xj

ij
, ..., Xd

id
}

with Xij the data point used to copy its value of the jth variable to use for the augmented point Zi.

Each Zi is associated with a weight wi which could be interpreted as a probability of existence
for the augmented point Zi. Indeed, wi measures the probability of the variables values of the
augmented point Zi given variables ancestor values. Probabilities are estimated with Kernels, Kj

denoting the kernel used to estimate the probability of the jth variable given its ancestors.

wi =

d∏
j=1

wj
i =

d∏
j=1

Kj(Z
a(j)
i −X

a(j)
ij

)∑n
k=1 K

j(Z
a(j)
i −X

a(j)
k )

(1)

Finally, a model f is trained on the augmented set using a weighted loss:

Laug(f) =
∑

i∈[1,nd]

wiL(f, Zi) (2)

In practice, the weights are computed recursively through Algorithm 1. In order to reduce memory
and computational cost, the method enables us to choose a probability threshold θ ∈ [0, 1[ to early
stop the computation of a weight (and the associated augmented point) as soon as its current value
is lower than θ.

1The code is available at github.com/audreypoinsot/admg_data_augmentation
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Algorithm 1 CausalDA algorithm
Input: Dtrain = {Xk}k∈[1,n], G, θ, L, {Kj}j∈[1,d] ▷ assuming that the variables in the training
set and kernel functions are ordered according to the topological order of the graph G
Waug ← { 1n}

n

Zaug ← {X1
k}k∈[1,n]

for j ∈ [2, d] do
Znew
aug ← {}

Wnew
aug ← {}

for Zi, wi ∈ Zaug,Waug do
for ij ∈ [1, n] do

wnew
i ← wi ·

Kj(Z
a(j)
i −X

a(j)
ij

)∑n
k=1 Kj(Z

a(j)
i −X

a(j)
k )

Znew
i ← {Zi;X

j
ij
}

if wnew
i > θ then
Znew
aug ← Znew

aug ∪ Znew
i

Wnew
aug ←Wnew

aug ∪ wnew
i

Zaug ← Znew
aug

Waug ←Wnew
aug

Output: f̂ ∈ arg min
f

∑
(wi,Zi)i∈(Waug, Zaug)

wiL(f, Zi), Daug = (Waug, Zaug)

3 EXPERIMENTAL DESIGN

3.1 DATASET

We relied on synthetic data to perform all the experiments. It enabled us to have full control of the
problem represented by the data. Moreover, the simulated data were all sampled from structural
causal models (SCMs), since CausalDA makes the assumption that the data are generated through a
causal model. See (Pearl, 2009) for a detailed definition of a SCM.

We used the Causal Discovery Toolbox (Kalainathan et al., 2020; 2022) to generate each SCM.
The directed acyclic graph (DAG) of each SCM was generated using the Erdös-Rényi model (Erdös
& Rényi, 1959) given a number of nodes and an expected degree. After each new edges’ samples,
we checked if it does not lead to cycle in the DAG. The mechanism functions were generated from
a set of parametric functions (e.g., linear or polynomial) whose parameters were randomly sampled
from some given probability distributions, see Appendix A.4. The source variables (i.e., vertices
without parents in the causal graph) were generated using gaussian mixture models (GMMs) with
four components and a spherical covariance. Finally, additive noise variables were introduced into
the causal mechanisms. They were all i.i.d. and created according to a normal distribution. Once
a SCM was built, the data were generated by sampling the realizations of the source and the noise
variables. Finally, the mechanism functions computed the realizations of the variables following the
topological order of the causal graph.

3.2 EVALUATION METHODOLOGY

We considered different scenarios to assess the characteristics of CausalDA to provide some insights
to practitioners about CausalDA’s response to the various properties their problem might have. The
scenarios, whose defaults parameters are detailed in Appendix A.5, included:

• Non-linear data generation setting: by varying the family functions of the mechanism
included linear, polynomial, sigmoid, Gaussian process, and neural networks.

• Small-data regime: by varying the number of observations from a few samples to a hun-
dred samples (i.e., [30, 40, 60, 80, 100, 300, 500, 700])
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• High-dimension scenario: by varying the number of variables in a dataset from seven to
twenty-five (i.e., [7, 8, 9, 10, 15, 20, 25])

• Highly dependent input variables setting: by varying the expected degree of the causal
graph in [0, 1, 2, 3, 4, 5, 6, 7]

• High aleatoric uncertainty setting: by varying the additive noise amplitude in
[0.1, 0.2, 0.4, 0.6, 0.8, 1]

• Noisy acquisition procedure (i.e., outliers): by varying the fraction of outliers in
[0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15]

• Inadequate parametrization scenario: by varying the probability threshold θ defined
in Section 2. θ ∈ [10−1, 10−2, 10−3, 10−4, 10−5]

For each of these scenarios, we compared the distributions of the original dataset and the augmented
one by measuring the Kullback Leibler divergence, the Wasserstein distance, and the average relative
difference in variance among the variables.

We also benchmarked CausalDA against a baseline. In this case, we split the original dataset (D)
into train and test sets following a 70%, 30% split strategy. Then, we trained two eXtreme Gradient
Boosting (XGBoost) models on the weighted augmented set (Daug := (Zi, wi), i ∈ [1, nd]) and
on the original training set to be our baseline. We measured their mean absolute percentage error
(MAPE) and R2 scores on the test set of the original dataset to predict each variable of the problem.
Each XGBoost model was trained taking into account the data weights for the augmented set and
uniform weights for the original training set) using a threefold cross-validation process to search
from the best parameters set among the n estimators ∈ [10, 50, 200] and reg lambda ∈ [1, 10, 100].

For the outlier scenario, we additionally compare the distributions of the altered augmented data (i.e.,
with outliers) and the normally augmented data (i.e., without outliers) by using the same metrics.

Finding the causal graph based on the observed variables is an NP-hard combinatorial optimization
problem, which limits the scalability of existing approaches to a few dozen variables (Chickering,
1996; Chickering et al., 2004). This is why we opted to start exploring this limitation in this work.
Nevertheless, we will leave for future work the study in which the number of features is higher than
the number of observations.

4 RESULTS

This section describes the results of the scenarios described in Section 3. Appendices A.1 to A.3
show complementary results, where one can see that CausalDA and the baseline have similar per-
formance when the input variables are highly correlated and that CausalDA is independent of the
aleatoric uncertainty of the data and the mechanisms of the underlying generation model.

Inadequate parametrization. CausalDA relies on its probability threshold parameter θ ∈
[0, 1] (Section 2) to prune the augmented data, which affects their distribution. While a probability
threshold close to one accentuates the correlations of the observed data, a threshold close to zero re-
laxes them according to the causal graph, thus, generating more data points, as illustrated in Figs. 1a,
1b and 1d. The fact that the variance decreases with the fraction of newly generated data,Fig. 1c
vs. Fig. 1a, shows that CausalDA does not tend to increase diversity in the dataset but changes
its distribution in dense areas of the observed set. Hence, for an appropriate choice of probability
threshold, we expect CausalDA to improve an ML model predictions on the data support by provid-
ing a refined data distribution. Figure 1e illustrates this finding. The probability threshold parameter
seems to have a very narrow value range to improve the performance of the XGBoost models. Thus,
it must be carefully defined by the practitioners. Indeed, this threshold can be interpreted as the
minimal probability of accepting a new value for a variable given its parents. From Eq. (1), one can
easily see that wi > θ =⇒ wj

i > θ, ∀j ∈ [1, d]. Hence, we encourage practitioners to analyze the
distribution of each variable given its parents in order to make an informed choice on the probability
threshold to use.

Small-data regime. Figure 2 shows that CausalDA requires at least 300 observations to im-
prove XGBoost’s performance. This quantity can be considered “relatively high” given the study

4



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

(a) Fraction of new data (b) Fraction of filtered data

(c) Relative difference in variance with augmentation (d) Wasserstein distance, original vs augmented sets

(e) XGBoost median MAPE score

Figure 1: CausalDA output characteristics depending on the probability threshold

(a) Median MAPE score (b) Median R2 score

Figure 2: XGBoost median performance depending on the size of the dataset

scenario: (a) no outliers, (b) use of the correct causal graph, (c) in-distribution, (d) data generated
from GMM, and (e) neural networks without high discontinuity or divergence. Hence, improving
some ML model predictions with CausalDA in a small-data regime may be challenging. One can
explain it by observing in Eq. (1) that the kernel density estimator overfits when there are only a few
data points. Likewise, because each new data point is generated conditioned on the values taken by
its parents, CausalDA needs several observed points with the same parents’ realizations to generate
new ones. Hence, we recommend considering CausalDA not as a solution to compensate for the
lack of data but rather as a method to refine the estimation of the data distribution via weighted data
augmentation.

High-dimension scenario. Figure 3 shows that increasing dimension favors CausalDA. In-
deed, CausalDA takes advantage of the prior knowledge about the conditional independence en-
coded in the causal graph to improve ML models’ generalization. The literature has shown that such
a problem is a challenge in low-dimensional data (Shah & Peters (2020)) because high-dimensional
settings with a known causal graph and expected degree lead to more conditional independence. Fig-
ure 3 also emphasizes that increasing the dimension increases the probability for the whole dataset
to be filtered. Indeed, the probability threshold can be interpreted as follows: For a given Zi, under
the hypothesis that all the wj

i are equal to c, d
√
θ is the minimum value of c for Zi not to be pruned.

As d
√
θ increases with d, the higher the dimension, the higher the probability of the weights not
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(a) Median XGBoost’s MAPE score (b) Median XGBoost’s R2 score

(c) Fraction of new and filtered data points, continuous line is mean, dashed line is median

Figure 3: CausalDA performances depending on problems dimension

(a) Relative difference in variance adding outliers (b) Median fraction of new data

(c) KL-divergence, corrupted vs normal sets, continuous line is mean, dashed line is median

(d) Madian XGBoost’s MAPE score (e) Median XGBoost’s R2 score

Figure 4: CausalDA performances under different level of outlier noise

to be pruned for a fixed probability threshold. As a result, practitioners also have to consider the
dimension of the problem when choosing an appropriate probability threshold value.

Noisy acquisition procedure. At first sight, we could expect CausalDA to be robust to outliers
thanks to its pruning strategy. Indeed, for a high enough probability threshold, the method can
theoretically filter outliers with a low probability. However, even in the best-case scenario where
all outliers are filtered, they are still taken into account by the Kernel density estimator, making
them corrupted and spreading the effect of the outliers on the augmented set. Hence, the robustness
of CausalDA to outliers stays an open question. From Fig. 4, it can be seen that CausalDA propagates
the outliers to the augmented set degrading XGBoost’s performance.
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Discussion. The results presented in this section enabled us to understand under which condi-
tions CausalDA can help practitioners improve their ML models. First, we observed that CausalDA
performance is independent of the underlying causal generation process. Nevertheless, it depends
on the acquisition procedure because it is sensitive to outliers. Second, based on our experiments,
the method requires at least 300 samples, making it unsuitable for small-data regimes. It can instead
be used to improve the generalization of a ML model by providing a more refined data distribution,
faithful to the observed one without increasing the diversity, using the prior knowledge encoded
in the causal graph. Third, CausalDA highly relies on the probability threshold parameter whose
choice might be complex for practitioners. Indeed, up to now, no procedure has been developed to
ensure a more guided choice for this parameter. We estimate that this last point is the most critical
for practitioners to use this method in real-world use cases. That is why we would like to focus our
future work on automating the choice of the probability threshold. Possible solutions include using
the ML model to be trained to adjust this parameter automatically or employing Monte Carlo Tree
Search (MCTS) (Kocsis & Szepesvári, 2006) when computing the weights instead of the pruning
procedure. Also, let us highlight that the experiments of this paper are not self-sufficient. Thus,
we would like to deepen our evaluation by, first, using conditional independence tests to check
if CausalDA indeed increases the conditional independences encoded in the causal graph, second,
evaluating the method on real data, and third, analyzing the sensitivity to an erroneous causal graph.
Indeed, building a causal graph might be challenging and, as far as we know, there is no general
procedure to validate its truthful.

5 CONCLUSION AND FURTHER WORKS

Data scarcity is a significant challenge when applying ML in high-stake domains such as healthcare
and finance. Over the last few years, various approaches have been developed to enable researchers
and practitioners to increase the size of their datasets artificially and, consequently, the robustness
and generalization of their ML models. Causal data augmentation strategies aim to handle these
endeavors by relying on conditional independence encoded in a causal graph.

This paper experimentally analyzed the acyclic-directed mixed graph data augmentation
method (Teshima & Sugiyama, 2021) considering several scenarios. The goal was to help re-
searchers and practitioners understand under which conditions their prior knowledge help in generat-
ing new data that enhance the performance of their models, as well as the influence of the parameters
of the data augmentation strategy underneath the presence of outliers, error measures (i.e., aleatoric
uncertainty), and the minimal number of samples of the observed data. Experimental results showed
that the sample size is essential when employing the method. Likewise, it propagates the outliers
when presented in the data. Furthermore, its hyperparameters must be carefully defined for each
dataset. In future work, we plan first to carry out further experiments using, notably, conditional
independence tests and real data and, secondly, to automatize the hyperparameters optimization
process.
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P. Erdös and A. Rényi. On random graphs i. Publicationes Mathematicae Debrecen, 6:290–297, 1959.

7



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Xiaoshuai Hao, Yi Zhu, Srikar Appalaraju, Aston Zhang, Wanqian Zhang, Bo Li, and Mu Li. MixGen: A new
multi-modal data augmentation. In IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
379–389, 2023.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of out-of-
distribution generalization. In IEEE/CVF International Conference on Computer Vision, pp. 8340–8349,
2021.
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A APPENDIX

A.1 NON-LINEAR DATA GENERATION SCENARIO – RESULTS

As CausalDA only computes the densities, see Eq. (1), the type of mechanisms linking the variables should
not affect the performances of the method, which is illustrated by Fig. 5. Indeed, what matters the most is
whether a variable is continuous or discrete because it will affect the choice of the Kernel to use. Moreover,
each practitioner can decide to choose a different Kernel based on the distribution of the variables given their
parents. A common choice is to use a Gaussian Kernel with a Silverman bandwidth for continuous variables
and the identity Kernel for the discrete ones.

Hence, CausalDA can be used in non-linear settings without special care.
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(a) Average weights of the augmented dataset (b) Relative difference in variance with augmentation

(c) KL-divergence, augmented vs original sets (d) Median XGBoost’s R2 score

Figure 5: CausalDA performance under different underlying mechanisms

A.2 HIGHLY DEPENDENT INPUT VARIABLES SCENARIO – RESULTS

From Fig. 6, it can be observed that the more dependent the input variables, the closer to the baseline CausalDA.
Looking at the equations from Section 2, this is logical. Indeed, increasing the causal graph density implies
that, on average, the number of parents also increases. As a result, the densities are computed on higher
dimension supports, making them much smaller and more diluted, which does not encourage the generation of
new samples.

In other words, as CausalDA aims to use the conditional independencie induced by the causal graph; if the
number of edges increases, the number of conditional independence decreases, making thus the method less
useful because it has less prior knowledge to use.

(a) Relative difference in variance with augmentation
(b) Wasserstein distance of the augmented vs. original
sets

(c) Median XGBoost’s R2 score

Figure 6: CausalDA performance under different levels of connectivity in the CG

A.3 ALEATORIC UNCERTAINTY – RESULTS

Based on the results from Fig. 7, it can be asserted that the amplitude of the noise introduced in the SCM
generating the data does not have a significant influence on the results of CausalDA. This makes sense. In-
deed, varying the amplitude of the SCMs’ noise will only have an effect of scale on the density distributions
which could easily be compensated by the bandwidth of the Gaussian kernels automatically optimized with the
Silverman formula.
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(a) KL-divergence, augmented vs original sets (b) Median XGBoost’s R2 score

(c) Mean relative difference in variance with augmentation

Figure 7: CausalDA performance under different level of aleatoric uncertainty

A.4 CAUSAL DISCOVERY TOOLBOX – AcyclicGraphGenerator MODULE DESCRIPTION

Causal Discovery Toolbox (Kalainathan et al., 2020; 2022) is a Python package for causal inference. It mainly
focuses on causal discovery in the observational setting. However, this section is dedicated to the description
of the AcyclicGraphGenerator module we used for our experiments.

The AcyclicGraphGenerator module is able to randomly generate a SCM associated with a dataset. The gener-
ator provides the user the ability to choose which mechanism to be used in the data generation process as well
as the type of noise contribution (additive and/or multiplicative).

Currently, the implemented mechanisms are:

• Linear: y = XW +×E

– W ∼ U [0, 1]D

• Polynomial: y =
∑d

i=0 X
iWi +×E

– d the degree
– Wi ∼ U [0, 1]D ∀i

• Gaussian Process: y =
∑D

i=0 si +×E with and

– D the number of causes
– si ∼ N (0, cov(Xi)) ∀i

• Sigmoid: y =
∑D

i=1(1 + a) · b·(Xi+c)
1+|b·(Xi+c)| +×E

– D the number of causes
– a ∼ Exp(4)

– b ∼ b̃ · U [−2,−0.5] + (1− b̃) · U [0.5, 2], b̃ ∼ Ber(0.5)

– c ∼ U [−2, 2]

• Randomly initialized Neural network: y = σ((X, E)Win)Wout

– σ the hyperbolic-tangent activation function
– Win and Wout randomly initialized with the Glorot uniform

with +× denoting either addition or multiplication, X the vector of causes of dimension D, and E the noise
variable accounting for all unobserved variables. As mentioned in Section 3, E ∼ N (0, 1) in our experiments.

To generate a random SCM associated with a dataset, one needs to specify:

• the functions family of the mechanisms

• the type of noise to use in the generative process (either “uniform” for a U [−2, 2] or “gaussian” for a
N (0, 1) )

• the proportion of noise in the mechanism
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• the number of observations to generate

• the number of nodes/variables in the structural causal model

• the type of DAG to generate (either ’default’ to be sampled from the default procedure or “erdos” to
be sampled from the Erdös-Rényi model (Erdös & Rényi, 1959) augmented with a conditioned on
the new sampled edges to check if it does not lead to a cycle)

– if “default“: a maximum number of parents per node has to be specified
– if “erdos”: an expected degree for the DAG has to be specified

Then, each SCM is generated according to the following procedures:

1. The DAG is generated

2. The mechanism functions are generated

3. The source variables (i.e., vertices without a parent in the causal graph) are generated using GMMs
with four components and with a spherical covariance.

4. Noise variables are introduced into the causal mechanisms. They are all i.i.d.

Once a SCM is built, the data are generated by sampling the realizations of the source and the noise variables.
Next, the mechanism functions compute the realizations of the variables following the topological order of
the DAG.

A.5 EXPERIMENTS’ DEFAULT PARAMETERS

Table 1: Parameters’ values when not under study

Parameter Value

Network architecture 2-layers fully-connected neural network with hyperbolic tangent activa-
tion function and 20 neurons initialized through the Glorot uniform

Number of variables 10
Causal graph expected degree 3

Additive noise amplitude 0.4
Probability threshold 10−2

Fraction of outliers 0
Number of repetitions 20

Kernels function Gaussian Kernels with Silverman bandwidth
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