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ABSTRACT

Transformers have become increasingly popular in offline reinforcement learning
(RL) due to their ability to treat agent trajectories as sequences, reframing policy
learning as a sequence modeling task. However, in partially observable environ-
ments (POMDPs), effective decision-making depends on retaining information
about past events – something that standard transformers struggle with due to
the quadratic complexity of self-attention, which limits their context length. One
solution to this problem is to extend transformers with memory mechanisms. We
propose the Recurrent Action Transformer with Memory (RATE), a novel
transformer-based architecture for offline RL that incorporates a recurrent memory
mechanism designed to regulate information retention. We evaluate RATE across a
diverse set of environments: memory-intensive tasks (ViZDoom-Two-Colors, T-
Maze, Memory Maze, Minigrid-Memory, and POPGym), as well as standard Atari
and MuJoCo benchmarks. Our comprehensive experiments demonstrate that RATE
significantly improves performance in memory-dependent settings while remaining
competitive on standard tasks across a broad range of baselines. These findings
underscore the pivotal role of integrated memory mechanisms in offline RL and es-
tablish RATE as a unified, high-capacity architecture for effective decision-making
over extended horizons.

1 INTRODUCTION

Figure 1: Recurrent Action Transformer with
Memory (RATE). The model processes trajectory
divided into n segments Sn with memory embed-
dings Mn, where R denotes returns-to-go (future
rewards), o – observations, a – actions, and Mn –
memory embeddings attached to each segment Sn

to retain important historical information.

Originally developed for Natural Language Pro-
cessing (NLP), transformers (Vaswani et al.,
2017) have recently demonstrated strong per-
formance across a wide range of Reinforce-
ment Learning (RL) settings (Agarwal et al.,
2023; Li et al., 2023). They have been success-
fully applied to online (Parisotto et al., 2020;
Esslinger et al., 2022), offline (Chen et al.,
2021; Jiang et al., 2023; Wang et al., 2025),
model-based (Chen et al., 2022; Robine et al.,
2023), and in-context RL (Polubarov et al.,
2025; Grigsby et al., 2024; Schmied et al., 2024).
In particular, transformers show promise for
tackling long-horizon credit assignment and op-
erating in memory-intensive environments (Ni
et al., 2023; Grigsby et al., 2024; Esslinger et al.,
2022; Parisotto et al., 2020), provided the full
trajectory fits within the model context. Despite
their success, transformers face fundamental limitations when applied to long sequences due to
the quadratic complexity of self-attention (Keles et al., 2023), which restricts their applicability in
long-horizon inference tasks. While various techniques have been proposed to extend the context
window (Dai et al., 2019; Bulatov et al., 2022), these approaches often suffer from training instabil-
ity (Zhang et al., 2022) or rely on task-specific sparse attention patterns that may not generalize well
beyond NLP (Beltagy et al., 2020; Zaheer et al., 2020). Memory-augmented transformers offer a
promising alternative by enabling access to past information without expanding the context length.
Motivated by advances in memory mechanisms for NLP models (Dai et al., 2019; Bulatov et al.,
2022), we investigate how such approaches can be adapted to RL. Unlike NLP, RL involves structured
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and modality-rich inputs – observations, actions, and rewards – that require domain-specific encoding,
and frequently exhibit high sparsity in both reward signal and observations.

In RL, memory usually refers either to using past information within an episode (Lampinen et al.,
2021; Ni et al., 2023), or to transferring experience across environments (Kang et al., 2023; Team
et al., 2023), aiding generalization, sample efficiency, and Meta-RL (Duan et al., 2016; Wang et al.,
2016), and we focus on the former.

We introduce the Recurrent Action Transformer with Memory (RATE; see Figure 1), a memory-
augmented transformer that incorporates three complementary mechanisms: learned memory em-
beddings, recurrent caching of past hidden states, and a novel Memory Retention Valve (MRV)
for selective information flow. We empirically show that memory mechanisms effectively preserve
information from previous steps, allowing the model to use past information when making deci-
sions in the present. MRV is designed to control the process of updating memory embeddings
and prevent the loss of important information when processing long sequences, thus enabling the
processing of highly sparse tasks. To assess the effectiveness of our memory mechanisms, we
conduct extensive experiments across a diverse set of memory-intensive environments, including
ViZDoom-Two-Colors (Sorokin et al., 2022), Memory Maze (Pasukonis et al., 2022), Minigrid-
Memory (Chevalier-Boisvert et al., 2023), Passive T-Maze (Ni et al., 2023), and POPGym (Morad
et al., 2023a), as well as standard RL benchmarks such as Atari (Bellemare et al., 2013) and Mu-
JoCo (Fu et al., 2021). We also study the impact of memory on the performance of the proposed
model. RATE interpolates and extrapolates well outside the transformer context and is able to retain
important information for a long time when operating in highly sparse environments.

Our main contributions are as follows:

1. We propose Recurrent Action Transformer with Memory (RATE), a new transformer
for offline RL that combines three complementary memory mechanisms: (i) memory
embeddings, (ii) caching of hidden states, and (iii) a Memory Retention Valve (MRV),
which uses cross-attention to retain key information over long horizons (Section 3).

2. We conduct extensive evaluations on memory-intensive tasks – including ViZDoom Two-
Colors, Memory Maze, Minigrid-Memory, POPGym, and Passive T-Maze – showing that
RATE consistently outperforms strong baselines (Subsection 4.1).

3. We further show that RATE matches or surpasses standard baselines on the Atari and
MuJoCo benchmarks, demonstrating strong generalization across task types and highlighting
the model’s versatility (Subsection 4.1).

2 BACKGROUND

Offline RL. In RL (Sutton & Barto, 2018), a task is formalized as a Markov Decision Process (MDP):
⟨S,A,P,R⟩, where s ∈ S are states, a ∈ A are actions, P(s′|s, a) is a transition function, and r =
R(s, a) is a reward function. States satisfy the Markov property: P(st+1|st) = P(st+1|s1, . . . , st).
A trajectory τ of length T is a sequence (s0, a0, r0, . . . , sT−1, aT−1, rT−1), where rt = R(st, at)

is the immediate reward at the timestep t. The return-to-go (Chen et al., 2021) Rt =
∑T−1

t′=t rt′ is
the sum of future rewards from t. The goal is to learn a policy π maximizing the expected return.
While online RL iteratively collects trajectories through environment interaction, offline RL uses a
fixed dataset of trajectories, making it suitable for scenarios where environment interaction is costly
or risky. A popular offline RL method, Decision Transformer (DT) (Chen et al., 2021), models
return-conditioned trajectories with a GPT-style architecture, avoiding value estimation. However, its
fixed context window limits performance in tasks with delayed rewards or long-term dependencies,
motivating memory-augmented models.

POMDP. In real-world, agents often receive partial observations rather than full states, breaking the
Markov property. For instance, a robot using only camera input or an agent relying on past context.
Such cases are modeled as Partially Observable MDPs (POMDPs): ⟨S,A,O,P,R,Z⟩, where o ∈ O
are observations and Za

s′o = P (ot+1|st+1 = s′, at = a) defines the observation function. Since
single observations are insufficient, agents must use history to infer useful state representations.

2
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Figure 2: Attention maps of RATE and DT on the T-Maze (Ni et al., 2023) task with corridor length
T = 8. DT is trained on full 8-step trajectories, while RATE processes the sequence in three segments
of length 3 recurrently, passing information between segments through memory embeddings.

3 RECURRENT ACTION TRANSFORMER WITH MEMORY

Algorithm 1 RATE

Require: R ∈ RT , o ∈ Rdo×T , a ∈ RT

1: R̃← EncoderR(R)
õ← Encodero(o)
ã← Encodera(a)

2: τ0:T−1 ← {(R̃t, õt, ãt)}T−1
t=0

3: Mn ←M0 ∼ N (0, 1)
4: for n in [0, T//K − 1] do
5: Sn ← τnK:(n+1)K

6: S̃n ← concat(Mn, Sn,Mn)

7: ân,Mn+1 ← Transformer(S̃n)
8: Mn+1 ← MRV(Mn,Mn+1)

Output: ân → L(an, ân), Mn+1

9: end for

Algorithm 2 Memory Retention Valve

Require: Mn,Mn+1 ∈ Rm×d

1: Qh ←MnW
h T
Q

2: Kh ←Mn+1W
h T
K

3: Vh ←Mn+1W
h T
V

4: Mh
n+1 ← softmax

(
QhK

T
h√

d

)
Vh

5: Mn+1 ← concat(M0
n+1, . . . ,M

h
n+1)

6: Mn+1 ←Mn+1W
T
M

Output: Mn+1

Transformers excel at sequence modeling, including
offline RL (Chen et al., 2021; Janner et al., 2021), but
struggle with long-horizon tasks due to fixed context
and quadratic attention cost. In memory tasks, agents
must recall information seen thousands of steps ear-
lier—something models like DT cannot do once cues
fall outside context. We propose the Recurrent Ac-
tion Transformer with Memory (RATE), which in-
troduces segment-level recurrence and dynamic mem-
ory control. RATE processes trajectories in segments,
using lightweight memory and a learnable Memory
Retention Valve (MRV) to decide what to retain
or discard. In T-Maze (Ni et al., 2023), the agent
receives a one-bit cue o0 at the first step indicating
whether to turn left or right at the end of a maze. Solv-
ing the task requires remembering this cue despite
sparse rewards. DT fails once o0 leaves the context,
making retrieval at inference impossible. Figure 2
shows this: DT attends to o0 only when it fits the con-
text, while RATE segments the input and propagates
the memory embeddings, preserving the cue to the
end and enabling explicit memory retention.

RATE combines memory embeddings (Bulatov et al.,
2022), cached hidden states (Dai et al., 2019), and
a novel MRV to handle long and sparse sequences.
The architecture is shown in Figure 1. Let a trajec-
tory τ0:T−1 of length T be represented by triplets
(Rt, ot, at), where Rt is the return-to-go, ot the observation, and at the action. Each modal-
ity is encoded using modality-specific encoders (Algorithm 1): R̃t = EncoderR(Rt), õt =
Encodero(ot), ãt = Encodera(at). The encoded sequence is split into N = T//K non-
overlapping segments Sn of length K. Thus, the effective context is Keff = N × K, well be-
yond standard attention limits. Each segment is prepended and appended with memory embed-
dings Mn ∈ Rm×d, where m is the number of memory tokens and d the embedding dimension:
S̃n = concat(Mn, Sn,Mn) ∈ R(3K+2m)×d Each segment is then processed by the transformer:
ân,Mn+1 = Transformer(S̃n) The output Mn+1 is then refined via MRV before being passed
to the next segment.

Naively forwarding memory embeddings leads to error accumulation or overwriting of relevant
information. To address this, we introduce the Memory Retention Valve (MRV), a cross-attention
module that filters new memory tokens through the lens of the previous ones (Algorithm 2):

MRV(Mn,Mn+1) = FFN (MultiHead(Query = Mn, Key = Mn+1, Value = Mn+1)) (1)

This mechanism allows Mn to control what to retain or overwrite when updating to Mn+1. Unlike
static recurrence, it preserves sparse, long-range information. RATE overcomes DT’s limits by
extending context with recurrence, preserving early cues via MRV, and retaining key events in sparse
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settings. As a result, RATE solves tasks where DT fails, generalizes beyond training, and remains
competitive on standard MDPs.

Attention pattern analysis. Figure 2 compares attention maps of RATE and DT on a T-Maze
sequence. DT (right) attends only within a fixed window, focusing on recent tokens while losing
early cues like o0. RATE (left) segments the input and uses memory tokens to propagate information
across segments. These tokens retain access to o0 even in later segments, demonstrating RATE’s
ability to model long-range dependencies beyond the context window through structured memory.

3.1 PRESERVATION PROPERTIES OF MRV

We formalize the intuition that the cross-attention–based MRV prevents catastrophic overwriting of
memory by preserving alignment between consecutive memory states. All vectors are row-vectors.
We use ∥ · ∥F for the Frobenius norm and ∥ · ∥2 for the ℓ2 norm.

Let Mn ∈ Rm×d and M̃n+1 ∈ Rm×d denote the incoming and updated memory embeddings at
segment n, where m is the number of memory tokens and d is the model dimension. We assume that
each row i of Mn is ℓ2-normalized: ∥Mn,i∥2 = 1 . The MRV computes the next memory state as:

Q = MnWQ,K = M̃n+1WK , V = M̃n+1WV , A = softmax
(

QK⊤
√
d

)
,Mn+1 = AVWM .

α-alignment condition. The memory embeddings are said to satisfy α-alignment if there exists a
constant α ∈ (0, 1] such that for every row Mn,i, there exists a row Vj for which: ⟨VjWM , Mn,i⟩ ≥
α. This implies that the angle between VjWM and Mn,i is at most arccosα. Empirically, this
condition holds in trained models, as the transformer tends to preserve useful memory content and
avoids orthogonal rotations between segments.
Theorem 1 (On memory loss bounds). Let each memory row be ℓ2-normalized, the α-alignment
condition hold, and A = softmax

(
QK⊤
√
d

)
be the MRV attention matrix. Then:

∥Mn+1 −Mn∥F ≤
√
2
(
1− α

m

)
· ∥Mn∥F , ∥Mn+1∥F ≥

(
1−

√
2
(
1− α

m

))
· ∥Mn∥F . (2)

In words: at least a
(
1−

√
2
(
1− α

m

))
fraction of the initial memory is guaranteed to be preserved

after a single MRV update Equation 2 (right), and the memory loss is upper bounded by Equation 2
(left).

Proof. Since each row of the attention matrix A is a probability distribution, we have
∑

j Aij = 1

for every i. By the pigeonhole principle, there exists an index j∗ such that Aij∗ ≥ 1
m .

By assumption, for each Mn,i there exists a Vj such that ⟨VjWM , Mn,i⟩ ≥ α. In particular, this
holds for j∗: ⟨Vj∗WM , Mn,i⟩ ≥ α. Using the MRV definition Mn+1,i =

∑
j AijVjWM , we write:

⟨Mn+1,i, Mn,i⟩ =
∑
j

Aij⟨VjWM , Mn,i⟩ ≥ Aij∗⟨Vj∗WM , Mn,i⟩ ≥
α

m
. (3)

Let θi be the angle between Mn+1,i and Mn,i. Since both vectors are ℓ2-normalized, we have:
cos θi =

⟨Mn+1,i,Mn,i⟩
∥Mn+1,i∥2·∥Mn,i∥2

≥ α
m . Using the identity ∥u − v∥22 = 2(1 − cos θ) for unit vectors:

∥Mn+1,i −Mn,i∥22 ≤ 2
(
1− α

m

)
, thus∥Mn+1,i −Mn,i∥2 ≤

√
2
(
1− α

m

)
. Summing over all mem-

ory tokens and applying the previous bound: ∥Mn+1 − Mn∥2F =
∑m

i=1 ∥Mn+1,i − Mn,i∥22 ≤
2m

(
1− α

m

)
, which simplifies to: ∥Mn+1 − Mn∥F ≤

√
2m

(
1− α

m

)
. Consequently, since

∥Mn∥F =
√
m due to row normalization, we conclude: ∥Mn+1−Mn∥F ≤

√
2
(
1− α

m

)
· ∥Mn∥F .

We now derive the lower bound Equation 2 (left) using the reverse triangle inequality. For any
matrices Mn+1,Mn ∈ Rm×d, we have: ∥Mn+1∥F ≥ ∥Mn∥F − ∥Mn+1 −Mn∥F . Substituting

the upper bound from Equation 2 (right): ∥Mn+1 −Mn∥F ≤
√

2
(
1− α

m

)
· ∥Mn∥F , we obtain:

∥Mn+1∥F ≥
(
1−

√
2
(
1− α

m

))
· ∥Mn∥F , which completes the proof of Equation 2.
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Figure 3: Comparison of RATE with transformer baselines (DT, RMT, TrXL) on ViZDoom-Two-
Colors trained on the first Ttrain = 90 steps of the episode: with (a) and without (b) pillar in the first
45 steps of the episode; calculated at environment steps 0 – 89 (c) and 90 – 179 (d) with pillar in the
first 45 steps; depending on the return-to-go (e, f, g). Episode timeout – 2100 steps.

4 EXPERIMENTAL EVALUATION
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Figure 4: ViZDoom-Two-Colors results with
Ttrain=150. The top plot shows average return
across all episodes (yellow), and separately for
red (red) and green (green) pillars. The bottom
plot shows the imbalance metric—absolute differ-
ence between red and green performance. Lower
imbalance indicates more consistent behavior and
is as important as average return.

We designed our experiments to achieve two
main goals: (a) to showcase the strengths of
the RATE model in memory-intensive environ-
ments (T-Maze, ViZDoom-Two-Colors, Mem-
ory Maze, Minigrid-Memory, POPGym), and
(b) to assess its effectiveness in standard MDPs,
demonstrating its versatility across domains.

Baselines. To evaluate the performance
of RATE, we compare it against a diverse
set of baselines spanning several categories:
transformer-based models including Decision
Transformer (DT) (Chen et al., 2021), Recur-
rent Memory Transformer (RMT) (Bulatov et al.,
2022) and Transformer-XL (TrXL) (Dai et al., 2019) specially adapted by us for offline RL, and
Long-Short Decision Transformer (LSDT) (Wang et al., 2025); classic baselines such as Behavior
Cloning with an MLP backbone (BC-MLP) and Conservative Q-Learning (Kumar et al., 2020)
with an MLP backbone (CQL-MLP); recurrent models including Behavior Cloning with an LSTM
backbone (Hochreiter & Schmidhuber, 1997) (BC-LSTM), CQL with LSTM (CQL-LSTM), Decision
LSTM (DLSTM) (Siebenborn et al., 2022), and its GRU-based variant (Chung et al., 2014) (DGRU);
and a state space model baseline, Decision Mamba (DMamba) (Ota, 2024).

Memory-intensive tasks. We evaluate RATE in tasks that require agents to retain information over
time Figure 9; full details are in Appendix C. ViZDoom-Two-Colors: the agent must recall a briefly
visible pillar color to collect matching items; T-Maze: a cue at the start indicates the correct turn at
the end, testing sparse long-term memory; Minigrid-Memory: like T-Maze, but the clue must be
located first, combining memory and credit assignment (Ni et al., 2023); Memory Maze: the agent
searches for objects matching a changing target color, requiring spatial memory; POPGym: a suite
of 48 partially observable tasks (Morad et al., 2023a) designed to probe different aspects of memory.

4.1 EXPERIMENTAL RESULTS

101 102 103 104

T-Maze Inference Corridor Length

0.0

0.2

0.4

0.6

0.8

1.0
Success Rate 

RATE (Ours)
RMT
DGRU
CQL-LSTM
TrXL

DT
LSDT
DMamba
BC-LSTM
CQL-MLP

DLSTM
BC-MLP
Persistent Agent
Random Agent

Figure 5: T-Maze generalization task.

ViZDoom-Two-Colors. Figure 4 shows train-
ing with Ttrain=150 and inference up to 2100
steps, where the pillar disappears at step 90.
RATE achieves the highest return and lowest
imbalance between the red and green pillars, in-
dicating strong and consistent memory use. Fig-
ure 3 further tests transformer models trained
with Ttrain = 90 on their ability to retain early
cues. With the pillar present (a), RATE again
yields the highest and most stable return. DT
and TrXL underperform and show a higher im-
balance. Removing the pillar (b) degrades all models, confirming reliance on the initial cue. DT’s
unchanged performance across (a) and (b) highlights its failure to leverage long-term dependencies.

This limitation is clearer in Figure 3 (c, d), which separates performance within and beyond the
90-step context. DT’s return drops by nearly 50% in red-pillar episodes once the cue leaves the
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Figure 6: Heatmaps of success rates on T-
Maze tasks. The black dashed line separates in-
distribution inference (with Tval ≤ Ttrain) from
out-of-distribution inference (with Tval > Ttrain).
Results for other baselines can be found in Ap-
pendix, Figure 11.

window, while memory models (RATE, RMT,
TrXL) remain stable, demonstrating their ability
to retain and use information over long horizons.

Figure 3 (e, f, g) shows model performance
across target reward levels. RATE consistently
outperforms all baselines overall (e), and this ad-
vantage is even clearer when separating red (f)
and green (g) pillar episodes. While other mod-
els show large disparities, RATE maintains sta-
ble performance across both conditions, demon-
strating effective use of initial cues and validat-
ing the strength of its memory architecture.

T-Maze. Figure 5 shows the model general-
ization in Passive T-Maze as inference length
grows from 9 to 9600 steps. All models were
trained on episodes up to 900 steps; extrapola-
tion beyond this requires long-horizon general-
ization. RATE achieves 100% success across all
in-distribution lengths and performs well even
at 9600-step inference, corresponding to trajec-
tories of 3 × 9600 = 28800 tokens due to the (R, o, a) triplets. This highlights RATE’s ability to
retain and leverage sparse cues over extremely long horizons. Other transformers (e.g., DT, LSDT)
match RATE on training-length sequences but degrade sharply beyond. DT collapses to ∼ 50% even
at moderate lengths due to its lack of memory. Memory-augmented models like RMT generalize
slightly further but deteriorate. TrXL performs similarly to DT, suggesting hidden-state caching
alone is insufficient for long-range recall of sparse information. RNNs and SSMs (e.g., BC-LSTM,
DMamba) show flat curves and fail to learn from sparse long sequences.

RATE both interpolates within training and extrapolates well beyond, a key strength for solving sparse
POMDPs. Notably, poor performance of some memory baselines in Figure 5 is due to difficulty
modeling long sequences during training, not just generalization failure: even for Tval ≤ Ttrain, they
may fail. However, when trained on shorter sequences, some models learn generalizable behaviors.
Figure 6 visualizes inference performance for RATE (top), DT (middle), and BC-LSTM (bottom)
across training/validation lengths. The black dashed line separates in-distribution (Tval ≤ Ttrain) from
out-of-distribution (Tval > Ttrain). From Figure 6 (bottom), BC-LSTM generalizes well when trained
on short sequences (≤ 150), but degrades as training lengths grow, reaching ∼0.5 when trained on
T ≥ 600, likely due to vanishing gradients or limited capacity (Pascanu et al., 2013; Trinh et al.,
2018). DT (Figure 6 (middle)) handles long training sequences via attention, but fails on longer
validation sequences due to fixed context. In contrast, RATE (Figure 6 (top)) maintains high success
across all validation lengths, enabled by its combination of attention and recurrent memory, which
overcomes the limitations of both DT and RNNs.

RAT
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L
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L-L
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DGRU

DMam
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LS
DT
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m
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Figure 7: Minigrid-Memory generalization task.

Minigrid-Memory. Figure 7 presents average
returns on Minigrid-Memory, where all models
were trained on grids of fixed size 41× 41 and
evaluated on a wide range of unseen grid sizes
from 11 × 11 to 501 × 501. RATE achieves
consistently high performance across the entire
spectrum, demonstrating both strong interpola-
tion and extrapolation capabilities. While TrXL
also performs well on average, its variance is no-
tably higher, indicating sensitivity to grid scale.

Table 1: Average return ± SEM in the Memory Maze (9× 9) environment (ep. length: 1000 steps).

Method Random BC-LSTM CQL-LSTM DT RMT TrXL RATE

Return 0.00±0.00 4.75±0.15 0.19±0.02 6.83±0.51 7.27±0.21 7.12±0.24 7.64±0.41
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Table 2: Aggregated average returns on 48 POP-
Gym tasks, split into memory and reactive subsets.

Tasks Rand. BC-MLP DT BC-LSTM RATE

All (48) -12.2 -6.8 5.8 9.0 9.5
Memory (33)-14.6 -11.9 -3.5 -0.2 0.5
Reactive (15) 2.3 5.1 9.3 9.1 9.1

Memory Maze. Table 1 presents results on the
Memory Maze task. RATE achieves higher av-
erage episode returns by effectively capturing
implicit structure, such as maze layout. For ref-
erence, the dataset’s average return is 4.69. All
models were trained on 90-step trajectory sub-
sequences, while full episodes span 1000 steps.

POPGym. To further assess generalization and memory capabilities, we evaluated models on all
46 tasks from the POPGym benchmark suite, which covers a wide range of partially observable
RL scenarios. The benchmark is split into 33 memory puzzle tasks and 15 reactive POMDP tasks.
Table 2 reports average normalized scores across all tasks and subsets. RATE achieves the highest
overall score (9.54), outperforming all baselines. On the challenging memory tasks, RATE maintains
a positive average score (0.45), while all other models fall below zero – indicating a consistent
failure to exploit long-term dependencies. Notably, DT scores −3.49 and BC-MLP drops to −11.91,
highlighting the limitations of both context-limited transformers and non-recurrent policies.

On reactive tasks, all models perform better, but the gap between memory-based and non-memory
models narrows. RATE, DT, and BC-LSTM show almost the same results, suggesting that the greatest
performance gains from RATE’s memory mechanisms occur on memory puzzle tasks. For simpler
reactive POMDPs, lightweight memory mechanisms appear sufficient. These results also underscore
RATE’s ability to generalize across both puzzle and reactive settings, confirming that its memory
architecture does not hinder performance in simpler tasks while offering clear benefits in those with
temporal dependencies. More details are provided in Appendix, Table 9.

Table 3: Normalized scores on MuJoCo tasks from the D4RL benchmark (Fu et al., 2021). Although
RATE is designed for memory-intensive environments, it performs competitively – and often
surpasses – methods tailored for standard MDP control. Top-1 and Top-2 results are highlighted.

Dataset Environment CQL DT TAP TT DMamba MambaDM RATE (ours)

ME HalfCheetah 91.6 86.8±1.3 91.8±0.8 95.0±0.2 91.9±0.6 86.5±1.2 87.4±0.1
ME Hopper 105.4 107.6±1.8 105.5±1.7 110.0±2.7 111.1±0.3 110.5±0.3 112.5±0.2
ME Walker2d 108.8 108.1±0.2 107.4±0.9 101.9±6.8 108.3±0.5 108.8±0.1 108.7±0.5

M HalfCheetah 44.4 42.6±0.1 45.0±0.1 46.9±0.4 42.8±0.1 42.8±0.1 43.5±0.3
M Hopper 58.0 67.6±1.0 63.4±1.4 61.1±3.6 83.5±12.5 85.7±7.8 77.4±1.4
M Walker2d 72.5 74.0±1.4 64.9±2.1 79.0±2.8 78.2±0.6 78.2±0.6 80.7±0.7

MR HalfCheetah 45.5 36.6±0.8 40.8±0.6 41.9±2.5 39.6±0.1 39.1±0.1 39.0±0.6
MR Hopper 95.0 82.7±7.0 87.3±2.3 91.5±3.6 82.6±4.6 86.1±2.5 83.7±8.2
MR Walker2d 77.2 66.6±3.0 66.8±3.1 82.6±6.9 70.9±4.3 73.4±2.6 73.7±1.4

Average 77.6 74.7 74.8 78.9 78.8 79.0 78.5

Atari and MuJoCo. We evaluate RATE on standard RL benchmarks: Atari games and MuJoCo con-
trol tasks (Table 3, Table 4). For comparison, we include results from recent state-of-the-art methods:
Decision Mamba (DMamba) (Ota, 2024), Mamba as Decision Maker (MambaDM) (Cao et al., 2024),
Conservative Q-Learning (CQL) (Kumar et al., 2020), Trajectory Transformer (TT) (Janner et al.,
2021), and TAP (Jiang et al., 2023), as reported in their original papers. Results show that RATE
matches or outperforms specialized offline RL algorithms across both benchmarks. Combined with
its strong performance on memory-intensive tasks, this highlights RATE’s versatility as a general-
purpose offline RL model. See Appendix E for full training details and Table 10 for the evaluation
protocol.

5 ABLATION STUDY

We conduct a comprehensive ablation study to assess the contributions of individual components and
architectural choices in RATE, structured around three key research questions.

1. How do different components of RATE influence performance on memory tasks? (RQ1)
2. What is the upper-bound results RATE can achieve with access to perfect memory? (RQ2)
3. What role does the MRV play, and which configuration is most effective? (RQ3)

Further ablations exploring key transformer parameters, memory tokens number, and sequence
segmentation strategies are provided in Appendix F and Appendix G.
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Table 4: Raw scores on Atari games. RATE outperforms DT in 3 out of 4 environments.
Environment CQL BC DT DMamba MambaDM RATE (Ours)

Breakout 62.5 42.8 76.9±27.3 70.6±9.3 106.9±5.8 111.0±2.9
Qbert 14013.2 2862.0 2215.8±1523.7 5786.0±1295.2 10052.5±1116.5 12486.9±280.4
SeaQuest 782.2 992.1 1129.3±189.0 992.1±57.7 1286.0±42.0 1037.9±53.7
Pong 18.8 6.4 17.1±2.9 1.6±15.3 18.4±0.8 18.8±0.3
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Figure 8: Effect of memory corruption on RATE
at inference. (left) ViZDoom: performance drops
when memory tokens or cached states are noised.
(right) T-Maze: SR degrades when memory em-
beddings are corrupted.

RQ1: Impact of RATE components. To
assess the contribution of individual memory
mechanisms in RATE, we performed inference-
time ablations by replacing memory compo-
nents with random noise. In T-Maze (K = 30,
N = 3 segments), corrupting memory embed-
dings M sharply reduced performance to 50%
success (see Figure 8, right). The agent still
reached the decision point but failed to turn cor-
rectly—showing it retained navigation skills but
lost the initial cue. Thus, memory embeddings
act as dedicated storage for task-relevant infor-
mation, while transformer layers encode general
behavior. In ViZDoom-Two-Colors (see Fig-
ure 8, left), adding noise separately to embeddings and cached hidden states showed performance
was more sensitive to hidden-state corruption, highlighting their role in continuous rewards and long
dependencies. Overall, memory embeddings matter most for sparse, discrete decision points (e.g.,
T-Maze), while cached representations are crucial in dense, continuous-feedback tasks like ViZDoom.

Table 5: Performance comparison between DT,
RATE, and OracleDT. OracleDT is an oracle-
informed variant used solely to approximate the
upper bound and is not a feasible baseline.

T-Maze

Success Rate OracleDT DT RATE

T = 90 1.00±0.00 1.00±0.00 1.00±0.00
T = 480 1.00±0.00 0.50±0.00 0.90±0.07
T = 900 1.00±0.00 0.50±0.00 0.90±0.07

ViZDoom-Two-Colors

Total Reward 56.5±0.8 24.8±1.4 41.5±1.0
Red Pillars 55.3±1.6 7.2±0.4 38.2±5.1
Green Pillars 57.2±0.5 42.3±3.3 44.7±5.8

RQ2: Performance upper-bound estimate. To
estimate the upper-bound performance achiev-
able by RATE, we introduce OracleDT – a vari-
ant of Decision Transformer augmented with
perfect prior knowledge about the environment.
Specifically, OracleDT receives an additional
input vector v ∈ R1×d_model prepended and
appended to the context sequence, i.e., S′ =
concat(v, S, v). This vector encodes one bit
of environment-critical information known in
advance. In T-Maze, v represents the initial clue
(vi = 0 if left, vi = 1 if right); in ViZDoom-
Two-Colors, it encodes the pillar color (vi = 0
for red, vi = 1 for green). This setup mirrors a
context augmented with perfectly trained mem-
ory embeddings, i.e., concat(M,S,M), where M encodes all relevant information. As a result,
OracleDT provides an empirical upper bound on achievable performance when key information is
available explicitly. In such settings, we expect the relation R[OracleDT] ≥ R[RATE] ≥ R[DT]
to hold (see Table 5). Since this privileged information is not generally accessible during training,
OracleDT is not a viable baseline but serves as a useful reference. The gap between OracleDT and
RATE quantifies the effectiveness of RATE’s memory mechanisms in autonomously discovering,
storing, and utilizing task-relevant information.

RQ 3. Memory Retention Valve scheme ablation. In the T-Maze environment, we observed that
without MRV, RATE’s performance deteriorates on long corridors (L≫ K), eventually reaching SR
= 50% (see Table 6). This degradation occurs because critical information to be remembered goes
into memory embeddings when processing the first segment of the sequence, and then it must be
retrieved when making decisions on the last segment. At the same time, due to the recurrent structure
of the architecture, memory embeddings continue to be updated during the processing of intermediate
segments when no new information needs to be memorized, causing important information from
memory embeddings to leak out. To address this information loss, we introduced the Memory
Retention Valve (MRV) and evaluated five variants: MRV-CA-1: Cross-attention mechanism where
updated embeddings (Mn+1) query incoming ones (Mn); MRV-CA-2: Reversed variant where
incoming embeddings (Mn) query updated ones (Mn+1); MRV-G: Gating mechanism inspired by
GTrXL (Parisotto et al., 2020); MRV-GRU: GRU-based (Chung et al., 2014) memory processing with
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Table 6: Ablation of MRV configurations in T-
Maze (Keff=30×5=150). Baseline without MRV
is marked †. Default: MRV-CA-2.

Model 150 360 600 900

w/o MRV† 1.00 ±0.00 0.66 ±0.08 0.65 ±0.07 0.61 ±0.07

MRV-CA-2 1.00 ±0.00 0.95 ±0.05 0.90 ±0.07 0.90 ±0.07
MRV-G 0.86 ±0.07 0.77 ±0.08 0.66 ±0.07 0.65 ±0.08
MRV-GRU 0.99 ±0.01 0.74 ±0.07 0.56 ±0.11 0.55 ±0.12
MRV-LSTM 0.85 ±0.06 0.64 ±0.10 0.51 ±0.11 0.47 ±0.11
MRV-CA-1 0.51 ±0.01 0.51 ±0.01 0.49 ±0.02 0.49 ±0.01

hidden states; MRV-LSTM: LSTM-
based (Hochreiter & Schmidhuber, 1997)
memory processing with cell states.

Among all tested configurations, MRV-CA-2
demonstrated best performance (see Table 6).
This cross-attention scheme uses incoming
memory tokens (Mn) as queries and updated
tokens (Mn+1) as keys and values. This config-
uration, referred to simply as MRV throughout
the paper, effectively controls information flow
through memory. By allowing the model to selectively update its memory based on the relevance of
new information, it prevents loss of important context over long sequences.

6 RELATED WORK

Transformers in RL: Transformers have been applied to online (Parisotto et al., 2020; Lampinen
et al., 2021; Morad et al., 2023b; Le et al., 2024), offline (Chen et al., 2021; Janner et al., 2021; Wang
et al., 2025), and model-based RL (Chen et al., 2022). Prior work often assumes compact observations
or known dynamics (Lee et al., 2022; Jiang et al., 2023), whereas RATE targets long-horizon credit
assignment and memory in partially observable environments, using DT (Chen et al., 2021) as baseline.
The Long-Short Decision Transformer (LSDT) (Wang et al., 2025) augments DT with dual context
windows but still lacks explicit, learnable memory. Fast and Forgetful Memory (FFM) (Morad et al.,
2023b) and Stable Hadamard Memory (SHM) (Le et al., 2024) instead explore lightweight recurrent
slots with greater stability. RNNs in RL: Recurrent models like LSTM (Hochreiter & Schmidhuber,
1997) and GRU (Chung et al., 2014) have long supported memory in RL. DLSTM (Siebenborn
et al., 2022) replaces transformers with LSTM for sequential control, but RNNs often struggle with
long-term dependencies, especially under sparse rewards (Ni et al., 2023). SSMs in RL: SSMs
such as S4 (Gu et al., 2021) and Mamba (Gu & Dao, 2023) offer efficient alternatives to attention,
showing strong offline RL results (Bar-David et al., 2023; Ota, 2024; Cao et al., 2024), though
their ability to handle memory-intensive generalization remains unclear. Memory-Augmented
Transformers: Extensions like Transformer-XL (Dai et al., 2019), Compressive Transformer (Rae
et al., 2019), and RMT (Bulatov et al., 2022) extend context via caching or compression. RATE
combines token-level memory, hidden-state caching, and a novel MRV gate. Approximate Gated
Linear Transformer (Pramanik et al., 2023) replaces full attention with a gated, low-rank recurrent
update that approximates outer-product memory via cosine features, enabling efficient long-range
credit assignment at constant cost. Retrieval-Augmented Decision Transformer (RA-DT) (Schmied
et al., 2024) augments DT with an external retrieval memory that stores past sub-trajectories, retrieves
relevant ones by vector search, reweights them by utility, and integrates them through cross-attention
to guide action prediction in sparse-reward RL.

7 LIMITATIONS

While RATE is tailored for long-horizon, memory-intensive tasks, its complexity may be unnecessary
in fully observable or short-term settings where simpler recurrent models suffice. Nonetheless, RATE
matches or exceeds their performance across all tasks. Future work may explore adaptive variants
that scale memory based on task complexity.

8 CONCLUSION

We propose the Recurrent Action Transformer with Memory (RATE), a transformer-based
architecture for offline RL that combines attention with recurrence for long-horizon decision-making.
RATE integrates memory embeddings, hidden state caching, and a Memory Retention Valve (MRV)
to selectively retain critical information across segments. RATE achieves state-of-the-art results on
memory-intensive tasks such as T-Maze, Minigrid-Memory, ViZDoom-Two-Colors, Memory Maze,
and 48 POPGym tasks, generalizing up to 9600-step sequences and outperforming both recurrent
and transformer baselines. Theoretical analysis shows that MRV guarantees lower-bounded memory
preservation across updates, and ablation studies confirm its importance for long-horizon stability.
Despite its memory focus, RATE also performs competitively on standard benchmarks like Atari and
MuJoCo, demonstrating broad versatility. These results establish RATE as a unified, general-purpose
offline RL model that excels across both short and long temporal contexts.
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REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. Model details: A full
description of the RATE architecture, including pseudocode for both the model and the Memory
Retention Valve (MRV), is provided in Section 3 and Algorithms 1 – 2. Theoretical results: Formal
assumptions and complete proofs for our preservation theorem are given in Section 3. Experimental
setup: Details of environments, training procedures, and evaluation protocols are reported in Section 4,
with additional specifications (hyperparameters, dataset preprocessing, random seeds, and hardware
setup) in Appendix E and Appendix C. Baselines: All baseline implementations are either drawn
from widely used open-source libraries or re-implemented with hyperparameters matched to their
original publications, as described in Section 4 and Appendix G. Code and data: An anonymous
repository with the implementation of RATE, training scripts, and configuration files submitted as
supplementary material. Together, these resources allow for full replication of our theoretical analyses
and empirical results.
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A DISCUSSION: ARE RNNS STILL BETTER FOR MEMORY?

Our experiments provide a systematic comparison between recurrent and transformer-based archi-
tectures in memory-intensive tasks. When trained on short sequences, recurrent models such as
BC-LSTM perform competitively. For example, in the T-Maze environment, BC-LSTM achieves
perfect success rates when trained on sequences up to 150 steps, effectively capturing short-term
dependencies via its internal state dynamics.

However, this advantage quickly fades as training sequences grow longer. Increasing the training
horizon from 150 to 600 steps causes BC-LSTM’s performance to collapse to a 50% success rate
across all inference lengths—even those shorter than the training context—indicating difficulty with
gradient stability and information retention over long spans (Figure 6). In contrast, RATE maintains
consistently high performance under the same conditions, demonstrating stronger scalability with
sequence length. RATE generalizes robustly to inference horizons up to 9600 steps (28,800 tokens),
reflecting the effectiveness of its hybrid memory design. The architecture combines token-based
recurrence with gated memory updates via the Memory Retention Valve (MRV), enabling reliable
propagation of sparse information across long temporal distances.

These findings extend to more complex environments. In ViZDoom-Two-Colors and Memory Maze
(Figure 4, Table 1), RATE significantly outperforms BC-LSTM. In ViZDoom, RATE maintains
balanced performance across red and green cues, whereas BC-LSTM exhibits instability and higher
variance. In Memory Maze, RATE achieves substantially higher returns, benefiting from its capacity
to encode and retrieve spatial-temporal patterns over long episodes.

In conclusion, while RNNs remain effective for short-range temporal dependencies, their performance
degrades in long-horizon, sparse-reward, and generalization-critical settings. RATE bridges this gap
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POPGym-46ViZDoom-Two-Colors Minigrid-Memory T-Maze Memory-Maze

Figure 9: Memory-intensive environments used to evaluate RATE memory mechanisms.

by integrating attention with recurrence, offering a scalable and robust memory solution. These results
underscore the architectural promise of combining transformer attention with recurrent dynamics for
long-term tasks in RL.

B DECISION TRANSFORMER
Algorithm 3 Decision Transformer
Require: R ∈ R1×T , o ∈ Rdo×T , a ∈ R1×T

1: R̃ ∈ RT×d ← EncoderR(R)
õ ∈ RT×d ← Encodero(o)
ã ∈ RT×d ← Encodera(a)

2: τ0..T ← {(R̃0, õ0, ã0), . . . , (R̃T , õT , ãT )}
3: n = random(0, T −K)
4: ân ← Transformer(τn..n+K)

Output: ân → L(an, ân)

Decision Transformer (DT) (Chen et al., 2021)
is an algorithm for offline RL that reduces the
RL task to a sequence modeling task. In DT, the
scheme of which is presented in Algorithm 3,
the trajectory τ is not divided into segments as
in RATE. Instead, random fragments of length
K are sampled from the trajectory, since origi-
nally this architecture was designed to work only
with MDP. The predicted actions â are sampled
autoregressively.

C ENVIRONMENTS

C.1 MEMORY-INTENSIVE ENVIRONMENTS

In this section, we provide an extended description of the environments used in this paper, as well as
the methodology used to collect the trajectories. Table 7 summarizes the observations type, rewards
type, and actions type for each of the environments considered in this paper.

C.1.1 VIZDOOM-TWO-COLORS

We used a modified ViZDoom-Two-Colors environment from (Sorokin et al., 2022) to assess the
model’s memory abilities. The agent initially having 100 hit points (HP) is placed in a room without
inner walls filled with acid. At each step in the environment, the agent loses a fixed amount of health
(10/32 HP per step). In the center of the environment, there is a pillar of either green or red color,
which disappears after 45 environment steps. Throughout the environment, objects of two colors
(green and red) are generated. When the agent interacts with an object of the same color as the pillar,
it gains an increase in health of +25 and a reward of +1. When the agent interacts with an object of
the opposite color, it loses a similar amount of health. The agent receives an additional reward of
+0.02 for each step it survives. The episode ends when the agent has zero health. Thus, the agent
needs to remember the color of the pillar to select items of the correct color, even if the pillar is out of
sight or has disappeared. The agent does not receive information about its current health or rewards,
as these observations essentially convey the same information as the color of the pillar but persist
beyond step 45.

We collected a dataset of 5000 trajectories of 90 steps in length using a trained A2C (Beeching et al.,
2019) agent (an agent trained with a non-disappearing pillar). The average reward for these 90 steps
is 4.46. When collecting trajectories, to ensure that the agent saw the pillar before it disappeared,
the agent always appeared facing the pillar in the same place – midway between the pillar and the
nearest wall. In order to successfully complete this task, the agent needs to remember the color
of the pillar. This environment tests the long-term memory mechanism, since the agent needs to

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Description of observations and reward functions for the considered environments.

Environment Obs. Type Rew. Type Act. Space Obs. Details

ViZDoom-Two-Colors Image Continuous Discrete First-person view
T-Maze Vector Sparse & Discrete Discrete Low-dimensional vector
Memory Maze Image Sparse & Discrete Discrete First-person view
Minigrid-Memory Image Sparse Discrete 3×3 grid centered on agent
POPGym Vector/Image Discrete/Continuous Discrete/Continuous Vector or 2D grid
Action Assoc. Retrieval Vector Sparse & Discrete Discrete Symbolic vector input
Atari Image Sparse & Discrete Discrete Full game screen
MuJoCo Vector Continuous Continuous Low-dimensional state vector

retain information about the pillar for a time much longer than the pillar has been in the environment.
Using only short-term memory and, for example, collecting the next item of the same color as the
previous collected item, it will not be possible for the agent to survive for a long time, as this policy
is extremely unstable. This is due to the fact that in the training dataset the agent occasionally makes
a mistake and picks up an object of the opposite color. Thus, irrelevant information about the desired
color may enter the transformer context and the agent will start collecting items of an opposite color,
which will quickly lead to a failure.

C.1.2 T-MAZE

To investigate agent’s long-term memory on very long environments (the inference trajectory length
is much longer than the effective context length Keff ) we used a modified version of the T-Maze
environment (Ni et al., 2023). The agent’s objective in this environment is to navigate from the
beginning of the T-shaped maze to the junction and choose the correct direction, based on a signal
given at the beginning of the trajectory using four possible actions a ∈ {left, up, right, down}. This
signal, represented as the clue variable and equals to zero everywhere except the first observation,
dictates whether the agent should turn up (clue = 1) or down (clue = −1). Additionally, a constraint
on the episode duration T = L+ 2, where the maximum duration is determined by the length of the
corridor L to the junction, adds complexity to the problem. To address this, a binary flag, represented
as the flag variable, which is equal to 1 one step before the junction and 0 otherwise, indicating
the arrival of the agent at the junction, is included in the observation vector. Additionally, a noise
channel is added to the observation vector, with random integer values from the set {−1, 0,+1}.
The observation vector is thus defined as o = [y, clue, flag, noise], where y represents the vertical
coordinate. The reward r is given only at the end of the episode and depends on the correctness of
the agent’s turn at the junction, being 1 for a correct turn and 0 otherwise. This formulation deviates
from the traditional Passive T-Maze environment (Ni et al., 2023) (different observations and reward
functions) and presents a more intricate set of conditions for the agent to navigate and learn within
the given time constraint.

The dataset consists of 2000 of trajectories for each segment of length 30 (i.e. 6000 trajectories for
the Keff = 3× 30 = 90) and consists only of successful episodes. An artificial oracle with a priori
information about the environment was used to generate the dataset.

C.1.3 MEMORY MAZE

In this first-person view 3D environment (Pasukonis et al., 2022), the agent appears in a randomly
generated maze containing several objects of different colors at random locations. The agent’s task
is to find an object of the same color in the maze as the outline around its observation image. After
the agent finds an object of the desired color and steps on it, the color of the outline changes and the
agent must find another object. The agent receives a +1 reward for stepping on the correct object.
Otherwise, it receives no reward. The duration of an episode is a fixed number and is equal to 1000.
Thus, the agent’s task is to find as many objects of the desired color as possible in a limited time.
The agent’s effectiveness in this environment depends on its ability to memorize the structure of the
maze and the location of objects in it in order to find the desired objects faster. Using the Dreamer
model (Hafner et al., 2019) to collect dataset of 5000 trajectories only achieved an average award of
4.7 per episode, i.e., a rather sparse dataset.
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C.1.4 MINIGRID-MEMORY

Minigrid-Memory (Chevalier-Boisvert et al., 2023) is a 2D grid environment designed to test an
agent’s long-term memory and credit-assignment (Ni et al., 2023). The environment map is a T-
shaped maze with a small room with an object inside it at the beginning of the corridor. The agent
appears at a random coordinate in the corridor. The agent’s task is to reach the room with the object
and memorize it, then reach the junction at the end of the maze and make a turn in the direction where
the same object is located as in the room at the beginning of the maze. A reward r = 1− 0.9× t

T is
given for success, and 0 for failure. The episode ends after any agent turns at a junction or after a
limited amount of time (95 steps) has elapsed. The agent’s observations are limited to a 3× 3 size
frame. 10000 trajectories with grid size 41x41 were collected using PPO (Schulman et al., 2017) with
Transformer-XL (TrXL) (Pleines et al., 2023) with a context length equal to the maximum episode
duration.

C.1.5 POPGYM

POPGym (Morad et al., 2023a) is a benchmark suite consisting of 46 diverse partially observable
environments designed to isolate different aspects of memory use and generalization in reinforcement
learning. The tasks include both short-horizon reactive scenarios and long-horizon memory puzzles
that require the agent to remember information across extended delays or infer hidden states from past
observations. The environments vary in observation modality (image vs. vector), reward sparsity, and
temporal dependencies. For our dataset, we followed the original POPGym evaluation protocol and
used a PPO (Schulman et al., 2017) agent with a GRU (Chung et al., 2014) backbone (PPO-GRU),
which showed the best performance in the original benchmark. We collected trajectories using this
policy for all 46 environments. The collected dataset reflects the diverse difficulty and memory
requirements of the benchmark and serves as a challenging testbed for evaluating general-purpose
memory architectures like RATE.

C.2 STANDARD BENCHMARKS

C.2.1 ATARI GAMES

For the Atari game environments (Bellemare et al., 2013), we used the same dataset as in DT, namely
the DQN replay dataset with grayscale state images (Agarwal et al., 2020). This dataset contains 500
thousand of the 50 million steps of an online DQN (Mnih, 2013) agent for each game. We use the
following set of games: SeaQuest, Breakout, Pong and Qbert.

C.2.2 MUJOCO.

Figure 10: Action Associative Retrieval.

Despite the fact that memory is not required in decision
making in control environments like MuJoCo (Fu et al.,
2021), we conducted additional experiments in this envi-
ronment to compare with DT. For the continuous control
tasks, we selected a standard MuJoCo locomotion envi-
ronment and a set of trajectories from the D4RL bench-
mark (Fu et al., 2021). Since we chose DT and TAP as the
main models for comparison on this data, we focused on
the environments used in both works (HalfCheetah, Hop-
per, and Walker). We used three different dataset settings: 1) Medium – 1 million timesteps generated
by a “medium” policy that achieves about a third of the score of an expert policy; 2) Medium-Replay
– the replay buffer of an agent trained with the performance of a medium policy (about 200k–400k
timesteps in our environments); 3) Medium-Expert – 1 million timesteps generated by the medium
policy concatenated with 1 million timesteps generated by an expert policy. The scores for the Mu-
JoCo experiments are normalized such that 100 represents an expert policy, following the benchmark
protocol outlined in (Fu et al., 2021). The performance metrics for Conservative Q-Learning (CQL)
and Trajectory Autoencoding Planner (TAP) are reported from the TAP paper (Jiang et al., 2023), and
for DT from the DT paper (Chen et al., 2021), as they use the same dataset and evaluation protocol.
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Figure 11: Results for all models in the T-Maze generalization task.

D ACTION ASSOCIATIVE RETRIEVAL

As shown in Figure 6, DT has a SR = 50% for inference at corridor lengths longer than the transformer
context length. This is due to the fact that even a DT trained on balanced data has a slight bias in
the predicted probability towards one of the two required actions, which leads to the fact that when
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Figure 12: Experimental results with RATE and DT in the AAR environment. The graphs show the
10-runs average results of training on trajectories of length T = 90 and validation on trajectories of
length T = 180, for RATE with Keff = 3× 30 = 90 and for DT with K = 90.

t > K the agent constantly produces only one action: up or down. In turn, the presence of memory
in the agent allows us to combat this problem.

To check how the agent’s performance changes during training, we design an Action Associative
Retrieval (AAR) Figure 10 environment.

There are two states in this environment: S0 and S1. The agent appears in state S0 and by performing
the action a0 ∈ {0, 1} moves to state S1. Next, the agent must take N − 2 steps to move from state
S1 to state S1 by performing action a = 2 (no op.). At the end of the episode, the agent must perform
the same action that moved it from state S0 to state S1 in order to move from state S1 to state S0.
Thus, the action a ∈ {0, 1, 2}. Agent observations o = [state, flag, noise], where state ∈ {0, 1}
is the index of the current state, flag ∈ {0, 1} is a flag equal to 1 in case the next step requires
returning to the initial state and equal to 0 otherwise, noise ∈ {−1, 0,+1} is the noise channel. The
agent receives a +1 reward if it returns to the initial state S0 by performing the action that took it out
from the S0 to the S1, and −1 in other cases. The training dataset consists of oracle-generated 6000
trajectories with positive reward.

More formally, we can talk about the presence of memory in an agent when solving AAR (T-Maze-
like) tasks under the condition that:

∀t > K :
1

N0

N0∑
i=1

pi(at = a0|a0 = a0) +
1

N1

N1∑
i=1

pi(at = a1|a0 = a1) > 1 (4)

This condition means that if the agent has memory, the sum of the average conditional probabilities
over all experiments will be greater than one, i.e., these probabilities are independent of each other.
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Provided that the sum of these probabilities is less than or equal to one, the agent will choose at best
the same target action in most experiments, even if another action is required.

where a0, a1 ∈ A – two mutually exclusive actions leading to a reward; t is the step at which the
final action is required; N0, N1 are the number of experiments in environments where target action
at = a0 and at = a1, respectively.

In the results Figure 12, the first 1% of training steps was removed because it corresponds to the
beginning of the training and is unrepresentative. Blue dots correspond to the beginning of training,
red dots to the end of training. As can be seen from Figure 12, during training, the probabilities
pi(at = a0|a0 = a0) and pi(at = a1|a0 = a1) on the training trajectories have a strong positive
correlation (RDT

train = 1.00 and RRATE
train = 0.97), where R – correlation coefficient. This indicates

that within-context (effective context) DT and RATE models are able to predict both a0 and a1 actions
equally well.

At the same time, during validation, for the RATE model this pattern is preserved – the red points
corresponding to the probabilities of choosing actions a0 and a1 are in the upper right part of the
graph, positive correlation persists (RRATE

val = 0.80). On the other hand, in the DT case, the cluster
of red dots is skewed toward choosing action a1 and action a0 with equal probabilities equal to 0.5.
Thus, in sum, these probabilities are less or equal to one, as evidenced by a strong negative correlation
(RDT

val = −0.97). The results confirm the inability of DT to generalize on trajectories whose lengths
exceed the context length and the ability of RATE to handle such tasks.

E TRAINING

This section provides additional details on the training process of the baselines considered in the
paper. We treated the inclusion of the feed-forward network (FFN) block in RATE’s transformer
decoder as a hyperparameter, as RATE performed slightly better without FFN in some environments.
In contrast, other transformer-based baselines were trained with the standard transformer decoder
including FFN.

E.1 VIZDOOM-TWO-COLORS

Since the pillar disappears at time t=45, all trajectories span from t=0 to t=90 to ensure that the
cue remains available during training. In this setting, we compare DT with context length K=90 to
RATE, RMT, and TrXL models using K=30 and N=3 segments. Thus, RATE processes sequences
of the same total length Keff=N×K=90 but accesses only K=30 tokens at a time. Additionally, we
ran experiments with N=3, K=50, and T=150 to validate model robustness under longer and more
complex configurations.

E.2 PASSIVE T-MAZE

We trained models on sequences of length Ttrain ∈ {9, 30, 90, 150, 300, 600, 900} and evaluated
them on Tval ∈ {9, 30, 90, 150, 300, 600, 900, 1200, 2400, 4800, 9600}. For RATE, each
sequence was split into N = 3 segments, yielding a context length of K = Ttrain/3. All training
trajectories started from t = 0, ensuring the cue was always included. In what follows, we adopt the
notation MODEL-N, where N = 3 indicates segmentation into three recurrent blocks (e.g., RATE-3
is trained on full sequences of length T = 90 with K = 30). This convention is used throughout the
ablation studies.

E.3 MEMORY MAZE

To train RATE, DT, RMT, and TrXL on Memory Maze, we used the same approach as for ViZDoom-
Two-Colors environment, but instead of using fixed trajectories starting at t = 0, we sampled
consecutive 90-step subsequences from the original 1000-step trajectories. Each subsequence was
sampled with a stride of 90 steps, resulting in approximately 11 training sequences per original
trajectory. As in the ViZDoom-Two-Colors case, training for DT was performed with a context length
of K = 90 and for RATE, RMT, and TrXL with a context length of K = 30 and number of segments
N = 3, i.e., effective context length Keff = N ×K = 3× 30 = 90.
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E.4 MINIGRID-MEMORY

To train baselines in this environment, we used only mazes of fixed size 41×41, ensuring a consistent
corridor length during training. For evaluation, models were validated on mazes ranging from 11×11
to 501× 501, where corridor lengths vary within each grid, enabling assessment of both interpolation
and extrapolation capabilities. All training trajectories used an episode timeout of 96 steps, while
validation trajectories across all maze sizes used a longer timeout of 500 steps. As in T-Maze, each
trajectory began at t = 0, ensuring the cue was always observed. During training, RATE used a
context length of K = 30 with N = 3 segments, while other baselines (except RMT and TrXL) used
K = 90.

E.5 POPGYM SUITE

POPGym (Morad et al., 2023a) comprises 46 tasks of varying memory complexity, including both
memory puzzles and reactive POMDPs. Since episode lengths vary widely across tasks – from as
short as 12 steps to as long as 1000 – we ensured a consistent and fair memory evaluation for RATE
by setting the context length K = T/3 and using N = 3 segments for every environment, where
T denotes the maximum episode length of each task. This uniform configuration allowed RATE to
process full trajectories with recurrent segmentation, ensuring its memory capacity was equally tested
across tasks of different lengths and difficulties.

E.6 ATARI AND MUJOCO

When training RATE on Atari games and MuJoCo control tasks, sequences of length T = 90 (Atari)
and T = 60 (MuJoCo) were sampled randomly from the original trajectories in the dataset. These
trajectories were then divided into N = 3 segments of length K = 30 (Atari) and K = 20 (MuJoCo),
forming an effective context of length Keff = N ×K = 90 (60 for MuJoCo).

For Atari, we used the identical experimental design described in the DT paper (Chen et al., 2021).
It is worth noting that we presented raw scores for Atari, rather than gamer-normalized scores as
described in the DT paper. Table 4 shows the results for Atari environments. RATE outperforms
DT significantly in environments like Breakout and Qbert. We attribute this to the observation that,
although these environments do not explicitly demand memory, intricate dynamics from the past exert
a greater influence on agent behavior than in environments such as SeaQuest. Actions executed in the
past notably alter the present state of the environment in Breakout and Qbert, whereas in SeaQuest,
such actions hold little significance. For instance, the emergence of enemies and divers in SeaQuest
is entirely independent of the agent’s prior actions.

For MuJoCo, our findings suggest that the conventional strategy of utilizing return is not suitable
for our segment-based scheme. The issue arises during the trajectory, where the agent’s return
persistently diminishes. However, the true value of the agent’s state at the onset and conclusion of the
episode could remain unchanged, provided the agent’s policy performs consistently well. To rectify
this discrepancy, we propose a novel evaluation strategy for MuJoCo tasks. In this approach, each
segment commences with the maximum return, simulating the scenario where the agent initiates the
trajectory anew. This method effectively mitigates the aforementioned issue, enhancing the accuracy
of our evaluation process. Our MuJoCo experiments in Table 3 show that this benefits performance
significantly for some environments. Thus, using RATE allowed us to obtain the best metrics for
MuJoCo in 4/9 cases compared to the other baselines. RATE also outperforms DT in 9/9 tasks.

F ADDITIONAL ABLATION STUDIES

To determine the optimal hyperparameters associated with memory mechanisms, additional ablation
studies were performed in ViZDoom-Two-Colors and T-Maze environments, and the results are
presented in Figure 14 and Figure 13 (right). From the ablation studies results, it was found that for
environments like ViZDoom-Two-Colors with continuous reward signal and image observations, the
best results can be obtained using number of cached memory tokens mem_len = (K × 3 + 2 ×
num_mem_tokens)×N , where K – context length and N – number of segments.
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Table 8: RATE hyperparameters for different experiments. ‡ – Leaky ReLU used in Atari.Pong. The
listed hyperparameters for ViZDoom-Two-Colors and T-Maze correspond to the experiments with
Ttrain = 150, while for POPGym, they reflect the settings used in the POPGym-Concentration task.

Hyperparameter ViZDoom2C Memory Maze T-Maze Minigrid-Memory POPGym Atari MuJoCo
Memory-specific parameters

Number of memory tokens 15 15 10 10 30 15 5
Number of cached tokens 100 360 0 180 100 360 60
Number of MRV heads 2 0 2 4 2 1 1
MRV activation ReLU ReLU ReLU ReLU ReLU ReLU‡ ReLU

Transformer architecture

Number of layers 6 6 8 4 10 6 3
Number of attention heads 8 8 8 4 2 8 1
Embedding dimension 64 64 64 128 32 128 128
Context length K 50 30 50 30 18 30 20
Number of segments 3 3 3 3 3 3 3
Skip dec FFN False True True False True True True

Regularization

Hidden dropout 0.2 0.5 0.2 0.3 0.1 0.2 0.2
Attention dropout 0.05 0.2 0.1 0.1 0.05 0.05 0.05
Weight decay 0.001 0.1 0.001 0.001 0.001 0.1 0.1

Training configuration

Max epochs 150 80 200 500 200 10 10
Batch size 128 64 64 64 32 128 4096
Loss function CE CE CE CE CE CE MSE
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Learning rate 3e-4 3e-4 1e-4 1e-4 3e-4 3e-4 6e-5
Grad norm clip 5.0 1.0 1.0 5.0 5.0 1.0 1.0
Cosine decay False True False False False True False
Linear warmup True True True True True True True
(β1, β2) (0.9, 0.999) (0.9, 0.95) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.95) (0.9, 0.95)

On the other hand, for environments with sparse events like T-Maze, it has been found that using
caching of hidden states of previous tokens (mem_len > 0) prevents remembering important
information.

Figure 13: (left) Investigating the RATE memory tokens noise effect in the ViZDoom-Two-Colors.
(right) Results of RATE-3 (trained on corridor lengths ≤ 90) ablation studies in the T-Maze environ-
ment. n_head_ca – number of MRV attention heads, num_mem_tokens – number of memory
tokens.

F.1 ADDITIONAL VIZDOOM-TWO-COLORS ABLATION

The effect of combining of memory tokens with noise is shown in Figure 13 (left). The noise was
applied as a convex combination: memory_tokens = (1−α)×memory_tokens+α×noise.
With unchanged caching of hidden states from previous steps at growth of the noise parameter α, at
first there is a decrease of performance at inference on green pillars (up to α = 0.5), and only then a
decrease of performance at inference on red pillars. This phenomenon can be explained by the fact
that memory embeddings is trained to record mostly information about red pillars, which helps to
combat bias in the training data.
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Table 9: Performance on POPGym tasks (mean±sem over three runs, 100 seeds each).

Environment RATE DT Random BC-MLP BC-LSTM
Dataset
Average
Return

AutoencodeEasy-v0 −0.29± 0.00 −0.47± 0.00 −0.50± 0.00 −0.47± 0.00 −0.32± 0.00 −0.26
AutoencodeMedium-v0 −0.47± 0.00 −0.49± 0.00 −0.50± 0.00 −0.49± 0.00 −0.47± 0.00 −0.48
AutoencodeHard-v0 −0.46± 0.00 −0.49± 0.00 −0.50± 0.01 −0.50± 0.00 −0.44± 0.00 −0.43
BattleshipEasy-v0 −0.81± 0.02 −0.93± 0.03 −0.46± 0.01 −1.00± 0.00 −0.49± 0.01 −0.35
BattleshipMedium-v0 −0.91± 0.02 −0.91± 0.03 −0.39± 0.01 −1.00± 0.00 −0.81± 0.02 −0.43
BattleshipHard-v0 −0.92± 0.01 −0.97± 0.01 −0.41± 0.00 −1.00± 0.00 −0.67± 0.01 −0.40
ConcentrationEasy-v0 −0.06± 0.02 −0.05± 0.01 −0.19± 0.01 −0.92± 0.00 −0.14± 0.00 −0.12
ConcentrationMedium-v0 −0.84± 0.00 −0.84± 0.00 −0.84± 0.00 −0.88± 0.00 −0.84± 0.00 −0.87
ConcentrationHard-v0 −0.25± 0.00 −0.25± 0.01 −0.19± 0.00 −0.92± 0.00 −0.19± 0.01 −0.44
CountRecallEasy-v0 0.07± 0.01 −0.46± 0.01 −0.93± 0.00 −0.92± 0.00 0.05± 0.00 0.22
CountRecallMedium-v0 −0.47± 0.01 −0.75± 0.03 −0.88± 0.00 −0.88± 0.00 −0.47± 0.00 −0.48
CountRecallHard-v0 −0.54± 0.00 −0.81± 0.02 −0.93± 0.00 −0.92± 0.00 −0.56± 0.00 −0.55
HigherLowerEasy-v0 0.50± 0.00 0.50± 0.00 0.00± 0.01 0.47± 0.00 0.50± 0.00 0.51
HigherLowerMedium-v0 0.50± 0.00 0.50± 0.00 −0.01± 0.00 0.49± 0.00 0.50± 0.00 0.49
HigherLowerHard-v0 0.52± 0.00 0.51± 0.00 0.01± 0.01 0.50± 0.00 0.51± 0.01 0.49
LabyrinthEscapeEasy-v0 0.95± 0.00 0.80± 0.01 −0.39± 0.00 0.72± 0.05 0.92± 0.01 0.95
LabyrinthEscapeMedium-v0 −0.81± 0.01 −0.82± 0.01 −0.94± 0.01 −0.89± 0.01 −0.86± 0.00 −0.94
LabyrinthEscapeHard-v0 −0.56± 0.01 −0.67± 0.04 −0.84± 0.04 −0.71± 0.03 −0.69± 0.02 −0.49
LabyrinthExploreEasy-v0 0.95± 0.00 0.88± 0.06 −0.34± 0.01 0.87± 0.01 0.93± 0.00 0.96
LabyrinthExploreMedium-v0 0.79± 0.00 0.77± 0.01 −0.73± 0.00 0.26± 0.01 0.71± 0.01 0.79
LabyrinthExploreHard-v0 0.88± 0.00 0.86± 0.01 −0.61± 0.00 0.45± 0.01 0.82± 0.01 0.87
MineSweeperEasy-v0 0.15± 0.03 −0.33± 0.04 −0.26± 0.03 −0.47± 0.01 0.20± 0.00 0.28
MineSweeperMedium-v0 −0.44± 0.00 −0.40± 0.01 −0.43± 0.00 −0.49± 0.00 −0.35± 0.01 −0.27
MineSweeperHard-v0 −0.20± 0.00 −0.37± 0.02 −0.39± 0.01 −0.48± 0.00 −0.16± 0.00 −0.10
MultiarmedBanditEasy-v0 0.37± 0.01 0.27± 0.01 0.02± 0.00 0.05± 0.00 0.17± 0.02 0.62
MultiarmedBanditMedium-v0 0.22± 0.03 0.27± 0.01 0.01± 0.00 0.01± 0.00 0.17± 0.01 0.43
MultiarmedBanditHard-v0 0.32± 0.01 0.35± 0.01 0.01± 0.00 0.21± 0.01 0.14± 0.00 0.59
NoisyPositionOnlyCartPoleEasy-v0 0.88± 0.03 0.87± 0.02 0.11± 0.00 0.23± 0.00 0.44± 0.01 0.98
NoisyPositionOnlyCartPoleMedium-v0 0.18± 0.01 0.17± 0.01 0.11± 0.00 0.16± 0.00 0.22± 0.01 0.36
NoisyPositionOnlyCartPoleHard-v0 0.33± 0.01 0.34± 0.00 0.12± 0.01 0.18± 0.00 0.25± 0.01 0.57
NoisyPositionOnlyPendulumEasy-v0 0.87± 0.00 0.84± 0.01 0.27± 0.01 0.31± 0.00 0.88± 0.00 0.90
NoisyPositionOnlyPendulumMedium-v0 0.60± 0.01 0.56± 0.01 0.26± 0.00 0.28± 0.00 0.66± 0.00 0.67
NoisyPositionOnlyPendulumHard-v0 0.68± 0.00 0.63± 0.01 0.27± 0.01 0.30± 0.00 0.72± 0.00 0.73
PositionOnlyCartPoleEasy-v0 0.93± 0.03 1.00± 0.00 0.12± 0.00 0.15± 0.00 0.17± 0.00 1.00
PositionOnlyCartPoleMedium-v0 0.05± 0.01 0.03± 0.00 0.04± 0.00 0.05± 0.00 0.06± 0.00 1.00
PositionOnlyCartPoleHard-v0 0.07± 0.00 0.34± 0.08 0.05± 0.00 0.09± 0.00 0.12± 0.00 1.00
PositionOnlyPendulumEasy-v0 0.54± 0.02 0.51± 0.03 0.27± 0.00 0.29± 0.00 0.91± 0.00 0.92
PositionOnlyPendulumMedium-v0 0.47± 0.01 0.49± 0.01 0.26± 0.00 0.28± 0.00 0.82± 0.00 0.82
PositionOnlyPendulumHard-v0 0.49± 0.01 0.55± 0.01 0.26± 0.00 0.30± 0.00 0.89± 0.00 0.88
RepeatFirstEasy-v0 1.00± 0.00 0.45± 0.16 −0.49± 0.01 −0.50± 0.00 1.00± 0.00 1.00
RepeatFirstMedium-v0 0.10± 0.02 0.42± 0.14 −0.50± 0.00 −0.50± 0.00 −0.50± 0.00 0.99
RepeatFirstHard-v0 0.99± 0.01 −0.21± 0.18 −0.50± 0.00 −0.50± 0.00 0.99± 0.01 1.00
RepeatPreviousEasy-v0 1.00± 0.00 1.00± 0.00 −0.49± 0.01 −0.52± 0.00 1.00± 0.00 1.00
RepeatPreviousMedium-v0 −0.46± 0.00 −0.47± 0.00 −0.51± 0.00 −0.48± 0.00 −0.45± 0.00 −0.48
RepeatPreviousHard-v0 −0.38± 0.01 −0.38± 0.00 −0.50± 0.01 −0.50± 0.00 −0.38± 0.00 −0.39
VelocityOnlyCartPoleEasy-v0 1.00± 0.00 1.00± 0.00 0.11± 0.00 0.99± 0.00 1.00± 0.00 1.00
VelocityOnlyCartPoleMedium-v0 1.00± 0.00 0.96± 0.02 0.04± 0.00 0.63± 0.00 1.00± 0.00 0.99
VelocityOnlyCartPoleHard-v0 1.00± 0.00 1.00± 0.00 0.06± 0.00 0.83± 0.01 1.00± 0.00 1.00

F.2 CURRICULUM LEARNING

Since in the T-Maze environment, the number of actions at the junction relates to the number of actions
when moving straight along the corridor as 1

L and tends to 0 as L increases, there is a significant
imbalance in the agent’s action distribution, which can cause problems when performing rare class
(turning actions) prediction. Theoretically, this situation can be remedied through curriculum learning.

Curriculum learning (CL) is a technique in which a model is trained on examples of increasing
difficulty. In this approach, the model is first trained on the set of trajectories Q1 = q1 of length
K × 1, then the trained model is re-trained on the set of trajectories Q2 = q1 ∪ q2, where the set
q2 is formed by trajectories of length K × 2, and so on (in order of increasing complexity of the
trajectories). Thus, for the N segments considered during training, the set QN =

⋃N
i=1 qi is used.

In the T-Maze environment, DT, RATE, RMT, and TrXL were trained with and without curriculum
learning because this approach theoretically produces better results. However, it is important to note
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Table 10: Experimental setup and evaluation metrics across different environments. Nruns denotes
the number of model runs; Nseeds denotes the number of inference episodes with different seeds;
sem denotes standard error of the mean, and std denotes standard deviation.

Environment Experiment Setup Results
Nruns Nseeds Metric Notation

Memory-intensive environments

ViZDoom-Two-Colors 6 100 Return mean±sem
T-Maze 4 100 Success Rate mean±sem
Memory Maze 3 100 Return mean±sem
Minigrid-Memory 3 100 Return mean±sem
POPGym 3 100 Return mean±sem

Diagnostic environment

Action Associative Retrieval 10 — Success Rate mean±sem

Figure 14: Results of RATE ablation studies in the ViZDoom-Two-Colors environment.

that the T-Maze task is successfully solved by the RATE model without using curriculum learning,
and even vice versa – its use slightly degraded performance on long corridors. However, with respect
to TrXL, the use of CL yielded slightly better results. The work showed that using CL does not
achieve significantly better performance on the T-Maze task. The results of using the CL on the
T-Maze environment are presented in Figure 16 (left), and the results of applying noise to memory
embeddings to assess its importance are presented in Figure 16 (right).

F.3 SUPPLEMENTAL MRV ABLATION

One of the options for implementing the memory tokenization gating mechanism was an approach
similar to the one proposed in Gated Transforer-XL (GTrXL) (Parisotto et al., 2020) work. Thus, the
MRV-G scheme was inspired by the gating mechanism from GTrXL and implemented as follows:

r = σ(MnWr +Mn+1Ur) (5)

z = σ(MnWz +Mn+1Uz − bias) (6)
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Table 11: RATE encoders for each part of (R, o, a) triplets. We use an Embedding layer for encoding
discrete actions and a Linear layer for continuous ones. ‡ – channels / kernel sizes / padding. For
POPGym tasks with grid-based observations (e.g., MineSweeper and Battleship), we encoded the
grid using a token dictionary followed by a linear encoder to produce a fixed-length vector. Actions
were encoded using an embedding layer for all discrete control tasks, while a linear layer was used
for continuous control environments (e.g., PositionOnlyPendulum).

Environment Encoder Configuration

Return Observation Conv. params‡ Action
Image-based environments

ViZDoom-Two-Colors Linear Conv2D × 3 (32, 64, 64) / (8, 4, 3) / 0 Embedding
Memory Maze Linear Conv2D × 3 (32, 64, 64) / (8, 4, 3) / 2 Embedding
Minigrid-Memory Linear Conv2D × 3 (32, 64, 64) / (8, 4, 3) / 0 Embedding
Atari Linear Conv2D × 3 (32, 64, 64) / (8, 4, 3) / 0 Embedding

Vector-based environments

T-Maze Linear Linear — Embedding
MuJoCo Linear Linear — Linear
Action Associative Retrieval Linear Linear — Embedding
POPGym Linear Linear — Embedding / Linear

h = tanh(MnWg + (Mn+1 × r)Ur) (7)
M̃n+1 = σ(Mn(1− z) + z × h) (8)

The results of the RATE (trained on corridor lengths of ≤ 150) inference on the T-Maze environment
with these MRV configurations are shown in Figure 17 and in Table 6. The results presented
in Figure 17 confirm the high stability of RATE when using cross-attention-based MRV (MRV-CA-2),
as well as the model’s ability to hold important information in memory embeddings when inference
on long tasks.

F.4 ABLATION ON NUMBER OF SEGMENTS AND SEGMENT LENGTH

Partitioning the trajectories into fixed-length segments allows the RATE model to train on long
trajectories without increasing the context size, which makes the parameters N (the number of
segments into which the training trajectories are divided) and K (the context length, i.e., the size of a
single segment) critical because they determine the length of the effective context Keff = K ×N .
Figure 18 presents the results of ablation studies for parameters N and K at fixed Keff = 90.

G TRANSFORMER ABLATION STUDIES

Transformer core hyperparameters. This section presents the results of ablation studies on the
main hyperparameters of the RATE transformer. The RATE configuration for the T-Maze environment
specified in Table 8 was chosen for the ablation studies. The ablation studies focus on understanding
the impact of key hyperparameters by systematically varying one parameter while keeping others
constant. The results are shown in Figure 20, Figure 21, and Figure 22.

Feed-Forward Network. For RATE, the inclusion of the decoder feed-forward block is treated
as a tunable hyperparameter. In most environments, we disable it, as doing so often leads to better
performance Figure 19. However, for ViZDoom-Two-Colors and Minigrid-Memory, we found that
retaining the feed-forward block yields slightly improved results, and thus it is enabled in those
settings.

H RECOMMENDATIONS FOR HYPERPARAMETER SETTINGS

Transformer-based models require careful hyperparameter tuning, and the addition of memory
mechanisms in RATE introduces a few more components. However, configuring RATE remains
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Figure 15: Memory Retention Valve configurations used in the ablation study. MRV-CA-2: cross-
attention-based MRV which uses an attention mechanism to control the updating of memory embed-
dings and which is used in the work as the main mechanism. MRV-CA-1: uses the same mechanism
as MRV-CA-2 but the updated memory embeddings Mn+1 are fed to Query, and the incoming
memory embeddings Mn are fed to Key and Value. MRV-G: gated MRV which uses a gating
mechanism similar to the one used in Gated Transformer-XL (Parisotto et al., 2020). MRV-GRU:
uses a GRU (Chung et al., 2014) block to process updated memory embeddings with hidden states.
MRV-LSTM: uses a LSTM (Hochreiter & Schmidhuber, 1997) block to process updated memory
embeddings with cached states.

Figure 16: (left). Results with and without the use of curriculum learning and (right) results of
replacing RATE memory tokens with white noise at inference in T-Maze.

largely similar to tuning a standard transformer. Based on extensive empirical evaluation, we
provide the following practical guidelines to simplify the setup process.

Step-by-step configuration:

1. Segment setup. Divide each trajectory into N = 3 segments. For a trajectory of length T ,
set the context length to K = T//3.
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Figure 17: Results of RATE inference with different MRV configurations on the T-Maze environment.
Training was performed with the number of segments N = 5 and context length K = 30, i.e. on
trajectories of length ≤ 150. MRV-CA-2 is the final MRV configuration that is used throughout the
work and is designated as MRV.

Figure 18: Ablation of segment size K and
segment count N with fixed effective context
Keff = K↑ ×N↓ = 90.

Figure 19: Ablation of feed-forward block usage
in the decoder.

2. Memory configuration. Use the following default parameters for RATE’s memory mecha-
nisms:

• num_mem_tokens = 5
• n_head_ca = 1
• mrv_act = ReLU
• mem_len =

– (3 × K + 2 × num_mem_tokens) × N for dense reward environments (e.g.,
ViZDoom-Two-Colors, Minigrid-Memory)

– 0 for sparse reward environments (e.g., T-Maze)

3. Transformer core. Set the standard architecture parameters (number of layers, atten-
tion heads, embedding dimension, etc.) based on the task complexity and computational
constraints.

4. Memory tuning. After adjust, fine-tune memory-related parameters if needed (e.g.,
num_mem_tokens, mem_len, dropout rates).

This configuration provides a strong default setup and has consistently performed well across all
evaluated tasks.
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Figure 20: Results of ablation
by the number of layers of the
RATE model in T-Maze environ-
ment.

Figure 21: Results of ablation
by the number of attention heads
of the RATE model in T-Maze
environment.

Figure 22: Results of ablation by
the features sizes of the RATE
model in T-Maze environment.

Table 12: Comparison of RATE and DT Model Parameters. RATE has 1.0-7.7% less parameters
compared to DT due to the fact that RATE does not use feed-forward network in the transformer
decoder by default.

Environment RATE DT diff, %
T-Maze 1,723,840 1,775,488 -2.91
ViZDoom-Two-Colors 4,537,504 4,672,032 -2.88
Minigrid-Memory 2,000,864 2,051,872 -2.49
Memory Maze 1,639,840 1,673,696 -2.02
POPGym 6,760,192 6,827,008 -0.98
MIKASA-Robo 1,412,520 1,529,896 -7.67

I TECHNICAL DETAILS

Table 12 and Table 13 shows the technical parameters of the training models. Note that the difference
between the number of DT and RATE parameters is small. Training RATE with trajectory splitting
into N segments allows ∼ N smaller GPU memory size usage than for DT. The training was
conducted using a single NVIDIA A100 80 Gb graphics card.
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Table 13: Computational efficiency comparison between RATE and DT models across different
memory-intensive environments. We report three key metrics: (1) training time per epoch (mean±std,
in seconds), (2) inference latency per step (mean±sem, in milliseconds), and (3) GPU memory
footprint (in MiB). Lower values indicate better efficiency.

RATE DT

Environment Train (s) Test (ms) Size (MiB) Train (s) Test (ms) Size (MiB)

T-Maze 16.17±2.75 7.20±0.31 3,148 95.75±0.49 10.69±0.14 8,608
ViZDoom-Two-Colors 77.44±3.56 10.35±0.52 7,750 68.18±1.56 10.45±0.41 14,046
Minigrid-Memory 33.74±2.65 9.94±2.24 4,102 16.77±1.37 10.43±2.84 4,298
Memory Maze 110.26±2.97 38.98±0.62 6,638 82.69±1.56 40.36±0.46 10,386
POPGym 3.37±0.25 8.91±0.37 5,948 3.64±0.53 8.98±0.32 10,696
MIKASA-Robo 71.30±8.08 485.67±8.75 10,396 44.90±6.16 473.29±5.97 29,902
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