
One Demo Is All It Takes: Planning Domain Derivation with LLMs from A Single
Demonstration

Jinbang Huang1,†, Yixin Xiao1, Zhanguang Zhang1, Mark Coates2, Jianye Hao1, Yingxue Zhang1

1Huawei Noah’s Ark Lab, 2McGill University
†jinbang.huang@h-partners.com

Abstract

Pre-trained Large Language Models (LLMs) have shown
promise in solving planning problems but often struggle to
ensure plan correctness, especially for long-horizon tasks.
Meanwhile, traditional robotic task and motion planning
(TAMP) frameworks address these challenges more reliably
by combining high-level symbolic search with low-level mo-
tion planning. However, TAMP relies on the availability
of planning domains that typically involve substantial man-
ual effort and domain expertise, limiting its generalizabil-
ity. We introduce Planning Domain Derivation with LLMs
(PDDLLM), a novel approach that combines simulated phys-
ical interaction with LLM reasoning to improve planning
performance. The method reduces reliance on humans by
inferring planning domains from a single annotated task-
execution demonstration. Unlike prior domain-inference
methods that rely on partially predefined or language de-
scriptions of planning domains, PDDLLM constructs do-
mains entirely from scratch and automatically integrates
them with low-level motion planning skills, enabling fully
automated long-horizon planning. PDDLLM is evaluated
on over 1,200 diverse tasks spanning nine environments and
benchmarked against six LLM-based planning baselines,
demonstrating superior planning performance, lower token
costs, and successful deployment on multiple robot platforms.

1. Introduction

Robotic planning remains challenging in complex scenar-
ios requiring abstract, long-horizon reasoning. Large lan-
guage models (LLMs) show strong generalization in this
domain but often struggle with temporal dependencies in
long-horizon tasks. Task and Motion Planning (TAMP)
frameworks offer a solution by integrating high-level sym-
bolic reasoning with low-level motion planning, yet they
rely on manually designed planning domains, abstract world
models that are labor-intensive to create and limit adapt-

ability. To overcome this, recent advances in world model
learning aim to support long-horizon decision making via
learned world models [14, 23, 34, 40], using either natural
language or formal definitions like planning domain defini-
tion language (PDDL) [26]. Building on this paradigm, our
approach leverages the concept of planning domains from
TAMP to enhance the long-horizon reasoning capability of
LLMs. By combining LLMs with physical simulation, we
automatically generate a task-specific PDDL planning do-
main from a single expert demonstration and a brief task
description. The resulting PDDL planning domain can be
seamlessly integrated with a low-level motion planner, en-
abling the system to solve tasks with greater complexity than
the original demonstration.

Our method is the first to construct planning domains en-
tirely from scratch, without relying on any predefined predi-
cates, actions, or detailed human descriptions. Furthermore,
it fully automates the deployment of planning domains by au-
tomatically integrating them with low-level motion planners,
eliminating the need for manual intervention. The main con-
tributions of this paper are as follows: (1) A novel framework
that integrates an automatically-generated planning domain
with a low-level motion planner to address long-horizon
robotic planning tasks. (2) An algorithm that combines
LLMs and physical simulation to automatically generate a
human-interpretable planning domain from a single human
demonstration. (3) We introduce a logic-constrained action
sampler (LoCAS), which automatically integrates the de-
rived planning domain with low-level motion planning for
effective task execution. (4) We evaluate PDDLLM on over
1,200 tasks across nine environments, demonstrating supe-
rior performance and more efficient token usage compared
to state-of-the-art baselines. Furthermore, we successfully
deploy PDDLLM on two physical robot platforms.

2. Related Work

Task planning with pre-trained large models With the
advent of pre-trained large models (LMs), the use of LLMs
and vision language models (VLMs) has significantly ad-

Human demonstration

The robot is stacking
cubes into piles.

Predicate
Library

Action
Library

P
lan

n
ing

D
om

ain

LoCAS

N
ew

T

asks

Predicate Imagination

Transition
Action Invention

Please create a predicate
in PDDL syntax…

Physical Simulation

Please create an action for
the given transition …

…

Figure 1. Overview of the proposed framework. (1) Human demonstrations, in the form of manipulation trajectories, and the corresponding
task descriptions, serve as input. (2) PDDLLM initiates thousands of parallel simulations to imagine predicates by summarizing the outcomes
with LLMs, returning the predicate library along with the relevance of each predicate to the current task. (3) Actions are invented by an
LLM that summarizes logical state transition patterns from the demonstration, which is grounded into logical states using the imagined
predicates. (4) The predicates and actions are compiled into a planning domain, which is automatically interfaced with motion planning
algorithm by the Logic-Constrained Action Sampler (LoCAS) to solve new tasks.

vanced the performance of task planners [5, 18, 21, 36].
Although many studies have demonstrated the generaliza-
tion capabilities of LM-based task planners, they often lack
robustness and struggle with long-horizon tasks that require
complex reasoning [2, 9, 17, 30, 36]. To address this limita-
tion, recent research has explored guiding task planners with
LM-derived heuristics to accelerate informed search. These
approaches integrate symbolic search with LMs to acceler-
ate task planning and reduce search complexity. Notable
efforts include heuristics for prioritizing feasible states [40],
ranking feasible actions [15, 27, 39, 40], and pruning search
trees [33]. However, a major limitation of these methods
lies in their reliance on manually constructed symbolic plan-
ning domains to build search trees, which imposes additional
development overhead and reduces flexibility.

Learning planning domains A recent line of research
aims to infer the planning domain directly from human
demonstrations, environment interactions, or natural lan-
guage. However, these approaches often depend on partially
or fully predefined symbolic predicates and actions [16, 20,
25, 32, 37, 42]. Some recent studies have explored lever-
aging LMs for domain generation, primarily by extending
manually defined domains with additional predicates and ac-
tions [1, 3, 23]. The approach proposed by Guan et al. [14]
generates planning domains requiring prompts containing
expert-crafted PDDL domain examples and detailed descrip-
tions of predicates and actions. Moreover, many of these

studies assume that the robot is already equipped with motion
planning skills aligned with the logical actions [1, 16, 20, 23].
This assumption necessitates manual integration between the
symbolic planning domain and low-level motion planners,
thereby constraining scalability and limiting autonomy.

3. Preliminary
PDDL is a standard formal language used to specify plan-
ning problems. The object set O represents the environ-
ment’s objects, whose continuous state S, such as pose,
color, and size, can be queried via a perception function
I : O × I → S . The PDDL domain D = (P,A) describes
the general rules of the environment, consisting of a set of
logical predicates P and a set of logical actions A. A logical
predicate p ∈ P specifies either intrinsic properties of an
object o or relations between objects (e.g.,(cooked ?o1),
(on ?o1 ?o2)). Each predicate is evaluated by a binary
classifier over the continuous state, returning true or false.
Grounding P across S produces a symbolic description of
the environment S × P → X . A logical action a ∈ A
consists of a precondition Ppre = ⟨p1, p2, . . . ⟩ and an effect
Peff = ⟨p′1, p′2, . . . ⟩. The precondition represents a set of
predicates that must be satisfied for the action to be exe-
cuted, while the effect describes the change of the resultant
state upon action completion. Logical actions define the
logical state transitions X (t) × a(t) → X (t+1). Thus, any
planning problem ⟨S(init),S(final)⟩ can be formulated as
a logical planning problem Q = ⟨O,D,X (init),X (final)⟩,

which is solved by a symbolic planner to produce a task plan
a(0), a(1), . . . , a(T−1) = PDDLSolver(Q). Each logical
action a must then be integrated with corresponding motion
planning skills to generate continuous robotic actions ã for
execution.

4. Problem Statement
We address the robot planning problem given a single hu-
man demonstration τdemo and its corresponding task de-
scription Tdemo. The demonstration τdemo is represented
as a sequence of continuous environment states τdemo =
{S(0),S(1), . . . } and Tdemo is a brief natural language
phrase. We assume the robot is the sole agent in the environ-
ment [16]. Additionally, we assume that the demonstration
covers the necessary domain knowledge to solve the target
task. The proposed PDDLLM framework aims to generate a
sequence of continuous robotic actions for a new planning
problem. The problem can be formulated as:

ã(0), . . . , ã(L−1) = PDDLLM(S(init)
new ,S(goal)

new , Tdemo, τdemo)
(1)

where S(init)
new ,S(goal)

new define the new planning problem and
L is the plan length.

5. Methodology
Figure 1 presents an overview of the PDDLLM framework.
With Tdemo and τdemo as inputs, PDDLLM constructs a rel-
evant predicate library through predicate imagination and
generates an action library via action invention. Ultimately,
these predicate and action libraries are compiled into an ex-
ecutable PDDL planning domain, automatically interfaced
with motion planners via LoCAS. In the following sections,
we provide a detailed explanation of each step in the frame-
work.

5.1. PDDL Domain Generation
Given a human demonstration and the corresponding task
description, we combine simulated physical interaction and
LLM reasoning to produce an executable PDDL planning
domain through predicate imagination and action invention.

5.1.1. Predicate Imagination:
The process of predicate imagination consists of two stages.
Stage (1) generate first-order predicates and Stage (2) futher
expand the higher-order predicates.

Stage (1) In this stage, PDDLLM generates first-order
predicates, which directly describe the physical proper-
ties or relations of the objects (e.g., (is_on ?o1 ?o2),
(smaller ?o1 ?o2)), by summarizing simulated object
interactions using an LLM.

Definition 1 (Feature Space). The feature space is defined
as a set of continuous state variables, such as position, size,

and color, that fully characterize the state of each object in
the environment.

Following Definition 1, the feature space is defined as a
set of variables, such as Cartesian coordinates (x, y, z) for
object positions and RGB values (r, g, b) for colors. The fea-
ture space is bounded by real-world constraints. Object states
are uniformly sampled across this space to span a diverse
range of object-object and object-environment interactions.
Each sampled state undergoes a two-step verification process.
First, it is evaluated for physical feasibility using a physical
simulator, which serves as a physical knowledge base to
capture complex dynamics beyond the reasoning capacity of
LLMs. Only physically valid states are retained.

Next, PDDLLM partitions the feature space into a finite
collection of subspaces. The range of each feature is divided
into intervals, with the length of each interval being a hy-
perparameter. The intersections of these intervals specify
the subspaces. Each object state can be mapped into one
of the subspaces. Each subspace is analyzed to determine
whether it contains feasible object states, as verified through
simulation in the previous verification step. If so, prompts
are generated using a predefined template to describe the
corresponding scenes. Prompt generation is automated as
it only requires the replacement of some keywords (such
as “position” with “color”) and the specification of interval
boundaries. An LLM is then prompted to summarize sub-
spaces into meaningful predicates and select those relevant
to the task. The subspace boundaries serve as predicate im-
plications, enabling the classification of whether a predicate
holds true. Figure 2.a illustrates an example of predicate
generation for positional relations between objects.

Stage (2) First-order predicates are combined with logical
operators and quantifiers to construct higher-order predicates.
They are systematically combined in all possible ways to
generate more complex logical expressions. Following prior
work [7, 32], we primarily use the negation operator, along
with the quantifiers “for all” (∀) and “there exists” (∃). For
example, (is_on ?o1, ?o2) can be negated to produce
(not_is_on ?o1, ?o2). When combined with the uni-
versal quantifier, this further yields (∀_o1_not_is_on
?o1, ?o2), meaning that for any o1 in the environment,
(is_on ?o1, ?o2) is false. This indicates that object o2
is on top.

5.1.2. Action Invention:
After constructing the predicate library, the human demon-
stration τdemo can be mapped into the logical space as τ logicdemo

by grounding all relevant predicates at each time step. The
logical state transitions within τ logicdemo signify the execution
of actions. An advantage of learning actions in the logical
space is that it simplifies pattern recognition by focusing on
moments of logical state transitions, effectively transforming

Planning Constrains:Demonstration Trajectory
in Logical Space

b. Action Invention c. Logical-Constrained Action Sampler (LoCAS)

…
O

G

|x୭ − x| ≤ u,

u < y − y୭ ≤ 2u

𝑦

𝑥

O
G

|x୭ − x| ≤ u,
|y୭ − y| ≤ u

𝑦

𝑥

Prompt: There are two
objects in the environment,
whose positions are (x୭, y୭)
and (x, y). In the horizontal
direction, |x୭ − x| ≤ u . In
the vertical direction…

Predicate name:
is_on (?𝑜ଵ, ? 𝑜ଶ)

Predicate implication :
|xଵ − xଶ| ≤ u,

 u < yଵ−yଶ ≤ 2u

a. Predicate Imagination

Simulation2Simulation1

O

Constrained Motion
planning

2

1

𝑦

𝑥

Predicate Library

First-Order Predicate:
is_on (? 𝑜ଵ, ? 𝑜ଶ)

Higher-order Predicate:
¬is_on (?𝑜ଵ, ?𝑜ଶ)
∀𝑜ଵ, is_on (?𝑜ଵ, ?𝑜ଶ)

…

:action stack
:parameters (?o1 ?o2 ?r)
:precondition (and (holding, ?o1,?r)

(∀objects ¬above ?o2))
:effect (and (not (holding, ?o1,?r))

(not(∀objects ¬above ?o2))
(∀objects ¬holding, ?r))

…

(is_on ?o1 ?o2)
2

1

1

Predicate Library:

Action Library:

|xଵ − xଶ| ≤ u,
 u < yଵ−yଶ ≤ 2u

G

O

Initial:
(holding, Cube G, Robot)
(∀objects ¬above, Cube O)

Next:
(is_on, Cube G, Cube O)
(∀objects ¬above, Cube G)
(∀objects ¬holding, Robot)

G

Figure 2. a. This example illustrates the imagination of predicates for relative object positions. Let u be a configurable variable determined
by the feature subspace size. Object poses are sampled and simulated, with infeasible cases (e.g., Simulation 1) filtered out. Feasible
subspaces are encoded into LLM prompts, and the LLM returns task-relevant predicates. b. This example shows how Stack actions are
invented. Continuous states are grounded into logical states using the imagined predicates, where the state transition represents the logical
action. By prompting the LLM with the transition from the initial state to the next state, we obtain the PDDL definition of action Stack. c.
The integration of actions with the motion planner is handled automatically by LoCAS, which converts first-order predicates in the action
effect Peff into geometric constraints for motion planning.

long trajectories into concise logical representations. For
instance, the continuous manipulation trajectory τdemo in
Figure 2.b contains over 1000 time steps while τ logicdemo is
reduced to merely 2 steps. Logical state transitions are ex-
tracted from pre-and-post-change states and presented to the
LLM as prompts. After experimenting with various prompt
structures, we found this direct, structured method to be the
most effective. A concrete example of action invention for
Stack is elaborated in Figure 2.b.

5.2. Logic-Constrained Action Sampler (LoCAS)

Having obtained the logical action definitions, the next step
is to establish an interface between each logical action and
the low-level motion planner. This is achieved through the
Logic-Constrained Action Sampler (LoCAS). Traditional
motion planning algorithms search for robot pose sequences
within the workspace until a feasible trajectory is found [10].
Later, Toussaint [35] proposed encoding logical constraints
as mathematical expressions for optimization. Combining
these ideas with domain generation motivate us to develop
LoCAS. It ensures that the first-order predicates in a logical
action’s effect Peff are satisfied upon action completion by
enforcing them as constraints during the motion planning
process, as is in Figure 2.c. These predicate implications,
expressed as mathematical inequalities, guide the motion
planner. Consequently, each logical action is transformed

into a standard constrained motion planning problem. The
adoption of LoCAS automatically grounds logical actions
with motion planners and thus eliminates the need for pre-
defined skills, which are human-designed or deep-learned
task-specific motion planning policies commonly assumed
available in previous studies [20, 23].

Planning Pipeline: The user provides a single human
demonstration τdemo and its corresponding task description
Tdemo, based on which PDDLLM automatically constructs
a planning domain DPDDLLM and integrates it with low-
level motion planners, enabling direct deployment in robot
systems. When a novel planning task (S(init)

new ,S(final)
new) is

presented, the initial and goal states are first mapped to their
corresponding logical representations using the invented
predicates. For the formulated logical planning problem
Qnew = (O,DPDDLLM,X (init)

new ,X (final)
new), PDDLSolver

is used to solve for the task plan, which is refined into contin-
uous action sequence {ã(0), ã(1), . . . , ã(L−1)} by LoCAS.

6. Experiments and Baselines

Our Experiments are conducted in PyBullet Simulation [6],
with the symbolic solver from PDDLStream [13] and the
motion planning algorithm from the PyBullet-Planning [11,
12]. The LLM we used is GPT-4o [28].

Table 1. Maximum planning complexity and domain derivation complexity of each category .

Task Stack Unstack Color
Classify Alignment Parts

Assembly Rearrange Burger
Cook

Bridge
Build

Tower
of Hanoi

Max Planning Complexity 1058 1058 1071 1058 1058 10137 1048 1036 10307

Domain Derivation Complexity 90 90 111 94 92 96 114 128 94

Task Diversity: To ensure robustness and broad applica-
bility, we sampled over 1,200 planning tasks across nine
distinct environments. Stacking involves placing objects to
form stable stacks; unstacking requires removing items with-
out disturbing others; rearrangement moves objects from
an initial to a target layout; alignment lines up objects with
uniform spacing and orientation; color classification groups
and places objects by color; parts assembly involves sequen-
tially combining mechanical components; Tower of Hanoi is
a disk-moving puzzle; bridge building arranges blocks into
a bridge structure; and burger cooking stacks ingredients to
assemble burgers. Each task category includes tasks of 3 to
20 objects, with 10 distinct tasks sampled for each object
count. The resulting task plan lengths ranged from 6 to 510
steps, reflecting a wide spectrum of planning horizons. Our
experiments spanned over 150 unique predicates.

Task Complexity: In task design, we consider two types
of complexity: domain derivation complexity and planning
complexity. Domain derivation complexity is determined by
the number of predicates imagined and actions invented by
PDDLLM; the more predicates and actions, the higher the
complexity. Planning complexity is influenced by both the
planning domain and the task. Given n objects, a task plan of
length l, and m actions in the domain, the branching factor
at each step is m× n, resulting in a approximate complexity
of (m× n)l. Table 1 showcase the planning complexity (in
approximate order of magnitude) of the most difficult prob-
lem in the category and the domain derivation complexity.
The Tower of Hanoi task exhibits the greatest planning com-
plexity, while bridge building presents the highest domain
derivation complexity. In contrast, stack and unstack are
simpler in both complexity measures.

Knowledge Transferability: We evaluate the knowledge
transferability of PDDLLM by testing its ability to general-
ize from demonstrated tasks to novel ones with overlapping
predicates and actions. For most tasks, PDDLLM was given
demonstrations of the same task involving fewer (3 to 4)
objects. However, for compositional tasks such as rearrange-
ment and bridge building, the model was instead provided
demonstrations of simpler subtasks. Specifically, rearrange-
ment used demonstrations from both stacking and unstack-
ing, while bridge building combined demonstrations of stack-

ing and alignment. These setups test whether PDDLLM can
compose skills learned from simpler demonstrations to solve
more complex tasks.

6.1. Baselines and Ablations

We implement six baselines and one ablation of PDDLLM
to comprehensively evaluate our method. GPT-4o is used as
the default LLM unless otherwise specified, and the motion
planning algorithm is kept the same for all methods.

• LLMTAMP, o1-TAMP, R1-TAMP: LLM-based task and
motion planning (LLMTAMP) inspired by Huang et al.
[17], Li et al. [22], which use LLMs for task planning, with
language description of planning task as input. The task ex-
ecution demonstration, same as those used in PDDLLM,
was provided in the form of natural language in prompt.
In addition to GPT-4o, reasoning LLMs, OpenAI’s o1 [29]
and Deepseek’s R1 [8], are used as backbones for O1-
TAMP and R1-TAMP, respectively.

• LLMTAMP-FF: Following the method by Chen et al. [4],
Huang et al. [18], LLMTAMP-FF extends LLMTAMP
with a failure feedback loop.

• LLMTAMP-FR: Following Wang et al. [36],
LLMTAMP-FR extends failure detection by pro-
viding specific failure reasons to guide replanning with
the LLM.

• Expert Design: The expert design baseline uses expert-
crafted planning domains with symbolic solvers. Expert-
designed domains are refined from PDDLLM-derived
domains by an expert.

• RuleAsMem: In addition to the six baselines, we include
an ablation of our method, RuleAsMem, which is an abla-
tion of PDDLLM that treats the generated PDDL domain
as contextual memory.

Robot planning is required to be real-time in robot de-
ployment, imposing constraints on the planning time al-
lowance [10, 12, 13]. In our experiment, a uniform planning
time limit of 50 seconds is applied to all planning problems
and methods. We measure performance using the planning
success rate, as in other studies [16, 20, 32]. The plan-
ning time and token cost are used to measure the planning
cost [41]. Three parallel runs were conducted to compute
the mean and standard error of the means for the planning
success rate.

Table 2. Planning success rate (%) across tasks for all methods (time limit = 50 s). The best results are highlighted in bold. Expert is
excluded from the comparison, as it requires additional manual effort and serves as an upper bound.

Method Expert LLMTAMP LLMTAMP-FF LLMTAMP-FR RuleAsMem PDDLLM

Stack 96.1± 0.2 41.7± 4.3 70.8± 1.4 64.2± 3.1 85.5± 2.9 97.5 ± 1.6
Unstack 96.1± 0.2 89.4± 1.5 94.6± 0.9 92.1± 2.3 88.4± 1.2 97.7 ± 0.7
Color Classification 100± 0.0 18.1± 1.5 36.4± 1.1 49.0± 3.0 88.7± 2.3 100 ± 0.0
Alignment 100± 0.0 31.1± 3.1 52.0± 2.7 40.0± 2.4 96.0± 0.8 100 ± 0.0
Parts Assembly 98.9± 0.6 33.3± 1.5 53.9± 1.1 41.3± 1.2 95.0± 0.6 100 ± 0.0
Rearrange 63.7± 1.3 5.6± 1.0 17.4± 1.1 11.8± 1.8 1.1± 0.6 64.3 ± 0.7
Burger Cooking 100± 0.0 27.8± 2.8 50.0± 4.8 48.6± 6.9 27.8± 2.8 91.7 ± 4.8
Bridge Building 100± 0.0 43.3± 3.3 53.3± 3.8 51.7± 2.5 20.0± 0.0 87.2 ± 4.3
Tower of Hanoi 100± 0.0 14.3± 0.0 14.3± 0.0 14.3± 0.0 14.3± 0.0 100 ± 0.0

Overall 93.4± 0.1 35.7± 0.5 52.5± 0.4 48.6± 0.8 69.9± 0.7 93.3 ± 0.7

5 10 15 20
Number of objects involved in the tasks

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

PDDLLM (Ours)
LLMTAMP
LLMTAMP-FF
LLMTAMP-FR

0.0 20.0 40.0 60.0 80.0
Time (seconds)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

PDDLLM
LLMTAMP

LLMTAMPFF
LLMTAMPFR

Figure 3. (left) Planning success rate trend across increasing object counts. (right) Overall planning success rate under varying time limits.

7. Results
Through the experiments, we aim to answer the following
research questions: (1) How does PDDLLM perform relative
to other LLM-based planners? (2) Can PDDLLM generalize
to unseen, more complex tasks? (3) Does PDDLLM derive
high-quality domains with performance comparable to ex-
pert designs? (4) How does PDDLLM’s token cost compare
to other LLM-based planners?

Q1. Performance comparison to baselines: Table 2
presents the planning success rate of all evaluated meth-
ods across all tasks, measured with a 50-second time limit.
PDDLLM shows clear advantages in planning efficiency
and generalizability over baseline methods. While LLM-
based baselines perform competitively in simpler tasks like
stacking and unstacking, their performance drops sharply in
complex tasks such as rearrangement, burger cooking, bridge
building, and Tower of Hanoi. In contrast, PDDLLM main-
tains strong performance across all task categories, achiev-

ing an over 40% improvement in overall planning success
rate compared to the best LLM-based planner baseline (i.e.,
LLMTAMP-FF). Even the ablated variant of PDDLLM,
RuleAsMem, outperforms the LLM-based planners by at
least 17.4% in overall success rate. Compared to PDDLLM,
RuleAsMem exhibits less stability. It performs well in sim-
pler tasks but struggles in more complex ones, suggesting the
LLMs struggle to understand complex domains. In addition
to the results evaluated with a 50-second time window, we
also report the overall success rates of the main methods
across varying time limits. As shown in Figure 3(right),
PDDLLM consistently outperforms the baseline methods
and demonstrates superior planning performance across all
time limits. Notably, it reaches performance saturation the
fastest, highlighting its superior time efficiency among all
evaluated approaches.

We further compare PDDLLM’s planning ability with
more powerful reasoning LLMs (OpenAI-o1 and DeepSeek-
R1) in Table 3. While reasoning-based models exhibit strong

Table 3. Comparison of planning success rate (%) and token cost (k) between PDDLLM and LLMTAMP and the reasoning LLM variants.
The best results are shown in bold, and the second-best results are underlined.

Task
Success Rate (%) ↑ Token Cost (k) ↓

PDDLLM LLMTAMP O1-TAMP R1-TAMP PDDLLM LLMTAMP O1-TAMP R1-TAMP

Rearrangement 73.8± 1.1 5.6± 1.0 70.8± 1.5 40.0± 5.0 334 212 1200 1460
Tower of Hanoi 100.0± 0.0 14.3± 0.0 33.3± 2.4 14.3± 0.0 535 36 529 353
Bridge Building 87.2± 4.3 44.3± 3.3 51.7± 2.5 40.0± 0.0 375 50 270 363

Overall 80.5± 0.5 13.9± 0.9 61.5± 1.3 35.9± 3.1 415 99 666 725

Table 4. Percentage of missing or redundant predicates and actions across selected domains.

Task Stack Burger Cooking Bridge Building Tower of Hanoi

Percentage of missing predicates or actions 0.0% 18.8% 16.7% 0.0%
Percentage of redundant predicates or actions 10.0% 0.0% 0.0% 11.1%

planning capabilities, their high computational cost prevents
them from completing within the 50-second window. To
sufficiently compare the planning capabilities, we extend the
time limit to 500 seconds and evaluate them on the most
challenging tasks. Although o1-TAMP and R1-TAMP show
remarkable improvement compared to GPT-4o-based LLM-
TAMP, they remain less robust in long-horizon planning
and fail to match PDDLLM’s performance. In contrast, our
method, relying solely on GPT-4o, consistently achieves
higher success rates across complex tasks.

Q2. Generalization: The experimental results highlight
PDDLLM’s ability to handle increasing complexity in both
planning and domain derivation, consistently outperform-
ing baseline methods. In terms of planning complexity, as
shown in Figure 3(left), PDDLLM maintains robust plan-
ning performance as task complexity grows, achieving high
success rates even in scenarios involving up to 20 objects.
As shown in Table 2, performance degradation is observed in
more challenging tasks such as rearrangement, where longer
action sequences are required and there are more complex
motion constraints. From the perspective of domain deriva-
tion complexity, PDDLLM remains effective even in tasks
demanding the generation of over 100 predicates. However,
success rates drop in the most complex domains, such as
bridge building, primarily due to missing supporting predi-
cates. Full discussion can be found in Section 9

PDDLLM demonstrates a strong ability to integrate
knowledge across demonstrations. The modular nature
of PDDL action syntax allow the easy transfer of actions
learned from different demonstrations among domains. De-
spite receiving only one example each for stacking and un-
stacking, it successfully combines the “stack” action and

the “unstack” action to solve rearrangement tasks. Similarly,
in the bridge building domain, PDDLLM successfully com-
bines the “align” action and the “stack” action using one
demonstration of cube alignment and one of stacking. The
high success rate of these tasks in Table 2 underscore the
robustness of the derived planning domains.

Q3. Domain Quality: We evaluate the quality of planning
domains generated by PDDLLM by comparing the percent-
age of missing or redundant predicates and actions, as well
as the planning success rate across a range of tasks, against
expert-designed domains. Table 4 reports the percentage of
missing or redundant elements in the final domains; tasks
with no such issues are omitted. These results indicate that
PDDLLM produces high-quality domains with minimal er-
rors, even in complex scenarios. While a few predicates may
be absent, the overall logical structure remains sound, as re-
flected in the consistently high planning success. As shown
in Table 2, the derived domains achieve 93.3% success rate,
closely matching the performance of expert-crafted domains.

Q4. Token efficiency: We compare the token efficiency of
our method against LLM-based baselines on the three most
complex tasks, as shown in Table 3. Although the GPT-4o-
based LLMTAMP incurs lower total token costs, it performs
poorly across all three tasks. Compared to O1-TAMP and
R1-TAMP, our PDDLLM uses significantly fewer tokens
while consistently achieving better performance. These re-
sults also underscore the challenge of deploying reasoning
LLMs on real robot systems, given their high token con-
sumption and time costs in planning.

a. Tower of Hannoi b. Bridge Building c. Burger d. Stack

Figure 4. Real robot experiment with Agilex Piper and Franka Panda Arm: a. Franka Panda solving the tower of Hannoi puzzle. b. Franka
Panda building a bridge. c. Piper arm making burgers. d. Piper arm stacking cubes.

8. Real Robot Deployment

We evaluate PDDLLM’s validity on real-world robotic sys-
tems to demonstrate its cross-platform deployability. The
system is tested on both the Agilex Piper Arm and the Franka
Panda Arm. ArUco 5×5 markers are used for pose estimation,
while ROS2 and MoveIt2 serve as the robot driver and mo-
tion planning framework. Both robots successfully complete
real-world planning tasks through the direct deployment of
PDDLLM, demonstrating its effectiveness across different
hardware platforms and validating its applicability in real-
world robotic scenarios. As indicated in Figure 4, four real
robot experiments, including stacking, bridge building, cook-
ing burgers, and the tower of Hannoi are performed.

9. Limitation

A current limitation of PDDLLM lies in its occasional omis-
sion of logically complex predicates, which contributes to the
observed decline in success rates for more complex domains
such as Burger Cooking and Bridge Building, as shown in
Table 2. For example, in the bridge building task, the robot
must assemble the top surface only after all base components
are correctly placed. If the surface is assembled prematurely,
it becomes difficult to generate feasible manipulation trajec-
tories for the remaining base components, often resulting
in planning failure. In contrast, the expert-designed plan-
ning domain addresses this issue by introducing a predicate
(all_base_finished) as a precondition for surface
assembly, thereby enforcing the correct ordering of actions.

Recent research has begun to address this limitation, for ex-
ample, by leveraging VLMs to invent new predicates [23], or
by refining the domain through environmental feedback [16].

10. Conclusion
This paper presents PDDLLM, the first approach in the field
to generate a complete planning domain from scratch, with-
out relying on any predefined predicates or actions. By
extracting logical structures directly from pre-trained LLMs,
PDDLLM autonomously derives both predicates and actions,
enabling fully automated domain construction. Evaluated
across a wide range of environments, PDDLLM demon-
strates high quality in domain derivation and strong gener-
alizability across diverse task categories. Moreover, when
integrated with the LoCAS framework, PDDLLM fully au-
tomates the integration between the PDDL planning domain
and the low-level motion planner. This level of automation
significantly improves usability and positions the framework
as an adaptable and scalable solution for robotic planning and
decision-making. Compared to existing methods, PDDLLM
outperforms other LLM-based baselines and closely matches
the performance of expert-designed planning domains, par-
ticularly in complex and long-horizon planning scenarios.
Future work will focus on integrating perception into the
system, enabling domain derivation from raw sensory inputs.
From the aspect of broader impact, PDDLLM lowers the
barrier to deploying robots by enabling domain derivation
from demonstrations, making automation more accessible.

References
[1] Ashay Athalye, Nishanth Kumar, Tom Silver, Yichao Liang,

Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Predicate
invention from pixels via pretrained vision-language models.
arXiv [cs.RO], 2024. 2

[2] Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol
Hausman, Alexander Herzog, Daniel Ho, Julian Ibarz, Alex
Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say:
Grounding language in robotic affordances. In Proc. Conf.
on Robot Learning, 2023. 2

[3] Walker Byrnes, Miroslav Bogdanovic, Avi Balakirsky,
Stephen Balakirsky, and Animesh Garg. CLIMB: Language-
guided continual learning for task planning with iterative
model building. arXiv [cs.RO], 2024. 2

[4] Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas A. Roy,
and Chuchu Fan. Autotamp: Autoregressive task and motion
planning with llms as translators and checkers. In Proc. IEEE
Int. Conf. on Robotics and Automation, 2023. 5, 12

[5] Yongchao Chen, Jacob Arkin, Yilun Hao, Yang Zhang,
Nicholas Roy, and Chuchu Fan. PRompt optimization in
multi-step tasks (PROMST): Integrating human feedback and
heuristic-based sampling. In Proc. Conf. Empirical Methods
in Natural Language Processing, 2024. 2

[6] Erwin Coumans and Yunfei Bai. Pybullet, a python mod-
ule for physics simulation for games, robotics and machine
learning. http://pybullet.org, 2016–2021. 4

[7] Aidan Curtis, Tom Silver, Joshua B. Tenenbaum, Tomás
Lozano-Pérez, and Leslie Kaelbling. Discovering state and
action abstractions for generalized task and motion planning.
In Proc. AAAI Conf. on Artificial Intelligence, 2022. 3

[8] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capabil-
ity in llms via reinforcement learning. arXiv [cs.CL], 2025.
5, 12

[9] Danny Driess, F Xia, Mehdi S M Sajjadi, Corey Lynch,
Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan
Tompson, Q Vuong, Tianhe Yu, Wenlong Huang, Yevgen
Chebotar, P Sermanet, Daniel Duckworth, S Levine, Vincent
Vanhoucke, Karol Hausman, Marc Toussaint, Klaus Greff,
Andy Zeng, Igor Mordatch, and Peter R Florence. PaLM-E:
An embodied multimodal language model. In Proc. Int. Conf.
on Machine Learning, 2023. 2

[10] Jonathan D Gammell, Siddhartha S Srinivasa, and Timo-
thy D Barfoot. Batch informed trees (BIT*): Sampling-based
optimal planning via the heuristically guided search of im-
plicit random geometric graphs. In Proc. IEEE Int. Conf. on
Robotics and Automation, 2015. 4, 5

[11] Caelan Reed Garrett. Pybullet planning. https://pypi.
org/project/pybullet-planning/, 2018. 4

[12] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack
Kaelbling. Backward-forward search for manipulation plan-
ning. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2015. 4, 5

[13] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack
Kaelbling. PDDLStream: Integrating symbolic planners and
blackbox samplers via optimistic adaptive planning. Proc. Int.
Conf. Autom. Plan. Sched., 2020. 4, 5

[14] Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Sub-
barao Kambhampati. Leveraging pre-trained large language
models to construct and utilize world models for model-based
task planning. In Proc. Adv. Neural Inf. Proc. Systems, 2023.
1, 2

[15] Mengkang Hu, Yao Mu, Xinmiao Yu, Mingyu Ding, Shiguang
Wu, Wenqi Shao, Qiguang Chen, Bin Wang, Yu Qiao, and
Ping Luo. Tree-planner: Efficient close-loop task planning
with large language models. arXiv [cs.CL], 2023. 2

[16] Jinbang Huang, Allen Tao, Rozilyn Marco, Miroslav Bog-
danovic, Jonathan Kelly, and Florian Shkurti. Automated plan-
ning domain inference for task and motion planning. arXiv
[cs.RO], 2024. 2, 3, 5, 8, 17

[17] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor
Mordatch. Language models as zero-shot planners: Extract-
ing actionable knowledge for embodied agents. In Proc. Int.
Conf. on Machine Learning, 2022. 2, 5, 12

[18] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang,
Pete Florence, Andy Zeng, Jonathan Tompson, Igor Mor-
datch, Yevgen Chebotar, Pierre Sermanet, Tomas Jackson,
Noah Brown, Linda Luu, Sergey Levine, Karol Hausman,
and brian ichter. Inner monologue: Embodied reasoning
through planning with language models. In Proc. Conf. on
Robot Learning, 2023. 2, 5, 12

[19] Mohamed Khodeir, Ben Agro, and Florian Shkurti. Learning
to search in task and motion planning with streams. IEEE
Robotics and Automation Letters, 2023. 17

[20] Nishanth Kumar, Willie McClinton, Rohan Chitnis, Tom Sil-
ver, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Learn-
ing efficient abstract planning models that choose what to
predict. In Proc. Conf. on Robot Learning, 2023. 2, 4, 5

[21] Boyi Li, Philipp Wu, Pieter Abbeel, and Jitendra Malik. In-
teractive task planning with language models. In Proc. 2nd
Workshop on Language and Robot Learning, 2023. 2

[22] Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton
Wang, Linxi Fan, Tao Chen, De-An Huang, Ekin Akyürek,
Anima Anandkumar, Jacob Andreas, Igor Mordatch, Antonio
Torralba, and Yuke Zhu. Pre-trained language models for
interactive decision-making. In Proc. Adv. Neural Inf. Proc.
Systems, 2022. 5, 12

[23] Yichao Liang, Nishanth Kumar, Hao Tang, Adrian Weller,
Joshua B Tenenbaum, Tom Silver, João F Henriques, and
Kevin Ellis. VisualPredicator: Learning abstract world mod-
els with neuro-symbolic predicates for robot planning. arXiv
[cs.AI], 2024. 1, 2, 4, 8

[24] Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi
Zhang, Joydeep Biswas, and Peter Stone. LLM+P: Empower-
ing large language models with optimal planning proficiency.
arXiv [cs.AI], 2023. 12

[25] Weiyu Liu, Neil Nie, Ruohan Zhang, Jiayuan Mao, and Jia-
jun Wu. Learning compositional behaviors from demonstra-
tion and language. In Proceedings of The 8th Conference on
Robot Learning, 2025. 2

[26] Drew McDermott, Malik Ghallab, Adele E. Howe, Craig A.
Knoblock, Ashwin Ram, Manuela M. Veloso, Daniel S. Weld,
and David E. Wilkins. Pddl-the planning domain definition
language. 1998. 1

http://pybullet.org
https://pypi.org/project/pybullet-planning/
https://pypi.org/project/pybullet-planning/

[27] Silin Meng, Yiwei Wang, Cheng-Fu Yang, Nanyun Peng, and
Kai-Wei Chang. LLM-a*: Large language model enhanced
incremental heuristic search on path planning. In Findings of
the Assoc. for Comput. Linguistics: EMNLP 2024, 2024. 2

[28] OpenAI. GPT-4 technical report. arXiv [cs.CL], 2023. 4
[29] OpenAI. OpenAI o1 system card. arXiv [cs.AI], 2024. 5, 12
[30] Pierre Sermanet, Tianli Ding, Jeffrey Zhao, Fei Xia, Debidatta

Dwibedi, Keerthana Gopalakrishnan, Christine Chan, Gabriel
Dulac-Arnold, Sharath Maddineni, Nikhil J. Joshi, Pete Flo-
rence, Wei Han, Robert Baruch, Yao Lu, Suvir Mirchandani,
Peng Xu, Pannag R. Sanketi, Karol Hausman, Izhak Shafran,
Brian Ichter, and Yuan Cao. Robovqa: Multimodal long-
horizon reasoning for robotics. Proc. IEEE Int. Conf. on
Robotics and Automation, 2023. 2

[31] Tom Silver, Rohan Chitnis, Aidan Curtis, Joshua B. Tenen-
baum, Tomas Lozano-Perez, and Leslie Pack Kaelbling. Plan-
ning with learned object importance in large problem in-
stances using graph neural networks. In Proc. AAAI Conf.
on Artificial Intelligence, 2020. 17

[32] Tom Silver, Rohan Chitnis, Nishanth Kumar, Willie McClin-
ton, Tomás Lozano-Pérez, Leslie Kaelbling, and Joshua B
Tenenbaum. Predicate invention for bilevel planning. In Proc.
AAAI Conf. on Artificial Intelligence, 2023. 2, 3, 5

[33] Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenen-
baum, Leslie Kaelbling, and Michael Katz. Generalized plan-
ning in pddl domains with pretrained large language models.
In Proc. AAAI Conf. on Artificial Intelligence, 2024. 2

[34] Hao Tang, Darren Key, and Kevin Ellis. Worldcoder, a model-
based llm agent: Building world models by writing code and
interacting with the environment. Proc. Adv. Neural Inf. Proc.
Systems, 2024. 1

[35] Marc Toussaint. Logic-geometric programming: an
optimization-based approach to combined task and motion
planning. In Proc. Int. Joint Conf. on Artificial Intelligence,
2015. 4

[36] Shu Wang, Muzhi Han, Ziyuan Jiao, Zeyu Zhang, Yingnian
Wu, Song-Chun Zhu, and Hangxin Liu. Llm3: Large language
model-based task and motion planning with motion failure
reasoning. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2024. 2, 5

[37] Lionel Wong, Jiayuan Mao, Pratyusha Sharma, Zachary S
Siegel, Jiahai Feng, Noa Korneev, Joshua B Tenenbaum, and
Jacob Andreas. Learning adaptive planning representations
with natural language guidance. arXiv [cs.AI], 2023. 2

[38] Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and
Harold Soh. Translating natural language to planning goals
with large-language models. arXiv [cs.CL], 2023. 12

[39] Zhutian Yang, Caelan Reed Garrett, Dieter Fox, Tomás
Lozano-Pérez, and Leslie Pack Kaelbling. Guiding long-
horizon task and motion planning with vision language mod-
els. In Proc. 2nd CoRL Workshop on Learning Effective
Abstractions for Planning, 2024. 2

[40] Zirui Zhao, Wee Sun Lee, and David Hsu. Large language
models as commonsense knowledge for large-scale task plan-
ning. In Proc. Adv. Neural Inf. Proc. Systems, 2024. 1, 2

[41] Tianyang Zhong, Zhengliang Liu, Yi Pan, et al. Evaluation
of openai o1: Opportunities and challenges of agi. arXiv
[cs.CL], 2024. 5, 12

[42] Wang Zhu, Ishika Singh, Robin Jia, and Jesse Thomason.
Language models can infer action semantics for symbolic
planners from environment feedback. arXiv [cs.AI], 2024. 2

A. Appendix
A.1. Real Robot Experiment
A.1.1. Franka Panda Arm

Figure 5. Franka Panda Arm building a bridge

Figure 6. Franka Panda Arm solving the Tower of Hannoi puzzle

A.1.2. Agilex Piper Arm

Figure 7. Agilex Piper Arm stacking cubes

Figure 8. Agilex Piper Arm making burgers

A.2. Baseline Implementation Details
LLMTAMP: LLM-based task and motion planning (LLM-
TAMP) builds on methods from [17, 22], which use pre-
trained LLMs for task planning. We formulate the plan-
ning problem as a natural language description. Human
demonstrations are interpreted as action sequences required
to accomplish the task. The LLM then generates high-level
actions to achieve the goal, which are refined into motion
plans using predefined skills.

LLMTAMP-FF: LLMTAMP-FF, following the method
by [4, 18], extends LLMTAMP with a failure feedback loop.
Upon execution failure, the system feeds the failure signal to
the LLM to regenerate the task plan, repeating until success
or the time limit is reached.

LLMTAMP-FR: Following ?], LLMTAMP-FR extends
failure detection by providing specific failure reasons to
guide replanning with the LLM. We design a reasoner that
generates detailed explanations for plan failures and incorpo-
rates them into the prompt as feedback. The LLM performs
failure reasoning and then regenerates the plan accordingly.

Expert Design: The expert design baseline uses
expert-crafted planning domains to evaluate how closely
PDDLLM-generated domains approach human-level per-
formance. To highlight the readability and customizability
of PDDLLM, these expert-designed domains are initialized
with PDDLLM-generated outputs, which are then analyzed
and refined by a TAMP expert into ground-truth domains.

o1-TAMP and R1-TAMP: As reasoning models have
demonstrated superior performance in many tasks [41], we
ablate the LLM in LLMTAMP to compare the planning
performance of state-of-the-art reasoning LLMs with our
method. Specifically, we evaluate OpenAI’s o1 [29] and
Deepseek’s R1 [8] as the reasoning backbones.

RuleAsMem: RuleAsMem is an ablation of PDDLLM
that treats the generated PDDL domain as contextual mem-
ory, rather than using it with a symbolic planner. While
prior work focuses on translating language into logical rep-
resentations [24, 38], RuleAsMem directly integrates logical
planning rules into the LLM prompt to solve new tasks. Each
task is defined by initial and goal states, using the imagined
predicates, along with a human demonstration in the form of
a PDDL task plan as prompts.

A.3. Prompt template
A.3.1. Predicate imagination
Template

There are n objects in the environment, whose feature
name are feature value 1 and feature value 2. In dimension
1, we know feature subspace range in dimension 1. In
dimension 2, we know feature subspace range in dimension
2.Please create a predicate in PDDL syntax to describe
this relation and classify if it is related to the current task

description. Please return the result in the following format:
predicate, relevance.

Example of object position relation

Prompt: There are two objects in the environment, whose positions are (x1, y1) and (x2, y2).
In the horizontal direction, x1 − x2 ≤ u. In the vertical direction, u < y1 − y2 ≤ 2u. Please

create a predicate in PDDL syntax to describe this relation and classify if it is related to the

task of stacking cubes together. Please return the result in the following format: predicate,

relevance.

LLM: is_on(? o1 , ? o2), related.

Example of color relation

Prompt: There are two objects in the environment, whose colors are (r1, g1, b1) and

(r2, g2, b2). In the red channel, 𝑟1 − r2 ≤ u. In the green channel, g1 − g2 ≤ u. In the blue

channel, b1 − b2 ≤ u. Please create a predicate in PDDL syntax to describe this relation and

classify if it is related to the task of stacking cubes together. Please return the result in the

following format: predicate, relevance.

LLM: similar_color(? o1 , ? o2), unrelated.

Example of size relation

Prompt: There are two objects in the environment, whose size are (w1, l1, h1) and

(w2, l2, h2). In the width, 0 < w1 −w2 ≤ u. In the length, 0 < l1 − l2 ≤ u. In the height,

0 < h1 − h2 ≤ u. Please create a predicate in PDDL syntax to describe this relation and

classify if it is related to the task of stacking cubes together. Please return the result in the

following format: predicate, relevance.

LLM: larger_than(? o1 , ? o2), related.

Note: Here, u is a variable determined by feature sub-
space range length, which depends on the user input.

A.3.2. Action invention
Template

Current state: The logical state before action execution
Next state:The logical state after the action execution
Can you give this transition an action name to summa-

rize and describe what happened. Please follow Planning
Domain Definition Language syntax.

Example for inventing ‘Pick’

Prompt: The current state of the environment is:
(∀objects ¬above, o1), (is_on, o1 , o2), (∀objects ¬holding, robot)
After one action execution, the resulting state of the environment is:
(holding, o1, robot), (∀objects ¬above, o2)
Can you name this logical action to summarize and describe what happened? Please
follow Planning Domain Definition Language syntax and return together with action
parameters, preconditions, and effects.
LLM:
:action pick

:parameters (?o1 ?o2 ?r)
:precondition (and (is_on ?o1 ?o2) (∀objects ¬above ?o1) (∀objects ¬holding, ?r))
:effect (and (not (is_on ?o1 ?o2)) (not (∀objects ¬holding, ?r) (∀objects ¬above, ?o2)

(holding, ?o1,?r) (not (∀objects ¬above, o1)))

Example for inventing ‘Place’

Prompt: The current state of the environment is:
(holding, o1, robot) (∀objects ¬above, o2)
After one action execution, the resulting state of the environment is:
(∀objects ¬above, o1) (∀objects ¬above, o2) (∀objects ¬holding, robot)
Can you name this logical action to summarize and describe what happened? Please
follow Planning Domain Definition Language syntax and return together with action
parameters, preconditions, and effects.
LLM:
:action place

:parameters (?o1 ?r)
:precondition (and (holding, ?o1,?r))
:effect (and (not (holding, ?o1,?r)) (∀objects ¬above ?o1) (∀objects ¬holding, ?r))

A.3.3. LLMTAMP baseline
Part 1. Initialization:

Imagine you are a robot arm operator; you need to gen-
erate a sequence of actions to achieve the given goal. Here
are the logical actions you can choose from: list of actions
to choose from

Part 2. Human demonstrations:
Here are some examples for you to learn:
example of input and output of the system
Part 3. New planning problem:
Now you are given a new input planning problem as the

following: The initial state and the goal of the problem to
be solved Choose a sequence of actions to accomplish this
task, and return the action sequence following the example
output provided.

We integrate parts 1, 2, and 3 into a complete prompt for
the LLM to generate task plans.

Example for a stacking problem

Prompt: Imagine you are a robot arm operator; you need to generate a sequence of

actions to achieve the given goal. Here are the logical actions you can choose from:

stack(upper box, lower box, robot), pick(upper box, table, robot).

Here are some examples for you to learn:

Example input: Object 0 is a robot. Object 1 is a table. Object 2 is a box. Object 3 is a

box. Object 4 is a box. Initially, the robot is not holding anything. Object 2 is on table.

Object 3 is on table. Object 4 is on table. Object 2 is the topmost object. Object 3 is the

topmost object. Object 4 is the topmost object. In the goal, Object 2 is above Object 3.

Object 3 is above object 4. Object 4 is on Object 1. Object 2 is the topmost object. The

robot is not holding anything.

Example Output: pick(3, 1, 0), stack(3, 4, 0), pick(2, 1, 0), stack(2, 3, 0).

Now you are given a new planning problem as the following: Object 0 is a robot. Object

1 is a table. Object 2 is a box. Object 3 is a box. Object 4 is a box. Initially, Object 2 is

on the table. Object 3 is on the table. Object 4 is on the table. Object 2 is the topmost

object. Object 3 is the topmost object. Object 4 is the topmost object. The robot is not

holding anything. In the goal, Object 2 is above object 3. Object 4 is above object 2.

Object 3 is on Object 1. Object 4 is the topmost object. The robot is not holding

anything. Choose a sequence of actions to accomplish this task, and return the action

sequence following the example output provided.

LLM: pick(2, 1, 0), stack(2, 3, 0), pick(4, 1, 0), stack(4, 2, 0).

A.3.4. LLMTAMP+Failure Feedback baseline
LLMTAMP+Failure Feedback extends LLMTAMP with a
failure feedback loop. Upon execution failure, the system
feeds the failure signal to the LLM for replanning. Thus,
the initial prompts of this baseline, part 1, 2, and 3, are the
same as the LLMTAMP prompt. However, there is a failure
summarization. Integrating part 1-4 gives the full prompt.

Part 4. Failure feedback:
Your plan failed in execution, please generate a different

one. Only return the sequence of logical actions following
the format of example output.

Example for a stacking problem

Prompt: Imagine you are a robot arm operator; you need to generate a sequence of

actions to achieve the given goal. Here are the logical actions you can choose from:

stack(upper box, lower box, robot), pick(upper box, table, robot).

Here are some examples for you to learn:

Example input: Object 0 is a robot. Object 1 is a table. Object 2 is a box. Object 3 is a

box. Object 4 is a box. Initially, the robot is not holding anything. Object 2 is on table.

Object 3 is on table. Object 4 is on table. Object 2 is the topmost object. Object 3 is

the topmost object. Object 4 is the topmost object. In the goal, Object 2 is above

Object 3. Object 3 is above object 4. Object 4 is on Object 1. Object 2 is the topmost

object. The robot is not holding anything.

Example Output: pick(3, 1, 0), stack(3, 4, 0), pick(2, 1, 0), stack(2, 3, 0).

Now you are given a new planning problem as the following: Object 0 is a robot.

Object 1 is a table. Object 2 is a box. Object 3 is a box. Object 4 is a box. Initially,

Object 2 is on the table. Object 3 is on the table. Object 4 is on the table. Object 2 is

the topmost object. Object 3 is the topmost object. Object 4 is the topmost object. The

robot is not holding anything. In the goal, Object 2 is above object 3. Object 4 is

above object 2. Object 3 is on Object 1. Object 4 is the topmost object. The robot is

not holding anything. Choose a sequence of actions to accomplish this task, and return

the action sequence following the example output provided.

LLM: pick(4, 1, 0), stack(4, 2, 0), pick(2, 1, 0), stack(2, 3, 0).

Prompt: Your plan failed in execution, please generate a different one. Only return the

sequence of logical actions following the format of example output.

LLM: pick(2, 1, 0), stack(2, 3, 0), pick(4, 1, 0), stack(4, 2, 0).

A.3.5. LLMTAMP+Failure Reasoning baseline
LLMTAMP + Failure Reasoning further extends failure de-
tection by providing specific failure reasons to guide re-
planning with the LLM. Part 1, 2, and 3 are the same as
the LLMTAMP prompt. Integrating part 1-5 gives the full
prompt.

Part 4. Failure Reasoning:
Your plan failed in execution, please generate a different

one. This may involve sample new plans or reorder the last
plan. Please generate output step-by-step, which includes
your reasoning for the failure of the last plan. Answer the
questions: (i) what is the cause of the failure of the last plan?
(ii) do you see similar mistakes in other steps in the plan?
Here are the failure reasons: failure reasons

Part 5. Replan:
Now, based on your above failure reasoning for (i) and

(ii) , generate a new task plan to solve the original plan-
ning problem. Only return the sequence of logical actions
following the format of example output.

Example for a stacking problem

Prompt: Imagine you are a robot arm operator; you need to generate a sequence of actions to

achieve the given goal. Here are the logical actions you can choose from: stack(upper box,

lower box, robot), pick(upper box, table, robot).

Here are some examples for you to learn:

Example input: Object 0 is a robot. Object 1 is a table. Object 2 is a box. Object 3 is a box.

Object 4 is a box. Initially, the robot is not holding anything. Object 2 is on table. Object 3 is

on table. Object 4 is on table. Object 2 is the topmost object. Object 3 is the topmost object.

Object 4 is the topmost object. In the goal, Object 2 is above Object 3. Object 3 is above

object 4. Object 4 is on Object 1. Object 2 is the topmost object. The robot is not holding

anything.

Example Output: pick(3, 1, 0), stack(3, 4, 0), pick(2, 1, 0), stack(2, 3, 0).

Now you are given a new planning problem as the following: Object 0 is a robot. Object 1 is a

table. Object 2 is a box. Object 3 is a box. Object 4 is a box. Initially, Object 2 is on the table.

Object 3 is on the table. Object 4 is on the table. Object 2 is the topmost object. Object 3 is the

topmost object. Object 4 is the topmost object. The robot is not holding anything. In the goal,

Object 2 is above object 3. Object 4 is above object 2. Object 3 is on Object 1. Object 4 is the

topmost object. The robot is not holding anything. Choose a sequence of actions to

accomplish this task, and return the action sequence following the example output provided.

LLM: pick(4, 1, 0), stack(4, 2, 0), pick(2, 1, 0), stack(2, 3, 0).

Prompt: Your plan failed in execution, please generate a different one. This may involve

sample new plans or reorder the last plan. Please generate output step-by-step, which includes

your reasoning for the failure of the last plan. Answer the questions: (i) what is the cause of

the failure of the last plan? (ii) do you see similar mistakes in other steps in the plan? Here are

the failure reasons: Motion planning failed in pick(2, 1, 0) because of collision with Object 4.

LLM: Got it! Here are my analysis to the planning failures…..

Prompt: Now, based on your above failure reasoning for (i) and (ii) , generate a new task plan

to solve the original planning problem. Only return the sequence of logical actions following

the format of example output.

LLM: pick(2, 1, 0), stack(2, 3, 0), pick(4, 1, 0), stack(4, 2, 0).

A.3.6. RuleAsMem
The overall template of RuleAsMem is very similar to that of
LLMTAMP. However, in RuleAsMem, the planning domain
is provided and the problem is defined in PDDL syntax.

Part 1. Initialization:
Imagine you are a robot arm operator, you need to gener-

ate a sequence of actions to achieve the given goal. Here is
the PDDL planning domain: PDDL planning domain

Part 2. Human demonstrations:
Here are some examples for you to learn:
example of input and output of the system
Part 3. New planning problem:
Now you are given a new input planning problem as the

following: The initial state and the goal of the problem in
PDDL syntax. Choose a sequence of actions to accomplish
this task. Only return the sequence of logical actions follow-
ing the format of example output.

Example for a stacking problem

Prompt: Imagine you are a robot arm operator, you need to generate a sequence of

actions to achieve the given goal. Here is the PDDL planning domain:

Here are some examples for you to learn:

Example input:

Initial state: (top, 2), (box, 2), (on_table, 2, 1), (top, 3), (box, 3), (on_table, 3, 1), (top,

4), (box, 4), (on_table, 4, 1), (table, 1), (not_holding, 0), (robot, 0)

Goal state: (top, 2), (box, 2), (above, 2, 3), (box, 3), (above, 3, 4), (box, 4), (on_table,

4, 1), (table, 1), (not_holding, 0), (robot, 0)

Example Output: pick(3, 1, 0), stack(3, 4, 0), pick(2, 1, 0), stack(2, 3, 0).

Now you are given a new planning problem as the following:

Initial state: (top, 2), (box, 2), (on_table, 2, 1), (top, 3), (box, 3), (on_table, 3, 1), (top,

4), (box, 4), (on_table, 4, 1), (table, 1), (not_holding, 0), (robot, 0)

Goal state: (top, 4), (box, 4), (above, 4, 2), (box, 2), (above, 2, 3), (box, 3), (on_table,

3, 1), (table, 1), (not_holding, 0), (robot, 0)

Choose a sequence of actions to accomplish this task, and return the action sequence

following the example output provided.

LLM: pick(2, 1, 0), stack(2, 3, 0), pick(4, 1, 0), stack(4, 2, 0).

(define (domain LLM_generated_domain)
(:requirements :strips :equality)
(:predicates

(box ?b1)
(table ?t1)
(above ?b1 ?b2)
(holding ?b1 ?r1)
(robot ?r1)

……

A.4. Experiment Tasks
A.4.1. Stacking
The stacking task involves collecting individual objects and
placing them on top of each other to form stable stacks.

A.4.2. Unstacking
The unstacking task is the inverse process of stacking, re-
quiring the robot to identify, grasp, and remove items from
existing stacks without disturbing surrounding structures.

A.4.3. Rearrangement
The rearrangement task demands the robot to relocate objects
from an initial configuration into a desired layout.

A.4.4. Alignment
The alignment task requires the robot to position multiple
objects in a straight line with consistent spacing and orienta-
tion.

A.4.5. Color classification
In the color classification task, the robot must identify the
color of each object, group them by color category, and stack
or place them in designated areas accordingly.

A.4.6. Parts assembly
The parts assembly task involves recognizing components
and sequentially assembling multiple machining parts to-
gether.

A.4.7. Tower of Hanoi
The Tower of Hanoi is a puzzle that involves moving a stack
of disks from one base to another, one at a time, without ever
placing a larger disk on top of a smaller one, using a third
base as an auxiliary.

A.4.8. Bridge building
In bridge building, the robot is required to collect distributed
blocks and configure it into a bridge structure.

A.4.9. Burger cooking
Lastly, for burger cooking, the robot needs to stack and pack
the food ingredients together to make hamburgers.

A.5. Generalization Across Task Complexity

5 10 15 20
0.00

0.25

0.50

0.75

1.00
Unstack

5 10 15 20

Parts Assemblely

5 10 15 20

Rearrangement

5 10 15

Cooking Burgers

5 10 15 20
0.00

0.25

0.50

0.75

1.00
Stack

5 10 15 20

Cube Alignment

5 10 15 20

Classify Color

5 10

Bridge Building

Number of objects involved in the tasks

Su
cc

es
s r

at
e

Ours RuleAsMem Expert LLMTAMP LLMTAMP-FF LLMTAMP-FR

Figure 9. Planning success rate trend across increasing object
counts for each task.

A.6. Time Cost of LLMTAMP Reasoning Model
Variants

As noted in the paper, the reasoning models incur substantial
computational overhead when generating task plans. To ac-
count for this, we extended the time limits for o1-TAMP and
R1-TAMP in order to evaluate the contribution of reasoning
to planning performance and to enable a fair comparison
with our method. This section presents a comprehensive
comparison of the time costs between the LLMTAMP vari-
ants and our approach.

As shown in Table 5, our method consistently yields
lower average planning times across all tasks compared to
the LLMTAMP reasoning model variants. This improvement
is primarily attributed to PDDLLM’s ability to structurally
summarize the reasoning process into a standardized plan-
ning domain during a one-time offline inference step. As a
result, no additional reasoning is required at test time. In
contrast, LLMTAMP variants conduct reasoning indepen-
dently for each task instance, leading to significantly higher
computational costs. Such overhead makes these models im-
practical for deployment on physical robots, where real-time
planning capabilities are often essential. As shown in Ta-
ble 3, while o1-TAMP achieves comparable performance in
certain tasks, the substantially higher time cost undermines
its practical value, particularly in real robotic scenarios.

Table 5. Comparison of time cost between PDDLLM and LLM-
TAMP reasoning variants

Experiment Ours o1-TAMP o1-TAMP

Average Planning Time Cost (Second)

Stack 5.94 39.22 211.40
Rearrangement 15.74 92.83 337.10
Tower of Hanoi 4.29 167.82 353.88
Bridge Building 6.45 82.47 305.07

A.7. Prompt Variation Test
In addition to the five main research questions discussed in
the paper, we further evaluated the robustness of our method
under variations in the prompting styles. Four different cases
were tested to assess the stability of domain generation: par-
allel prompting with varying numbers of prompts, altering
the prompting sequence of simulation outcomes, and tuning
the prompting template.

A.7.1. Parallel prompting for predicate imagination
In this prompt variation, we perform parallel prompting of
the LLM multiple times to obtain diverse responses simul-
taneously. These outputs are subsequently analyzed and
aggregated to synthesize an optimal solution. While the
core prompting procedure follows the same structure as de-
scribed in Appendix A.3.1, additional post-processing steps
are applied to summarize and consolidate the results. For
prompt naming, we further prompt the LLM to select the
most suitable name from among the parallel outputs. The
prompt template is shown as the following:

Here is a list of predicate describing the same object
state: predicate list. Please choose the PDDL predicate
from the provided ones to best describe the scenario. Return
the chosen one in PDDL syntax.

For relevance classification, if the parallel outputs are
inconsistent, PDDLLM selects the majority response. In the
case of a tie, it randomly selects one among the tied options.

Example for a choosing predicate from 5 parallel outputs

Prompt: Here is a list of predicate describing the same object state: [(above, ?o1, ?o2), (is_on,

?o1, ?o2), (aligned_vertically, ?o1, ?o2), (on_top_of, ?o1, ?o2), (above_object, ?o1, ?o2)].

Please choose the PDDL predicate from the provided ones to best describe the scenario.

Return the chosen one in PDDL syntax.

LLM: (above, ?o1, ?o2)

Example for a choosing predicate from 10 parallel outputs

Prompt: Here is a list of predicate describing the same object state: [(above, ?o1, ?o2), (is_on,

?o1, ?o2), (aligned_vertically, ?o1, ?o2), (on_top_of, ?o1, ?o2), (above_object, ?o1, ?o2),

(above, ?o1, ?o2), (on, ?o1, ?o2), (vertically_on, ?o1, ?o2), (on_top, ?o1, ?o2), (upper, ?o1,

?o2)]. Please choose the PDDL predicate from the provided ones to best describe the

scenario. Return the chosen one in PDDL syntax.

LLM: (on, ?o1, ?o2)

A.7.2. Altering the prompting sequence of simulation
outcomes

In this prompt variation, we alter the ordering of dimensions
presented to the LLM. While the prompt template remains
similar to that described in Appendix A.3.1, we do not adhere
to a fixed dimension sequence. Instead, we shuffle the order
of dimensions within the prompt to evaluate whether this
affects the generated output. Some examples are provided
here.

Example of prompting object position relation predicate with altered sequence - A

Prompt: There are two objects in the environment, whose positions are (x1, y1) and (x2, y2).
In the horizontal direction, x1 − x2 ≤ u. In the vertical direction, u < y1 − y2 ≤ 2u. Please

create a predicate in PDDL syntax to describe this relation and classify if it is related to the

task of stacking cubes together. Please return the result in the following format: predicate,

relevance.

LLM: is_on(? o1 , ? o2), related.

Example of prompting object position relation predicate with altered sequence - B

Prompt: There are two objects in the environment, whose positions are (x1, y1) and (x2, y2).
In the vertical direction, u < y1 − y2 ≤ 2u. In the horizontal direction, x1 − x2 ≤ u. Please

create a predicate in PDDL syntax to describe this relation and classify if it is related to the

task of stacking cubes together. Please return the result in the following format: predicate,

relevance.

LLM: is_on(? o1 , ? o2), related.

A.7.3. Template tuning
In this experiment, we aim to evaluate whether slight modi-
fications to the prompt template affect the LLM’s ability to
generate predicate names and assess their relevance. Here is
the fine-tuned template:

There are n objects in the environment, whose feature
name are feature value 1 and feature value 2. In dimension
1, we know feature subspace range in dimension 1. In
dimension 2, we know feature subspace range in dimension
2. Please create a predicate in PDDL syntax to describe
this relation. Assign a score to this predicate indicating its
relevance to the task of current task description. The score
range is 0 to 1, where 0 indicate irrelevant and 1 indicate
very relevant. Please return the result in the following for-
mat: predicate, score.

After collecting the scores, we set a threshold to deter-
mine which predicates are relevant. In the experiment, the
threshold chosen is 0.5.

Example of prompting object position relation predicate with modified template

Prompt: There are two objects in the environment, whose positions are (x1, y1) and (x2, y2).
In the horizontal direction, we know x1 − x2 ≤ u. In the vertical direction, we know u <
y1 − y2 ≤ 2u. Please create a predicate in PDDL syntax to describe this relation. Assign a

score to this predicate indicating its relevance to the task of stacking cubes together. The

score range is 0 to 1, where 0 indicate irrelevant and 1 indicate very relevant. Please return

the result in the following format: predicate, score.

LLM: above(? o1 , ? o2), 0.9.

The results, presented in Table 6, demonstrate that our
method remains robust across different prompting styles.
Regardless of the prompt variation, the generated planning
domains consistently solve the test tasks with a success rate

approaching 100%. Minor fluctuations are attributed to ran-
domness in the planning search process and occasional mo-
tion execution failures.

Table 6. Planning success rate for domains generated using different
prompt styles.

Experiment 10-Parallel 5-Parallel Sequence Altering Template Tuning

Stack 97.8% 96.1% 96.1% 95.6%
Unstack 97.8% 100% 98.9% 98.3%
Cube Alignment 100% 100% 100% 100%

A.8. Planning Time Limit Variation

Table 7. Planning success rate (%) across tasks for all methods
(Time limit = 25 s).

Method Expert LLMTAMP LLMTAMP-FF LLMTAMP-FR RuleAsMem PDDLLM

Stack 95.5± 0.6 41.5± 4.3 56.8± 3.4 43.8± 3.8 84.3± 3.3 97.5± 1.6

Unstack 87.3± 0.8 81.2± 1.1 85.0± 5.7 85.5± 5.4 79.8± 1.9 94.9± 0.5

Color Classification 96.3± 0.1 18.1± 1.5 24.9± 0.8 23.1± 3.3 87.6± 1.9 99.5± 0.4

Alignment 100.0± 0.0 31.6± 3.1 40.9± 2.0 35.3± 2.0 96.0± 0.8 100.0± 0.0

Parts Assembly 98.9± 0.6 33.6± 1.5 46.1± 2.1 37.5± 1.4 95.1± 0.6 100.0± 0.0

Rearrange 51.2± 2.7 5.6± 1.1 11.7± 0.6 7.4± 1.1 1.1± 0.6 52.5± 2.2

Burger Cooking 100.0± 0.0 27.8± 2.8 45.1± 7.3 38.9± 5.6 27.8± 2.8 89.6± 3.2

Bridge Building 100.0± 0.0 43.3± 3.3 48.9± 5.9 47.2± 4.3 20.0± 0.0 87.2± 4.3

Tower of Hanoi 83.3± 2.4 14.3± 0.0 14.3± 0.0 14.3± 0.0 14.3± 0.0 85.7± 0.0

Overall 89.0± 0.3 34.5± 0.4 43.2± 0.8 38.1± 0.9 68.3± 0.9 90.5± 0.9

Table 8. Planning success rate (%) across tasks for all methods
(Time limit = 100 s).

Method Expert LLMTAMP LLMTAMP-FF LLMTAMP-FR RuleAsMem PDDLLM

Stack 97.7± 0.7 41.5± 4.3 76.7± 2.7 71.0± 2.7 85.5± 2.9 97.5± 1.6

Unstack 96.1± 0.2 90.3± 1.5 96.9± 1.2 96.1± 1.1 88.4± 1.2 97.7± 0.7

Color Classification 100.0± 0.0 18.1± 1.5 42.0± 1.9 64.0± 2.2 88.7± 2.3 100.0± 0.0

Alignment 100.0± 0.0 31.6± 3.1 55.7± 3.8 44.3± 3.8 96.0± 0.8 100.0± 0.0

Parts Assembly 98.9± 0.6 33.6± 1.5 57.1± 0.8 47.7± 2.5 95.1± 0.6 100.0± 0.0

Rearrange 69.3± 1.3 5.6± 1.1 17.4± 1.1 14.7± 1.2 1.1± 0.6 69.4± 0.5

Burger Cooking 100.0± 0.0 27.8± 2.8 50.0± 4.8 51.4± 6.1 27.8± 2.8 97.2± 2.8

Bridge Building 100.0± 0.0 43.3± 3.3 53.3± 3.8 57.8± 2.2 20.0± 0.0 87.2± 4.3

Tower of Hanoi 100.0± 0.0 14.3± 0.0 14.3± 0.0 14.3± 0.0 14.3± 0.0 100.0± 0.0

Overall 94.4± 0.2 35.8± 0.4 55.6± 1.2 54.8± 0.7 69.9± 0.7 94.2± 0.5

As outlined in the experimental design section, we set a
default planning time limit of 50 seconds to reflect the real-
time constraints commonly imposed on robotic systems. Al-
though prior studies typically allow planning times on the
order of minutes [16, 19, 31], the exact limits vary consider-
ably. To assess the robustness of our approach under different
time allowances, we evaluate performance at time limits of
25, 50, and 100 seconds. The results show that our method
consistently outperforms all LLM-based baselines across all
tested time settings and task types. Moreover, the planning
domains derived by PDDLLM yield performance compara-
ble to that of expert-designed domains under all time settings
and across all tasks. All simulations were conducted on a
system with an Intel Core i9-14900KF CPU without GPU
acceleration, and all LLM prompting was performed using
API services.

A.9. Example of PDDLLM imagined predicates

Table 9. Examples of imagined predicates across multiple cate-
gories.

Predicate Name

Object Position Predicates

(above ?a ?b)
(forall ?a (above ?a ?b))
(forall ?a (above ?a ?b) is false)
(not (above ?a ?b))
(beside ?a ?b)
(forall ?a (beside ?a ?b))
(forall ?a (beside ?a ?b) is false)
(not (beside ?a ?b))

Object Support Predicates

(on-table ?a ?t)
(not (on-table ?a ?t))
(forall ?a (on-table ?a ?t))
(forall ?a (on-table ?a ?t) is false)
(aligned-x ?a ?t)
(not (aligned-x ?a ?t))
(forall ?a (aligned-x ?a ?t))
(forall ?a (aligned-x ?a ?t) is false)

Robot Predicates

(holding ?a ?r)
(not (holding ?a ?r))
(forall ?a (holding ?a ?r))
(forall ?a (holding ?a ?r) is false)
(gripper-near-open ?a ?r)
(not (gripper-near-open ?a ?r))
(forall ?a (gripper-near-open ?a ?r))
(forall ?a (gripper-near-open ?a ?r) is false)

Color Predicates

similar-color ?a ?b
(not similar-color ?a ?b)
(forall ?a similar-color ?a ?b)
(forall ?a similar-color ?a ?b is false)
distinct-colors ?a ?b
(not distinct-colors ?a ?b)
(forall ?a distinct-colors ?a ?b)
(forall ?a distinct-colors ?a ?b is false)

Size Predicates

(smaller ?a ?b)
(not (smaller ?a ?b))
(forall ?a (smaller ?a ?b))
(forall ?a (smaller ?a ?b) is false)
(larger ?a ?b)
(not (larger ?a ?b))
(forall ?a (larger ?a ?b))
(forall ?a (larger ?a ?b) is false)

	Introduction
	Related Work
	Preliminary
	Problem Statement
	Methodology
	PDDL Domain Generation
	Predicate Imagination:
	Action Invention:

	Logic-Constrained Action Sampler (LoCAS)

	Experiments and Baselines
	Baselines and Ablations

	Results
	Real Robot Deployment
	Limitation
	Conclusion
	Appendix
	Real Robot Experiment
	Franka Panda Arm
	Agilex Piper Arm

	Baseline Implementation Details
	Prompt template
	Predicate imagination
	Action invention
	LLMTAMP baseline
	LLMTAMP+Failure Feedback baseline
	LLMTAMP+Failure Reasoning baseline
	RuleAsMem

	Experiment Tasks
	Stacking
	Unstacking
	Rearrangement
	Alignment
	Color classification
	Parts assembly
	Tower of Hanoi
	Bridge building
	Burger cooking

	Generalization Across Task Complexity
	Time Cost of LLMTAMP Reasoning Model Variants
	Prompt Variation Test
	Parallel prompting for predicate imagination
	Altering the prompting sequence of simulation outcomes
	Template tuning

	Planning Time Limit Variation
	Example of PDDLLM imagined predicates

