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Abstract

We propose benchmark along with a comprehensive evaluation framework for
transit-domain Large Language Models that transcends traditional accuracy metrics
by probing in-context learning capabilities and multi-step reasoning processes. Our
approach introduces four complementary evaluation paradigms such as Perturbation
Chains, Narrative Coherence Checks, Minimal Edit Plausibility, and Cross-Modal
Anchoring, that collectively assess how models adapt, reason, and maintain consis-
tency under domain-specific constraints. Through systematic evaluation of four
state-of-the-art models, we demonstrate substantial performance disparities in cas-
cading reasoning scenarios despite similar baseline accuracy, revealing fundamental
limitations in current evaluation methodologies. Our framework along with the
benchmark provides actionable insights for post-training optimization strategies,
enables principled comparison of retrieval-augmented versus tool-calling archi-
tectures, and establishes theoretical foundations for deploying specialized smaller
models in safety-critical transit applications. The benchmark and evaluation suite
will be shared with community along with further extended studies.

1 Introduction

The deployment of Large Language Models in public transit systems has achieved remarkable
benchmark performance, with recent studies reporting accuracy rates exceeding 90% on General
Transit Feed Specification (GTFS) tasks [, 2]]. However, these metrics fundamentally measure task
completion rather than the underlying reasoning capabilities essential for real-world deployment.
When passengers pose complex queries such as "Given current service disruptions, what alternative
routes minimize both travel time and transfers while avoiding construction zones?", the system must
demonstrate sophisticated in-context learning, multi-step reasoning, and adaptive problem-solving
capabilities that traditional accuracy metrics cannot capture.

This discrepancy between measured performance and required reasoning capabilities represents a
critical gap in current evaluation methodologies. Transit systems operate under strict safety and
reliability constraints where reasoning failures can cascade into significant user impact. A system that
achieves high accuracy on isolated queries but fails to maintain logical consistency under perturbations
poses substantial deployment risks.

Our work addresses this evaluation gap through four framework contributions. First, we formalize
mathematical frameworks that probe distinct dimensions of reasoning quality in transit-domain
applications. Second, we demonstrate how these frameworks reveal fundamental differences in
in-context learning capabilities across model architectures. Third, we propose qualitative connections
between evaluation outcomes and post-training optimization strategies including supervised fine-
tuning and reinforcement learning with focus on relatively smaller language models in domain-specific
evaluation contexts, drawing on recent advances in agentic Al systems [5].
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2 Multi-Dimensional Transit Reasoning Framework

Let G = (S, R, T) represent a GTFS dataset where S denotes stops, R represents routes, and T
encompasses scheduled trips. Traditional evaluation computes binary accuracy as A(M, Q) =

QI t ZlQl 1[M(q;) = y;] for model M, query set @, and ground truth responses y;. While
computationally efficient, this formulation provides no insight into reasoning processes, failure
propagation mechanisms, or in-context adaptation capabilities.

We propose a comprehensive evaluation framework ® = {PC, NCC, MEP,CMA} designed to
probe fundamental reasoning dimensions that emerge in transit-domain applications.

Perturbation Chain Analysis. The Perturbation Chain framework (PC) probes in-context learning
robustness through systematic cascade testing. For base query gq and perturbation sequence {p;}%_;,
we construct modified queries ¢; = p;(g;—1) that incrementally alter system state. The reasoning
consistency score quantifies degradation patterns:

RCS4(M, o) HIP’vahd (¢:)) | valid(M (gi—1))] (1)

where valid(-) indicates logical consistency with perturbed GTFS state. This formulation captures
how effectively models maintain coherent reasoning as problem complexity increases, directly
probing in-context adaptation mechanisms.

We hypothesize that reasoning degradation follows exponential decay RCS4(M, qo) ~ a 3% where
parameter « characterizes initial reasoning quality and 8 < 1 quantifies robustness to cascading
complexity. Models with superior in-context learning should exhibit higher 3 values, indicating better
preservation of logical consistency under sequential perturbations.

Narrative Coherence Assessment. The Narrative Coherence Check framework (M CC) evaluates
temporal-spatial reasoning through natural language journey analysis. Given narrative n containing
transit descriptions, we extract temporal constraints 7 (n) and spatial assertions S(n), then verify
feasibility:

NCC(n,G) =1 A feasible(t, s, G) )

(t,8)ET (n)xS(n)

This framework probes how models integrate multiple information streams and detect logical incon-
sistencies in complex scenarios, providing insights into compositional reasoning capabilities essential
for transit assistance.

Constructive Error Correction. The Minimal Edit Plausibility framework (MEP) assesses con-
structive problem-solving through systematic itinerary repair. For invalid journey I, we seek optimal
correction p* that minimizes edit distance while preserving user intent:

P* = arg mgn >\1||P||1 + )\2dsem(la P(I)) + )\SCuser(p) (3)

where ||p||1 represents edit magnitude, dger, measures semantic preservation, and cys; quantifies user
impact. This framework reveals how models balance constraint satisfaction with solution quality,
directly probing constructive reasoning capabilities.

Cross-Modal Spatial Reasoning. The Cross-Modal Anchoring framework (CM.A) evaluates spatial
textual markdown based integration through spatial-textual consistency analysis. For transit map V'
and query ¢, we measure spatial understanding alignment:

CMA(‘/’ q, M) = Sim(¢spatial(v>7 ¢spalial(M(Q))) )

where @gpaial €xtracts topological relationships. This framework probes how models integrate spa-
tial and textual information streams, essential for real-world transit applications involving map
interpretation.

Framework Integration for System Optimization. Our multi-dimensional approach enables
targeted post-training optimization. Models exhibiting low 5 values in PC analysis benefit from
multi-step reasoning augmentation in supervised fine-tuning. Strong N'CC performance combined
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Table 1: Cross-Modal Anchoring (CMA) results showing spatial reasoning capabilities

Model  Accuracy Avg. Pos. Error  S/R Flip Rate

Mistral 0.490 0.510 0.000
Llama3 0.473 0.727 0.000
Gemma 0.437 0.663 0.000
Phi 0.270 0.737 0.213

Table 2: Minimal Edit Plausibility (MEP) temporal reasoning results

Model  Over-Repair Rate  Under-Repair Rate

Gemma 0.470 0.530
Mistral 0.463 0.537
Llama3 0.466 0.532
Phi 0.460 0.527

with weak MEP scores suggests potential for reinforcement learning optimization targeting con-
structive problem-solving. Framework correlations reveal architectural strengths: high PC-MEP
correlation indicates shared constructive reasoning mechanisms, while N'CC-CM A alignment sug-
gests multimodal integration capabilities.

The theoretical foundation extends to system architecture analysis. Retrieval-augmented models
typically demonstrate strong A'CC performance due to comprehensive knowledge base access but
exhibit brittleness in PC scenarios requiring novel reasoning. Tool-calling architectures show variable
‘PC performance depending on tool chain complexity while potentially excelling in MEP tasks when
appropriate repair tools are available.

Furthermore, our framework provides theoretical justification for strategic deployment of smaller
language models in transit evaluation contexts. Recent work demonstrates that specialized smaller
models often outperform general-purpose large models in constrained domains due to focused pa-
rameter utilization and reduced interference from irrelevant capabilities [5] especially for safety/time
critical transit.

3 Experiments

We evaluate four open-source language models—Gemma, Mistral, Llama3, and Phi—selected
for their demonstrated effectiveness in safety-critical transportation applications, particularly their
superior fine-tuning capabilities and performance in tool-calling and retrieval-augmented generation
tasks essential for real-world transit deployment. Our evaluation employs GTFS datasets from San
Francisco Municipal, Massachusetts Bay, and Chicago Transportation Authorities, constructing a
challenging benchmark with 500 samples each for PC and N'CC tasks, and 300 samples for MEP
and CM A tasks. All the input samples are generated systematically generated based on trips, routes
and stops in the GTFS dataset, the text samples for NCC and MEP are constructed with accurate
assertions and false counterfactuals and for CMA task specifically, corpus samples are constructed
like a markdown spatial map structure based on the (S,R,T) GTFS data for assessing LLMs.

Our evaluation metrics directly correspond to the mathematical frameworks established in Section
2. For Perturbation Chains (PC), we measure sequential accuracy at increasing complexity (S2, S3,
S5) alongside Counterfactual Coherence and Skip2 Consistency to assess reasoning robustness as
formalized in Equation 1. Narrative Coherence Checks (M CC) employ standard accuracy metrics
complemented by Balanced Accuracy, Binary Yes/No (Confirmation/Negation) Response based YES
Recall, and YES Bias Gap to capture the feasibility verification capabilities defined in Equation 2.
Minimal Edit Plausibility (MEP) introduces Over-repair and Under-repair rates that empirically
measure the optimization edit control central to Equation 3, revealing systematic temporal reasoning
failures. Cross-Modal Anchoring (C.M.A) utilizes exact match accuracy, positional error, and (Stops,
Routes Entity) flip rates to quantify the spatial consistency formalized in Equation 4.
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Table 3: Narrative Coherence Checks (NCC) feasibility assessment results

Model  Accuracy YES Recall YES Bias Gap

Mistral 0.485 0.993 0.511
Llama3 0.482 0.990 0.509
Gemma 0.480 0.988 0.508
Phi 0.460 0.969 0.486

Table 4: Perturbation Chains (PC) sequential reasoning and consistency results

Model  S2 Acc  S3 Acc CF Coherence  Skip2 Consistency

Gemma  0.860 0.800 0.062 0.560
Llama3  0.852 0.802 0.056 0.444
Mistral 0.830 0.780 0.059 0.530
Phi 0.750 0.467 0.045 0.321

The experimental results expose fundamental limitations in current model capabilities across all
reasoning dimensions, demonstrating the challenging nature of our benchmark. In Cross-Modal
Anchoring, even the best-performing model (Mistral) achieves only 49% exact spatial matching
accuracy, while Phi exhibits severe spatial disorientation with 21.3% Stop-Route flip errors and
substantial positional deviation (1.737 average error) reveal critical weaknesses

Minimal Edit Plausibility results demonstrate systematic temporal reasoning failures across all
models, with over-repair and under-repair rates clustered around 50% each, indicating near-random
performance in optimizing itinerary corrections.

Narrative Coherence assessment reveals a striking pattern of systematic bias toward positive clas-
sifications, with all models exhibiting near-perfect YES Recall (96.9-99.3%) but correspondingly
poor overall accuracy (46-48.5%). The YES Bias Gap metrics (0.486-0.511) quantify this overconfi-
dence in declaring invalid journeys as feasible, representing a critical safety concern for deployment
scenarios where false positives could mislead passengers into impossible travel plans.

Perturbation Chain analysis demonstrates the most dramatic capability degradation, validating our
theoretical framework’s prediction of reasoning brittleness under cascading complexity. While models
maintain reasonable performance at S2 (75-86% accuracy), performance deteriorates substantially
by S3 (46.7-80%) with Phi showing catastrophic failure. Counterfactual Coherence(CF) scores
uniformly below 6.2% across all models indicate severe limitations in maintaining logical consistency
under hypothetical scenarios, while Skip2 Consistency results (32.1-56%) reveal fundamental failures
in multi-step reasoning chains that our mathematical framework precisely captures.

4 Analysis & Implications

Our theoretical and empirical analysis establishes several key insights with direct implications for
transit system deployment. The exponential decay characterization of reasoning consistency provides
a principled foundation for system reliability assessment. Models with S > 0.75 demonstrate
sufficient robustness for deployment scenarios involving up to three cascade steps, while those with
B < 0.65 require architectural improvements or operational constraints limiting query complexity.

Framework profiles enable targeted optimization strategies. Models exhibiting strong A/CC perfor-
mance but weak PC consistency benefit from multi-step reasoning augmentation in training data.
Systems showing high MEP capability combined with poor CM.A scores suggest potential for
multimodal training enhancement. This systematic approach transforms post-training optimization
from ad-hoc experimentation to principled engineering.

The architectural insights derived from our analysis provide concrete guidance for system design
decisions. Applications requiring robust cascade reasoning should prioritize models with high 3
values regardless of baseline accuracy. Systems emphasizing error recovery should target MEP
optimization through constructive training approaches. This framework-driven architecture selection
enables optimal resource selection assessment in deployment scenarios.
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5 Conclusion

This work establishes a comprehensive theoretical framework for evaluating reasoning capabilities in
transit-domain Large Language Models that fundamentally transcends traditional accuracy-based
assessment. Our four-dimensional evaluation approach—Perturbation Chains, Narrative Coherence
Checks, Minimal Edit Plausibility, and Cross-Modal Anchoring—provides systematic methodology
for probing in-context learning, multi-step reasoning, and adaptive problem-solving capabilities essen-
tial for real-world deployment. Beyond measurement, this framework enables strategic deployment
of specialized smaller models in safety-critical applications, provides theoretical justification for
architecture selection based on reasoning requirements, and establishes evaluation methodologies
that align with operational deployment constraints.
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