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Abstract

Large language models (LLMs) have demon-
strated impressive capabilities across various
natural language processing tasks due to large-
scale pre-training and extensive instruction
fine-tuning. However, enhancing their reason-
ing abilities remains a significant challenge,
often requiring supervised fine-tuning with ex-
tensive labeled datasets, which is resource-
intensive. In this paper, we introduce a
simple yet effective unsupervised fine-tuning
method that significantly improves the rea-
soning performance of LLMs using only pre-
fix substrings as minimal guidance. Our ap-
proach leverages the inherent reasoning struc-
tures within pretrained models to facilitate rea-
soning without the need for annotated data.
We find that different reasoning trajectories
for the same question tend to share common
prefixes, a phenomenon we term Prefix Self-
Consistency. By training the model on these
prefixes, we enhance its reasoning capabilities
efficiently. Experiments across various train-
ing corpora show that our method outperforms
vanilla full-token fine-tuning and achieves
performance comparable to supervised ap-
proaches like Rejection Sampling Fine-Tuning
(RFT), while requiring significantly less train-
ing and inference time. This demonstrates that
minimal unsupervised fine-tuning can substan-
tially enhance the reasoning capabilities of
LLMs, opening new avenues for efficient and
accessible model improvement.

1 Introduction

Large language models (LLMs) have made sig-
nificant advancements in numerous natural lan-
guage processing (NLP) tasks, primarily due to
large-scale pre-training combined with extensive
instruction fine-tuning datasets (Longpre et al.,
2023; Touvron et al., 2023). Despite these break-
throughs, equipping LLMs with complex reason-
ing capabilities remains a formidable challenge.
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Figure 1: Rejection Sampling Fine-tuning (RFT) in-
volves generating multiple responses to a given ques-
tion and then applying posterior filtering to discard tra-
jectories (e.g., y1 and y5) that lead to incorrect answers.
Finally, the data pair (z,ys), where ys is the correct
response, is used for final training. In contrast, the
proposed U-RFT method requires only a single sam-
ple and focuses on training with the initial tokens of
the response, eliminating the need for extensive poste-
rior filtering and rejection sampling.

Recent studies (Yang et al., 2024; OpenAl,
2023; Dubey et al., 2024; Guo et al., 2025) have
demonstrated remarkable reasoning abilities in
LLMs. One line of research focuses on enhancing
reasoning performance through various prompting
techniques (Wei et al., 2022a; Yao et al., 2023) or
by ensembling and reranking multiple inference
paths, such as verification (Cobbe et al., 2021;
Uesato et al., 2022) and self-consistency (Wang
et al., 2023b). However, employing in-context
learning (ICL) and generating multiple inference
paths is computationally expensive and unsuitable
for online deployment (Muennighoff et al., 2025).
Moreover, these methods do not fundamentally
improve the model’s inherent reasoning capabili-
ties but rather guide it using external cues.

Another direction explores leveraging the
LLMs’ ability to generate solutions and verify
their correctness to produce guidance-oriented
data for training, exemplified by methods like
ReST (Zelikman et al., 2022), Rejection Sampling
Fine-Tuning (RFT) (Yuan et al., 2023), and Self-
Taught Reasoner (STaR) (Zelikman et al., 2022).



V-STaR (Hosseini et al., 2024) further combines
correct and incorrect trajectories using a verifi-
cation and self-improvement paradigm. While
these approaches have advantages, they are time-
consuming, computationally expensive, and con-
strained by the availability of high-quality labeled
data. They are also limited to improving weaker
base models and assume that correct answer tra-
jectories can be easily obtained through multiple
sampling attempts. For extremely difficult ques-
tions, the model may require hundreds of infer-
ence attempts to find a correct path. Additionally,
these methods rely on label-based posterior filter-
ing, which fails when there are no pre-specified
correct answers. This limitation hinders the ac-
quisition of high-quality responses for challeng-
ing questions, even if the questions themselves are
readily available.

Some works, such as s1 (Muennighoff et al.,
2025) and LIMO (Ye et al., 2025), demonstrate
that a small subset of curated datasets can unlock
strong generalization capabilities in LLMs for rea-
soning tasks. However, these approaches heavily
rely on external strong model distillation or distant
supervision to construct high-quality answers for
difficult questions. These challenges restrict fur-
ther improvements in the model’s reasoning abil-
ities. This raises a critical question: How can we
design an efficient and scalable method to enhance
the reasoning capabilities of LLMs without rely-
ing on external supervision?

In this paper, we investigate an unsupervised
sampling setup, also referred to as rejection-
free sampling. This setup emphasizes collecting
and training on diverse and challenging questions
rather than scaling up the number of self-training
samples, which can be time-consuming. We pro-
pose a novel unsupervised fine-tuning method that
enhances the reasoning abilities of LLMs using
only prefix substrings as minimal guidance.

Our approach is based on the observation that
LLMs have latent reasoning structures acquired
during pre-training on large corpora (Brown et al.,
2020) and can be aligned using only a small sub-
set of high-quality data (Muennighoff et al., 2025;
Ye et al., 2025). By leveraging these inherent
capabilities, we aim to enhance the model’s rea-
soning potential without annotated data. We find
that different reasoning trajectories sampled by
LLMs for the same question tend to share com-
mon prefix substrings, suggesting a locally correct
supervision signal, which we term Prefix Self-

Consistency. Errors typically occur in the later
steps of the reasoning trajectory (see Section 4.6
for a detailed discussion).

Our extensive experiments across four popu-
lar training datasets demonstrate that, in a setting
without posterior sampling, our method outper-
forms vanilla full-token fine-tuning. Moreover,
under a rejection sampling setup, our proposed
method achieves performance comparable to RFT
while requiring only % of the training time and %
of the inference time.

In summary, our contributions are three-fold:

1. Unsupervised Fine-Tuning with Minimal

Guidance: We introduce a simple fine-tuning
technique called Unsupervised Rejection-Free
Fine-Tuning (U-RFT) that utilizes only prefix
substrings to steer the model toward better rea-
soning performance, minimizing the need for
extensive labeled datasets or elaborate prompts.

2. Empirical Validation: We conduct compre-

hensive experiments across four training cor-
pora and evaluate on four widely used reasoning
benchmarks. U-RFT demonstrates exceptional
data efficiency and flexibility, outperforming
vanilla full-token fine-tuning in an unsupervised
sampling setting. Furthermore, U-RFT achieves
performance competitive with RFT while re-
quiring only 1% of the training time and 1—16 of
the inference time.

3. Analysis of Model Behavior: We provide an

in-depth analysis and case studies of Prefix Self-
Consistency to explain how U-RFT works, of-
fering insights into the underlying mechanisms.
This analysis contributes to the understanding of
unsupervised post-training by identifying reli-
able self-supervised signals without the need for
external supervision and extensive sampling.

2 Related Work

Unsupervised Learning Traditional unsuper-
vised methodologies include Pseudo-labeling (Ye
et al.,, 2020), the Pivot-based approach (Pan
et al., 2010), and adversarial neural networks
(Ganin et al.,, 2016). Given the success of
the self-supervised learning paradigm in leverag-
ing large-scale unlabeled data, pre-trained lan-
guage models (Kenton and Toutanova, 2019; Han
et al., 2021; Radford et al., 2019) based on self-
supervision have become the standard in language



pre-training. Another self-supervised method un-
der the new paradigm of self-improvement is
called self-rewarding (Chen et al., 2024; Yuan
et al., 2024), where the model iteratively enhances
its performance through self-rewarding mecha-
nisms without the need for external supervision
signals. Furthermore, AL (Ji et al., 2024) extends
the self-improvement paradigm to general unsu-
pervised domain adaptation scenarios, where the
model interacts with unsupervised corpora to per-
form unsupervised continual pre-training. In this
paper, we focus on how to find self-supervised sig-
nals in the field of mathematical reasoning. We
propose U-RFT, a simple yet effective unsuper-
vised post-training method that requires only a set
of questions and the LLM itself.

Self-Training and Self-Improvement. A fam-
ily of methods, starting with STaR (Zelikman
et al., 2022), reinforced self-training (Gulcehre
et al., 2023), and rejection fine-tuning (Yuan
et al, 2023), leverages the solutions gener-
ated by large language models (LLMs) to itera-
tively update and improve the models themselves.
These techniques involve fine-tuning the model on
the generated solutions that produce correct an-
swers. ReSTFM (Singh et al., 2023) views this
fine-tuning process as expectation-maximization-
based reinforcement learning (RL) for a solution-
generating agent. Wang et al. (2023a) propose us-
ing a contrastive loss to enhance the likelihood of
correct solutions over incorrect ones. The discov-
ery of successful solutions presents a significant
exploration challenge. Luong et al. (2024) demon-
strated that RL-based fine-tuning of an LLM is
particularly difficult unless preceded by several
steps of supervised fine-tuning. In An et al.
(2023), a more powerful LLM was employed to
edit the incorrect rationales generated by a smaller
model, thereby providing positive data for its fine-
tuning. However, Huang et al. (2023) argued that
LLMs have limited capacity to correct their own
reasoning flaws.

3 Method

3.1 Unsupervised Rejection-Free Sampling
Fine-Tuning

The U-RFT starts from a pre-trained LLM, de-
noted as Py and a set of questions @ =
{q1,42, ..., qm } to be aligned. We first use model
®yo to perform a single sampling for each question

Algorithm 1 The algorithm of U-RFT

Input: @40, Q, p, k

Output: 1

: // Sampling

: To < //Default Chat Template of ®gyo

: T < //Chat Template of initial step training
P + ¢/ /Initialize an empty data set

D1« Pyo//Initialize the SFT model using Pyo

: for question ¢ in Q do

&+ By (To(a))

0+ QU{(q,a)}

: end for

10: M « length//Get the data size of Q

11: threshold < M x p//Initialize an empty data set
12: // Unsupervised Rejection-Free Sampling Fine-Tuning
13: for i, (g, a) in enumerate(P) do

14: n <« //Get the length of a

15:  if ¢ > threshold then

16: 0y + —log P(a**|T(q); 0%)
17: 6* < UpdateParameters(¢1, ')
18:  else

19: b1 + —log P(a*™|To(q); 6")
20: 0" < UpdateParameters(¢1, ")
21:  endif

22: end for

23: return $yo

qin Q.
a = $yo(Template(q)) (1)

where the Template(-) represents the default Chat
Template of ®yo, used to wrap ¢ as an instruc-
tion prompt.

After performing a single sampling on all
questions, we obtain a set of data pairs P =
{(gi,a;)}M, with size M. Next, we proceed with
prefix fine-tuning using these data pairs. Specif-
ically, for each generated answer a; containing
n; tokens, we only use the first k tokens (where
k < n;) along with the template 7' shown in Fig-
ure 2 for fine-tuning.

Formally, for each answer a;, we extract the first
k tokens:

1:k 1 2 k
i :{ai,ai,...7(1i} (2)

a.;

The optimization objective is to minimize this
loss function:

L(gi,a;) = —log P(a}*|q;; 0°) 3)

3.2 Reasoning Structure Tuning

To prevent catastrophic forgetting of reasoning
structures and length generalization (Muennighoff
et al., 2025) during the prefix learning process,
we have designed a simple yet effective multi-task
learning method to address this issue. Specifically,

we randomly select a subset P; = {(qg;, aj)}gL=1



as a foundation but might not
encompass the entire solution.

Figure 2: The prompt for initial step learning.
[question] represents the question that needs to be an-
swered.

of the training data for reasoning structure tuning,
where L is the length of P, and L/M = p. Dur-
ing the reasoning structure tuning stage, all tokens
in a and ¢ will be used to align the model’s rea-
soning format. Formally, given a set of data pairs
P, = {(g;, a;)}, the optimization objective of rea-
soning structure tuning is defined as:

L(q;,a;) = —log P(a;"|q;; 6°) 4

In summary, the entire algorithm flow of U-RFT is
shown in Algorithm 1.

4 Experiment

In this section, we will introduce the systematic
experiments conducted in this paper. We com-
pare U-RFT to traditional supervised-based meth-
ods like SFT and RFT under the supervised sam-
pling and unsupervised sampling settings, assess
its scalability with different self-training corpora
and different backbone models. We also analyze
the impact of reasoning structure tuning and pre-
fix length on performance, and present a detailed
case study and rollout performance to provide a
deeper understanding of U-RFT.

4.1 Experiments Setup

Backbone Model. For backbone model, we use
three open-source models on hugginceface!.

e Llama-3.1-8B-Instruct (Dubey et al., 2024):
an general instruction-tuned language model
based on the Llama 3 architecture.

* Qwen2.5-Math-7B-Instruct (Yang et al.,
2024): a specialized model in the Tongyi
Qwen2.5 series that has been optimized for
mathematical tasks.

* DeepSeek-R1-Distill-Qwen-7B (Guo et al.,
2025): an open source 7B checkpoints based

"https://huggingface.co/

The prompt for initial step learning Self-Training Dataset \ Questions
- i PRM-12K (Lightman et al., 2024) 12K
[question] Please provide the OpenMathInstruct2 (Toshniwal et al., 2024) | 600K
initial step towards resolving the U-Hard 100K
question. This step may serve LIMO (Ye et al., 2025) 819

Table 1: Comparison of various self-training datasets.

on Qwen2.5-Math-7B and distilled from
DeepSeek-R1.

Self-Training Corpora Construction We em-
ploy four dataset as our training dataset to gener-
ate self-training data to perform U-RFT and other
baselines. The statistic details are illustrated in Ta-
ble 1.

* PRM-12K (Lightman et al., 2024): it con-
tains 12K math questions, including data
from 4.5K MATH (Hendrycks et al., 2021)
test problems in the PRM8O0OK training set.

* OpenMathlnstruct2-600K (OMI2) (Toshni-
wal et al., 2024): OpenMathInstruct2 is a
math instruction tuning dataset consisting of
14 million problem-solution pairs generated
using the Llama3.1-405B-Instruct model. By
deduplicating the questions, we obtained a
set of 600,000 unique questions. We refer to
this dataset as OMI2-600K in the following
sections for convenience.

e LIMO (Ye et al.,, 2025): LIMO demon-
strates that models can achieve superior per-
formance with significantly less but higher
quality training data, comprising a total of
817 questions. We introduce LIMO be-
cause of its high difficulty level, making the
cost of filtering to obtain the correct paths
through large-scale rejection sampling very
high. Therefore, it is naturally well-suited for
the unsupervised setting studied in this paper.

» U-Hard: To further explore the potential of
U-RFT in an unsupervised setting, we intro-
duce a question set with real-world practical
significance called U-Hard-100K. U-Hard is
a dataset containing 100,000 questions. We
began by extensively collecting a large num-
ber of questions from publicly available on-
line sources. Following the Omni-math (Gao
et al., 2024) approach, we labeled the diffi-
culty of the data. By filtering out questions



with lower difficulty scores, we ultimately
curated a dataset consisting only of challeng-
ing questions. We refer to this dataset as U-
Hard-100K in subsequent sections.

For each data source, we used the correspond-
ing base model to sample questions. We con-
sidered two experimental settings: unsupervised
sampling and supervised sampling. In the unsu-
pervised sampling setting, we sampled each ques-
tion only once without posterior filtering; super-
vised sampling follows the RFT setting, where
each question is sampled multiple times and then
the standard answers are used to filter multiple
samples to obtain the final question set.

Implementation Details It is worth noting that
when the best performance is achieved under the
vanilla SFT setting, we fix the current set of hy-
perparameters for the training of U-RFT for a fair
comparison. Except for LIMO, the default value
of p is set to 0.1 for all self-training datasets. Due
to the limited amount of LIMO data, we increase
its proportion for reasoning format tuning, setting
pto 0.3. We set k to 8, 32, and 128 for Llama-
3.1-8B-Instruct, Qwen2.5-Math-7B-Instruct, and
Deepseek-R1-Distill-Qwen-7B, respectively. Im-
plementation details is shown in Appendix C.

Benchmarks. We evaluate the reasoning perfor-
mance of model on four downstream reasoning
datasets: 1) GSMS8K (Cobbe et al., 2021): a
dataset of high-quality, linguistically diverse grade
school math word problems created by human
problem writers; 2) MATHS00 (Hendrycks et al.,
2021): a rigorous dataset comprising problems
from high school math competitions; 3) AIME24:
the 2024 American Invitational Mathematics Ex-
amination; 4) GPQA (Rein et al., 2023): a chal-
lenging dataset designed to evaluate the capabili-
ties of LLMs and scalable oversight mechanisms.
For the evaluation of all benchmarks, we use ac-
curacy as the evaluation metric.

Baselines. Following RFT (Yuan et al., 2023)
and V-STaR (Hosseini et al., 2024), we select the
following methods into our comparison:

* 1) In-Context Learning (ICL) (Wei et al.,
2022b): We use ICL to perform reasoning.

e 2) Vanilla Supervised Fine-Tunign (Vanilla
SFT) (Ouyang et al., 2022): Applying fine-
tuning on training data without any self-
improvement or test-time verification.

* 3) RFT (Yuan et al., 2023): After running 16
times sampling and using label filter to these
candidate answers, then we train the model
only 1 iteration.

e 4) V-STaR [1 Iter] (Hosseini et al., 2024):
Bootstrapping a generator and training a ver-
ifier for 1 iteration with 16 answers from V-
STaR’s generator.

4.2 Main Results

We conducted extensive experiments on the four
datasets mentioned in Section 4.1. The experimen-
tal results under unsupervised sampling are shown
in Table 2. In a single-sample unsupervised set-
ting, the performance of vanilla SFT decreases on
both OMI2-600K and U-Hard-100K. In contrast,
U-RFT surpasses the performance of vanilla SFT
across all model and training corpus settings. In
n the single-sample unsupervised setting, the per-
formance of vanilla SFT decreases on both OMI2-
600K and U-Hard-100K datasets. Specifically, on
the OMI2-600K dataset, U-RFT achieves an av-
erage accuracy of 52.9, which represents an im-
provement of 3.2 points over the vanilla SFT’s av-
erage accuracy of 49.7, and an improvement of 1.5
points over the ICL’s average accuracy of 51.4.

For comparison purposes, we also conduct ex-
periments under a supervised sampling setup.
The experimental results are shown in Table 3.
Similarly, on the U-Hard-100K dataset, U-RFT
achieves an average accuracy of 61.6. This
marks a significant improvement of points over
the vanilla SFT’s average accuracy of 56.4, and
an improvement of 4.4 points over the ICL’s aver-
age accuracy of 57.2. These results demonstrate
the superior performance of U-RFT across differ-
ent models and training corpus settings. We per-
form extensive sampling on the PRM12K dataset
to collect trajectories leading to the correct an-
swer for each question. The results demonstrate
that U-RFT exhibits exceptional data efficiency
and SOTA performance across various reasoning
benchmarks. For both Llama-3.1-8B-Instruct and
Qwen2.5-Math-7B-Instruct models, U-RFT;_4 +
label filter achieves the highest average accu-
racy. Moreover, even with a single sampling
(t=1), U-RFT achieves performance competitive
with RFT,—1¢ + label filter and V-STaR, indicating
that U-RFT can effectively enhance model perfor-
mance with minimal sampling.



Dataset Model GSMSK MATH500 AIME2024 GPQA Avg Acc.
Qwen2.5-Math-7B-Instruct
ICL 95.2 84.0 16.7 9.6 514
OMI2-600K Vanilla SFT;—; 95.4 83.4 13.3 6.6 49.7
U-RFT;=1 95.4 86.4 20.0 9.6 52.9
Qwen2.5-Math-7B-Instruct
ICL 95.2 84.0 16.7 9.6 51.4
Vanilla SFT¢—1 95.5 83.4 16.7 9.6 51.3
U-Hard-100K U-RFT;=1 96.0 85.6 26.6 9.6 54.5
DeepSeek-R1-Distill-Qwen-7B
ICL 88.6 87.0 40.0 13.1 57.2
Vanilla SFT—1 89.7 87.0 36.7 12.1 56.4
U-RFT;=1 91.4 89.2 50.0 15.7 61.6
Qwen2.5-Math-7B-Instruct
ICL 95.2 84.0 16.7 9.6 51.4
Vanilla SFT;—1 95.8 84.2 20.0 7.6 51.9
LIMO-800 U-RFT=1 95.6 85.8 20.0 8.6 52.5
DeepSeek-R1-Distill-Qwen-7B
ICL 88.6 87.0 40.0 13.1 57.2
Vanilla SFT¢—1 89.7 87.0 40.0 12.1 57.2
U-RFT;=1 92.0 89.4 43.3 17.7 60.6

Table 2: Comparison of model performance (Acc.) across various reasoning benchmarks under the unsupervised
sampling setting. The backbone models include state-of-the-art LLMs such as Qwen2.5-Math-7B-Instruct and
DeepSeek-R1-Distill-Qwen-7B. t = 1 means only a single sampling is performed, without filtering the data based

on the correct extract answer.

4.3 Ablation Study

The ablation results shown in Table 4 clearly show
that the integration of U-RFT with RST results in
the best performance across the benchmarks. The
significant drop in accuracy for U-RFT w/o RST
underscores the necessity of RST in achieving op-
timal performance. For a detailed experimental
analysis of the RST data proportion p and prefix
length k, please refer to the subsequent chapters.

4.4 Impact of Prefix Length

Table 5 and Table 6 show our comprehensive com-
parison experiments regarding the prefix length.
The highest average accuracy of 68.7 is achieved
at k = 8. As k increases beyond 8, the average
performance tends to decrease slightly. The op-
timal prefix length for the LIMO dataset appears
to be £ = 128, achieving the highest average
accuracy of 66.4. The optimal k values for the
two models are different. Possible reasons are:
1) Stronger models have reasoning chains with
longer common prefix patterns; 2) Difficult ques-
tions often lead models to generate longer outputs,
resulting in longer similar substrings. Therefore,
to further explore the underlying mechanisms of
U-RFT and the values of k£, we conducted a case
study and comprehensive rollout experiments in
Section section.

4.5 Impact of Reasoning Structure Tuning

To investigate the impact of reasoning structure
tuning, we conducted comprehensive experiments
by varying the proportion of this part of the data.
Specifically, we used llama-3.1-8B-Instruct in a
supervised setting on PRM12K. To mitigate the
potential interference of incorrect paths in the ex-
periment, we adopted a supervised setting. The
results are shown in Table 7. Without mixing rea-
soning structure tuning data for fine-tuning, the
model’s performance on GSM8K and MATHS500
was 2.0 and 10.2, respectively. This indicates that
without full-token fine-tuning, the model performs
extremely poorly on reasoning tasks and cannot
effectively handle complex reasoning. Further ob-
servation of the model’s reasoning results shows
that this disrupts the model’s instruction-following
capability for reasoning structures, affecting its
generalization in the mathematical domain as well
as its generalization for reasoning length.

When the data ratio for full-token fine-tuning
was 50% and 100%, the model’s performance on
GSMS8K and MATH500 was 86.3 and 52.0 (50%
ratio) and 86.0 and 52.0 (100% ratio), respectively.
This indicates that increasing the full-token fine-
tuning data ratio beyond 10% provides very lim-
ited performance improvement.



Dataset Model GSMSK MATH500 AIME2024 GPQA Avg Acc.

Llama-3.1-8B-Instruct
ICL 82.0 51.0 33 8.6 36.2
Vanilla SFT;—; 83.8 48.4 33 8.6 36.0
RFT;=16 + label filter 86.0 52.0 6.7 9.1 38.5
V-STaR;=16 85.4 52.6 6.7 8.6 38.3
U-RFT;=1¢ + label filter 85.8 53.4 6.7 9.1 38.8

PRM-12K U-RFT;—; 85.4 52.0 6.7 9.1 38.3
Qwen2.5-Math-7B-Instruct
ICL 95.2 84.0 16.7 9.6 51.4
Vanilla SFT;—; 95.8 83.4 13.3 9.1 50.4
RFT;=16 + label filter 95.7 85.2 20.0 9.6 52.6
V-STaR:=1¢ 96.0 85.4 20.0 10.1 52.9
U-RFT;=1¢ + label filter 96.0 85.6 20.0 10.1 52.9
U-RFT;=1 95.5 85.6 20.0 9.6 52.6

Table 3: Comparison of model performance (Acc.) across various reasoning benchmarks under the two sampling
settings. The backbone models include state-of-the-art LLMs such as Qwen2.5-Math-7B-Instruct and DeepSeek-
R1-Distill-Qwen-7B. ¢ = 1 means only a single sampling is performed, without filtering the data based on the

correct extract answer.

Methods GSMSK MATHS00 Avg.
U-RFT w/o RST 2.0 10.2 6.1

vanilla SFT 83.8 48.8 66.1
RST only 84.3 48.4 66.4
U-RFT 854 52.0 68.7

Table 4: Ablation study of U-RFT based on Llama-
3.1-8B-Instruct trained on PRM12-12K.RST stands for
reasoning structure tuning, using a subset of the total
data for format fine-tuning.

k- GSMS8K MATHS00 Avg.
1 84.9 51.8 68.4
2 84.2 51.8 68.0
4 84.8 51.8 68.3
8 85.4 52.0 68.7
16 85.4 50.2 67.8
32 84.8 49.4 67.1
64 84.8 48.2 66.5

Table 5: Effect of the prefix length for math do-
main generalization.Experiments are conducted on the
PRM12K dataset, using Llama-3.1-8B-Instruct as the
backbone model.

k- GSMS8K MATHS00 GPQA Avg.

8 91.7 87.2 157 649
32 91.5 87.0 16.6  65.0
64 91.6 89.2 13.1  64.6
128 92.0 89.4 17.7 664
256 90.5 90.4 177  66.2

Table 6: Effect of the prefix length for math do-
main generalization.Experiments are conducted on the
LIMO dataset, using DeepSeek-R1-Distill-Qwen-7B
as the backbone model.
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Figure 3: Performance comparison of rollout based on
correct trajectory and incorrect trajectory on PRM-12K
dataset using Llama-3.1-8B-Instruct.

4.6 Discussion about Prefix Self-Consistency

Figure 4 presents a multi-sampling case using
Qwen2.5-Math-7B-Instruct. By examining the
first 32 words of these responses, we can see that
the first 32 tokens of different responses are very
similar. This indicates that during multiple reason-
ing processes, the model exhibits a high degree of
consistency in the initial steps. This consistency
reflects the model’s stability in the preliminary
reasoning stage, such as understanding the prob-
lem and formulating the overall strategy. Further
observation reveals that the divergent information
between different samples often occurs in the later
stages. Multiple divergent later stages often share
the same prefix. Based on this insight, we de-
signed a rollout experiment at different positions.
Specifically, we randomly sampled 500 questions
from prm12K, each containing one trajectory lead-



Case Study

Question:
are mathematics textbooks.

textbooks.

Find m+n.

the 12 textbooks into the three

number of ways to pack the textbooks

the 12 textbooks into the three

Melinda has three empty boxes and 12 textbooks, three of which
One box will hold any three of her textbooks,
one will hold any four of her textbooks,
If Melinda packs her textbooks into these boxes in random order,
the probability that all three mathematics textbooks end up in the same box
can be written as % , where m and n are relatively prime positive integers.

Al: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute

A2: To determine the probability that all three mathematics textbooks end
up in the same box, we need to follow these steps: 1.

A3: To determine the probability that all three mathematics textbooks end
up in the same box, we start by calculating the total number of ways to
distribute the 12 textbooks into the three

Ad: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute

and one will hold any five of her

*xCalculate the total

Figure 4: With the temperature set to 0.7, we sample 16 times based on Qwen2.5-Math-Instruct for the given
question, where A1-A4 represent the corresponding eight output results. Due to space limitations, please refer to

Figure 5 for the complete 16 sampling results.

D GSMS8K MATHS00 Avg.
0% 2.0 10.2 6.1
1% 57.5 27.8 42.7
5% 84.5 50.0 67.3

10% 85.8 534 69.6
50% 86.3 52.0 69.2
100% 86.0 52.0 69.0

Table 7: Effect of data ratio for reasoning struc-
ture tuning.Here we conduct experiments based on
PRM12K.Note that when the RST data is 100%, the
corresponding term is equivalent to vanilla full-token
fine-tuning.

ing to the correct answer and one trajectory lead-
ing to the wrong answer. We refer to these as su-
pervised rollout and unsupervised rollout settings.
During reasoning, the model is given the first k
tokens of the trajectory to perform 32 rollout sam-
ples. The result is shown in Figure 3. At smaller k
values (such as 1 to 8), the differences between the
metrics for posterior and non-posterior are mini-
mal, indicating that posterior information does not
significantly enhance performance in these cases.
Starting from k=8, the accuracy for posterior be-
gin to significantly exceed those for non-posterior,
and this difference becomes more pronounced at
larger k values (such as 64). This suggests that
at larger k values, posterior information signifi-
cantly improves the model’s performance. This

phenomenon might indicate that as the k value in-
creases, the model has more information for rea-
soning and adjustment, thus allowing the poste-
rior information to play a greater role, significantly
enhancing the performance metrics. The detailed
rollout results can be found in Table 8 and Table 9.

5 Conclusion

In this work, we presented an unsupervised fine-
tuning method that enhances the reasoning capa-
bilities of large language models using only pre-
fix substrings as minimal guidance. Our approach
leverages the inherent reasoning structures within
pretrained models, exploiting the phenomenon of
Prefix Self-Consistency where different reason-
ing trajectories share common prefixes. Exten-
sive experiments demonstrated that our method
outperforms traditional full-token fine-tuning and
achieves performance comparable to supervised
approaches like RFT, with significantly reduced
training and inference times. This work highlights
the potential of minimal unsupervised fine-tuning
in improving the reasoning abilities of LLMs with-
out relying on external supervision or extensive
computational resources. Future work will explore
the application of this method to other challenging
tasks and investigate the theoretical underpinnings
of Prefix Self-Consistency in more depth.



Limitations

* Implementation within the R1 frame-
work: In the RL framework, online search
by the model is costly and often requires
numerous searches to find the correct pos-
terior trajectory. Although our method has
achieved excellent performance with Unsu-
pervised Fine-tuning, how to extend this
method to the currently popular R1-Zero
framework has yet to be explored. Future re-
search should focus on how to combine our
method with RL to achieve data-efficient RL.

 Validation with larger-scale models: In our
experiments, the choice of backbone was
primarily based on the mathematical capa-
bilities of the model. Our goal is to fur-
ther enhance the model’s reasoning ability
at a low cost. In future research within
the RL framework, we will consider vali-
dating our approach on larger-scale models,
such as QwQ-32B-Preview and DeepSeek-
R1-Distill-Qwen-32B.

* Study on sample-independent prefix selec-
tion strategy: Despite achieving satisfactory
performance, this work is based on a heuris-
tic prefix selection strategy. In future re-
search, we will continue to design an adap-
tive sample-independent prefix selection for
U-RFT.
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k Pass@2 Pass@4 Pass@8 Pass@16
0 68.01 78.53 85.98 91.10
1 68.34 78.15 84.76 89.20
2 68.46 78.44 85.38 90.25
3 68.97 78.75 85.33 89.71
4 68.56 78.43 84.99 89.49
5 68.44 78.38 85.25 90.10
6 68.60 78.67 85.49 90.10
7 69.08 79.01 85.89 90.59
8 69.08 78.94 85.65 90.16
16 69.76 79.27 85.75 90.36
32 71.08 79.65 85.44 89.52
64 73.60 81.52 87.03 91.06

Table 8: Correct solution rollout based on PRM-12K
dataset using Llama-3.1-8B-Instruct.

k Pass@2 Pass@4 Pass@8 Pass@16
0 68.39 78.91 86.24 91.22
1 68.43 78.84 86.07 91.19
2 68.52 78.94 86.31 91.33
3 68.30 78.71 85.98 91.13
4 68.21 78.57 85.88 90.97
5 68.24 78.7 86.21 91.53
6 68.41 78.83 86.41 91.99
7 68.77 79.04 86.12 90.99
8 68.43 78.69 85.98 91.16
16 67.72 77.69 84.91 90.27
32 67.68 77.23 84.35 89.56
64 65.83 74.05 80.67 85.93

Table 9: Incorrect solution rollout based on PRM-12K
dataset using Llama-3.1-8B-Instruct.
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Hyperparam. Math-12K OMI2-60K LIMO U-Hard
Optimizer AdamW

Warmup Ratio 0.03

Learning Rate le-6 2e-6 le-6
LR Schedule constant_with_warmup

Batch Size 1

Gradient Step 8

Max Length 4096 16384

# Epoch 2 1 3 1

Table 10: The hyperparameters used for our method on
all training corpora.

B Detailed Rollout Results

Table 8 shows the correct solution rollout where
increasing k generally leads to improved perfor-
mance across various pass metrics, indicating that
longer prefixes contribute to better modeling of
context. Notably, performance peaks at k = 64 for
Pass@2, achieving 73.60%, and stabilizes across
higher k values for other metrics, suggesting a
saturation point beyond which additional prefix
length offers diminishing returns. In contrast, Ta-
ble 9, which details incorrect solution rollouts, fol-
lows a similar trend but with slightly lower pass
rates. However, beyond £ = 8§, the performance
starts to decline. For example, Pass@2 decreases
to 67.68% at k = 32 and further to 67.53% at
k = 64. A similar trend is observed for Pass@4,
Pass@8, and Pass@16, where the performance
drops after k = 8.

C Hyperparameters and Implementation

The training hyperparameters of U-RFT on dif-
ferent datasets are reported in Table 10. To en-
sure a fair comparison, please note that all hyper-
parameter settings are based on the vanilla SFT
performance configuration. During the inference
stage, we adopt a prompted zero-shot setup and
use standard greedy decoding, wherein models
are directed to answer each question using natural
language instructions without any accompanying
contextual demonstrations.


http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html

Case Study

Question: Melinda has three empty boxes and 12 textbooks, three of which
are mathematics textbooks. One box will hold any three of her textbooks,
one will hold any four of her textbooks, and one will hold any five of her
textbooks. If Melinda packs her textbooks into these boxes in random order,
the probability that all three mathematics textbooks end up in the same box
can be written as %', where m and n are relatively prime positive integers.
Find m+n.

Al: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three

A2: To determine the probability that all three mathematics textbooks end

up in the same box, we need to follow these steps: 1. #*xCalculate the total
number of ways to pack the textbooks

A3: To determine the probability that all three mathematics textbooks end

up in the same box, we start by calculating the total number of ways to
distribute the 12 textbooks into the three

A4: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three

A5: To determine the probability that all three mathematics textbooks end

up in the same box, we start by calculating the total number of ways to
distribute the 12 textbooks into the three

A6: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three

A7: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three

A8: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three

A9: To determine the probability that all three mathematics textbooks end up
in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three

Al0: To determine the probability that all three mathematics textbooks end
up in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three

All: To determine the probability that all three mathematics textbooks

end up in the same box, we start by calculating the total number of ways to
distribute the 12 textbooks into the three

Al2: To determine the probability that all three mathematics textbooks end
up in the same box, we need to follow these steps: 1. *xCalculate the total
number of ways to distribute the 12

Al3: To determine the probability that all three mathematics textbooks end
up in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three

Al4: To determine the probability that all three mathematics textbooks end
up in the same box, we need to follow these steps: 1. *xCalculate the total
number of ways to pack the textbooks

Al5: To determine the probability that all three mathematics textbooks end
up in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three

Al6: To determine the probability that all three mathematics textbooks end
up in the same box, we need to consider the total number of ways to distribute
the 12 textbooks into the three

Figure 5: With the temperature set to 0.7, we sample 16 times based on Qwen2.5-Math-Instruct for the given
question, where A1-A16 represent the corresponding eight output results.
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