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ABSTRACT

Stereo matching aims to estimate the disparity between matching pixels in a
stereo image pair, which is important to robotics, autonomous driving, and other
computer vision tasks. Despite the development of numerous impressive methods
in recent years, determining the most suitable architecture for practical application
remains challenging. To address this gap, our paper introduces a comprehensive
benchmark focusing on practical applicability rather than solely on individual
models for optimized performance. Specifically, we develop a flexible and efficient
stereo matching codebase, called OpenStereo. OpenStereo includes training and
inference codes of more than 10 network models, making it, to our knowledge,
the most complete stereo matching toolbox available. Based on OpenStereo, we
conducted experiments and have achieved or surpassed the performance metrics
reported in the original paper. Additionally, we conduct an exhaustive analysis and
deconstruction of recent developments in stereo matching through comprehensive
ablative experiments. These investigations inspired the creation of StereoBase, a
strong baseline model. Our StereoBase ranks 1st on SceneFlow, KITTI 2015, 2012
(Reflective) among published methods and performs best across all metrics. In
addition, StereoBase has strong cross-dataset generalization.

1 INTRODUCTION

Stereo matching is a fundamental topic in the field of computer vision, aiming to compute the disparity
between a pair of rectified stereo images. It plays a crucial role in numerous applications such as
robotics Zhang et al. (2015), autonomous driving Mur-Artal & Tardós (2017); Shamsafar et al. (2022),
and augmented reality Yang et al. (2020), as it enables depth perception and 3D reconstruction of the
observed scene.

Traditional stereo-matching algorithms typically match corresponding image regions between the left
and right views based on their similarity measures. Several techniques have been proposed in the
literature for stereo matching, including methods based on gray-level information Birchfield & Tomasi
(1999); Li & Wu (2013); Yang et al. (2010), region-based approaches Zhang & Kosecka (2005);
Pinggera et al. (2015), and energy optimization methods Scharstein & Szeliski (2002); Hirschmuller
(2007). With the support of large synthetic datasets Mayer et al. (2016); Scharstein et al. (2014);
Schops et al. (2017); Geiger et al. (2012); Menze & Geiger (2015); Yang et al. (2019b), CNN-based
stereo matching methods Kendall et al. (2017); Chang & Chen (2018); Guo et al. (2019); Xu et al.
(2023) has achieved impressive results. As shown in Figure 1, based on the network pipeline of stereo
matching, CNN-based stereo matching methods can be roughly grouped into two categories Wang
et al. (2021), including the encoder-decoder network with 2D convolution (ED-Conv2D) Mayer et al.
(2016); Poggi et al. (2019); Yang et al. (2019a); Saikia et al. (2019); Wang et al. (2021); Xu & Zhang
(2020); Tosi et al. (2021); Li et al. (2021); Lipson et al. (2021); Li et al. (2022); Weinzaepfel et al.
(2023); Li et al. (2024) and the cost volume matching with 3D convolution (CVM-Conv3D) Kendall
et al. (2017); Chang & Chen (2018); Zhang et al. (2019); Guo et al. (2019); Zhang et al. (2020a);
Duggal et al. (2019); Zhang et al. (2020b); Gu et al. (2020); Badki et al. (2020); Cheng et al. (2020);
Bangunharcana et al. (2021); Shen et al. (2021); Xu et al. (2022; 2023); Chen et al. (2024); Xu et al.
(2024).

However, we find that different studies often employ various data augmentation strategies, learning
rates, learning rate optimization methods, and backbone architectures. This inconsistency makes it
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2016 2021 2022

  Dispnet
(Mayer et al.)

   GCNet
(Kendall et al.)

  PSMNet
(Chang et al.)
StereoNet
(Khamis et al.)

  AANet
(Xu et al.)
 

LEAStereo
(Cheng et al.)

SMD-Nets
(Tosi et al.)

STTR
(Li et al.)
RAFTStereo
(Lipson et al.)

      CoEx
(Bangunharcana et al.)

         CFNet
    (shen et al.)

CREStereo
(Li et al.)

CVM-Conv3D

ED-Conv2D

MobileStereo-3D
(Shamsafar et al.)

MobileStereo-2D
(Shamsafar et al.)

2017 2018 2019 2020

  FADNet
(Wang et al.)

CascadeStereo
    (Gu et al.)
 Bi3D
(Badki et al.)

  AcfNet
(Zhang et al.)

2023 2024
Selective-
Stereo
(Wang et al.)
MoCha-Stereo
(Chen et al.)
ADL-Stereo
(Xu et al.)

IINet
(Li et al.)
Any-Stereo
(Liang et al.)
MRF-Stereo
(Guan et al.)

  AnyNet
(Wang et al.)

  GSMNet
(Poggi et al.)
  HSMNet
(Yang1 et al.)

AutoDispNet
(Tonmoy et al.)

GANet
(Zhang et al.)
GwcNet
(Guo et al.)
DSMNet
(Zhang et al.)
DeepPruner
(Duggal et al.)

IGEV
(Xu et al.)

CroCo v2
(Weinzae
pfel et al.)

Lac-GwcNet
(Liu et al.)
ACVNet
(Xu et al.)

Figure 1: Timeline of Stereo Matching Models. The top part shows ED-conv2D-based models,
while the bottom part shows CVM-conv3D-based models. Each model is labeled with its name and
authors.
difficult to evaluate and compare various methods’ performance accurately. This inconsistency in
experimental setups and methodologies makes it difficult to derive conclusive insights and hampers
the objective assessment of advancements in stereo matching. Without a standardized benchmark,
researchers struggle to identify the true impact of individual components and innovations. There is a
lack of clear conclusions and exploration regarding data augmentation strategies, backbone selection,
and cost construction methods in stereo matching.

Moreover, not all datasets are accompanied by official evaluation tools. For example, the Driving-
Stereo Yang et al. (2019b) dataset does not provide specific evaluation scripts, making comparative
assessments challenging. The SceneFlow Mayer et al. (2016) dataset, with its finalpass and cleanpass
data varieties, complicates fair model comparisons. Generalization experiments for stereo matching
algorithms typically train on the SceneFlow dataset and evaluate on KITTI2012 Geiger et al. (2012),
KITTI2015 Menze & Geiger (2015), ETH3D Schops et al. (2017), and Middlebury Scharstein
et al. (2014). However, due to the absence of a standard protocol for generalization experiments,
different papers may yield inconsistent results for the same method. For instance, discussions on
the generalization performance of IGEV Xu et al. (2023) across works Xu et al. (2023); Wang et al.
(2024b); Guan et al. (2024) exemplify this issue.

Hence, there’s a pressing need for a comprehensive benchmark study within the stereo-matching
community to enhance practicality and ensure consistent comparisons. To achieve this objective,
we introduce a versatile stereo-matching codebase: OpenStereo. To promote scalability and adapt-
ability, OpenStereo offers the following features: (1) Modulal design, researchers can define a
new model without the need to alter the model code itself by simply modifying a YAML con-
figuration file. (2)Various frameworks, including Concatenation-based Chang & Chen (2018);
Zhang et al. (2019), Correlation-based Xu & Zhang (2020); Wang et al. (2020; 2021); Bangun-
harcana et al. (2021), Interlaced-based Shamsafar et al. (2022), Group-wise-correlation-based Xu
et al. (2023), Combine-based methods Guo et al. (2019), and Difference-based Khamis et al. (2018).
(3)Various datasets, including SceneFlow Mayer et al. (2016), KITTI2012 Geiger et al. (2012),
KITTI2015 Menze & Geiger (2015), Middlebury Scharstein et al. (2014), ETH3D Schops et al.
(2017) and DrivingStereo Yang et al. (2019b) dataset. (4) State-of-the-art methods, including PSM-
Net Chang & Chen (2018), GwcNet Guo et al. (2019), AANet Xu & Zhang (2020), FADNet++ Wang
et al. (2021), CFNet Shen et al. (2021), STTR Li et al. (2021), CoEx Bangunharcana et al. (2021),
CascadeStereo Gu et al. (2020), MobileStereoNet Shamsafar et al. (2022) and IGEV Xu et al. (2023).

Leveraging OpenStereo, we rigorously reassess various officially stated conclusions by re-
implementing the ablation studies, including data augmentation, backbone architectures, cost con-
struction, disparity regression, and refinement processes. Based on the insights gleaned from these
ablation experiments, we introduce StereoBase, a model that sets a new benchmark, surpassing
recently proposed methods in terms of performance. StereoBase is powerful and serves as an empiri-
cally state-of-the-art (SOTA) baseline model for stereo matching, demonstrating exceptional efficacy
and resilience across diverse testing scenarios. Our contributions are summarized as follows:

• We introduce OpenStereo, a unified and extensible platform, which enables researchers to conduct
comprehensive stereo matching studies.

• We conduct a profound revisitation and thorough deconstruction of recent stereo-matching
methodologies.
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• We introduce StereoBase, which sets a new benchmark with EPE (End-Point Error) of 0.34
on SceneFlow Mayer et al. (2016) and ranks 1st on KITTI2015 Menze & Geiger (2015) and
2012(Reflective)Geiger et al. (2012) leaderboards among published methods.

2 RELATED WORK

2.1 STEREO MATCHING

With the rapid development of CNNs, significant progress has been made in stereo matching. Based
on the network pipeline of stereo matching, stereo matching methods can be roughly grouped into
two categories Wang et al. (2021), including the encoder-decoder network with 2D convolution
(ED-Conv2D) and the cost volume matching with 3D convolution (CVM-Conv3D).

Stereo Matching with CVM-Conv3D The CVM-Conv3D methods are proposed to improve the
performance of depth estimation Kendall et al. (2017); Chang & Chen (2018); Yang et al. (2018);
Wang et al. (2019); Zhang et al. (2019); Guo et al. (2019); Zhang et al. (2020a); Duggal et al. (2019);
Zhang et al. (2020b); Gu et al. (2020); Badki et al. (2020); Cheng et al. (2020); Bangunharcana et al.
(2021); Shen et al. (2021); Xu et al. (2022; 2023; 2024). These methods learn disparities from a 4D
cost volume, mainly constructed by concatenating left feature maps with their corresponding right
counterparts across each disparity level Chang & Chen (2018). GCNet Kendall et al. (2017) firstly
introduced a novel approach that combines 3D encoder-decoder architecture with a 2D convolutional
network to obtain a dense feature representation, which is used to regularize a 4D concatenation
volume. Following GCNet Kendall et al. (2017), PSMNet Chang & Chen (2018) proposes an approach
for regularizing the concatenation volume by leveraging a stacked hourglass 3D convolutional neural
network in tandem with intermediate supervision. To enhance the expressiveness of the cost volume
and ultimately improve performance in ambiguous regions, GwcNet Zhang et al. (2019) proposes the
group-wise correlation volume and ACVNet Xu et al. (2022) proposes the attention concatenation
volume. CoEx Bangunharcana et al. (2021) proposes a novel approach called Guided Cost volume
Excitation (GCE), which leverages image guidance to construct a simple channel excitation of the cost
volume. IGEV-Stereo Xu et al. (2023) leverages an iterative geometry encoding volume to capture
local and non-local geometry information, outperforming existing methods on KITTI benchmarks
and achieving cross-dataset generalization and high inference efficiency.

However, these CVM-Conv3D methods still suffer from low time efficiency and high memory
requirements, which are far from real-time inference even on server GPUs. Therefore, it is essential
to address the accuracy and efficiency problems for real-world applications.

Stereo Matching with ED-Conv2D The ED-Conv2D methods Mayer et al. (2016); Poggi et al.
(2019); Yang et al. (2019a); Saikia et al. (2019); Wang et al. (2020; 2021); Xu & Zhang (2020); Tosi
et al. (2021); Li et al. (2021); Lipson et al. (2021); Shamsafar et al. (2022); Li et al. (2022); Weinza-
epfel et al. (2023); Li et al. (2024); Guo et al. (2024), which adopt networks with 2D convolutions to
predict disparity, has been driven by the need for improved accuracy, computational efficiency, and
real-time performance. One of the early deep learning-based stereo matching methods, MC-CNN
(Matching Cost CNN) Zbontar et al. (2016), was proposed to learn a matching cost function for
improving performance in the cost aggregation and optimization stages. Subsequently, Mayer et
al Mayer et al. (2016) present end-to-end networks for the estimation of disparity, called DispNet,
which is pure 2D CNN architectures. However, the model still faces challenges in capturing the
matching features, resulting in poor estimation results. To overcome this challenge, the correlation
layer is introduced in the end-to-end architecture Mayer et al. (2016); Dosovitskiy et al. (2015);
Ilg et al. (2017; 2018) to better capture the relationship between the left and right images. By
incorporating this layer, the accuracy of the model is significantly improved. Furthermore, FAD-
Net++ Wang et al. (2021) proposes an innovative approach to efficient disparity refinement using
residual learning He et al. (2016) in a coarse-to-fine manner. AutoDispNet Saikia et al. (2019) applied
neural architecture search to automatically design stereo-matching network structures. More recently,
Croco-Stereo Weinzaepfel et al. (2023) shows that large-scale pre-training can be successful for stereo
matching through well-adapted pretext tasks. This method can achieve state-of-the-art performance
without using task-specific designs, like correlation volume or iterative estimation.
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Figure 2: The design principles of proposed codebase OpenStereo.

These works represent the significant progress that has been made in the field of stereo matching,
highlighting the diverse range of methods and architectures that have been proposed to address the
challenges associated with this problem.

2.2 CODEBASE

Numerous infrastructure code platforms have been developed in the deep learning research com-
munity, with the aim of facilitating research in specific fields. One such platform is OpenGait Fan
et al. (2023), a gait recognition library. OpenGait thoroughly examines the latest advancements in
gait recognition, providing novel perspectives for subsequent research in this domain. In object
detection, MMDetection Chen et al. (2019) and Detectron2 Wu et al. (2019) have emerged as an all-
encompassing resource for several favored detection techniques. In pose estimation, OpenPose Cao
et al. (2019) has developed the first open-source system that operates in real-time for detecting the
2D pose of multiple individuals, including the detection of key points for the body, feet, hands, and
face. In stereo matching, it is noteworthy that not all datasets are accompanied by official evaluation
tools. For instance, the DrivingStereo Yang et al. (2019b) dataset does not have official evaluation
codes, and there is a lack of unified tools for assessing the model generalization across different
domains. This absence of standardized evaluation resources contributes to the observed discrepancies
in cross-domain evaluations of the same model as reported in different studies. Therefore, it is time
to build a benchmark for stereo matching.

3 OPENSTEREO

In recent years, there has been a proliferation of new frameworks and evaluation datasets for stereo-
matching. However, the lack of a unified and fair evaluation platform in this field is a significant
issue that cannot be ignored. To address this challenge and promote academic research and practical
application we have developed OpenStereo, a pyTorch-based Paszke et al. (2019) toolbox that
provides a reliable and standardized evaluation framework for stereo matching.

3.1 DESIGN PRINCIPLES OF OPENSTEREO

As shown in Figure 2, our developed OpenStereo covers the following highlight features.

Modular Design. OpenStereo adopts a modular design, greatly facilitating researchers in exploring
new networks. By simply modifying a YAML configuration file, researchers can define a new model
without the need to alter the model code itself. This design significantly lowers the barriers for
researchers to extend or integrate additional algorithms and modules within the framework. This
approach empowers researchers to freely combine and customize their algorithms with minimal code
composition, enhancing the framework’s usability and adaptability.

Compatibility with various frameworks. Currently, more and more stereo matching methods have
emerged, such as Concatenation-based Kendall et al. (2017); Chang & Chen (2018); Zhang et al.
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Figure 3: Quantitative evaluation on the SceneFlow Mayer et al. (2016) and KITTI2015 Menze &
Geiger (2015) leadboard. For each model, the specific category on the SceneFlow used is consistent
with the original paper. Underline refers to evaluation in the non-occluded regions only STTR Li
et al. (2021).

(2019); Cheng et al. (2020), Correlation-based Xu & Zhang (2020); Wang et al. (2020; 2021); Ban-
gunharcana et al. (2021), Group-wise-correlation-based Xu et al. (2023), Difference-based Khamis
et al. (2018), Interlaced-based Shamsafar et al. (2022), and Combine-based methods Guo et al. (2019);
Shen et al. (2021). As mentioned above, many open-source methods have a narrow focus on their
specific models, making it challenging to extend to multiple frameworks. However, OpenStereo
provides a solution to this problem by supporting all of the aforementioned frameworks. With
OpenStereo, researchers and practitioners can easily compare and evaluate different stereo-matching
models under a standardized evaluation protocol.

Support for various evaluation datasets. OpenStereo is a comprehensive tool that not only supports
synthetic stereo datasets such as SceneFlow Mayer et al. (2016), but also five real-world datasets:
KITTI2012 Geiger et al. (2012), KITTI2015 Menze & Geiger (2015), ETH3D Schops et al. (2017),
Middlebury Scharstein et al. (2014), and DrivingStereo Yang et al. (2019b) (More details in the
Supplementary Material). We introduce a suite of bespoke functions, meticulously crafted for each
dataset, encompassing everything from initial data preprocessing to the final stages of evaluation.
The evaluation module includes the submission of the results to KITTI2012 Geiger et al. (2012) and
KITTI2015 Menze & Geiger (2015) leadboards.

Support for state-of-the-arts. In our work, we have successfully replicated various state-of-the-art
stereo matching methods, including PSMNet Chang & Chen (2018), GwcNet Guo et al. (2019),
AANet Xu & Zhang (2020), FADNet++ Wang et al. (2021), CFNet Shen et al. (2021), STTR Li et al.
(2021), CoEx Bangunharcana et al. (2021), CascadeStereo Gu et al. (2020), MobileStereoNet Sham-
safar et al. (2022) and IGEV Xu et al. (2023). As shown in Figure 3, the performance metrics we
achieved, in most cases, surpass those reported in their original publications.

4 REVISIT DEEP STEREO MATCHING

4.1 EVALUATION OF PRIOR WORK

For benchmarking, it is critical to ensure that the results are reliable and trustworthy. To achieve this,
we conducted our experiments on SceneFlow Mayer et al. (2016) and KITTI2015 Menze & Geiger
(2015) datasets. As shown in Figure 3, the reproduced performances of OpenStereo are better than
the results reported by the original papers. (More details in the Supplementary Material). Regarding
the KITTI2015 dataset, submission constraints led us to limit our leaderboard contributions to
reproductions of the widely recognized PSMNet Chang & Chen (2018) and the latest state-of-the-art
IGEV Xu et al. (2023). OpenStereo is designed to offer the research community in stereo matching a
standardized, comprehensive platform for method assessment. This facility enables meaningful and
comparative analyses across various models.

4.2 NECESSITY OF COMPREHENSIVE ABLATION STUDY

In the evolving landscape of deep stereomatching, comprehensive ablation studies play a pivotal
role in deciphering the effectiveness of different components and strategies. A thorough ablation
study goes beyond mere performance metrics; it uncovers the underlying mechanics of different
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Table 1: Ablation study on SceneFlow Mayer et al. (2016) – Data Augmentation and
LR_scheduler Selection. KITTI2015 Menze & Geiger (2015) training set, consisting of 200 images,
is only employed to evaluate the generalizability of models. RC stands for RandomCrop Krizhevsky
et al. (2012). HFlip Krizhevsky et al. (2012) denotes both images of a stereo and disparity are
horizontally flipped. HSFlip Krizhevsky et al. (2012) horizontally flips both images in the stereo
pair and then swaps them. VFlip Krizhevsky et al. (2012) involves vertically flipping both images
in the stereo pair along with the disparity, inverting their top-bottom orientation. CES represents
ColorAug Krizhevsky et al. (2012), Erase Zhong et al. (2020), and Scale Simonyan (2014). Settings
used in our final model are underlined.

Data Augmentation LR_scheduler SceneFlow KITTI15
EPE(px) EPE(px) D1_all

RC(320×736) MultiStepLR 0.6839 2.91 15.73
RC(320×736) OneCycleLR 0.6155 2.34 11.86

RC(256×512) OneCycleLR 0.6470 3.02 14.95
RC(320×736) OneCycleLR 0.6155 2.34 11.86
RC(320×736)+Scale OneCycleLR 0.6867 2.88 12.91
RC(320×736)+HFlip OneCycleLR 0.6612 2.22 12.27
RC(320×736)+ColorAug OneCycleLR 0.6529 1.68 7.89
RC(320×736)+VFlip OneCycleLR 0.6367 2.09 10.11
RC(320×736)+Erase OneCycleLR 0.6167 2.68 12.64
RC(320×736)+HSFlip OneCycleLR 0.6076 2.74 13.99
RC(320×736)+CE OneCycleLR 0.6486 1.65 8.15
RC(320×736)+CES+HSFlip OneCycleLR 0.7165 1.71 8.40
RC(320×736)+CES OneCycleLR 0.7240 1.56 7.64

Table 2: Ablation study on SceneFlow Mayer et al. (2016) – Backbones Selection. Flops and
Params represent the computational complexity and parameters within the whole model, respectively.
FLOPs are calculated at a resolution of 544× 960.

Backbone Type Pretrain Flops Params EPE

MobilenetV2 100 Sandler et al. (2018) CNN 70.58G 2.78M 0.7737
MobilenetV2 100 Sandler et al. (2018) CNN ✓ 70.58G 2.78M 0.6155
MobilenetV2 100 Sandler et al. (2018) CNN ✓ 70.58G 2.78M 0.6155
MobilenetV2 120d Sandler et al. (2018) CNN ✓ 85.93G 5.21M 0.5573
EfficientNetV2 Tan & Le (2021) CNN ✓ 157.52G 24.92M 0.5207
RepViT Wang et al. (2024a) Trans. ✓ 101.35G 5.64M 0.5858
MPViT Lee et al. (2022) CNN&Trans. ✓ 283.35G 13.33M 0.5113

algorithms, revealing their strengths and weaknesses in various scenarios. For instance, different
data augmentation techniques may yield contrasting effects on the model’s ability to match stereo
images accurately. Similarly, the impact of various backbones, cost volume configurations, and
disparity regression methods on the overall performance can be profound. Understanding the specific
contributions of each component is crucial for building more efficient and effective stereo-matching
systems.

4.3 DENOISING STEREO MATCHING

With the support of OpenStereo, a comprehensive reevaluation of various stereo-matching methods is
conducted, including data augmentation, feature extraction, cost construction, disparity prediction,
and refinement. Our ablation studies have revealed some new insights.

4.3.1 LR_SCHEDULER AND DATA AUGMENTATION

As shown in Table 1, MultiStepLR yields an EPE of 0.6839, while OneCycleLR achieves a lower
EPE of 0.6155. This substantial difference underscores the crucial role of selecting an appropriate
learning rate scheduler for stereo matching. The superior performance of OneCycleLR indicates its
potential to improve model accuracy and robustness, making it a preferable choice over MultiStepLR
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Table 3: Ablation study on SceneFlow Mayer et al. (2016) –Cost Construction. Gwc represents
Group-wise correlation volume Guo et al. (2019). Cat stands for Concatenation volume Chang &
Chen (2018). G8-C16, G16-C24, and G32-C48 combine Gwc volume and Cat volume Guo et al.
(2019). Channel and Dims represent the channel and dimensions of the cost volume, respectively.
FLOPs are calculated at a resolution of 544× 960.

Cost Volume Dims Channel Flops Params EPE

Difference 3D - 38.68G 2.40M 1.02

Correlation 3D - 54.99G 4.01M 0.81

Interlaced8 4D 8 288.52G 2.83M 0.70

Gwc8 4D 8 70.58G 2.78M 0.72
Gwc16 4D 16 166.92G 3.89M 0.66
Gwc24 4D 24 327.13G 5.75M 0.63
Gwc32 4D 32 551.23G 8.34M 0.62
Gwc48 4D 48 1191.07G 15.73M 0.60
Cat24 4D 24 328.97G 5.78M 0.65
Cat48 4D 48 1192.93G 15.76M 0.61
Cat64 4D 64 2088.31G 26.09M 0.60
G8-C16 4D 24 328.96G 5.78M 0.62
G16-C24 4D 40 841.05G 11.69M 0.60
G32-C48 4D 80 3239.17G 39.37M 0.60

for training stereo-matching models. Although five data augmentation techniques—random crop,
color augmentation, eraser transform, flip, and spatial transform—are commonly used in stereo
matching Lipson et al. (2021); Xu et al. (2023), their empirical efficacy specifically for stereo matching
has not been thoroughly explored. This study investigated these data augmentation strategies to
address this gap. Most data augmentation strategies, except for the combined use of HSFlip and
random crop, lead to a decline in the model’s EPE metric of SceneFlow. This is because stereo
matching involves pixel-level matching, and these data augmentations (color augmentation and
spatial transform) can affect the alignment of pixels. The combination of ColorAug, Erase, and Scale
(CES) shows the best generalization performance on KITTI2015, with the lowest EPE of 1.56 and
D1_all of 7.64, although it increases the EPE on SceneFlow to 0.7240. These findings underscore
the importance of selecting appropriate data augmentation methods to enhance model accuracy and
robustness.

4.3.2 FEATURE EXTRACTION

As shown in Table 2, pretraining the backbone is crucial for stereo matching as it enhances the model’s
ability to extract robust and informative features. Furthermore, the choice of backbone significantly
influences the model’s performance and computational efficiency. MobilenetV2 Sandler et al. (2018)
and EfficientNetV2 Tan & Le (2021) are lightweight CNNs that are particularly efficient in extracting
local features, which are crucial for stereo matching. Their designs allow them to perform well
with relatively low computational complexity. RepViT Wang et al. (2024a) is a Transformer-based
architecture, which excels in capturing long-range dependencies and global context. While RepViT
captures global features well, it might struggle with the fine-grained, pixel-level accuracy required
for precise stereo matching. MPViT Lee et al. (2022) combines the strengths of both CNNs and
Transformers. The CNN components effectively capture local features, while the Transformer
components excel in modeling global context. This hybrid approach allows MPViT to leverage the
advantages of both architectures, resulting in the lowest EPE. In summary, MobilenetV2 Sandler
et al. (2018) offers a good balance for applications with limited computational resources, while
more complex architectures like EfficientNetV2 and MPViT provide superior accuracy at the cost of
higher computational requirements. To the best of our knowledge, our work is the first to explore the
transformer-based feature extraction and the combination of CNN and transformer feature extraction
for stereo matching.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Ablation study on SceneFlow Mayer et al. (2016) – Disparity Regression and Refinement.
ArgMin refers to Differentiable ArMin. Context stands for ContextUpasmple Lipson et al. (2021);
Xu et al. (2023).

Regression Refinement Flops Params EPE

ArgMin None 58.47G 2.69M 0.76
ArgMin RGBRefine Xu & Zhang (2020) 117.85G 2.81M 0.72
ArgMin Context 70.58G 2.78M 0.71
ArgMin Context+RGBRefine Xu & Zhang (2020) 129.95G 2.89M 0.69
ArgMin Context+DRNetRefine Xu & Zhang (2020) 129.88G 2.89M 0.69
ArgMin ConvGRU Lipson et al. (2021); Xu et al. (2023) 3023.88G 12.51M 0.46

4.3.3 COST CONSTRUCTION

In Table 3, an ablation study on various cost volume strategies for stereo matching is presented. For
these experiments, one-quarter of stereo image features are used to construct the cost volume. The
study begins with simpler 3D cost volume methods: Difference Khamis et al. (2018) and Correla-
tion Wang et al. (2021), yielding higher EPE of 1.02 and 0.81, respectively, at lower computational
costs. This suggests that while efficient, these methods may lack the nuanced disparity capture
necessary for complex scenes. The Interlaced8 model, introduced by MobileStereoNet Shamsafar
et al. (2022), achieves the same EPE comparable to the Gwc8 model. However, its computational
expense is substantially higher, with a flop count of 288.52G, significantly larger than that of the
Gwc8 model. The group-wise correlation and concatenation models demonstrate a clear trend: as
the channel depth increases, the EPE improves, indicating improved disparity estimations through
richer feature capture. The combined volume (G8-C16) offers a more optimal balance between
computational load and disparity estimation accuracy, which achieves an EPE of 0.62. G16-C24
and G32-C48 do not significantly improve EPE, despite a dramatic increase in computational load,
especially for G32-C48, which demands 3239.17Gflops and has 39.37M parameters. These results
highlight the delicate balance between accuracy and computational efficiency in designing cost vol-
umes for disparity estimation. While deeper and combined volumes reduce the EPE, the gains might
be marginal compared to the significant increase in computational requirements, raising questions
about the practicality of these approaches in resource-constrained environments.

4.3.4 DISPARITY REGRESSION AND REFINEMENT

The Differentiable ArgMin Kendall et al. (2017); Chang & Chen (2018); Guo et al. (2019); Shen et al.
(2021); Xu et al. (2022); Gu et al. (2020); Zhang et al. (2019); Shamsafar et al. (2022); Wang et al.
(2021) introduced by GCNet Kendall et al. (2017), calculates initial disparity by converting matching
costs into probabilities via softmax and then computing a weighted sum of these probabilities
across all disparity levels. As shown in Table 4, various strategies show differing impacts on model
performance in this ablation study on disparity refinement for the SceneFlow test datasets. Without
refinement, the model has an EPE of 0.76. RGBRefine and Context methods slightly improve EPE to
0.72 and 0.71, respectively, with a modest increase in computational resources. Combining these
methods further reduces EPE to 0.69, indicating marginal benefits from their integration. However,
ConvGRU refinement substantially improves EPE 0.46, albeit at a significant cost in computational
complexity (3023.88 Gflops) and model size (12.51M). This highlights a trade-off between accuracy
improvements and increased computational demands.

5 A STRONG PIPELINE: STEREOBASE

A strong baseline in deep stereo-matching research is critical for several key reasons. First, it serves
as a vital reference point, enabling a clear assessment of new methods against an established standard.
Second, a strong baseline allows for precise evaluation of the impact of specific changes, whether
they are new data augmentation methods, different network architectures, or innovative disparity
estimation techniques. This helps in isolating and understanding the contribution of each component
to the overall performance. Additionally, a solid baseline ensures fair and meaningful comparisons
across studies, providing a common ground for evaluating different research outcomes. This is crucial
for maintaining consistency and validity in comparative analyses. In summary, a strong baseline is
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Figure 4: Overview of our proposed StereoBase. GwcVolume represents Group-wise correlation
volume Guo et al. (2019). CGEV refers to Combined Geometry Encoding Volume Xu et al. (2023).

Table 5: Results on SceneFlow Mayer et al. (2016), KITTI 2012 Geiger et al. (2012), KITTI
2015 Menze & Geiger (2015) leaderboard, and DrivingStereo Yang et al. (2019b). All results on
DrivingStereo Yang et al. (2019b) are derived using the OpenStereo. Underline refers to evaluation in
the non-occluded regions only STTR Li et al. (2021). Bold: Best.

Method SceneFlow KITTI 2012 KITTI 2015 DrivingStereo
EPE 3-noc 3-all D1-bg D1-fg D1-all EPE D1-all

STTR Li et al. (2021) 0.43 - - 1.70 3.61 2.01 OOM OOM
PSMNet Chang & Chen (2018) 1.09 1.49 1.89 1.86 4.62 2.32 1.19 2.26
GwcNet Guo et al. (2019) 0.76 1.32 1.70 1.74 3.93 2.11 0.99 1.36
CFNet Shen et al. (2021) 1.04 1.23 1.58 1.54 3.56 1.88 0.98 1.46
AANet Xu & Zhang (2020) 0.87 1.91 2.42 1.65 3.96 2.03 2.91 15.16
Mobilestereo-3D Shamsafar et al. (2022) 0.80 - - 1.75 3.87 2.10 1.06 1.61
COEX Bangunharcana et al. (2021) 0.68 1.55 1.93 1.74 3.41 2.02 1.34 2.70
FADNet++ Wang et al. (2021) 0.76 - - 1.99 3.18 2.19 1.44 5.15
CascadeStereo Gu et al. (2020) 0.72 - - 1.59 4.03 2.00 1.31 2.84
IGEV-Stereo Xu et al. (2023) 0.47 1.12 1.44 1.38 2.67 1.59 1.06 1.50
GANet+ADL Xu et al. (2024) 0.50 0.98 1.29 1.38 2.38 1.55 - -
NMRF-Stereo Guan et al. (2024) 0.45 1.01 1.35 1.28 3.13 1.59 - -
Selective-IGEV Wang et al. (2024b) 0.44 1.07 1.38 1.33 2.61 1.55 - -
MoCha-Stereo Chen et al. (2024) 0.41 1.06 1.35 1.36 2.43 1.53 - -
StereoBase(Ours) 0.34 1.00 1.26 1.28 2.26 1.44 1.15 2.19

essential for meaningful advancements in deep stereo matching, ensuring that new developments are
substantial, accurately assessed, and broadly applicable.

5.1 PIPELINE

In light of our comprehensive analysis, the goal of this section is to establish a strong baseline model
that surpasses existing standards in performance. StereoBase embodies this objective. As shown
in Figure 4, given the left and the right images, the pre-trained MobileNetV2 Wightman (2019)
networks are used as our foundational backbone, extracting features at a reduced scale of 1/4th the
original size to form the cost volume. The G8-C16 cost volume is utilized to achieve an optimal
balance between computational load and disparity estimation accuracy. Hourglass networks Xu et al.
(2023) were implemented for cost aggregation, while convGRU Xu et al. (2023) strategies were
applied for the final disparity regression.

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

In our comprehensive evaluation, we benchmarked StereoBase against current state-of-the-art meth-
ods on SceneFlow Mayer et al. (2016), KITTI2012 Geiger et al. (2012), 2015 Menze & Geiger
(2015), and DrivingStereo Yang et al. (2019b) (More implementation details in the Supplementary
Material). On the SceneFlow Mayer et al. (2016) test set, we achieve a new SOTA EPE of 0.34.
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Left image IGEV-Stereo StereoBase

Figure 5: Visualization results on KITTI2015 dataset.

Table 6: Cross-domain evaluation on Middlebury, ETH3D, and KITTI all training sets. All methods
are only trained on the Scene Flow dataset. Middlebury is tested on half-resolution. The model with
† indicates the implementation of OpenStereo. Bold: Best.

Method KITTI2012 KITTI2015 Middlebury ETH3D
D1-all(%) EPE D1-all(%) EPE bad 2.0(%) bad 1.0(%)

STTR† 49.72 6.80 40.26 6.16 OOM 38.89
PSMNet† 30.51 4.68 32.15 5.99 33.53 18.02
CFNet† 13.64 2.27 12.09 2.89 23.91 7.67
AANet† 7.23 1.27 7.72 1.41 22.45 18.77
Mobilestereo-2D† 18.34 2.45 21.21 2.78 34.04 13.89
Mobilestereo-3D† 18.96 2.79 19.69 3.40 29.32 13.71
GwcNet† 23.05 2.76 25.19 3.58 29.87 14.54
COEX† 12.08 1.80 11.00 2.48 25.17 11.43
FADNet++† 11.31 1.77 13.23 2.97 24.17 25.53
CascadeStereo† 11.83 1.83 12.03 2.69 27.27 11.68
IGEV† 4.88 0.98 5.16 1.18 8.47 3.53
StereoBase(Ours)† 4.85 0.99 5.35 1.18 9.76 3.12

The quantitative comparisons, as summarized in Table 5, clearly illustrate the edge of StereoBase
in handling complex stereo-matching scenarios with greater precision. Further, we submitted our
results to the KITTI2012 Geiger et al. (2012) and 2015 Menze & Geiger (2015) leaderboards, where
StereoBase outperformed all published methods across all metrics. On KITTI2015 Menze & Geiger
(2015), our StereoBase outperforms IGEV Xu et al. (2023) by 9.43% on D1-all metric, respectively.
In addition, we evaluate the generalization performance of StereoBase. As shown in Table 6, Stere-
oBase exhibited exceptional performance in a zero-shot setting. This evaluation further validates the
adaptability and potential of StereoBase in handling diverse and challenging stereo vision tasks.

6 CONCLUSION

This paper introduces OpenStereo, a benchmark designed for deep stereo matching. Our initial en-
deavor involved re-implementing the most state-of-the-art methods within the OpenStereo framework.
This comprehensive tool facilitates the extensive reevaluation of various aspects of stereo-matching
methodologies. Drawing on the insights gained from our exhaustive ablation studies, we proposed
StereoBase. Our StereoBase ranks 1st on SceneFlow, KITTI 2015, 2012 (Reflective) among published
methods and performs best across all metrics. In addition, StereoBase has strong cross-dataset
generalization. StereoBase not only demonstrates the capabilities of our platform but also sets a new
standard in the field for future research and development. Through OpenStereo and StereoBase, we
aim to contribute a substantial and versatile resource to the stereo-matching community, fostering
innovation and facilitating more effective and efficient research.
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Porter Westling. High-resolution stereo datasets with subpixel-accurate ground truth. In GCPR,
2014.

Thomas Schops, Johannes L Schonberger, Silvano Galliani, Torsten Sattler, Konrad Schindler, Marc
Pollefeys, and Andreas Geiger. A multi-view stereo benchmark with high-resolution images and
multi-camera videos. In CVPR, 2017.

Faranak Shamsafar, Samuel Woerz, Rafia Rahim, and Andreas Zell. Mobilestereonet: Towards
lightweight deep networks for stereo matching. In WACV, 2022.

Zhelun Shen, Yuchao Dai, and Zhibo Rao. Cfnet: Cascade and fused cost volume for robust stereo
matching. arXiv preprint arXiv:2104.04314, 2021.

Karen Simonyan. Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In ICML, 2021.

Fabio Tosi, Yiyi Liao, Carolin Schmitt, and Andreas Geiger. Smd-nets: Stereo mixture density
networks. In CVPR, 2021.

Ao Wang, Hui Chen, Zijia Lin, Hengjun Pu, and Guiguang Ding. Repvit: Revisiting mobile cnn from
vit perspective. CVPR, 2024a.

Qiang Wang, Shaohuai Shi, Shizhen Zheng, Kaiyong Zhao, and Xiaowen Chu. FADNet: A fast and
accurate network for disparity estimation. In ICRA, 2020.

Qiang Wang, Shaohuai Shi, Shizhen Zheng, Kaiyong Zhao, and Xiaowen Chu. Fadnet++: Real-time
and accurate disparity estimation with configurable networks. arXiv preprint arXiv:2110.02582,
2021.

Xianqi Wang, Gangwei Xu, Hao Jia, and Xin Yang. Selective-stereo: Adaptive frequency information
selection for stereo matching. In CVPR, 2024b.

Yan Wang, Zihang Lai, Gao Huang, Brian H. Wang, Laurens van der Maaten, Mark Campbell, and
Kilian Q. Weinberger. Anytime stereo image depth estimation on mobile devices. In ICRA, 2019.

Philippe Weinzaepfel, Thomas Lucas, Vincent Leroy, Yohann Cabon, Vaibhav Arora, Romain Brégier,
Gabriela Csurka, Leonid Antsfeld, Boris Chidlovskii, and Jérôme Revaud. CroCo v2: Improved
Cross-view Completion Pre-training for Stereo Matching and Optical Flow. In ICCV, 2023.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Gangwei Xu, Junda Cheng, Peng Guo, and Xin Yang. Attention concatenation volume for accurate
and efficient stereo matching. In CVPR, 2022.

Gangwei Xu, Xianqi Wang, Xiaohuan Ding, and Xin Yang. Iterative geometry encoding volume for
stereo matching. In CVPR, 2023.

Haofei Xu and Juyong Zhang. Aanet: Adaptive aggregation network for efficient stereo matching. In
CVPR, 2020.

Peng Xu, Zhiyu Xiang, Chengyu Qiao, Jingyun Fu, and Tianyu Pu. Adaptive multi-modal cross-
entropy loss for stereo matching. In CVPR, 2024.

Aimin Yang, Chunying Zhang, Yongjie Chen, Yunxi Zhuansun, and Huixiang Liu. Security and
privacy of smart home systems based on the internet of things and stereo matching algorithms.
ISO4, 2020.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/facebookresearch/detectron2


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Gengshan Yang, Joshua Manela, Michael Happold, and Deva Ramanan. Hierarchical deep stereo
matching on high-resolution images. In CVPR, 2019a.

Guorun Yang, Hengshuang Zhao, Jianping Shi, Zhidong Deng, and Jiaya Jia. Segstereo: Exploiting
semantic information for disparity estimation. In ECCV, 2018.

Guorun Yang, Xiao Song, Chaoqin Huang, Zhidong Deng, Jianping Shi, and Bolei Zhou. Driv-
ingstereo: A large-scale dataset for stereo matching in autonomous driving scenarios. In CVPR,
2019b.

Qingxiong Yang, Liang Wang, Rui Gan, Minglun Gong, and Yunde Jia. Adaptive support-weight
approach for correspondence search with outlier rejection. TPAMI, 2010.

Jure Zbontar, Yann LeCun, et al. Stereo matching by training a convolutional neural network to
compare image patches. Journal of Machine Learning Research, 2016.

Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip H.S. Torr. Ga-net: Guided aggregation net
for end-to-end stereo matching. In CVPR, 2019.

Feihu Zhang, Xiaojuan Qi, Ruigang Yang, Victor Prisacariu, Benjamin Wah, and Philip Torr. Domain-
invariant stereo matching networks. In ECCV, 2020a.

Guoxuan Zhang, Jin Han Lee, Jongwoo Lim, and Il Hong Suh. Building a 3-d line-based map using
stereo slam. IEEE Transactions on Robotics, 2015.

Kai Zhang and Janusz Kosecka. Surface patch similarity for near-duplicate 3d model retrieval. IJCV,
2005.

Youmin Zhang, Yimin Chen, Xiao Bai, Jun Zhou, Kun Yu, Zhiwei Li, and Kuiyuan Yang. Adaptive
unimodal cost volume filtering for deep stereo matching. AAAI, 2020b.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmenta-
tion. In Proceedings of the AAAI conference on artificial intelligence, 2020.

14


	Introduction
	Related Work
	Stereo Matching
	Codebase

	OpenStereo
	Design Principles of OpenStereo

	Revisit Deep Stereo Matching
	Evaluation of Prior Work
	Necessity of Comprehensive Ablation Study
	Denoising Stereo Matching
	LR_scheduler and Data Augmentation
	Feature Extraction
	Cost Construction
	Disparity Regression and Refinement


	A Strong Pipeline: StereoBase
	Pipeline
	Comparison with State-of-the-art Methods

	Conclusion

