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Abstract001

Large language models (LLMs) have demon-002
strated impressive capabilities across various003
natural language processing tasks due to large-004
scale pre-training and extensive instruction005
fine-tuning. However, enhancing their reason-006
ing abilities remains a significant challenge,007
often requiring supervised fine-tuning with ex-008
tensive labeled datasets, which is resource-009
intensive. In this paper, we introduce a010
simple yet effective unsupervised fine-tuning011
method that significantly improves the rea-012
soning performance of LLMs using only pre-013
fix substrings as minimal guidance. Our ap-014
proach leverages the inherent reasoning struc-015
tures within pretrained models to facilitate rea-016
soning without the need for annotated data.017
We find that different reasoning trajectories018
for the same question tend to share common019
prefixes, a phenomenon we term Prefix Self-020
Consistency. By training the model on these021
prefixes, we enhance its reasoning capabilities022
efficiently. Experiments across various train-023
ing corpora show that our method outperforms024
vanilla full-token fine-tuning and achieves025
performance comparable to supervised ap-026
proaches like Rejection Sampling Fine-Tuning027
(RFT), while requiring significantly less train-028
ing and inference time. This demonstrates that029
minimal unsupervised fine-tuning can substan-030
tially enhance the reasoning capabilities of031
LLMs, opening new avenues for efficient and032
accessible model improvement.033

1 Introduction034

Large language models (LLMs) have made sig-035

nificant advancements in numerous natural lan-036

guage processing (NLP) tasks, primarily due to037

large-scale pre-training combined with extensive038

instruction fine-tuning datasets (Longpre et al.,039

2023; Touvron et al., 2023). Despite these break-040

throughs, equipping LLMs with complex reason-041

ing capabilities remains a formidable challenge.042
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Figure 1: Rejection Sampling Fine-tuning (RFT) in-
volves generating multiple responses to a given ques-
tion and then applying posterior filtering to discard tra-
jectories (e.g., y1 and y2) that lead to incorrect answers.
Finally, the data pair (x, y3), where y3 is the correct
response, is used for final training. In contrast, the
proposed U-RFT method requires only a single sam-
ple and focuses on training with the initial tokens of
the response, eliminating the need for extensive poste-
rior filtering and rejection sampling.

Recent studies (Yang et al., 2024; OpenAI, 043

2023; Dubey et al., 2024; Guo et al., 2025) have 044

demonstrated remarkable reasoning abilities in 045

LLMs. One line of research focuses on enhancing 046

reasoning performance through various prompting 047

techniques (Wei et al., 2022a; Yao et al., 2023) or 048

by ensembling and reranking multiple inference 049

paths, such as verification (Cobbe et al., 2021; 050

Uesato et al., 2022) and self-consistency (Wang 051

et al., 2023b). However, employing in-context 052

learning (ICL) and generating multiple inference 053

paths is computationally expensive and unsuitable 054

for online deployment (Muennighoff et al., 2025). 055

Moreover, these methods do not fundamentally 056

improve the model’s inherent reasoning capabili- 057

ties but rather guide it using external cues. 058

Another direction explores leveraging the 059

LLMs’ ability to generate solutions and verify 060

their correctness to produce guidance-oriented 061

data for training, exemplified by methods like 062

ReST (Zelikman et al., 2022), Rejection Sampling 063

Fine-Tuning (RFT) (Yuan et al., 2023), and Self- 064

Taught Reasoner (STaR) (Zelikman et al., 2022). 065
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V-STaR (Hosseini et al., 2024) further combines066

correct and incorrect trajectories using a verifi-067

cation and self-improvement paradigm. While068

these approaches have advantages, they are time-069

consuming, computationally expensive, and con-070

strained by the availability of high-quality labeled071

data. They are also limited to improving weaker072

base models and assume that correct answer tra-073

jectories can be easily obtained through multiple074

sampling attempts. For extremely difficult ques-075

tions, the model may require hundreds of infer-076

ence attempts to find a correct path. Additionally,077

these methods rely on label-based posterior filter-078

ing, which fails when there are no pre-specified079

correct answers. This limitation hinders the ac-080

quisition of high-quality responses for challeng-081

ing questions, even if the questions themselves are082

readily available.083

Some works, such as s1 (Muennighoff et al.,084

2025) and LIMO (Ye et al., 2025), demonstrate085

that a small subset of curated datasets can unlock086

strong generalization capabilities in LLMs for rea-087

soning tasks. However, these approaches heavily088

rely on external strong model distillation or distant089

supervision to construct high-quality answers for090

difficult questions. These challenges restrict fur-091

ther improvements in the model’s reasoning abil-092

ities. This raises a critical question: How can we093

design an efficient and scalable method to enhance094

the reasoning capabilities of LLMs without rely-095

ing on external supervision?096

In this paper, we investigate an unsupervised097

sampling setup, also referred to as rejection-098

free sampling. This setup emphasizes collecting099

and training on diverse and challenging questions100

rather than scaling up the number of self-training101

samples, which can be time-consuming. We pro-102

pose a novel unsupervised fine-tuning method that103

enhances the reasoning abilities of LLMs using104

only prefix substrings as minimal guidance.105

Our approach is based on the observation that106

LLMs have latent reasoning structures acquired107

during pre-training on large corpora (Brown et al.,108

2020) and can be aligned using only a small sub-109

set of high-quality data (Muennighoff et al., 2025;110

Ye et al., 2025). By leveraging these inherent111

capabilities, we aim to enhance the model’s rea-112

soning potential without annotated data. We find113

that different reasoning trajectories sampled by114

LLMs for the same question tend to share com-115

mon prefix substrings, suggesting a locally correct116

supervision signal, which we term Prefix Self-117

Consistency. Errors typically occur in the later 118

steps of the reasoning trajectory (see Section 4.6 119

for a detailed discussion). 120

Our extensive experiments across four popu- 121

lar training datasets demonstrate that, in a setting 122

without posterior sampling, our method outper- 123

forms vanilla full-token fine-tuning. Moreover, 124

under a rejection sampling setup, our proposed 125

method achieves performance comparable to RFT 126

while requiring only 3
10 of the training time and 1

16 127

of the inference time. 128

In summary, our contributions are three-fold: 129

1. Unsupervised Fine-Tuning with Minimal 130

Guidance: We introduce a simple fine-tuning 131

technique called Unsupervised Rejection-Free 132

Fine-Tuning (U-RFT) that utilizes only prefix 133

substrings to steer the model toward better rea- 134

soning performance, minimizing the need for 135

extensive labeled datasets or elaborate prompts. 136

2. Empirical Validation: We conduct compre- 137

hensive experiments across four training cor- 138

pora and evaluate on four widely used reasoning 139

benchmarks. U-RFT demonstrates exceptional 140

data efficiency and flexibility, outperforming 141

vanilla full-token fine-tuning in an unsupervised 142

sampling setting. Furthermore, U-RFT achieves 143

performance competitive with RFT while re- 144

quiring only 3
10 of the training time and 1

16 of 145

the inference time. 146

3. Analysis of Model Behavior: We provide an 147

in-depth analysis and case studies of Prefix Self- 148

Consistency to explain how U-RFT works, of- 149

fering insights into the underlying mechanisms. 150

This analysis contributes to the understanding of 151

unsupervised post-training by identifying reli- 152

able self-supervised signals without the need for 153

external supervision and extensive sampling. 154

2 Related Work 155

Unsupervised Learning Traditional unsuper- 156

vised methodologies include Pseudo-labeling (Ye 157

et al., 2020), the Pivot-based approach (Pan 158

et al., 2010), and adversarial neural networks 159

(Ganin et al., 2016). Given the success of 160

the self-supervised learning paradigm in leverag- 161

ing large-scale unlabeled data, pre-trained lan- 162

guage models (Kenton and Toutanova, 2019; Han 163

et al., 2021; Radford et al., 2019) based on self- 164

supervision have become the standard in language 165
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pre-training. Another self-supervised method un-166

der the new paradigm of self-improvement is167

called self-rewarding (Chen et al., 2024; Yuan168

et al., 2024), where the model iteratively enhances169

its performance through self-rewarding mecha-170

nisms without the need for external supervision171

signals. Furthermore, AL (Ji et al., 2024) extends172

the self-improvement paradigm to general unsu-173

pervised domain adaptation scenarios, where the174

model interacts with unsupervised corpora to per-175

form unsupervised continual pre-training. In this176

paper, we focus on how to find self-supervised sig-177

nals in the field of mathematical reasoning. We178

propose U-RFT, a simple yet effective unsuper-179

vised post-training method that requires only a set180

of questions and the LLM itself.181

Self-Training and Self-Improvement. A fam-182

ily of methods, starting with STaR (Zelikman183

et al., 2022), reinforced self-training (Gulcehre184

et al., 2023), and rejection fine-tuning (Yuan185

et al., 2023), leverages the solutions gener-186

ated by large language models (LLMs) to itera-187

tively update and improve the models themselves.188

These techniques involve fine-tuning the model on189

the generated solutions that produce correct an-190

swers. ReSTEM (Singh et al., 2023) views this191

fine-tuning process as expectation-maximization-192

based reinforcement learning (RL) for a solution-193

generating agent. Wang et al. (2023a) propose us-194

ing a contrastive loss to enhance the likelihood of195

correct solutions over incorrect ones. The discov-196

ery of successful solutions presents a significant197

exploration challenge. Luong et al. (2024) demon-198

strated that RL-based fine-tuning of an LLM is199

particularly difficult unless preceded by several200

steps of supervised fine-tuning. In An et al.201

(2023), a more powerful LLM was employed to202

edit the incorrect rationales generated by a smaller203

model, thereby providing positive data for its fine-204

tuning. However, Huang et al. (2023) argued that205

LLMs have limited capacity to correct their own206

reasoning flaws.207

3 Method208

3.1 Unsupervised Rejection-Free Sampling209

Fine-Tuning210

The U-RFT starts from a pre-trained LLM, de-211

noted as Φθ0 and a set of questions Q =212

{q1, q2, ..., qm} to be aligned. We first use model213

Φθ0 to perform a single sampling for each question214

Algorithm 1 The algorithm of U-RFT
Input: Φθ0 , Q, p, k
Output: Φθ1

1: // Sampling
2: T0 ← //Default Chat Template of Φθ0

3: T ← //Chat Template of initial step training
4: P← ϕ//Initialize an empty data set
5: Φθ1 ← Φθ0//Initialize the SFT model using Φθ0

6: for question q inQ do
7: a← Φθ0(T0(q))
8: Q← Q ∪ {(q, a)}
9: end for

10: M← length//Get the data size of Q
11: threshold← M× p//Initialize an empty data set
12: // Unsupervised Rejection-Free Sampling Fine-Tuning
13: for i, (q, a) in enumerate(P) do
14: n← //Get the length of a
15: if i > threshold then
16: ℓ1 ← − logP (a1:k|T (q); θ1)
17: θ1 ← UpdateParameters(ℓ1, θ1)
18: else
19: ℓ1 ← − logP (a1:n|T0(q); θ

1)
20: θ1 ← UpdateParameters(ℓ1, θ1)
21: end if
22: end for
23: return Φθ0

q in Q. 215

a = Φθ0(Template(q)) (1) 216

where the Template(·) represents the default Chat 217

Template of Φθ0 , used to wrap q as an instruc- 218

tion prompt. 219

After performing a single sampling on all 220

questions, we obtain a set of data pairs P = 221

{(qi, ai)}Mi=1 with size M . Next, we proceed with 222

prefix fine-tuning using these data pairs. Specif- 223

ically, for each generated answer ai containing 224

ni tokens, we only use the first k tokens (where 225

k ≪ ni) along with the template T shown in Fig- 226

ure 2 for fine-tuning. 227

Formally, for each answer ai, we extract the first 228

k tokens: 229

a1:ki = {a1i , a2i , . . . , aki } (2) 230

The optimization objective is to minimize this 231

loss function: 232

L(qi, ai) = − logP (a1:ki |qi; θ0) (3) 233

3.2 Reasoning Structure Tuning 234

To prevent catastrophic forgetting of reasoning 235

structures and length generalization (Muennighoff 236

et al., 2025) during the prefix learning process, 237

we have designed a simple yet effective multi-task 238

learning method to address this issue. Specifically, 239

we randomly select a subset Ps = {(qj , aj)}Lj=1 240
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The prompt for initial step learning

[question] Please provide the
initial step towards resolving the
question. This step may serve
as a foundation but might not
encompass the entire solution.

Figure 2: The prompt for initial step learning.
[question] represents the question that needs to be an-

swered.

of the training data for reasoning structure tuning,241

where L is the length of Ps and L/M = p. Dur-242

ing the reasoning structure tuning stage, all tokens243

in a and q will be used to align the model’s rea-244

soning format. Formally, given a set of data pairs245

Ps = {(qj , aj)}, the optimization objective of rea-246

soning structure tuning is defined as:247

L(qj , aj) = − logP (a1:nj |qj ; θ0) (4)248

In summary, the entire algorithm flow of U-RFT is249

shown in Algorithm 1.250

4 Experiment251

In this section, we will introduce the systematic252

experiments conducted in this paper. We com-253

pare U-RFT to traditional supervised-based meth-254

ods like SFT and RFT under the supervised sam-255

pling and unsupervised sampling settings, assess256

its scalability with different self-training corpora257

and different backbone models. We also analyze258

the impact of reasoning structure tuning and pre-259

fix length on performance, and present a detailed260

case study and rollout performance to provide a261

deeper understanding of U-RFT.262

4.1 Experiments Setup263

Backbone Model. For backbone model, we use264

three open-source models on hugginceface1.265

• Llama-3.1-8B-Instruct (Dubey et al., 2024):266

an general instruction-tuned language model267

based on the Llama 3 architecture.268

• Qwen2.5-Math-7B-Instruct (Yang et al.,269

2024): a specialized model in the Tongyi270

Qwen2.5 series that has been optimized for271

mathematical tasks.272

• DeepSeek-R1-Distill-Qwen-7B (Guo et al.,273

2025): an open source 7B checkpoints based274

1https://huggingface.co/

Self-Training Dataset Questions

PRM-12K (Lightman et al., 2024) 12K
OpenMathInstruct2 (Toshniwal et al., 2024) 600K
U-Hard 100K
LIMO (Ye et al., 2025) 819

Table 1: Comparison of various self-training datasets.

on Qwen2.5-Math-7B and distilled from 275

DeepSeek-R1. 276

Self-Training Corpora Construction We em- 277

ploy four dataset as our training dataset to gener- 278

ate self-training data to perform U-RFT and other 279

baselines. The statistic details are illustrated in Ta- 280

ble 1. 281

• PRM-12K (Lightman et al., 2024): it con- 282

tains 12K math questions, including data 283

from 4.5K MATH (Hendrycks et al., 2021) 284

test problems in the PRM800K training set. 285

• OpenMathInstruct2-600K (OMI2) (Toshni- 286

wal et al., 2024): OpenMathInstruct2 is a 287

math instruction tuning dataset consisting of 288

14 million problem-solution pairs generated 289

using the Llama3.1-405B-Instruct model. By 290

deduplicating the questions, we obtained a 291

set of 600,000 unique questions. We refer to 292

this dataset as OMI2-600K in the following 293

sections for convenience. 294

• LIMO (Ye et al., 2025): LIMO demon- 295

strates that models can achieve superior per- 296

formance with significantly less but higher 297

quality training data, comprising a total of 298

817 questions. We introduce LIMO be- 299

cause of its high difficulty level, making the 300

cost of filtering to obtain the correct paths 301

through large-scale rejection sampling very 302

high. Therefore, it is naturally well-suited for 303

the unsupervised setting studied in this paper. 304

• U-Hard: To further explore the potential of 305

U-RFT in an unsupervised setting, we intro- 306

duce a question set with real-world practical 307

significance called U-Hard-100K. U-Hard is 308

a dataset containing 100,000 questions. We 309

began by extensively collecting a large num- 310

ber of questions from publicly available on- 311

line sources. Following the Omni-math (Gao 312

et al., 2024) approach, we labeled the diffi- 313

culty of the data. By filtering out questions 314
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with lower difficulty scores, we ultimately315

curated a dataset consisting only of challeng-316

ing questions. We refer to this dataset as U-317

Hard-100K in subsequent sections.318

For each data source, we used the correspond-319

ing base model to sample questions. We con-320

sidered two experimental settings: unsupervised321

sampling and supervised sampling. In the unsu-322

pervised sampling setting, we sampled each ques-323

tion only once without posterior filtering; super-324

vised sampling follows the RFT setting, where325

each question is sampled multiple times and then326

the standard answers are used to filter multiple327

samples to obtain the final question set.328

Implementation Details It is worth noting that329

when the best performance is achieved under the330

vanilla SFT setting, we fix the current set of hy-331

perparameters for the training of U-RFT for a fair332

comparison. Except for LIMO, the default value333

of p is set to 0.1 for all self-training datasets. Due334

to the limited amount of LIMO data, we increase335

its proportion for reasoning format tuning, setting336

p to 0.3. We set k to 8, 32, and 128 for Llama-337

3.1-8B-Instruct, Qwen2.5-Math-7B-Instruct, and338

Deepseek-R1-Distill-Qwen-7B, respectively. Im-339

plementation details is shown in Appendix C.340

Benchmarks. We evaluate the reasoning perfor-341

mance of model on four downstream reasoning342

datasets: 1) GSM8K (Cobbe et al., 2021): a343

dataset of high-quality, linguistically diverse grade344

school math word problems created by human345

problem writers; 2) MATH500 (Hendrycks et al.,346

2021): a rigorous dataset comprising problems347

from high school math competitions; 3) AIME24:348

the 2024 American Invitational Mathematics Ex-349

amination; 4) GPQA (Rein et al., 2023): a chal-350

lenging dataset designed to evaluate the capabili-351

ties of LLMs and scalable oversight mechanisms.352

For the evaluation of all benchmarks, we use ac-353

curacy as the evaluation metric.354

Baselines. Following RFT (Yuan et al., 2023)355

and V-STaR (Hosseini et al., 2024), we select the356

following methods into our comparison:357

• 1) In-Context Learning (ICL) (Wei et al.,358

2022b): We use ICL to perform reasoning.359

• 2) Vanilla Supervised Fine-Tunign (Vanilla360

SFT) (Ouyang et al., 2022): Applying fine-361

tuning on training data without any self-362

improvement or test-time verification.363

• 3) RFT (Yuan et al., 2023): After running 16 364

times sampling and using label filter to these 365

candidate answers, then we train the model 366

only 1 iteration. 367

• 4) V-STaR [1 Iter] (Hosseini et al., 2024): 368

Bootstrapping a generator and training a ver- 369

ifier for 1 iteration with 16 answers from V- 370

STaR’s generator. 371

4.2 Main Results 372

We conducted extensive experiments on the four 373

datasets mentioned in Section 4.1. The experimen- 374

tal results under unsupervised sampling are shown 375

in Table 2. In a single-sample unsupervised set- 376

ting, the performance of vanilla SFT decreases on 377

both OMI2-600K and U-Hard-100K. In contrast, 378

U-RFT surpasses the performance of vanilla SFT 379

across all model and training corpus settings. In 380

n the single-sample unsupervised setting, the per- 381

formance of vanilla SFT decreases on both OMI2- 382

600K and U-Hard-100K datasets. Specifically, on 383

the OMI2-600K dataset, U-RFT achieves an av- 384

erage accuracy of 52.9, which represents an im- 385

provement of 3.2 points over the vanilla SFT’s av- 386

erage accuracy of 49.7, and an improvement of 1.5 387

points over the ICL’s average accuracy of 51.4. 388

For comparison purposes, we also conduct ex- 389

periments under a supervised sampling setup. 390

The experimental results are shown in Table 3. 391

Similarly, on the U-Hard-100K dataset, U-RFT 392

achieves an average accuracy of 61.6. This 393

marks a significant improvement of points over 394

the vanilla SFT’s average accuracy of 56.4, and 395

an improvement of 4.4 points over the ICL’s aver- 396

age accuracy of 57.2. These results demonstrate 397

the superior performance of U-RFT across differ- 398

ent models and training corpus settings. We per- 399

form extensive sampling on the PRM12K dataset 400

to collect trajectories leading to the correct an- 401

swer for each question. The results demonstrate 402

that U-RFT exhibits exceptional data efficiency 403

and SOTA performance across various reasoning 404

benchmarks. For both Llama-3.1-8B-Instruct and 405

Qwen2.5-Math-7B-Instruct models, U-RFTt=16 + 406

label filter achieves the highest average accu- 407

racy. Moreover, even with a single sampling 408

(t=1), U-RFT achieves performance competitive 409

with RFTt=16 + label filter and V-STaR, indicating 410

that U-RFT can effectively enhance model perfor- 411

mance with minimal sampling. 412
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Dataset Model GSM8K MATH500 AIME2024 GPQA Avg Acc.

OMI2-600K

Qwen2.5-Math-7B-Instruct
ICL 95.2 84.0 16.7 9.6 51.4
Vanilla SFTt=1 95.4 83.4 13.3 6.6 49.7
U-RFTt=1 95.4 86.4 20.0 9.6 52.9

U-Hard-100K

Qwen2.5-Math-7B-Instruct
ICL 95.2 84.0 16.7 9.6 51.4
Vanilla SFTt=1 95.5 83.4 16.7 9.6 51.3
U-RFTt=1 96.0 85.6 26.6 9.6 54.5

DeepSeek-R1-Distill-Qwen-7B
ICL 88.6 87.0 40.0 13.1 57.2
Vanilla SFTt=1 89.7 87.0 36.7 12.1 56.4
U-RFTt=1 91.4 89.2 50.0 15.7 61.6

LIMO-800

Qwen2.5-Math-7B-Instruct
ICL 95.2 84.0 16.7 9.6 51.4
Vanilla SFTt=1 95.8 84.2 20.0 7.6 51.9
U-RFTt=1 95.6 85.8 20.0 8.6 52.5

DeepSeek-R1-Distill-Qwen-7B
ICL 88.6 87.0 40.0 13.1 57.2
Vanilla SFTt=1 89.7 87.0 40.0 12.1 57.2
U-RFTt=1 92.0 89.4 43.3 17.7 60.6

Table 2: Comparison of model performance (Acc.) across various reasoning benchmarks under the unsupervised
sampling setting. The backbone models include state-of-the-art LLMs such as Qwen2.5-Math-7B-Instruct and
DeepSeek-R1-Distill-Qwen-7B. t = 1 means only a single sampling is performed, without filtering the data based
on the correct extract answer.

4.3 Ablation Study413

The ablation results shown in Table 4 clearly show414

that the integration of U-RFT with RST results in415

the best performance across the benchmarks. The416

significant drop in accuracy for U-RFT w/o RST417

underscores the necessity of RST in achieving op-418

timal performance. For a detailed experimental419

analysis of the RST data proportion p and prefix420

length k, please refer to the subsequent chapters.421

4.4 Impact of Prefix Length422

Table 5 and Table 6 show our comprehensive com-423

parison experiments regarding the prefix length.424

The highest average accuracy of 68.7 is achieved425

at k = 8. As k increases beyond 8, the average426

performance tends to decrease slightly. The op-427

timal prefix length for the LIMO dataset appears428

to be k = 128, achieving the highest average429

accuracy of 66.4. The optimal k values for the430

two models are different. Possible reasons are:431

1) Stronger models have reasoning chains with432

longer common prefix patterns; 2) Difficult ques-433

tions often lead models to generate longer outputs,434

resulting in longer similar substrings. Therefore,435

to further explore the underlying mechanisms of436

U-RFT and the values of k, we conducted a case437

study and comprehensive rollout experiments in438

Section section.439

4.5 Impact of Reasoning Structure Tuning 440

To investigate the impact of reasoning structure 441

tuning, we conducted comprehensive experiments 442

by varying the proportion of this part of the data. 443

Specifically, we used llama-3.1-8B-Instruct in a 444

supervised setting on PRM12K. To mitigate the 445

potential interference of incorrect paths in the ex- 446

periment, we adopted a supervised setting. The 447

results are shown in Table 7. Without mixing rea- 448

soning structure tuning data for fine-tuning, the 449

model’s performance on GSM8K and MATH500 450

was 2.0 and 10.2, respectively. This indicates that 451

without full-token fine-tuning, the model performs 452

extremely poorly on reasoning tasks and cannot 453

effectively handle complex reasoning. Further ob- 454

servation of the model’s reasoning results shows 455

that this disrupts the model’s instruction-following 456

capability for reasoning structures, affecting its 457

generalization in the mathematical domain as well 458

as its generalization for reasoning length. 459

When the data ratio for full-token fine-tuning 460

was 50% and 100%, the model’s performance on 461

GSM8K and MATH500 was 86.3 and 52.0 (50% 462

ratio) and 86.0 and 52.0 (100% ratio), respectively. 463

This indicates that increasing the full-token fine- 464

tuning data ratio beyond 10% provides very lim- 465

ited performance improvement. 466
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Dataset Model GSM8K MATH500 AIME2024 GPQA Avg Acc.

PRM-12K

Llama-3.1-8B-Instruct
ICL 82.0 51.0 3.3 8.6 36.2
Vanilla SFTt=1 83.8 48.4 3.3 8.6 36.0
RFTt=16 + label filter 86.0 52.0 6.7 9.1 38.5
V-STaRt=16 85.4 52.6 6.7 8.6 38.3
U-RFTt=16 + label filter 85.8 53.4 6.7 9.1 38.8
U-RFTt=1 85.4 52.0 6.7 9.1 38.3

Qwen2.5-Math-7B-Instruct
ICL 95.2 84.0 16.7 9.6 51.4
Vanilla SFTt=1 95.8 83.4 13.3 9.1 50.4
RFTt=16 + label filter 95.7 85.2 20.0 9.6 52.6
V-STaRt=16 96.0 85.4 20.0 10.1 52.9
U-RFTt=16 + label filter 96.0 85.6 20.0 10.1 52.9
U-RFTt=1 95.5 85.6 20.0 9.6 52.6

Table 3: Comparison of model performance (Acc.) across various reasoning benchmarks under the two sampling
settings. The backbone models include state-of-the-art LLMs such as Qwen2.5-Math-7B-Instruct and DeepSeek-
R1-Distill-Qwen-7B. t = 1 means only a single sampling is performed, without filtering the data based on the
correct extract answer.

Methods GSM8K MATH500 Avg.

U-RFT w/o RST 2.0 10.2 6.1
vanilla SFT 83.8 48.8 66.1
RST only 84.3 48.4 66.4
U-RFT 85.4 52.0 68.7

Table 4: Ablation study of U-RFT based on Llama-
3.1-8B-Instruct trained on PRM12-12K.RST stands for
reasoning structure tuning, using a subset of the total
data for format fine-tuning.

k GSM8K MATH500 Avg.

1 84.9 51.8 68.4
2 84.2 51.8 68.0
4 84.8 51.8 68.3
8 85.4 52.0 68.7
16 85.4 50.2 67.8
32 84.8 49.4 67.1
64 84.8 48.2 66.5

Table 5: Effect of the prefix length for math do-
main generalization.Experiments are conducted on the
PRM12K dataset, using Llama-3.1-8B-Instruct as the
backbone model.

k GSM8K MATH500 GPQA Avg.

8 91.7 87.2 15.7 64.9
32 91.5 87.0 16.6 65.0
64 91.6 89.2 13.1 64.6

128 92.0 89.4 17.7 66.4
256 90.5 90.4 17.7 66.2

Table 6: Effect of the prefix length for math do-
main generalization.Experiments are conducted on the
LIMO dataset, using DeepSeek-R1-Distill-Qwen-7B
as the backbone model.
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Figure 3: Performance comparison of rollout based on
correct trajectory and incorrect trajectory on PRM-12K
dataset using Llama-3.1-8B-Instruct.

4.6 Discussion about Prefix Self-Consistency 467

Figure 4 presents a multi-sampling case using 468

Qwen2.5-Math-7B-Instruct. By examining the 469

first 32 words of these responses, we can see that 470

the first 32 tokens of different responses are very 471

similar. This indicates that during multiple reason- 472

ing processes, the model exhibits a high degree of 473

consistency in the initial steps. This consistency 474

reflects the model’s stability in the preliminary 475

reasoning stage, such as understanding the prob- 476

lem and formulating the overall strategy. Further 477

observation reveals that the divergent information 478

between different samples often occurs in the later 479

stages. Multiple divergent later stages often share 480

the same prefix. Based on this insight, we de- 481

signed a rollout experiment at different positions. 482

Specifically, we randomly sampled 500 questions 483

from prm12K, each containing one trajectory lead- 484
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Case Study

Question: Melinda has three empty boxes and 12 textbooks, three of which
are mathematics textbooks. One box will hold any three of her textbooks,
one will hold any four of her textbooks, and one will hold any five of her
textbooks. If Melinda packs her textbooks into these boxes in random order,
the probability that all three mathematics textbooks end up in the same box
can be written as m

n
, where m and n are relatively prime positive integers.

Find m+ n.
The first 32 words (prefix substring) of all answers:
A1: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three
A2: To determine the probability that all three mathematics textbooks end
up in the same box, we need to follow these steps: 1. **Calculate the total
number of ways to pack the textbooks
A3: To determine the probability that all three mathematics textbooks end
up in the same box, we start by calculating the total number of ways to
distribute the 12 textbooks into the three
A4: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three

Figure 4: With the temperature set to 0.7, we sample 16 times based on Qwen2.5-Math-Instruct for the given
question, where A1-A4 represent the corresponding eight output results. Due to space limitations, please refer to
Figure 5 for the complete 16 sampling results.

p GSM8K MATH500 Avg.

0% 2.0 10.2 6.1
1% 57.5 27.8 42.7
5% 84.5 50.0 67.3
10% 85.8 53.4 69.6
50% 86.3 52.0 69.2

100% 86.0 52.0 69.0

Table 7: Effect of data ratio for reasoning struc-
ture tuning.Here we conduct experiments based on
PRM12K.Note that when the RST data is 100%, the
corresponding term is equivalent to vanilla full-token
fine-tuning.

ing to the correct answer and one trajectory lead-485

ing to the wrong answer. We refer to these as su-486

pervised rollout and unsupervised rollout settings.487

During reasoning, the model is given the first k488

tokens of the trajectory to perform 32 rollout sam-489

ples. The result is shown in Figure 3. At smaller k490

values (such as 1 to 8), the differences between the491

metrics for posterior and non-posterior are mini-492

mal, indicating that posterior information does not493

significantly enhance performance in these cases.494

Starting from k=8, the accuracy for posterior be-495

gin to significantly exceed those for non-posterior,496

and this difference becomes more pronounced at497

larger k values (such as 64). This suggests that498

at larger k values, posterior information signifi-499

cantly improves the model’s performance. This500

phenomenon might indicate that as the k value in- 501

creases, the model has more information for rea- 502

soning and adjustment, thus allowing the poste- 503

rior information to play a greater role, significantly 504

enhancing the performance metrics. The detailed 505

rollout results can be found in Table 8 and Table 9. 506

5 Conclusion 507

In this work, we presented an unsupervised fine- 508

tuning method that enhances the reasoning capa- 509

bilities of large language models using only pre- 510

fix substrings as minimal guidance. Our approach 511

leverages the inherent reasoning structures within 512

pretrained models, exploiting the phenomenon of 513

Prefix Self-Consistency where different reason- 514

ing trajectories share common prefixes. Exten- 515

sive experiments demonstrated that our method 516

outperforms traditional full-token fine-tuning and 517

achieves performance comparable to supervised 518

approaches like RFT, with significantly reduced 519

training and inference times. This work highlights 520

the potential of minimal unsupervised fine-tuning 521

in improving the reasoning abilities of LLMs with- 522

out relying on external supervision or extensive 523

computational resources. Future work will explore 524

the application of this method to other challenging 525

tasks and investigate the theoretical underpinnings 526

of Prefix Self-Consistency in more depth. 527
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Limitations528

• Implementation within the R1 frame-529

work: In the RL framework, online search530

by the model is costly and often requires531

numerous searches to find the correct pos-532

terior trajectory. Although our method has533

achieved excellent performance with Unsu-534

pervised Fine-tuning, how to extend this535

method to the currently popular R1-Zero536

framework has yet to be explored. Future re-537

search should focus on how to combine our538

method with RL to achieve data-efficient RL.539

• Validation with larger-scale models: In our540

experiments, the choice of backbone was541

primarily based on the mathematical capa-542

bilities of the model. Our goal is to fur-543

ther enhance the model’s reasoning ability544

at a low cost. In future research within545

the RL framework, we will consider vali-546

dating our approach on larger-scale models,547

such as QwQ-32B-Preview and DeepSeek-548

R1-Distill-Qwen-32B.549

• Study on sample-independent prefix selec-550

tion strategy: Despite achieving satisfactory551

performance, this work is based on a heuris-552

tic prefix selection strategy. In future re-553

search, we will continue to design an adap-554

tive sample-independent prefix selection for555

U-RFT.556

References557

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,558
Jian-Guang Lou, and Weizhu Chen. 2023. Learn-559
ing from mistakes makes llm better reasoner. arXiv560
preprint arXiv:2310.20689.561

Tom Brown, Benjamin Mann, Nick Ryder, Melanie562
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind563
Neelakantan, Pranav Shyam, Girish Sastry, Amanda564
Askell, and 1 others. 2020. Language models are565
few-shot learners. Advances in neural information566
processing systems, 33:1877–1901.567

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan568
Ji, and Quanquan Gu. 2024. Self-play fine-tuning569
converts weak language models to strong language570
models. In ICML.571

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,572
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias573
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro574
Nakano, and 1 others. 2021. Training verifiers575
to solve math word problems. arXiv preprint576
arXiv:2110.14168.577

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 578
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Let- 579
man, Akhil Mathur, Alan Schelten, Amy Yang, An- 580
gela Fan, and 1 others. 2024. The llama 3 herd of 581
models. arXiv preprint arXiv:2407.21783. 582

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, 583
Pascal Germain, Hugo Larochelle, François Lavi- 584
olette, Mario March, and Victor Lempitsky. 2016. 585
Domain-adversarial training of neural networks. 586
Journal of machine learning research, 17(59):1–35. 587

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo 588
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang 589
Chen, Runxin Xu, and 1 others. 2024. Omni-math: 590
A universal olympiad level mathematic bench- 591
mark for large language models. arXiv preprint 592
arXiv:2410.07985. 593

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini- 594
vasan, Ksenia Konyushkova, Lotte Weerts, Ab- 595
hishek Sharma, Aditya Siddhant, Alex Ahern, 596
Miaosen Wang, Chenjie Gu, and 1 others. 2023. Re- 597
inforced self-training (rest) for language modeling. 598
arXiv preprint arXiv:2308.08998. 599

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 600
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong 601
Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025. 602
Deepseek-r1: Incentivizing reasoning capability in 603
llms via reinforcement learning. arXiv preprint 604
arXiv:2501.12948. 605

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, 606
Xiao Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao, 607
Ao Zhang, Liang Zhang, and 1 others. 2021. Pre- 608
trained models: Past, present and future. AI Open, 609
2:225–250. 610

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 611
Arora, Steven Basart, Eric Tang, Dawn Song, and 612
Jacob Steinhardt. 2021. Measuring mathemati- 613
cal problem solving with the math dataset. arXiv 614
preprint arXiv:2103.03874. 615

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron 616
Courville, Alessandro Sordoni, and Rishabh Agar- 617
wal. 2024. V-star: Training verifiers for self-taught 618
reasoners. arXiv preprint arXiv:2402.06457. 619

Jie Huang, Xinyun Chen, Swaroop Mishra, 620
Huaixiu Steven Zheng, Adams Wei Yu, Xiny- 621
ing Song, and Denny Zhou. 2023. Large language 622
models cannot self-correct reasoning yet. arXiv 623
preprint arXiv:2310.01798. 624

Ke Ji, Junying Chen, Anningzhe Gao, Wenya Xie, Xi- 625
ang Wan, and Benyou Wang. 2024. Llms could 626
autonomously learn without external supervision. 627
arXiv preprint arXiv:2406.00606. 628

Jacob Devlin Ming-Wei Chang Kenton and 629
Lee Kristina Toutanova. 2019. Bert: Pre-training 630
of deep bidirectional transformers for language 631
understanding. In Proceedings of NAACL-HLT, 632
pages 4171–4186. 633

9



Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-634
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,635
John Schulman, Ilya Sutskever, and Karl Cobbe.636
2024. Let’s verify step by step. In The Twelfth Inter-637
national Conference on Learning Representations.638

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,639
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V640
Le, Barret Zoph, Jason Wei, and 1 others. 2023. The641
flan collection: Designing data and methods for ef-642
fective instruction tuning.643

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng644
Sun, Xiaoran Jin, and Hang Li. 2024. ReFT: Rea-645
soning with reinforced fine-tuning. arXiv preprint646
arXiv:2401.08967.647

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-648
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke649
Zettlemoyer, Percy Liang, Emmanuel Candès, and650
Tatsunori Hashimoto. 2025. s1: Simple test-time651
scaling. arXiv preprint arXiv:2501.19393.652

OpenAI. 2023. Gpt-4 technical report. Preprint,653
arXiv:2303.08774.654

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,655
Carroll Wainwright, Pamela Mishkin, Chong Zhang,656
Sandhini Agarwal, Katarina Slama, Alex Ray, and657
1 others. 2022. Training language models to fol-658
low instructions with human feedback. Advances in659
Neural Information Processing Systems, 35:27730–660
27744.661

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang662
Yang, and Zheng Chen. 2010. Cross-domain senti-663
ment classification via spectral feature alignment. In664
Proceedings of the 19th international conference on665
World wide web, pages 751–760.666

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,667
Dario Amodei, Ilya Sutskever, and 1 others. 2019.668
Language models are unsupervised multitask learn-669
ers. OpenAI blog, 1(8):9.670

David Rein, Betty Li Hou, Asa Cooper Stickland,671
Jackson Petty, Richard Yuanzhe Pang, Julien Di-672
rani, Julian Michael, and Samuel R Bowman. 2023.673
Gpqa: A graduate-level google-proof q&a bench-674
mark. arXiv preprint arXiv:2311.12022.675

Avi Singh, John D. Co-Reyes, Rishabh Agarwal,676
Ankesh Anand, Piyush Patil, Xavier Garcia, Pe-677
ter J. Liu, James Harrison, Jaehoon Lee, Kelvin678
Xu, Aaron Parisi, Abhishek Kumar, Alex Alemi,679
Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd680
Bohnet, Gamaleldin Elsayed, Hanie Sedghi, and 22681
others. 2023. Beyond human data: Scaling self-682
training for problem-solving with language models.683
arXiv preprint arXiv:2312.06585.684

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav685
Kisacanin, Alexan Ayrapetyan, and Igor Gitman.686
2024. Openmathinstruct-2: Accelerating ai for math687
with massive open-source instruction data. arXiv688
preprint arXiv:2410.01560.689

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 690
bert, Amjad Almahairi, Yasmine Babaei, Niko- 691
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, 692
Shruti Bhosale, and 1 others. 2023. Llama 2: 693
Open foundation and fine-tuned chat models. arXiv 694
preprint arXiv:2307.09288. 695

Jonathan Uesato, Nate Kushman, Ramana Kumar, 696
Francis Song, Noah Siegel, Lisa Wang, Anto- 697
nia Creswell, Geoffrey Irving, and Irina Hig- 698
gins. 2022. Solving math word problems with 699
process- and outcome-based feedback. Preprint, 700
arXiv:2211.14275. 701

Peiyi Wang, Lei Li, Liang Chen, Feifan Song, 702
Binghuai Lin, Yunbo Cao, Tianyu Liu, and Zhi- 703
fang Sui. 2023a. Making large language models 704
better reasoners with alignment. arXiv preprint 705
arXiv:2309.02144. 706

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V 707
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd- 708
hery, and Denny Zhou. 2023b. Self-consistency im- 709
proves chain of thought reasoning in language mod- 710
els. In The Eleventh International Conference on 711
Learning Representations. 712

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 713
Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le, and 714
Denny Zhou. 2022a. Chain of thought prompting 715
elicits reasoning in large language models. ArXiv, 716
abs/2201.11903. 717

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 718
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 719
and 1 others. 2022b. Chain-of-thought prompting 720
elicits reasoning in large language models. Ad- 721
vances in neural information processing systems, 722
35:24824–24837. 723

An Yang, Baosong Yang, Beichen Zhang, Binyuan 724
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi- 725
heng Liu, Fei Huang, Haoran Wei, and 1 others. 726
2024. Qwen2. 5 technical report. arXiv preprint 727
arXiv:2412.15115. 728

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 729
Thomas L. Griffiths, Yuan Cao, and Karthik 730
Narasimhan. 2023. Tree of thoughts: Deliber- 731
ate problem solving with large language models. 732
Preprint, arXiv:2305.10601. 733

Hai Ye, Qingyu Tan, Ruidan He, Juntao Li, Hwee Tou 734
Ng, and Lidong Bing. 2020. Feature adaptation of 735
pre-trained language models across languages and 736
domains with robust self-training. In Proceedings of 737
the 2020 Conference on Empirical Methods in Nat- 738
ural Language Processing (EMNLP), pages 7386– 739
7399. 740

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie 741
Xia, and Pengfei Liu. 2025. Limo: Less is more for 742
reasoning. arXiv preprint arXiv:2502.03387. 743

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, 744
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston. 745

10

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601


2024. Self-rewarding language models. arXiv746
preprint arXiv:2401.10020.747

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting748
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and749
Jingren Zhou. 2023. Scaling relationship on learn-750
ing mathematical reasoning with large language751
models. arXiv preprint arXiv:2308.01825.752

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.753
Goodman. 2022. Star: Bootstrapping reasoning754
with reasoning. In Advances in Neural Information755
Processing Systems 35: Annual Conference on Neu-756
ral Information Processing Systems 2022, NeurIPS757
2022, New Orleans, LA, USA, November 28 - De-758
cember 9, 2022.759

A Ethics Statement760

The datasets used in this study are all sourced761

from publicly available resources on the internet762

and are freely accessible. Additionally, the back-763

bone models we employ are also publicly avail-764

able. Therefore, there are no ethical concerns re-765

lated to this study.766

k Pass@2 Pass@4 Pass@8 Pass@16
0 68.01 78.53 85.98 91.10
1 68.34 78.15 84.76 89.20
2 68.46 78.44 85.38 90.25
3 68.97 78.75 85.33 89.71
4 68.56 78.43 84.99 89.49
5 68.44 78.38 85.25 90.10
6 68.60 78.67 85.49 90.10
7 69.08 79.01 85.89 90.59
8 69.08 78.94 85.65 90.16

16 69.76 79.27 85.75 90.36
32 71.08 79.65 85.44 89.52
64 73.60 81.52 87.03 91.06

Table 8: Correct solution rollout based on PRM-12K
dataset using Llama-3.1-8B-Instruct.

k Pass@2 Pass@4 Pass@8 Pass@16
0 68.39 78.91 86.24 91.22
1 68.43 78.84 86.07 91.19
2 68.52 78.94 86.31 91.33
3 68.30 78.71 85.98 91.13
4 68.21 78.57 85.88 90.97
5 68.24 78.7 86.21 91.53
6 68.41 78.83 86.41 91.99
7 68.77 79.04 86.12 90.99
8 68.43 78.69 85.98 91.16

16 67.72 77.69 84.91 90.27
32 67.68 77.23 84.35 89.56
64 65.83 74.05 80.67 85.93

Table 9: Incorrect solution rollout based on PRM-12K
dataset using Llama-3.1-8B-Instruct.

Hyperparam. Math-12K OMI2-60K LIMO U-Hard

Optimizer AdamW
Warmup Ratio 0.03
Learning Rate 1e-6 2e-6 1e-6
LR Schedule constant with warmup
Batch Size 1
Gradient Step 8
Max Length 4096 16384
# Epoch 2 1 3 1

Table 10: The hyperparameters used for our method on
all training corpora.

B Detailed Rollout Results 767

Table 8 shows the correct solution rollout where 768

increasing k generally leads to improved perfor- 769

mance across various pass metrics, indicating that 770

longer prefixes contribute to better modeling of 771

context. Notably, performance peaks at k = 64 for 772

Pass@2, achieving 73.60%, and stabilizes across 773

higher k values for other metrics, suggesting a 774

saturation point beyond which additional prefix 775

length offers diminishing returns. In contrast, Ta- 776

ble 9, which details incorrect solution rollouts, fol- 777

lows a similar trend but with slightly lower pass 778

rates. However, beyond k = 8, the performance 779

starts to decline. For example, Pass@2 decreases 780

to 67.68% at k = 32 and further to 67.53% at 781

k = 64. A similar trend is observed for Pass@4, 782

Pass@8, and Pass@16, where the performance 783

drops after k = 8. 784

C Hyperparameters and Implementation 785

The training hyperparameters of U-RFT on dif- 786

ferent datasets are reported in Table 10. To en- 787

sure a fair comparison, please note that all hyper- 788

parameter settings are based on the vanilla SFT 789

performance configuration. During the inference 790

stage, we adopt a prompted zero-shot setup and 791

use standard greedy decoding, wherein models 792

are directed to answer each question using natural 793

language instructions without any accompanying 794

contextual demonstrations. 795
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Case Study

Question: Melinda has three empty boxes and 12 textbooks, three of which
are mathematics textbooks. One box will hold any three of her textbooks,
one will hold any four of her textbooks, and one will hold any five of her
textbooks. If Melinda packs her textbooks into these boxes in random order,
the probability that all three mathematics textbooks end up in the same box
can be written as m

n
, where m and n are relatively prime positive integers.

Find m+ n.
The first 32 words (prefix substring) of all answers:
A1: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three
A2: To determine the probability that all three mathematics textbooks end
up in the same box, we need to follow these steps: 1. **Calculate the total
number of ways to pack the textbooks
A3: To determine the probability that all three mathematics textbooks end
up in the same box, we start by calculating the total number of ways to
distribute the 12 textbooks into the three
A4: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three
A5: To determine the probability that all three mathematics textbooks end
up in the same box, we start by calculating the total number of ways to
distribute the 12 textbooks into the three
A6: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three
A7: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three
A8: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three
A9: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three
A10: To determine the probability that all three mathematics textbooks end
up in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three
A11: To determine the probability that all three mathematics textbooks
end up in the same box, we start by calculating the total number of ways to
distribute the 12 textbooks into the three
A12: To determine the probability that all three mathematics textbooks end
up in the same box, we need to follow these steps: 1. **Calculate the total
number of ways to distribute the 12
A13: To determine the probability that all three mathematics textbooks end
up in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three
A14: To determine the probability that all three mathematics textbooks end
up in the same box, we need to follow these steps: 1. **Calculate the total
number of ways to pack the textbooks
A15: To determine the probability that all three mathematics textbooks end
up in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three
A16: To determine the probability that all three mathematics textbooks end
up in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three

Figure 5: With the temperature set to 0.7, we sample 16 times based on Qwen2.5-Math-Instruct for the given
question, where A1-A16 represent the corresponding eight output results.
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