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Annealed Importance Sampling (AIS) moves particles along a Markov chain from
a tractable initial distribution to an intractable target distribution. The recently pro-
posed Differentiable AIS (DAIS) (Geffner & Domke, 2021; Zhang et al., 2021)
enables efficient optimization of the transition kernels of AIS and of the distri-
butions. However, we observe a low effective sample size in DAIS, indicating
degenerate distributions. We thus propose to extend DAIS by a resampling step
inspired by Sequential Monte Carlo. Surprisingly, we find empirically—and can
explain theoretically—that it is not necessary to differentiate through the resam-
pling step, which avoids gradient variance issues observed in similar approaches
for Particle Filters (Maddison et al., 2017a; Naesseth et al., 2018; Le et al., 2018).

1 SEQUENTIAL MONTE CARLO METHODS AND RESAMPLING

Sequential Monte Carlo (SMC) (Doucet et al., 2001; Liu & Liu,
2001) and Annealed Importance Sampling (AIS) (Neal, 2001)) are
related methods to sample from unnormalized distributions and to
estimate their normalization constants. SMC simulates the evolu-
tion of a set of particles through a Markov chain, where each transi-
tion takes three steps: (i) independent transitions of particles using
either a given dynamics model (Particle Filters (PFs) (Gordon et al.,
1993; Kong et al., 1994)) or Markov Chain Monte Carlo moves that
interpolate between an initial and target distribution (SMC Sam-
plers (Del Moral et al., 2006)); (ii) re-weighting each particle’s
probability; and (iii) resampling, i.e., replacing particles with low
weights by “clones” of particles with high weights.

Related Work Differentiable PFs construct a lower bound on the
log marginal likelihood utilizing the filtering distribution (e.g. Mad-
dison et al. (2017a)) or the smoothing distribution (Lawson et al.,
2022) of the PF as target distribution in each transition. Lawson
et al. (2022) make this bound asymptotically tight. The recently
proposed Differentiable AIS (DAIS) (Geffner & Domke, 2021;
Zhang et al., 2021) can be phrased as an SMC Sampler without
resampling (adapting its bound). DAIS omits the non-differentiable
Metropolis-Hastings (MH) accept/reject step (Metropolis et al.,
1953; Hastings, 1970) resulting in a differentiable method.

Contributions In high dimensions, DAIS suffers from a small Ef-
fective Sample Size (ESS) (Liu & Chen, 1998), i.e., a highly skewed
distribution of particle weights where only few particles contribute
(Figure 1, ). To overcome this limitation, we introduce resampling
as in PFs and SMC Samplers. We optimize a Monte Carlo Objec-
tive (Mnih & Rezende, 2016) similar to the bound in PFs (Maddison
et al., 2017a; Naesseth et al., 2018; Le et al., 2018) but adapted to
SMC Samplers. By omitting the MH step (similar to DAIS), we
obtain a Differentiable SMC Sampler (DSMCS, proposed).
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Figure 1: ESS for DAIS and
DSMCS at epochs 100 and
500 (increasing opacity).
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Figure 2: Difference of EL-
BOs. Red and blue back-
grounds show method with
larger ELBO (red: top & up-
per row of x-axis labels).
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Figure 2 summarizes differences of the Evidence Lower Bound (ELBO) between models with
Langevin and Hamiltonian Markov kernel across a wide range of settings in a standard experi-
ment (details in Appendix C). Subplots (a)-(c) build step by step to our main result that the proposed
method (detailed in Section 2 below) does not require taking gradients due to resampling into ac-
count. In a first step, Figure 2 (a) compares DAIS to optimizing the proposed bound (Eq. (1) below)
without resampling (“No R.”). Both bounds are similarly tight. Figure 2 (b) introduces resampling
but ignores resampling gradients (“Cat R.”), which tightens the bound significantly for the Langevin
kernel (additional results in Appendix D.1). Surprisingly, taking gradients due to resampling into
account (“GST R.”, Figure 2 (c))—which we do with the Gapped Straight Through (GST) estimator
(Fan et al., 2022)—hardly affects the tightness of the bound. The next section explains this finding.

2 GRADIENTS DUE TO RESAMPLING IN A DIFFERENTIABLE SMC SAMPLER

We formalize DSMCS and its resampling gradient. We seek the normalization constant Z :
fRn ) da of an unnormalized density v on R™. An SMC Sampler samples N trajectories through
a series (Wk)kzo of distributions 7 (&) o< vk (@) 1= mo(x)! =P+ y(z)Pr (With0 = By < B1 < ... <
Bk = 1), which interpolate between a tractable initial distribution 7 and the target 7x = /2.

We describe an SMC Sampler algorithmically following Del Moral et al. (2006). First, one draws N
independent samples {Z{}¥ | from m. For each subsequent step k € {1,..., K}, one then
draws samples {z}} Y, from a forward kernel Fj (2} | Zi ,) and one calculates importance weights
(21, 25 1) = Y(2h)Br(Zh_1 1 21) / (ve=1(Z_1) Fr(2z}, | Z}._,)), where both Markov kernels
Fy and By leave my invariant. Finally, one (optionally) resamples from within the set of parti-
cles by setting % := z*(") where the mapping ¢4 :{L,...,N} = {1,...,N} is drawn from
a distribution M (¢ | {wi}¥ ) that satisfies that each z} is sampled N w;C times in expectation

(i.g., ]EM“L;l(j)H = Nuwj), where wj, = wj_,Wy(2}, Z_,)/ Zj:l(wkflwk(zk’zkfl)) and
wy = 1/N. In practice, the simplest way to satisfy this requirement is to draw the function values
1, (1) i.i.d. for all ¢ from a categorical distribution with probabilities (w, ..., wi ).

Similar to DAIS, DSMCS makes the Markov kernels F}, and Bj, differentiable by not including a
MH step. We adapt the bound proposed in the context of PFs (Maddison et al., 2017a; Naesseth
et al., 2018; Le et al., 2018) to the setting of SMC Samplers and arrive at £ < log Z with

L=E 1 ot 1
[T, o (28)] TTE_, [T, F (22123 M {wi 12 [Z 08 (Zak Wi (2, 2 ))] , (D)

where the expectation E[-] is taken over the sampling process described above, of, = % if one
resamples in step k and o}, = w! otherwise, and 1o = Identity as resampling for k = 0 is not useful.

As the resampling distribution is discrete, differentiating through samples from it typically leads to
either high gradient variance (e.g., when using REINFORCE (Glynn, 1990; Williams, 1992) gradi-
ent estimates) or to biased gradients (e.g., when using Gapped Straight Through (Fan et al., 2022)
gradient estimates). However, the results in Figure 2 (c¢) indicate that differentiating through the
resampling step is not necessary. This can be observed for models that resample in every transi-
tion (see Appendix D.1) and for models that resample with a probability (inversely) proportional to
the ESS in a transition (Figure 2, (c); details in Appendix D.1). Additionally, we find that resam-
pling tends to achieve high Effective Sample Sizes ESSj, := 1/ Zi\;l (wi)? € [1, N], regardless of
whether we take gradients due to resampling into account (Figure 1, #) or not (Figure 1, «). It turns
out that the high ESS indeed explains why resampling gradients are not necessary:

Theorem 1 The gradient of the resampling step vanishes if the ESS is maximal, i.e., if ESSi, = N Vk.
Proof. 'We prove the statement in Appendix A.

Discussion In practice, ESSj is not maximal (ESS; ~ N in Figure 1) and Theorem 1 may
not hold. However, we can empirically verify that the gradients corresponding to the resampling
operation indeed do not seem to have a significant impact on the results (see Figure 2). The work
of Lawson et al. (2022) necessarily fulfills a maximal ESS;, (as it asymptotically makes the PF
bound tight) which might explain why resampling gradients are not needed. Notably, leaving out
resampling gradients reduces gradient variance that has been reported to hurt the estimation of the
log normalization constant in PFs (Maddison et al., 2017a; Naesseth et al., 2018; Le et al., 2018).
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A PROOF OF THEOREM 1

We replicate Theorem 1 below and provide a proof.

Theorem 1 The gradient of the resampling step vanishes if the ESS is maximal, i.e., if ESSy, = N Vk.
Proof. We rewrite the expectation over {i;}X_, in Eq. (1) as Z{Lk}kK:l(HkM(‘k O[]
where 0}, are opaque parameters that allow us to track gradients through M. For each term in
this sum, we trace back the indices {4, } & i—o that lead to index jx := 1 at the last step K by recur—

sively defining ji_1 := tx_1(jx). By Jensen’s inequality for the strictly convex function z + 22

an ESS of N implies wj, = - Vk, i, and thus @y, (2}, £, _;) = Wk(2}, 2, -y is independent of i

for all k. We can thus replace the average over ¢ inside the logarithm in Eq. (1) with the single term
with ¢ = ji,

K K
Liess=n) = (HMW"'@)) B I P ) | 22 VOB T ) | @)
k=1 k=1

{u i,

Here, we also marginalized trivially over all z}, with i # ji. The remaining coordinates {z; k" }k 0
describe a single trajectory that can no longer branch. Thus, they are independent integration vari-
ables, i.e., we may rename them by dropping the superscripts jj, to stress that the expectation E[ - |
over particle coordinates in Eq. (2) no longer depends on {Lk}szl. Thus, Vy, LEess=n) = 0. (|
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B RELATED WORK

Figure 3 gives a brief overview of how the proposed DSMCS fits into the landscape of (differen-

tiable) SMC and AIS methods.

+ resampling

+ flexible By, \Sequential Monte Carlo Methods
7
Annealed Importance Sequential Monte Carlo Particle Filters (PFs)
Sampling (AIS) Samplers (SMC Samplers) (Liu & Chen, 1998; Doucet
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(Zhang et al., 2021; Geffner &
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etal., 2022)
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Optimal Transport
(Corenflos et al., 2021)

Figure 3: (Differentiable) AIS and SMC methods.

C DETAILS ON EXPERIMENTS

We replicate the static target experiment by Doucet et al. (2022). We estimate the log normaliza-
tion constant of p = «y/Z being a 50-dimensional Gaussian mixture with 8 components (note that
log Z = 0). The means of the Gaussian mixture p are sampled from the Gaussian distribution
N (3,I). The variance of each component is set to 1. The initial distribution ¢ = 7 is chosen to
be a Gaussian with large diagonal variance, namely N (0, 9I). We run the DSMCS with various re-
sampling schemes for K € {8,16,32} and N € {8, 32,64} utilizing a small neural network NN(-)

predicting the step sizes {0 = 6 - o(NN(k))} K| with the same architecture as proposed by Doucet
et al. (2022). Additionally, we learn the annealing schedule ;. For the Hamiltonian Markov kernel
we also learn the scale c of the mass matrix M = cI and a scalar for the momentum refreshment p.
All models maximize the bound £ for 500 epochs (each consisting of 10 iterations) with the Adam
optimizer (Kingma & Ba, 2014) in batches of 64. We scale the learning rate every 25 epochs by a
factor of 0.75 for the first 200 epochs.

Appendix C.1 gives an overview of the resampling schemes that we evaluate the DSMCS models
with on the static target experiment. Appendix C.2 describes the unadjusted overdamped Langevin
kernel utilized in our experiments. Appendix C.3 describes the Hamiltonian Markov kernel (that in-
corporates Hamiltonian dynamics via the underdamped Langevin equation). For a thorough deriva-
tion of these kernels, please see the original work of Doucet et al. (2022).

C.1 MODELS

In the main text we only show results for the models Bern-Cat and Bern-GST to convey the main
message but call the models Cat and GST to keep notation simple. In this supplement and all
following ones, we call the models as they are described below.

We employ the proposed DSMCS with multiple resampling schemes that either include the resam-
pling gradient or ignore it. The distribution M (1, | {wf}} ) takes the following four functional
forms.
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¢ Cat (Categorical Resampling (without gradients)): We choose a categorical distribution for
M(ix | {wh}Y,) and draw 0(i) ~ Cat({w}},).

* Bern-Cat (Categorical Resampling (without gradients) with Bernoulli Relaxation (with-
out gradients)): We augment the categorical distribution from above with an additional
Bernoulli random variable that “decides” whether to resample at iteration k for each
batch, namely ¢4 (i) = (1 — bg)i + bcl, where ¢i ~ Cat({wi}Y,) and by ~
Bern (1 —(1/ zjé\le(wj)2 - 1)/(N - 1)) This idea is inspired by SMC where one typi-
cally employs a (hard) threshold of N /2 and resamples particles if the threshold is undercut.

* GST (Gapped Straight Through Gumbel-Softmax Resampling (with gradients)): This re-
sampling scheme is similar to Cat but with resampling gradients. We utilize the Gapped
Straight Through (GST) estimator (Fan et al., 2022) for the categorical distribution. This
estimator is known to reduce gradient variance compared to the Gumbel-Softmax (Jang
et al., 2017; Maddison et al., 2017b) estimator. We train models with two temperatures
7€ {0.1,1.0}.

* Bern-GST (Gapped Straight Through Gumbel-Softmax Resampling with Bernoulli Relax-
ation (with gradients)): This resampling scheme builds on the GST resampling scheme but
also reparametrizes the Bernoulli variable utilizing the GST estimator. We train models
with two temperatures 7 € {0.1,1.0}.

C.2 LANGEVIN MARKOV KERNEL

For a specific k we choose the Markov kernels
Fi(zy, | 2k 1) = Nz | 2y + 0V 10g W (Zk 1), 200 ),
Bi(Zi_1 | z1) = Fu(Z_1 | 21),

and compute the incremental weight as

G — (i) Br(Z),_y | 21)
v = & )
Ye—1(Z,_ ) Fe(z), | Z,_1)

where i (2}) = (1 — Bi) log q(2}) + B log p(2}).
C.3 HAMILTONIAN MARKOV KERNEL

For the Hamiltonian kernel, let v denote the momentum variable, let M denote the mass matrix,
let p denote the damping coefficient, and let L(z},, v},) denote the leap frog integrator for variables
z;,, v}, utilizing a step size of d;. We have

6;@ ~ N(pi}lic—lv (1 - p2)M)7
and zj, v} = L(Z}_,,%}).
We compute the incremental weight as
o — Vi (zk, V)N (B, | poL, (1 — p*) M)
k= i =i =i | i J
Vi—1(Z,_1, O )N (9}, | po}, (1 — p?) M)

where i (21, vE) = (1 — Bi) log q(25) + Br log p(zL) + log N (v, 0, M).

D QUANTITATIVE RESULTS

Appendix D.1 discusses Figure 4 showing results of models with resampling and Bernoulli decision
(“Bern-Cat R.” and “Bern-GST R.”) as well as models with resampling every iteration (“Cat R.” and
“GST R.”). Appendix D.2 discusses Figure 1 of the main text in detail and provides quantitative
results. Appendix D.3 discusses Figure 2 of the main text and provides quantitative results for all
experiments.
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D.1 CATEGORICAL RESAMPLING WITH BERNOULLI DECISION
SMC methods typically resample only if the effective sample size drops below a threshold of N/2
where NNV is the total number of particles. This prevents information from being lost and reduces

the variance of the estimator. Thus, we introduce for the DSMCS a Bernoulli random variable that
“decides” whether to resample at iteration k for each batch, namely 5 (i) = (1 — by )i+ byc,, where

N
cj, ~ Cat({wj},) and by~Bem [1- {1/ (w)*~1]| /(N-1)
Jj=1

Appendix C.1 gives more details on the Bernoulli relaxed models.

ELBO
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Figure 4: Difference of ELBOs for models without Bernoulli decision (left) and with Bernoulli
decision (right). The right plot is copied from the main text (Figure 2 (b) & (c)). Red and blue
backgrounds show the method achieving larger ELBO (red: top & upper row of x-axis labels).

We find that DSMCS employing categorical resampling without Bernoulli decision (“Cat R.”) tight-
ens the bound for the Langevin kernel (Figure 4 (a)) compared to DSMCS without resampling (“No
R.”). This finding is similar to the results in the main text for models with Bernoulli decision (Fig-
ure 4 (c)). Contrary to findings in the main text, we find a negative impact of performing resampling
in DSMCS with the Hamiltonian kernel (Figure 4 (a) in contrast to Figure 4 (c)). This might be
due to the increased variance and information loss of the model without Bernoulli decision. Addi-
tionally, we verify that taking gradients due to resampling into account (“GST R.”) compared to not
taking gradients into account (“Cat R.”) hardly affects the tightness of the bound (see Figure 4 (b)).
Also, this result is similar to the results described in the main text (see Figure 4 (d)).

D.2 EFFECTIVE SAMPLE SIZE

Table 1 shows quantitative results of Figure 1. We visualize the ESS for epochs 100 and 500 with
different opacities for experiments with the Langevin kernel. We visualize the DSMCS models
without resampling (“No R.”) and models with resampling that employ a Bernoulli decision for
resampling with gradients (“GST R.” with 7 = 0.1) and without gradients (“Cat R.”). The ESS is an
average of 10 iterations and the batch size of 64.

Table 1: Quantitative results of ESS for DAIS, No Resampling, Bernoulli Resampling (“Bern-GST
R.”’), and Bernoulli categorical resampling (“Bern-Cat R.”). Details in text.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
DAIS 640 218  2.06 2.0 1.97 1.91 1.85 1.78 1.72 1.67 1.63 1.59 1.55 1.54 1.51 1.49
No Resampling | 64.0  2.09 1.95 1.86 1.77 1.7 1.68 1.65 1.62 1.61 1.59 1.57 1.53 1.49 1.48 1.48

Bern-GST R. 640 6391 6394 6395 6395 6394 6388 441 6303 6362 636 63.63 636 63.63 2542 6321
Bern-Cat R. 640 638 6389 6392 6393 6393 6393 639 451 6337 6357 6358 6357 6357 2572 6295

k 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
DAIS 1.48 1.49 151 1.49 151 1.48 1.42 1.39 1.38 136 136 142 143 1.43 146 142
No Resampling | 63.01 62.49 5888 44.69 5838 628 62.77 62.88 6292 6285 6267 622 610 60.81 60.96 60.79
Bern-GSTR. | 60.62 8.18 6244 6198 6244 6246 6242 6247 6233 6.1 59.37 59.94 5955 60.04 60.08 634
Bern-Cat R. 62.65 6279 6227 5885 48.19 5951 6249 6278 6295 6295 62.88 626 60.38 6108 60.86 60.9
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We find that the ESS of DAIS and DSMCS without resampling drops after just one a iteration to
value around 1.5. For the Bern-GST R. model (utilizing straight-through gradients corresponding
to the resampling operation) we find that the ESS stays mostly at around values of 63, dropping
for larger £ > 16 to values around 60. The Bern-Cat R. model (trained without any gradients
corresponding to resampling) shows similar behavior. For the models utilizing resampling (with and
without resampling gradients) we also notice a few outliers.

D.3 STtATIC TARGETS

This section provides quantitative results utilized in this work. Table 2 shows results on the static
target experiment of the Langevin Markov kernel and Table 3 shows results of the Hamiltonian
Markov kernel for various IV, K, resampling schemes, and step sizes. For each entry in the table we

search over learning rates 1072,3-1072,5-1072,9 - 10~2. The model that achieves the best results
is then trained on three different seeds.

Table 2: Results of Langevin kernel (means and standard deviations over three runs). For details see
main text. N/A denotes experiments that did not converge. Appendix C describes the experimental
setup. For a description of the models please consult Appendix C.1.

Il DAIS No Cat Bern-Cat
N 8 32 64 ” N 8 32 64 P N 8 32 64 % N 8 32 64
0.1 s S1743+193  -146.894621  -141.63+£0.5 8 -177.9744.79  -149.0942.65  -144.9242.94 B 172214236 14174315 -129.57+1.11 s 173674513 -140.68+4.54  -127.1642.52
16 -139.28:4£077 -111.9843.66 -104.39+4.33 16 -134174165 -111.674249 105464295 | 16 -124214367 96424248  -89.1942.32 16 -122.164353 9694152  -85.31:£041
32 8427427 73134092 -65.89+0.92 32 -86.2742.66 7556424  -68.46+0.83 32 7555422 63314194 -59.62:43.0 32 76064235 -62.33+4071  -59.9+1.65
N F ’ N 29 N P
P B 32 64 P 8 32 64 P 8 32 64 P B 32 64
025 8 115544056 -9627+4.5  -87.98+4.22 8 116894247 97594196 -88.04+1.44 8 -103.96:£135  -80.8942.19  -72.66:£0.76 8 103774336 79734142 7118£1.72
16 72484164 59374176 -54.85+0.8 16 71724084 -61.8343.16  -54.88+0.59 16 -59.36:42.14  -44.11£1.82  -39.02:41.08 16 -583741.53 42754098  -38.45+1.54
3 4019413 -33.140.58  -29.27+1.09 32 -4048+088  -32.584023  -29.69+1.22 32 -29.78+0.98  -26.940.53  -25.18::0.81 32 31224079 26594007 -23.16+0.95
8 32 61 8 32 64 P N B 32 64 P N B 32 61
10 8 31794025 25924113 -24.3340.36 8 3201405 25714178 2307407 8 2388+0.61  -1553+£049  -12.74:£036 8 2432407 -15.7940.53  -133140.35
16 (1819410 -14.1620.01  -122:4048 16 S18.624023 1431042 -125240.44 16 S11224039 744088 -8.3441.65 16 (1183404 -838+033  -9.18:4035
32 9.88+4029  7.124025  -5.93+0.08 32 9.89+047 6844023 -5.97+0.27 32 6.87£0.07  -1659+£0.7  -22.96+7.68 32 7624048 4.11+0.55 N/A
3 GST Bem-GST GST (7 = 0.1) Bem-GST (7 = 0.1)
N B 32 64 v s 64 v B 32 64 N 8 32 64
K h K K K ° A
0.1 s 19024668 -151.38:£199  -148.92:410.88 8 183734501 -145474218  -136.43+13.44 s 17234242 -141.6743.04  -130.08+1.12 8 S173.8444.92 -139.264295  -126.9242.85
16 -147.98£1044 11682074 -122.78+10.71 16 -141.35£455 -108.57+5.38  -90.19+10.53 16 -12431£3.65 9664272 -88.81+3.07 16 -12203+£3.72  -96.98+153  -85.66+1.53
32 103874924 -69.954846  -50.74£6.98 32 76514285 -38.86+03 32 75644227 62724197 -62.69+£0.76 32 74284278 -61.28:4086  -60.49+£09
P B 32 64 P N s 32 64 Py N B 32 64 P N 8 32 64
025 s -105.61+4.14 7978423 7253079 s -109.6546.27  -79.06:1.84  -69.29+1.43 s S104.0£1.65  -80.54+1.34  -73.17£0.58 8 103844332 79594125 -70.46+2.09
16 6641106 -43.13+2.6 41 16 -63.07+6.52 -33.82+£022 16 -59244224  4434£118  -40.03+0.92 16 58454207 4356+1.0  -38.21+037
32 44 -1798+£087  -14.18£046 32 -31.09+1.13 1113404 32 2984089 26694072 -21.09+4.08 32 32044082 26924027  -18.93+136
N . N . N N P N
P B 32 P s 32 61 Py B 32 64 P 8 32 64
10 s -19.78+0.42 s 25754315 19274279 -12.174039 23894041 15694073 -12.76+£0.74 8 24.04£084  -157740.15  -13.49+048
16 -8.17£0.63 16 48.1142402  -7.4620.2! 6.3240.3 16 11614097  7.62£1.02  -6.18+0.28 16 SIL42£06 824134 -646+0.74
32 6.88+2.11 32 -16.05+5.7 N/A 32 6.6640.17  -1639+028  -18.75+0.34 32 7574016 4054022 -63+2.16

Table 3: Results of Hamiltonian kernel (means and standard deviations over three runs). For details
see main text. N/A denotes experiments that did not converge. Appendix C describes the experi-
mental setup. For a description of the models please consult Appendix C.1.

5 DAIS No Cat Bern-Cat
N - p : N - p - N p - N . N
P 8 32 64 P 8 32 64 » s 32 64 P 8 32 64
0.1 8 S15.35419  -1136+£0.65 9.72+0.06 | 8 -143+054 1114038 10054032 | 8 2405413 -16.59+075  -14.88+0.7 8 20144046 -1456+£037 -10.57+045
16 9224073 7.34£059  -5794047 | 16 9.49+079 7584027 6112053 | 16 -14.67+058 -11.44+£064 -11.3542.93 | 16 -11.06=089 6214028 -10.83=4.83
32 627044 -4633041 3813071 | 32 -685£092  -652+1.01 32 755107 -604£1.52  -3962036 | 32 4363084  -463:0.1  -1.98+02
N N ] N N ) " - N y - N ; -
P 8 32 64 P 8 32 64 ® 8 32 64 P 8 32 64
025 | 8 14314039 -1116£028 9614042 | 8  -1498+073 -11.04+074 26584172 -18.94+£031  -15334044 | 8 20584037 -13.06£0.71 -10.98+£0.48
16 9464093 6184022 5431021 | 16 -9.08+041 974023 5233022 13494024 9354122 8954049 | 16 948+0.56 684029  -526+1.03
32 5964034 5354077 6274437 | 32 5874045 -37+046  -4.14:0.89 10424139 235342283 -104+3.26 | 32 5362025 4694044  1.0:0.14
P 8 32 61 P N 8 32 61 8 32 64 P N 8 32 61
10 8 -IST3£1.09 -11224027 908011 | 8 14264054 -10.3£02  -9.28+0.14 25914087  28.69+1.41  -18424133 | 8 23834076 -25.642.12  -18.79+2.09
16 574089 64045  5.9+091 16 9.04+103 5524035  -6.64129 18234254 -13.76+12  -15384386 | 16 -1404£117  -81+184 1164523
32 5264043 3574017 3314035 | 32 5854018  -60+179  -476+197 1207£1L15 (12655079 13464179 | 32 N/A 5.824048 46404
§ GST (r = 1.0) Bem-GST (r = 1.0) GST (r = 0.1) Bem-GST (7 = 0.1)
P ¥ 8 32 64 . 8 32 61 8 32 64 » N 8 32 64
01 8 228255069 -13801£17.07 1250151053 | 8 -1166947494 -108627.04  -85.47+7.21 2534216 -1658+151  -153420.15 | 8 22944177 -13.64+£0.12
16 N/A Z 16 N/A -199.13210.01  -18L45£7.17 15885029 -ILOIELIS -11825.66 | 16 -1827+609 -7.77+1.93
32 N/A N/A 1764829.59 | 32 N/A 2649+19.9 462368 93E176  TA9ELI 5694027 | 32 621430 274014 348045
» ¥ 8 32 64 » N 8 32 61 8 32 64 P N 8 32 64
025 8 23455122 1222843656 -50.93=1221 | 8 58.96+203  -10345544.46 3846270 24165134 -17.58+003 14255004 | 8 23024282 1422507 -10.030.5
16 -156.89+34.08  -150.69+42.62 16 -99.05+£59.42 31 12849483 13355019 957115 1459535 | 16 9891072  -24.69+4.25
32 593340863 -36.89+17.48 32 A 0.02:£096 901+053 1039185 -11.76:124 | 32 -40+036 N/A
o~ 8 32 o~ 8 32 61 8 32 61 0 8 32 64
| 8 35.55£2.63  -38.06+8.11 8 30824326 3195574 -49.46+9.00 25955172 22384198 20662285 | 8 24794227 17223031 -1586+0.55
16 -2594:686  -29.06+7.48 3 16 1374114 N/A -4735£20.14 5632062 -14.62+186 -37.45:12.66 | 16 N/A 829211 N/A
32 -11.34:4£2.02 -244.71:£296.56 -17.5841.35 32 N/A -5.1640.12 -11.8142.21 -16.445.07 -19.544+4.19 32 N/A -8.88+2.08 N/A
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