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Abstract

We propose benchmark along with a comprehensive evaluation framework for1

transit-domain Large Language Models that transcends traditional accuracy metrics2

by probing in-context learning capabilities and multi-step reasoning processes. Our3

approach introduces four complementary evaluation paradigms such as Perturbation4

Chains, Narrative Coherence Checks, Minimal Edit Plausibility, and Cross-Modal5

Anchoring, that collectively assess how models adapt, reason, and maintain consis-6

tency under domain-specific constraints. Through systematic evaluation of four7

state-of-the-art models, we demonstrate substantial performance disparities in cas-8

cading reasoning scenarios despite similar baseline accuracy, revealing fundamental9

limitations in current evaluation methodologies. Our framework along with the10

benchmark provides actionable insights for post-training optimization strategies,11

enables principled comparison of retrieval-augmented versus tool-calling archi-12

tectures, and establishes theoretical foundations for deploying specialized smaller13

models in safety-critical transit applications. The benchmark and evaluation suite14

will be shared with community along with further extended studies.15

1 Introduction16

The deployment of Large Language Models in public transit systems has achieved remarkable17

benchmark performance, with recent studies reporting accuracy rates exceeding 90% on General18

Transit Feed Specification (GTFS) tasks [1, 2]. However, these metrics fundamentally measure task19

completion rather than the underlying reasoning capabilities essential for real-world deployment.20

When passengers pose complex queries such as "Given current service disruptions, what alternative21

routes minimize both travel time and transfers while avoiding construction zones?", the system must22

demonstrate sophisticated in-context learning, multi-step reasoning, and adaptive problem-solving23

capabilities that traditional accuracy metrics cannot capture.24

This discrepancy between measured performance and required reasoning capabilities represents a25

critical gap in current evaluation methodologies. Transit systems operate under strict safety and26

reliability constraints where reasoning failures can cascade into significant user impact. A system that27

achieves high accuracy on isolated queries but fails to maintain logical consistency under perturbations28

poses substantial deployment risks.29

Our work addresses this evaluation gap through four framework contributions. First, we formalize30

mathematical frameworks that probe distinct dimensions of reasoning quality in transit-domain31

applications. Second, we demonstrate how these frameworks reveal fundamental differences in32

in-context learning capabilities across model architectures. Third, we propose qualitative connections33

between evaluation outcomes and post-training optimization strategies including supervised fine-34

tuning and reinforcement learning with focus on relatively smaller language models in domain-specific35

evaluation contexts, drawing on recent advances in agentic AI systems [5].36
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2 Multi-Dimensional Transit Reasoning Framework37

Let G = (S,R, T ) represent a GTFS dataset where S denotes stops, R represents routes, and T38

encompasses scheduled trips. Traditional evaluation computes binary accuracy as A(M,Q) =39

|Q|−1
∑|Q|

i=1 1[M(qi) = yi] for model M , query set Q, and ground truth responses yi. While40

computationally efficient, this formulation provides no insight into reasoning processes, failure41

propagation mechanisms, or in-context adaptation capabilities.42

We propose a comprehensive evaluation framework Φ = {PC,NCC,MEP, CMA} designed to43

probe fundamental reasoning dimensions that emerge in transit-domain applications.44

Perturbation Chain Analysis. The Perturbation Chain framework (PC) probes in-context learning45

robustness through systematic cascade testing. For base query q0 and perturbation sequence {pi}di=1,46

we construct modified queries qi = pi(qi−1) that incrementally alter system state. The reasoning47

consistency score quantifies degradation patterns:48

RCSd(M, q0) =

d∏
i=1

P[valid(M(qi)) | valid(M(qi−1))] (1)

where valid(·) indicates logical consistency with perturbed GTFS state. This formulation captures49

how effectively models maintain coherent reasoning as problem complexity increases, directly50

probing in-context adaptation mechanisms.51

We hypothesize that reasoning degradation follows exponential decay RCSd(M, q0) ≈ αβd where52

parameter α characterizes initial reasoning quality and β < 1 quantifies robustness to cascading53

complexity. Models with superior in-context learning should exhibit higher β values, indicating better54

preservation of logical consistency under sequential perturbations.55

Narrative Coherence Assessment. The Narrative Coherence Check framework (NCC) evaluates56

temporal-spatial reasoning through natural language journey analysis. Given narrative n containing57

transit descriptions, we extract temporal constraints T (n) and spatial assertions S(n), then verify58

feasibility:59

NCC(n,G) = 1

 ∧
(t,s)∈T (n)×S(n)

feasible(t, s,G)

 (2)

This framework probes how models integrate multiple information streams and detect logical incon-60

sistencies in complex scenarios, providing insights into compositional reasoning capabilities essential61

for transit assistance.62

Constructive Error Correction. The Minimal Edit Plausibility framework (MEP) assesses con-63

structive problem-solving through systematic itinerary repair. For invalid journey I , we seek optimal64

correction ρ∗ that minimizes edit distance while preserving user intent:65

ρ∗ = argmin
ρ

λ1∥ρ∥1 + λ2dsem(I, ρ(I)) + λ3cuser(ρ) (3)

where ∥ρ∥1 represents edit magnitude, dsem measures semantic preservation, and cuser quantifies user66

impact. This framework reveals how models balance constraint satisfaction with solution quality,67

directly probing constructive reasoning capabilities.68

Cross-Modal Spatial Reasoning. The Cross-Modal Anchoring framework (CMA) evaluates spatial69

textual markdown based integration through spatial-textual consistency analysis. For transit map V70

and query q, we measure spatial understanding alignment:71

CMA(V, q,M) = sim(ϕspatial(V ), ϕspatial(M(q))) (4)

where ϕspatial extracts topological relationships. This framework probes how models integrate spa-72

tial and textual information streams, essential for real-world transit applications involving map73

interpretation.74

Framework Integration for System Optimization. Our multi-dimensional approach enables75

targeted post-training optimization. Models exhibiting low β values in PC analysis benefit from76

multi-step reasoning augmentation in supervised fine-tuning. Strong NCC performance combined77
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Table 1: Cross-Modal Anchoring (CMA) results showing spatial reasoning capabilities

Model Accuracy Avg. Pos. Error S/R Flip Rate

Mistral 0.490 0.510 0.000
Llama3 0.473 0.727 0.000
Gemma 0.437 0.663 0.000
Phi 0.270 0.737 0.213

Table 2: Minimal Edit Plausibility (MEP) temporal reasoning results

Model Over-Repair Rate Under-Repair Rate

Gemma 0.470 0.530
Mistral 0.463 0.537
Llama3 0.466 0.532
Phi 0.460 0.527

with weak MEP scores suggests potential for reinforcement learning optimization targeting con-78

structive problem-solving. Framework correlations reveal architectural strengths: high PC-MEP79

correlation indicates shared constructive reasoning mechanisms, while NCC-CMA alignment sug-80

gests multimodal integration capabilities.81

The theoretical foundation extends to system architecture analysis. Retrieval-augmented models82

typically demonstrate strong NCC performance due to comprehensive knowledge base access but83

exhibit brittleness in PC scenarios requiring novel reasoning. Tool-calling architectures show variable84

PC performance depending on tool chain complexity while potentially excelling in MEP tasks when85

appropriate repair tools are available.86

Furthermore, our framework provides theoretical justification for strategic deployment of smaller87

language models in transit evaluation contexts. Recent work demonstrates that specialized smaller88

models often outperform general-purpose large models in constrained domains due to focused pa-89

rameter utilization and reduced interference from irrelevant capabilities [5] especially for safety/time90

critical transit.91

3 Experiments92

We evaluate four open-source language models—Gemma, Mistral, Llama3, and Phi—selected93

for their demonstrated effectiveness in safety-critical transportation applications, particularly their94

superior fine-tuning capabilities and performance in tool-calling and retrieval-augmented generation95

tasks essential for real-world transit deployment. Our evaluation employs GTFS datasets from San96

Francisco Municipal, Massachusetts Bay, and Chicago Transportation Authorities, constructing a97

challenging benchmark with 500 samples each for PC and NCC tasks, and 300 samples for MEP98

and CMA tasks. All the input samples are generated systematically generated based on trips, routes99

and stops in the GTFS dataset, the text samples for NCC and MEP are constructed with accurate100

assertions and false counterfactuals and for CMA task specifically, corpus samples are constructed101

like a markdown spatial map structure based on the (S,R,T) GTFS data for assessing LLMs.102

Our evaluation metrics directly correspond to the mathematical frameworks established in Section103

2. For Perturbation Chains (PC), we measure sequential accuracy at increasing complexity (S2, S3,104

S5) alongside Counterfactual Coherence and Skip2 Consistency to assess reasoning robustness as105

formalized in Equation 1. Narrative Coherence Checks (NCC) employ standard accuracy metrics106

complemented by Balanced Accuracy, Binary Yes/No (Confirmation/Negation) Response based YES107

Recall, and YES Bias Gap to capture the feasibility verification capabilities defined in Equation 2.108

Minimal Edit Plausibility (MEP) introduces Over-repair and Under-repair rates that empirically109

measure the optimization edit control central to Equation 3, revealing systematic temporal reasoning110

failures. Cross-Modal Anchoring (CMA) utilizes exact match accuracy, positional error, and (Stops,111

Routes Entity) flip rates to quantify the spatial consistency formalized in Equation 4.112
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Table 3: Narrative Coherence Checks (NCC) feasibility assessment results

Model Accuracy YES Recall YES Bias Gap

Mistral 0.485 0.993 0.511
Llama3 0.482 0.990 0.509
Gemma 0.480 0.988 0.508
Phi 0.460 0.969 0.486

Table 4: Perturbation Chains (PC) sequential reasoning and consistency results

Model S2 Acc S3 Acc CF Coherence Skip2 Consistency

Gemma 0.860 0.800 0.062 0.560
Llama3 0.852 0.802 0.056 0.444
Mistral 0.830 0.780 0.059 0.530
Phi 0.750 0.467 0.045 0.321

The experimental results expose fundamental limitations in current model capabilities across all113

reasoning dimensions, demonstrating the challenging nature of our benchmark. In Cross-Modal114

Anchoring, even the best-performing model (Mistral) achieves only 49% exact spatial matching115

accuracy, while Phi exhibits severe spatial disorientation with 21.3% Stop-Route flip errors and116

substantial positional deviation (1.737 average error) reveal critical weaknesses117

Minimal Edit Plausibility results demonstrate systematic temporal reasoning failures across all118

models, with over-repair and under-repair rates clustered around 50% each, indicating near-random119

performance in optimizing itinerary corrections.120

Narrative Coherence assessment reveals a striking pattern of systematic bias toward positive clas-121

sifications, with all models exhibiting near-perfect YES Recall (96.9-99.3%) but correspondingly122

poor overall accuracy (46-48.5%). The YES Bias Gap metrics (0.486-0.511) quantify this overconfi-123

dence in declaring invalid journeys as feasible, representing a critical safety concern for deployment124

scenarios where false positives could mislead passengers into impossible travel plans.125

Perturbation Chain analysis demonstrates the most dramatic capability degradation, validating our126

theoretical framework’s prediction of reasoning brittleness under cascading complexity. While models127

maintain reasonable performance at S2 (75-86% accuracy), performance deteriorates substantially128

by S3 (46.7-80%) with Phi showing catastrophic failure. Counterfactual Coherence(CF) scores129

uniformly below 6.2% across all models indicate severe limitations in maintaining logical consistency130

under hypothetical scenarios, while Skip2 Consistency results (32.1-56%) reveal fundamental failures131

in multi-step reasoning chains that our mathematical framework precisely captures.132

4 Analysis & Implications133

Our theoretical and empirical analysis establishes several key insights with direct implications for134

transit system deployment. The exponential decay characterization of reasoning consistency provides135

a principled foundation for system reliability assessment. Models with β > 0.75 demonstrate136

sufficient robustness for deployment scenarios involving up to three cascade steps, while those with137

β < 0.65 require architectural improvements or operational constraints limiting query complexity.138

Framework profiles enable targeted optimization strategies. Models exhibiting strong NCC perfor-139

mance but weak PC consistency benefit from multi-step reasoning augmentation in training data.140

Systems showing high MEP capability combined with poor CMA scores suggest potential for141

multimodal training enhancement. This systematic approach transforms post-training optimization142

from ad-hoc experimentation to principled engineering.143

The architectural insights derived from our analysis provide concrete guidance for system design144

decisions. Applications requiring robust cascade reasoning should prioritize models with high β145

values regardless of baseline accuracy. Systems emphasizing error recovery should target MEP146

optimization through constructive training approaches. This framework-driven architecture selection147

enables optimal resource selection assessment in deployment scenarios.148
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5 Conclusion149

This work establishes a comprehensive theoretical framework for evaluating reasoning capabilities in150

transit-domain Large Language Models that fundamentally transcends traditional accuracy-based151

assessment. Our four-dimensional evaluation approach—Perturbation Chains, Narrative Coherence152

Checks, Minimal Edit Plausibility, and Cross-Modal Anchoring—provides systematic methodology153

for probing in-context learning, multi-step reasoning, and adaptive problem-solving capabilities essen-154

tial for real-world deployment. Beyond measurement, this framework enables strategic deployment155

of specialized smaller models in safety-critical applications, provides theoretical justification for156

architecture selection based on reasoning requirements, and establishes evaluation methodologies157

that align with operational deployment constraints.158
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