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Abstract

We study the K+1 GAN paradigm which generalizes the canonical true/fake GAN
by training a generator with a K+1-ary classifier instead of a binary discriminator.
We show how the standard formulation of the K+1 GAN does not take advantage of
class information fully and show how its learned generative data distribution is no
different than the distribution that a traditional binary GAN learns. We then investi-
gate another GAN loss function that dynamically labels its data during training, and
show how this leads to learning a generative distribution that emphasizes the target
distribution modes. We investigate to what degree our theoretical expectations of
these GAN training strategies have impact on the quality and diversity of learned
generators on real-world data.

1 Introduction

When GANs were first introduced [1], deep learning had already had striking successes with learning
discriminative models while high quality deep generative models had yet to appear. The GAN
framework combined these two models in an adversarial setting that allowed the successes of
discriminative models to be used to train generative models that produced realistic samples. The first
GAN pitted a two class real/fake discriminator against a generator network and real images [1]. Since
then a multitude of innovations in the architectures of these networks, and loss functions for how to
combine them, have flourished [2], with the chief goals of improving sample diversity and quality [3].

Many works have found new ways to incorporate class information into the GAN training process
to improve image generation [4, 5, 6, 7, 8, 9]. In this work we focus on K+1 GANs which combine
the task of real/fake discrimination with class discrimination directly [9]. K+1 GANs proved most
successful in improving semi-supervised learning classification performance [9, 10, 7], but have more
recently been challenged by a different class of methods [11, 12]. They have never been as widely
successful as GANs with auxiliary classifiers (ACGAN) [4], or GANs that use class embeddings
without the classification task [6, 13, 14]. Here we investigate why the GAN architecture which most
closely unifies real sample classification with fake sample classification has been overtaken by other
methods.

We study a hypothesis testing inspired extension of the binary GAN into the K+1 setting [9], where
K real distributions are classified against each other, and against a fake distribution. We show how
the optimal discriminator/classifier in this setting is a straightforward generalization of the optimal
binary GAN discriminator, and show that the formulation of the log likelihood loss prevents the
generator from fully benefiting from supervision over the classes of real samples. Then we then
introduce another generator loss criterion that uses dynamic labeling [7], and describe how it has
increased class specificity over the K+1 GAN by emphasizing the modes of the real data. Finally we
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demonstrate with experiments on CelebA and CIFAR10 to what degree both GAN formulations have
an effect on increasing the quality and diversity of samples over the original binary GAN and more
popular ACGAN.

2 GANs and their multi-class generalizations

2.1 Binary GANs and K+1 GANs

The generalization of the binary GAN [1], known as the K+1 GAN (and also as LabelGAN [7]),
was originally developed for semi-supervised learning with GANs [9]. We let M = K + 1 denote
the total number of classes, K real classes plus the fake class, which we refer to as the zeroth class.
This generalization echoes the form of the generalization of binary minimax hypothesis testing to be
M-ary [15]. We use the notation that X,H,D,Z are respectively the images, hypotheses (fake, real
class 1, real class 2, etc), decisions, and random codes. Our discriminator d(x) outputs the vector
dm(x) = P[D = m|X = x],m = 0, 1, . . . ,M − 1. The objective function of the binary GAN
naturally generalizes to training all outputs of the discriminator:

LK+1(d, g) =

M−1∑
m=0

pmE[logP[D = m | X] | H = m]

=

M−1∑
m=1

pm

∫
log dm(x)fm(x)dx+ p0

∫
log d0(g(z))f0(g(z))dF (g(z))

(1)

We denote the fake and real densities as fh(x) = P[X = x | H = h], h = 0, 1, . . . ,K and pm is
the prior on each hypothesis (often taken to be uniform). For every image x the optimal decision
vector d∗(x) exists and each of itsM elements is given by d∗m(x) = pmfm(x)/

∑M−1
i=0 pifi(x). This

can be proved for discrete densities using the classic optimality criterion for differentiable convex
objectives [16]. Plugging in d∗(x) into Equation (1) we see:

LK+1(d
∗, g) =

M−1∑
m=0

∫
log

pmfm(x)

favg(x)
pmfm(x)dx

=

M−1∑
m=0

KL(f(·,m) || favg(·))

(2)

where favg(x) =
∑M−1

m=0 pmfm(x). The task of the generator is minf0 LK+1(d
∗, g), which for

discrete PMFs fm is a convex optimization problem, the solution is p0f0(x) → freal(x) =∑M−1
m=1 pmfm(x). This is consistent with the result from [1] for M = 2 and p0 = p1 = 1/2.

The typical intuition in training neural networks is that learning from more data and sharing parameters
across tasks leads to better performance. But here, surprisingly the theory states that by using class
information in the K + 1 GAN to train a discriminator that can discriminate between classes, and
between fake images and each of the classes, is no better than ignoring the class information. That is,
if we have labeled classes for data, but choose to throw it away by merging f1, . . . , fK into a single
freal, the generator of the binary GAN that we train should have the same distribution f0 as if we
trained the K+1 GAN. This result is also consistent with examining the gradients of the K+1 GAN
which reveal a "overlaid-gradient" problem whereby the overall gradient w.r.t. a generated example is
the same as that in the binary GAN [7].

The K + 1 GAN’s original purpose was however to improve the state of the art in semi-supervised
classification [9], rather than improve generation of images (though human annotators were said
to prefer images from a K+1 GAN). We note that in Equation (1) we omitted the part of the loss
for unlabeled real images. Nevertheless we have shown that counter-intuitively, training a fully
supervised K + 1 discriminator to classify the real examples in parallel with telling fake examples
apart from real examples does not change the generator learned.
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2.2 Mode Emphasizing GAN via dynamic labeling

One extension that increases the class specificity of the generator learned by a K+1 GAN is to
introduce dynamic labeling [7]. Such a choice leads to f0 converging to emphasize the modes of
f1, . . . , fK , rather than being the average of them freal.

Looking at the last integral in Equation (1), we notice that the g∗ that solves ming E[logP[D = 0 |
X] | H = 0] also solves ming −E[logP[D 6= 0 | X] | H = 0] = ming −E[log

∑
m>0 P[D = m |

X] | H = 0]. This equivalence provides the intuition for why the density of the generator will be
the average of all the real distributions. Let: LDyn(d, g) = −E[logmaxl>0 P[D = l | X] | H = 0].
That is for each fake g(z) we look at the "most likely mistake" the discriminator makes d(g(z)), and
train g to emphasize it. For d we keep the K+1 GAN objective unchanged. If we let d∗ be optimal in
the sense of the previous section, then

min
g

LDyn(d
∗, g) = min

g
KL(f0 || ptwise max

m>0
fm)−KL(f0 || favg) (3)

Comparing this to Equation (2), our intuition expects f0(x) ≈ maxm>0 fm(x) with Dynamic
Labeling instead of f0(x) =

∑
m>0 fm(x) in K+1 GAN for the following reason. We note that

minf0 KL(f0 || ptwise maxm>0 fm) upper bounds Equation (3), for discrete PMFs it is a convex
optimization problem, and the solution is f0(x)→ maxm>0 fm(x).

Dynamic labeling GAN was found to be experimentally preferable to competing non-dynamically
labeled GANs in the sense of Inception Score (IS) [7]. Our analysis here, which looks at the
unconditional K+1 GAN with dynamic labeling, explains why but also reveals a potential failure
mode. IS is proportional to the KL divergence of P(Y |X) and P(Y ) for images X and labels Y from
a pretrained Inception v3 network [9, 17]. Thus a generator that emphasizes all the modes (classes) of
the real data distribution should generate easily recognizable images and have low entropy P(Y |X)
and have a high entropy P(Y ) by displaying all the classes, giving a high IS. However emphasizing
the modes of the data could also result in lower observed diversity from finite samplings of g since
the density of f0 is concentrated around the modes. For this reason we also refer to this GAN as
"Mode GAN".

2.3 Other multi-class GANs

In this work we focus on the properties of incorporating class information into GANs via a K + 1
architecture. Some other notable GAN architectures that utilize class specific information include
Auxiliary Classifier GANs (ACGANs) [4], and GANs that use projection discrimination with spectral
normalization (SNGAN) [6]. ACGANs use a standard binary GAN architecture and train an additional
fully connected classification layer on the penultimate features of the discriminator. ACGANs don’t
completely unify the tasks of discrimination and classification like K + 1 GANs, but parameters are
shared between the two tasks. In projection discrimination GANs, the one hot class label is embedded
with a spectrally normalized matrix, and the penultimate features of a binary discriminator network
are projected onto this embedding (dot product of two vectors) and added to the binary discriminator
output. Projection discrimination has become the state of the art way to incorporate class information
in GANs [14, 18]. Interestingly, these learned embeddings are not naturally accurate classifiers by
themselves, but adding a training objective to improve their classification ability can improve GAN
metrics like IS and FID further [19].

3 Experiments and discussion

3.1 Datasets and methods

We demonstrate our findings on K+1 GANs using three datasets: synthetic 2D Gaussians, CelebA,
and CIFAR10. Our Gaussian data is created from 10 highly overlapping 2D Gaussians whose
means are distributed uniformly on a circle, samples from different Gaussians are different "classes".
Samples from all the classes are shown in Figure 1i. CelebA is a dataset with 40 binary attribute
annotations and 5 landmark locations. The images we use are 64 × 64 and have the background
cropped. We split this dataset into 5 classes: Front facing female/male with mouth open/closed are 4,
and all faces rotated more than 15 degrees are the 5th. CIFAR10 is a 32× 32 dataset with 10 classes.
We use all 50,000 images for training, and the 10 classes are the labels for our supervised models.
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(i) Data (ii) f0 Expected (iii) f0 Learned (iv)

Figure 1: Mode emphasis of Dynamic Labeling GAN. (i) shows 10 overlapping classes of 2D
Gaussian data arranged on a circle within (0, 4)× (−1, 5). (ii) shows the PMF that is the solution
of the convex upper-bound of Equation (3), this is the distribution that we expect a GAN trained
with LDyn to learn. (iii) shows the histogram of a generator trained with LDyn. (iv) shows a random
selection 10 images from each GAN that have a MTCNN confidence of 0. The first row from is
from a binary GAN, the second row is from ACGAN, and the third row from Dynamic Labeling
GAN. This shows that even if modes are emphasized, this does not necessarily mean samples are not
realized in what could be considered undesirable low density regions of freal.

We train three SN GAN networks [13] (Binary GAN, ACGAN, Mode GAN) with default hyperpa-
rameters and only vary the loss function used. We also train two additional SN GAN networks (Mode
GAN and K+1 GAN) that also used projection discrimination [20]. All networks were trained for
200k iters for CelebA and 500k iters for CIFAR10.

Quantitative evaluation of GANs is itself an active area of research and many information measures
for GANs exist. We focus on the two most popular, Inception Score (IS) and Frechet Inception
Distance (FID) [9, 21]. The Inception Score calculates KL(P(Y |X) || P(Y )), where P is a reference
pretrained Inception v3 network. It evaluates whether generated images can be classified with
confidence by the reference network. Frechet Inception distance calculates || µr −µg || +Tr(Covr +

Covg − 2
√

CovrCovg) from the penultimate features of the same reference network. That is µr and
µg are the mean feature vectors of the real images and generated images respectively, and Covr and
Covg are the covariance matrices of the features of real and generated images respectively.

3.2 Discussion

When the form of the true densities fm(x) are known, we can observe the learned density of the
generator f0 via the histogram of its samples. For the Dynamically Labeled GAN we see the PMF
that minimizes the convex upper-bound of Equation (3) in Figure 1ii emphasizes the modes of the
data. In Figure 1iii we see that the learned g from minimizing Equation (3) while training a GAN
indeed emphasizes the modes of the data: the samples are in high density around the means of each
class, and are low density in the overlap between classes. However, this simple example does not
generalize neatly to real data. We may expect an analogous situation in the domain of faces to be
that few samples exist between the "means" of the 5 classes we chose: i.e. no interpolations between
males facing left and females facing right. But we see in Figure 1iv that Dynamically Labeled GAN
generates unwanted low quality samples just like the baseline Binary GAN and ACGAN networks.

To measure the quality of our CelebA GAN’s output, we use the confidence output of MTCNN, a
publicly available pretrained face detector, to measure the frequency of bad generator samples. In
Figure 1iv are examples of images that MTCNN assigns 0 confidence output by all 3 GANs. For
images that are far away from the modes of the CelebA data density, for example images that blur
together multiple face orientations into 1 image, MTCNN will assign a low confidence. The right
hand side of Figure 2 shows out of 100,000 samples generated by each GAN, the percentage of
images with MTCNN confidence greater than c = 0, 1 − 10−1, . . . , 1 − 10−4 is always largest in
Mode GAN, but only by a small margin. And as shown in the figure, all the networks produce a score
0 face 4-6 times every 10000 images.

The left hand side of Figure 2 shows that performance was tied for the three networks on CelebA and
CIFAR10. Adding projection discrimination (PJ) to the networks yeilded a much greater difference
in IS performance than the changes in loss function. We show some samples from the CIFAR10
GANs in Figure 3, which are hard to qualitatively rank.
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Method FID IS
CelebA CIFAR-10

SN GAN 4.13 8.03
SN ACGAN 5.07 8.02
SN Mode GAN 3.65 8.13
PJ SN Mode GAN 8.50
PJ SN K+1 GAN 8.43

Figure 2: On the left are FIDs image generation on CelebA and Inception scores for CIFAR-10.
On the right is the percentage of 100,000 samples generated by each GAN for which MTCNN has
greater than c confidence that a face is present, where c = 0, 1−10−1, 1−10−2, 1−10−3, 1−10−4.
We use the publicly available pretrained MTCNN face detector network to compute the confidence
scores.

(i) SNGAN (ii) ACGAN (iii) Mode GAN (iv) CIFAR10

Figure 3: Generated images on CIFAR10 for the three methods we compare. Images are randomly
selected from each generator and sorted by class by an auxiliary DenseNet121 classifier with 95%
test accuracy into the 10 classes of CIFAR10: plane, car, bird, cat, deer, dog, frog, horse, ship, truck.
In iv we plot the mean pairwise distance of the outputs of the three GANs. That is for each image in
a batch of size in the range n ∗ 128, n = 1, 2, . . . , 79 an embedding was generated by an auxiliary
network, and then the pairwise Euclidean distances were computed. For each of these 79 batches of
increasing size the mean embedding distance per generator was recorded. In each plot the average
of 10 trials is shown with the standard deviation shaded. The embedding network was the 1,024
dimension penultimate layer of a DenseNet-121.

To measure diversity within a batch of generated images, we embed the images in a feature space
with an auxiliary network, calculate all the pairwise distances, and record the mean. In Figure 3iv we
see Mode GAN always has a higher mean pairwise distance only within a margin of error. Thus we
don’t observe that fitting the modes of real data yields a big impact on quality or diversity of samples.

4 Conclusion

This work provided a hypothesis testing perspective on the canonical binary GAN, its K+1 GAN
generalization, and an extension meant to increase the class specificity during training, Dynamically
Labeled GAN. We showed that the GAN’s generator is not benefited by the classification of real vs
real samples in K+1 GANs. And we demonstrated that Dynamically Labeled GAN emphasizes the
modes of the real data distributions, but this has a tenuous link to increased quality and diversity of
generated samples.
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