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ABSTRACT

Mapping the relationship between neural activity and motor behavior is a central
aim of sensorimotor neuroscience and neurotechnology. Most progress to this
end has relied on restricting complexity: studying specific simple behaviors, in
limited subjects, with interpretable computational models. However, current trends
in deep learning suggest that modeling a breadth of neural and behavioral data all
at once is not only possible, but that such a model would also benefit downstream
analysis of related data. We accordingly developed Neural Data Transformer 3
(NDT3) as a foundation model for motor decoding of neural data from intracortical
microelectrodes. We pretrained NDT3 with 2000 hours of neural population
spiking activity paired with diverse motor covariates from over 30 monkeys and
humans from 10 labs. Pretrained NDT3 is broadly useful, benefiting decoding on
8 downstream decoding tasks and generalizing to a variety of neural distribution
shifts. However, we find signs that scaling over diverse neural datasets may be
challenging, as scaling from 200 to 2000 hours already requires increasing model
size to 350M parameters to avoid model saturation, and several downstream datasets
scarcely benefit from scale. We provide two demonstrations that this scaling is
at least partially limited by variability in input and output spaces across neural
datasets, which pretraining alone may not resolve.

1 INTRODUCTION

Figure 1. A. NDT3 is a deep network for decoding intracortical spiking activity into low-dimensional time series
for various motor effectors1. B. We aggregate decoding performance on downstream tasks with variable amounts
of data (from Fig. 11). While from-scratch models only reliably outperforms a linear baseline after 15 minutes
of data, tuning a 350M param. NDT3 pretrained with 2000 hours of data is consistently better at all scales.

Intracortical neural data collection is growing rapidly. This growth comprises not only larger
individual datasets with more neurons and higher behavioral complexity (Urai et al., 2022; Stevenson,
2023), but also an increase in the collective number of datasets. This wealth of data presents an
opportunity to develop insights and applications that span multiple datasets at once, provided we can
reconcile their inherent diversity. Large deep networks appear very suitable for this task, so much

1Photo courtesy of REDACT and The Chicago Tribune.
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so that the creation of deep networks operating on broad domain data has been termed foundation
modeling (Bommasani et al., 2022). Efforts to create foundation models are now proliferating beyond
their origins in natural language processing (NLP) and computer vision (CV) into many domains
of engineering and science (Wang et al., 2023c). Here, we propose a foundation model for motor
decoding from intracortical spiking activity, which we call Neural Data Transformer 3 (NDT3).

Motor decoding is a valuable initial domain for characterizing neural data foundation models.
Academic, clinical, and industrial efforts to create iBCIs for neuroprosthetics provide a path for
scaling data collection from hundreds to thousands of subject-hours, and also fuel a need for pretrained
models that generalize quickly and perform robustly for new users and settings. Behavior prediction
metrics for BCI performance are also more intuitive for benchmarking progress than neural data
prediction or the abstract goal of providing scientific insight (e.g. with latent variable models or
in silico models) (Pei et al., 2021; Wang et al., 2023b). Finally, recent work has shown that deep
networks are able to transfer learn across motor cortical datasets collected at different timepoints,
subjects, or tasks (Azabou et al., 2024; Ye et al., 2023; Schneider et al., 2023). These ingredients
provide the motivation and means for scaling neural data modeling.

However, scaling may be constrained by the design and heterogeneity of modern neural datasets. By
design, we refer to the fact that many neural datasets restrict behavioral complexity to probe specific
hypotheses. These restrictions impoverish not only the behavioral signals but also the observed
neural data (Gao and Ganguli, 2015), providing us a narrow window through which to understand
the general relationship between neural activity and behavior. Beyond the limitations of individual
datasets, each neural dataset inherently contains unique variability distinguishing them from others.
This is most salient when comparing across the datasets aggregated in pretraining, where different
neurons are recorded in each subject and distinct output dimensions are required for each effector. To
illustrate why these factors together challenge scaling, consider a 2-neuron toy setting, where both
neurons fire noisily. One neuron fires on leftward motion and the other fires on rightward motion.
No amount of scaling on other datasets could reduce the data needed from this setting to determine
which each neuron’s preferred direction, but neither is the problem trivial due to stochastic firing.

To assess the value of scaled pretraining on heterogeneous spiking activity, we developed Neural Data
Transformer 3 (NDT3). NDT3 uses simple tokenization strategies to enable pretraining over diverse
datasets and fine-tuning to new tasks without introducing any new parameters (Fig. 1A). We pretrained
NDT3 using up to 2000 hours of neural and behavioral data from motor neuroscience experiments
with monkeys and clinical iBCI trials with humans. We then evaluated NDT3’s decoding performance
on eight diverse motor tasks (Section 3.1) and find that tuning NDT3 yields models that either
improve or match task-specific models trained from scratch, with prominent gains when task data is
under 1.5 hours (Fig. 1B). Further, these gains persist under a number of distribution shifts (Section
3.3). These benefits may enable both more complex experimental design and potentially decrease
the burden of decoder training for people using iBCIs. However, our results also suggest that neural
data heterogeneity may be limiting scaling. Scaling pretraining data to 2K hours required raising
model capacity to 350M parameters to mitigate performance saturation, and some tasks accrue no
benefits from scale at all. We identify NDT3’s sensitivity to the specific inputs and outputs seen
during fine-tuning as two limits to be overcome for more productive neural data foundation models.

2 APPROACH

2.1 DATA

NDT3 models datasets of paired neural spiking activity and behavior (Fig. 2). Given our focus on
motor decoding, most of the data comes from devices implanted in motor cortex of various monkeys
and humans (Fig. 2A). These devices are intracortical multielectrode arrays or probes that record 30
kHz extracellular potentials. Spikes are extracted from these potentials, typically by bandpass-filtering
the data between 300 and 3000 Hz, and marking a spike when the voltage signal crosses a preset
threshold value. The neural data in our pretraining are diverse (Fig. 2B top). Data can have markedly
different profiles across electrodes due to being from different electrode arrays in the same subject
(left), have many silent channels (middle), or be densely active due to noise (right).

The typical behaviors in the pretraining data are different types of upper-limb reaching and grasping,
nearly all from experimental paradigms that consist of short, repeated trials. While neural data were
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Figure 2. NDT3 Data and Model Design: A. NDT3 models paired neural spiking activity and behavioral
covariate timeseries. We plot the distribution of 2000 hours of pretraining data volume by subjects (top) and
covariate dimensionality (bottom). B. Examples of the neural and behavioral data for each of the three types
of behavioral covariates in pretraining: kinematics, EMG (electromyography), or forces. Not all modeled
dimensions in data are meaningfully task-related (right, grey behavior). C. Neural spiking activity is tokenized
in time by binning the number of spikes every 20 ms, and in “space” using patches of channels (usually 32), as
in NDT2 (Ye et al., 2023). Behavior is low-dimensional in our data, so we use 1 token per behavior dimension,
also per 20 ms timestep. NDT3 also pretrains on data from BCI control, which we annotate with two additional
tokens. The phase token indicates whether the user is controlling or observing the behavior and the reward token
indicates if the BCI task was completed. D. NDT3 models tokens in a single flat stream with linear readins and
readouts. Every real-world timestep (shown by the blue cutout) yields several tokens, which we order to allow
causal decoding in evaluation. In evaluation, we omit return and phase tokens and zero-mask behavior tokens.

always recorded from microelectrodes, motor covariate signals came from various sensors. In monkey
datasets, these sensors measure actual limb activity (e.g., Fig. 2B, left: limb kinematics from optical
tracking, middle: electromyography (EMG)). In human datasets, physical movements are typically
not possible, so the data’s behavior signals are programmatically generated. These signals are “paired”
with the neural data in that they are cued or otherwise instructed to the person, who will attempt or
imagine the corresponding behavior, such as grasping at a specified force level (Fig. 2B right). This
force panel also shows that in pretraining, we cannot always automatically discern the primary task
covariates (e.g., blue line, force, in the panel) from other recorded behavioral variables (grey). Thus,
some behavior variables may unpredictable. Finally, we include closed loop iBCI data, where some
behavior is generated by an iBCI decoder (not NDT3, see modeling strategy in Section 2.2).

The pretraining datasets are composed of archives from several experimental labs and some public
datasets, and contain data from non-human primate neuroscience experiments and human clinical
trials for neuroprosthetics. The grassroots nature of this aggregate dataset presents a heterogeneity
in neural data processing, motor effectors, and experimental setup, most comparable to aggregate
robotics datasets (OpenX et al., 2024). We detail the pretraining data composition in Section C.4.

We minimize preprocessing of these data to maximize the applicability of our generalist model.
Kinematic signals are typically converted to velocities, and all behavior (kinematics, EMG, force)
is normalized per dataset such that the maximum absolute value of each variable is one. Data are
cut or concatenated into fixed length sequences, without additional annotation of data discontinuity.
This strategy, common in language modeling (Geiping and Goldstein, 2022), homogenizes the data
for improved GPU utilization while maintaining throughput of real data. We used a length of two
seconds as it is roughly the timescale of the behavior in our data (Fig. 2A). Sequences with no spikes
or covariate variability are discarded. In total, this yielded about 3 million sequences, 1 billion
neural tokens, or 1750 hours, which we sample uniformly for pretraining. We round this to 2 khrs in
subsequent text for simplicity.
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2.2 MODEL

NDT3 is a causal Transformer with linear readin and readout layers for its various modalities, similar
to GATO or TDMs (Reed et al., 2022; Schubert et al., 2023; Chameleon, 2024). For use with
a Transformer, the data must be tokenized (Fig. 2C). We tokenize neural data by patching spike
counts (Ye et al., 2023); each token is a flattened vector of the binned spikes in a chosen temporal
resolution (20 ms) and spatial dimension (32 channels). For example, neural activity sampled from
an electrode array with 100 channels would patch into 4 = ⌈100/32⌉ 32D neural tokens per 20 ms
timestep. As the behavioral variables are already low-dimensional, we simply assign 1 token per
dimension at the same temporal resolution as neural data. Finally, we add tokens marking whether the
behavior are generated by a BCI system or by physical limb movement. While measured kinematics,
EMG, or force will reflect a natural relationship with neural activity, behavioral data from BCI tasks
are controlled by a program or learned decoder. We frame BCI-driven behavior as a suboptimal
demonstration (Merel et al., 2016), and adopt a scheme inspired by Decision Transformers (Chen
et al., 2021; Lee et al., 2022). In this scheme, we use a Phase token to track the timesteps where
behavior is at least driven by neural activity and under decoder control, or only under programmatic,
open loop control. We also use a Return token reflecting controller quality based on task completion.
Note that these signals are only considered for pretraining, and are ablated entirely from the model
at evaluation. Similarly, input behavior tokens are masked out in inference, so that the model input
only indicates how many tokens must be predicted. NDT3 is trained with mean-squared error for
prediction of behavioral variables, and categorical cross-entropy losses for prediction of neural spike
count and reward.

All modalities are flattened into a single token stream, with the order of tokens in each real-world
timestep respecting a canonical order required for control (Fig. 2D). As in GATO, individual tokens are
annotated with learned position embeddings identifying token modality and sub-modality “position.”
We additionally use rotary embeddings (Su et al., 2023) to track real-world timesteps.

Pretraining and Fine-Tuning We pretrain NDT3 models over variable pretraining data and in sizes
of 45M and 350M parameters to assess the impact of data and model scaling. Pretraining is early
stopped according to validation loss or terminated at a maximum of 400 epochs. The 200 hour, 45M
model trains for 480 A100-hours while the 2000 hour (2kh) 350M model takes 20K A100-hours.
Fine-tuning maintains the pretraining objectives and updates all parameters.

2.3 EVALUATION STRATEGY

Evaluation datasets and tuning Our main evaluation (Section 3.1) uses four human and four
monkey datasets sampling varied upper limb movements, which we detail in Section C.4. Each
dataset contains multiple sessions of data, typically from a single monkey or human. We will refer to
each such setting as a “task,” distinguished from the behavioral procedure performed in each dataset.
Each session has unique variability, so fine-tuning procedure may greatly impact decoding results.
Prior work (Azabou et al., 2024; Ye et al., 2023; Zhang et al., 2024) ran focused evaluations by tuning
and evaluating separately for each evaluation session. To manage compute and storage demands
and to reflect that real world datasets are rarely collected or analyzed in isolation, we fine-tune
NDT3 jointly over data combined from multiple evaluation sessions. Fig. 12 shows this joint tuning
outperforms focused tuning for multi-session data.

Baselines We compare against Wiener filters (WF) and NDT2. WFs are a conventional linear method
for both motor decoding and control in iBCI devices (Pandarinath and Bensmaia, 2022), and we
implement them as ridge regression with multi-timestep history. NDT2 is a Transformer that uses
MAE-style (He et al., 2021) self-supervision to learn across multiple neural datasets. We detail the
differences between NDT2 and NDT3 in Section C.3. We compare to NDT2 prepared both from
scratch and tuned from the public checkpoint pretrained on 100 hours of human data. Note for
tractability we – Other Transformers have been proposed for scaling over spiking data (Azabou et al.,
2024; Zhang et al., 2024), but the field yet lacks consensus benchmarks to evaluate these proposals.

Downstream Hyperparameters We tune all deep networks (NDT2 and NDT3) over 3 learning rates.
This sweep is limited to make computational demands tractable, but also demonstrates the versatility
of the base model. Importantly, the same search space is used for all tasks; we list the space and
show its sufficiency relative to wider sweeps in Section C.2. The best learning rate is chosen based
on average validation score over three random seeds, and we report their mean on the evaluation data.
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3 RESULTS

NDT3’s pretraining effort advances prior intracortical models an order of magnitude in data and
model scale, from 200 to 2000 hours and 10M+ to 100M+ parameters. In Section 3.1, we show the
increased data scale saturates aggregate downstream performance unless simultaneously increasing
model scale. We propose that the performance drop from scaling data alone is due to high variability
across intracortical motor decoding datasets. In Section 3.2, we show how this variability reflects in
NDT3’s sensitivity to shifts in data input or output. Section 3.3 concludes by showing that despite
this challenge for further data scaling, NDT3’s pretraining already provides gains that generalize to
various novel settings, establishing NDT3 as a useful foundation for motor decoding.

3.1 MULTI-SCALE EVALUATION ACROSS MOTOR DECODING TASKS

Figure 3. Evaluation on diverse motor tasks: A single legend and color scheme is used throughout. A.
Test-split pretraining R2 compared for 3 models. All model pretraining data includes 1.5 hours of calibration
data for the test dataset. We compare a model with just this data (Test dataset only) vs using 200 hours of
additional data either from the test monkey or from over 10 other monkeys. Only the additional test monkey data
improves over the calibration model. Models terminate at different points due to early stopping. B. Pretraining
R2 for models with up to 2000 hours (2 khrs) of pretraining data. The 2 khr model degrades in performance vs
the 200 hr model at 45M parameters and merely maintains performance at 350M parameters. C. Examples of
good and bad data-scaling in downstream multiscale evaluation on two datasets. The bottom right text shows
time in each evaluation session and total time in each dataset. The x-axis scales this full dataset down by
random subsampling. Shading shows standard deviation on 3 tuning seeds. Increasing pretraining data yields
performance gains at all downstream scales in the 4D task, but effects are unclear in the self-paced reach task. ▼
indicate outliers clipped for clarity. D. Downstream performance averaged for 31 settings comprised of different
downstream datasets and scales, for different NDT3s and baselines. 45M NDT3s improve with data from 1.5 hrs
to 200 hrs but saturate at 2 khrs. Increasing model size to 350M parameters enables further gain. E. p-values
computed from FDR-corrected pairwise t-tests for each pair of models. The 350M 2 khr NDT3 significantly
outperforms other pretrained NDT3s, except the 350M 200 hr NDT3, and is the only model to do so. NDT2s
omitted for brevity, see Fig. 13. F. Per-task performance, normalized by the 350M 200 hr NDT3 performance,
is shown against task time for different NDT3 models. Each vertical band shows models trained on the same
evaluation setting, e.g. dashed lines show the evaluations from the self-paced reaching dataset. Model variability
vanishes by 1.5 hours.

To set expectations for how data scale and model size will impact model performance, we first
examine pretraining curves computed on a test split. This test split contains multiple sessions of 2D
reaching behavior mainly from one monkey. From the dataset this test split was drawn from, we
sampled 1.5 hours of data and included it in the pretraining of all models to allow learning this specific

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

test task. Fig. 3A shows the test performance of a model using just this 1.5 hours of “calibration”
data, and two models using 200 hours of data. One of these 200 hour models used data from over
10 other monkeys performing a variety of reaching tasks, but did not improve over the minimal 1.5
hour model on the test data. In contrast, using 200 hours more from the test monkey (from a separate
set of experiments with similar behavior) achieved a small improvement in performance. Thus, only
closely related data appears to benefit a model that already uses sufficient task-specific data, in this
case 1.5 hours. To further emphasize dataset dissimilarity, Fig. 3B shows that a 2 khr model that
sees the same extra test data degrades in performance, indicating additional data can interfere in
the learning of the test task. This interference can be mitigated by increasing model size to 350M
parameters, which matches prior work showing the importance of increasing model size and dataset
size in tandem (Dosovitskiy et al., 2021; Kolesnikov et al., 2020; Aghajanyan et al., 2023). However,
we still do not see gains on the test task beyond what is achieved by providing 200 hours from the
test monkey.

This upstream saturation motivated a downstream evaluation conducted at multiple data scales. We
illustrate this evaluation for two tasks in Fig. 3C. These two datasets are from a human performing
open loop iBCI calibration for bimanual cursor use (Deo et al., 2024), and a monkey performing
self-paced reach to random targets (O’Doherty et al., 2017). In both cases, the individuals are held-out
from pretraining entirely, so the task-specific data is only seen in tuning. In the bimanual task, NDT3
performance improves with increased pretraining data at all downstream data scales. The saturation in
the 2000 hour model and subsequent rescue by increased model size is also replicated. The self-paced
reach shows a much less clear result. For example, the from-scratch NDT3 achieves nearly the best
performance at most data scales.

These two tasks show just two of several different downstream trends on the eight different evaluation
datasets we study. We defer discussion of individual tasks and their variability to Section B.5, and next
consider summary performance in Fig. 3D. This summary, produced by tuning over 2000 models in
31 evaluation settings, identifies an overall benefit of pretraining scale. To begin, NDT3 from scratch
outperforms the WF and NDT2, whether pretrained or not . We discuss NDT2’s poor performance
in Section B.7. This from-scratch NDT3 performance can be improved with minimal pretraining (1.5
hrs), consistent with findings in computer vision (Entezari et al., 2023), and continues improving up
to 200 hours of pretraining data. Further scaling to 2000 hours is also helpful, but only when paired
with increased model size to 350M parameters, as in upstream evaluation. The gain of the 350M 2
khr model over other models is statistically significant for all except the 350M 200 hr model (Fig. 3E).
Other pairs of pretrained NDT3s are not significantly different at the current scale of evaluation.

Scaling’s positive overall trend is not supported by uniform improvements in each downstream setting
(Fig. 11). While we have already seen that comparing benefits by experimental task is challenging,
it is known that pretraining is particularly beneficial at low downstream data scale. We reproduce
this finding in our setting by plotting task performance against downstream scale in Fig. 3F. The
distinction between pretrained models and from-scratch models vanishes by 1.5 hours. This result is
also supported in the raw, un-normalized performance (Fig. 1B) and consistent with upstream results
(Fig. 3B). Estimating that a behavior in an experiment ranges from 1 to 10 seconds, 1.5 hours would
comprise about 0.5-5K data points. Pretraining only being productive up to 5K data points is relatively
impotent by CV or NLP standards (Kolesnikov et al., 2020; Wang et al., 2019), and in practical
terms can be exceeded after a few sessions of data collection. Importantly, we cannot attribute this
saturation to limits of the neural data signal itself (Abnar et al., 2021), as scaling downstream data
productively increases task performance. This leaves uncertainty on whether NDT3’s pretraining is
inherently limited.

3.2 PRETRAINING IS LIMITED BY INPUT AND OUTPUT VARIABILITY IN TUNING

In Section 3.1 we observe that the benefit of scaling pretraining appears to saturate at relatively
low downstream data scales. It is possible that this limit reflects intrinsic variability across neural
datasets, with a long tail of specialized features that are needed to the best performance in each
dataset. Alternatively, modeling decisions around architecture, hyperparameters, and post-training,
may all significantly influence scaling. As a first step towards understanding whether the scaling we
observe is limited by data or methodology, we next analyze NDT3’s sensitivity to the specific neural
inputs and covariate outputs seen in tuning.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4. NDT3 fails in certain novel input and output configurations. A: Cross-session transfer persists
after pretraining, but cross-subject does not. We test NDT3 in a downstream task with one evaluation session
from a monkey self-paced reaching dataset. Training uses 1 minute from the evaluation session and additional
data from other sessions (Cross-Session) with the same monkey or from sessions from a different monkey for
the same behavior (Cross-Subject). B: Shuffling inputs ablates cross-session data to resemble cross-subject
transfer. uses the same cross-session neural data but permutes input dimensions (recording channels). Shuffle
channel randomly permutes inputs, half-token shift rolls channels so that each channel i uses data from i+ 16,
and shuffle token permutes data patchwise, keeping channels from the same patch together. Channel shuffling
and half-token shifts both are sufficient to reduce cross-session transfer to the same level as cross-subject transfer.
All panels show the baseline performance achieved by the model with just 1 minute of test-session data, x-axis
shows additional cross-context data provided. C. Pretraining does not improve angular extrapolation. Two
different monkey 2D center-out datasets with 8 angular conditions. LDA on all neural data show monkey J’s data
is distinctly more separable than monkey V’s. We then test generalization of behavioral decoding to held-out
angles after training on 2 of 8 angles (boxed in red). Both WF and NDT3 predictions are constrained between
the held-out angles. NDT3’s predictions are visible for the interpolated angle only in monkey J. D. We quantify
performance for decoding on each angle with respect to distance from the angle between the held-in angles. We
average performance on all 8 central angles.

Input order sensitivity may limit cross-subject transfer. In neural data, the effectiveness of transfer
learning is greatly reduced when using cross-subject data compared to cross-session data (Ye et al.,
2023). This suggests limited scaling may be caused in part by the vanishing utility of cross-subject
data, even when the data is collected in identical experimental setups and thus controlled for other
variables. We can illustrate this by comparing cross-session and cross-subject transfer after large-scale
pretraining. On a monkey 2D reaching dataset (O’Doherty et al., 2017) in Fig. 4A, we tune NDT3
with calibration data from one test session and additional cross-session or cross-subject data. As in
Section 3.1, cross-session data is still highly beneficial even after pretraining, but cross-subject data
is only helpful for from-scratch models. Pretrained models in the cross-subject setting instead begin
and plateau at a performance that is just slightly better than the best cross-subject performance in
from-scratch models. These results suggest that NDT3’s pretraining has already learned the features
that cross-subject transfer provides in this task, supporting the idea that scaling is limited by a low
(task-dependent) ceiling on cross-subject transfer.

Despite this ceiling, NDT3 achieves moderate cross-subject transfer, suggesting that the limitations
may stem from data variability rather than methodology. On the other hand, transfer may also be
inhibited by NDT3’s design and inductive biases. To probe this distinction, we observe that since
cross-subject data contain different neurons, cross-subject transfer must at least accommodate changes
in the specific semantics of each data dimension, a problem which we term "sensor variability."
We can isolate how effectively NDT3 resolves sensor variability by transferring with cross-session
data while permuting the test-session’s neural dimensions. Fig. 4B Channel shuffle shows that input
permutation cripples the ability of NDT3, whether pretrained or not, to learn from cross-session data.

To sharpen what distinguishes cross-session from cross-subject transfer, we apply structured ablations
of input order, as in Neyshabur et al. (2020). We find that even the small alteration of a half-token
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shift in channel order is sufficient to reproduce the effect of full shuffling (Fig. 4B center). This shows
NDT3’s cross-session transfer depends greatly on the specific token dimension semantics, and may
drive the observed limits in scaling. Finally, we consider a shuffle that only alters the test session’s
neural token order with respect to cross-session data, hypothesizing Transformers can more easily
correct token ordering alterations. Indeed, pretrained and from-scratch models recover some gains
when cross-session data is only token-shuffled (Fig. 4B right). This manipulation shows the influence
of model design on transfer. For reference, POYO (Azabou et al., 2024) adopts a graph-based
Perceiver design motivated by this sensor variability challenge, making it an appealing candidate for
scaling up. We note that to combat potential confounds from jointly tuning on heterogeneous data,
we evaluated both sequential and joint tuning strategies in these experiments and reported the better
approach for each panel. A full comparison is given in Section B.6.

Outputs seen in tuning restrict NDT3 predictions. The increased sample efficiency of pretrained
models suggests that NDT3 could map a new individual’s neural activity to behavior without sampling
the full range of neural-behavior data. For example, having seen many instances of radial reaches,
NDT3 may generalize to unseen reach directions in a new subject better than non-pretrained decoders,
which fail completely (Rizzoglio et al., 2022). Structured radial reaches are a particularly simple
litmus test for such generalization as their underlying neural activity is easily visualized in terms
of a planar subspace (Churchland et al., 2012). We assess angular generalization in Fig. 4C, by
evaluating reach decoding in an isometric, force-based (Monkey J) setting and a manipulandum-based
(Monkey J) setting. Beyond the change in effectors, the neural data in these datasets also vary in
their separability as visualized by linear discriminant analysis (LDA). We next train decoders on
every pair of angles separated by 90 degrees (one shown) and plot predictions on held-out trials from
all angles. The specific failure of both WFs and NDT3 is that their predictions do not extrapolate
to held-out angles, consistent with Rizzoglio et al. (2022). While NDT3 produces more organized
trajectories than the WF, held-out angles are constrained to the held-in conditions. Intriguingly, even
the intermediate, interpolated angle appears to disappear for the less separable monkey V dataset. We
quantify prediction performance in Fig. 4D. Notably, the two datasets achieve similar R2 patterns
despite significantly different LDA projections, with the only subtle difference being that from-scratch
models are slightly worse for monkey V.

These results show that NDT3 fails to generalize to held-out directions, but also hint at the reason
why. One appealing interpretation is that NDT3 is incentivized to sacrifice any angular generalization
to maximize held-in performance, consistent with reports that RNNs exploit attractor structures to
improve performance on noisy neural data (Costello et al., 2023). The fact that in the more challenging
monkey V dataset, the interpolated angle between held-in angles appears degraded, and pretrained
models slightly outperform from-scratch models, suggest that pretraining may even incentivize this
tradeoff. Importantly, we show in Section B.1 that a constrained linear decoder class (more so than
WFs) can yield held-out generalization. Thus while NDT3 fails to generalize to held-out directions, it
remains unclear whether this implies that pretraining failed to learn a viable prior for radial reach
(such as a low-dimensional linear constraint), or whether we have merely failed to elicit this structure
(i.e. through post-training). Even in the easiest setting of planar reaches, it can be challenging to
directly probe whether the model has learned what we expect it to.

Our manipulations on model input and output highlight the difficulty of pinpointing whether scaling
is limited by data or methodology. However, they do provide basic tests of model capability, namely
robustness to channel shifts and generalization to unseen behaviors, that we expect future approaches
will need to overcome to achieve better neural data foundation models.

3.3 WHERE DOES PRETRAINING HELP?

Despite challenges for scaling, NDT3’s pretraining learns a prior from hundreds of hours of neural
data. We conclude by showing how this prior generalizes beyond the main evaluation in Section 3.1.

Neural distribution shifts Neural data is nonstationary, with shifts rising from a mix of controlled
experimental variables to more speculative factors. For example, the firing rate of different channels
will evolve over the course of an hour, implying a distribution shift associated with change in time
(Fig. 5A top left). Shifts also occur between activity in two arm postures or whether finger motion
occurs under spring load or not (Fig. 5A top middle and right). Since these shifts are common in
neural data, pretraining gains should ideally be robust to their effect. We thus tune models on data
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Figure 5. Generalizability of pretraining gains. A. Models fine-tuned in one distribution of data are evaluated
in-distribution (ID) and out-of-distribution (OOD). Top plots show the distribution across channels of neural
firing rates from OOD and ID trials, normalized by average ID firing rates. Lower plots scatter OOD vs ID
performance, with each point being a single model with different hyperparameters. . The time shift uses two
human cursor datasets collected one hour apart. Models were tuned in each block and were evaluated in the
second block. Pose shift uses a monkey center-out reach task which was performed with the hand starting in
different locations in the workspace. Spring Load uses a dataset of monkey 1D finger motion with or without
spring force feedback. B. Models are evaluated on a human open-loop cursor dataset prepared in two ways.
Trialized training receives inputs according to trial boundaries, varying from 2-4 seconds in length. Continuous
training receives random 1 second snippets (that can cross trial boundaries). Trialized evaluation matches
trialized training, and continuous evaluation is done by streaming up to 1 second of history. ▼ indicates points
below 0.0. Continuously trained models perform well in both evaluation settings, while models trained on
trialized data fail in continuous evaluation. C. Multiscale fine-tuning performance of NDT3 on datasets recorded
outside motor cortex, namely S1 (Somatosensory) and FEF/MT (Oculomotor).

from one setting (in-distribution, ID) measure the performance of models in that same setting and the
shifted setting (out-of-distribution, OOD). Positive correlation of performance in all cases imply the
ID gains conferred by pretraining persist OOD. This ID-OOD correlation is consistent with Miller
et al. (2021), implying a potentially fruitful relationship between the distribution shifts characterized
in neural data and those studied in computer vision. More practically, these examples suggest that
pretraining benefits are not dependent on narrow features specific to the choice of tuning dataset.

Trial structure DNNs have been observed to overfit the temporal structure of experimental trials in
datasets, which poses a serious challenge for applying DNNs to continuous control in iBCI use (Deo
et al., 2024; Costello et al., 2023). For example, a deep network might learn there is always no
motion before the start of a trial, independent of the neural activity. However, these claims have been
studied exclusively on un-pretrained deep networks. In Fig. 5B, we assess how pretraining impacts
such overfit to trial structure in open loop human cursor control data. We do this by comparing
a continuous and trialized setting. Continuous training and evaluation follows our standard data
preparation, where we cut random one second intervals of data for training and continuously stream
up to one second of data in evaluation. Trialized training and evaluation provides data formatted
to respect trial boundaries, such that the data always begins with the initiation of behavior. The
superior performance in all models when combining trialized training and evaluation over continuous
training and evaluation shows that all models can learn to exploit trial structure. However, while
trialized from-scratch models become subtrivial under continuous evaluation (solid blue line is
off-panel), pretrained models degrade more gracefully. For example, the 350M 2 khr model evaluated
continuously only performs slightly worse with trialized tuning than with continuous tuning. Thus,
we conclude there is a reduced dependence on trial structure in pretrained NDT3s, which should
benefit both data analysis and iBCI control. Note however the contrast in these results with Fig. 4C,
which show that DNNs clearly do overfit to tuning data in some cases. These overfitting subtleties
imply that future work needs to take particular care in evaluating model generalization.

New brain areas In Fig. 5C, we return to multiscale fine-tuning to test how NDT3, pretrained on
motor cortex, performs in somatosensory cortex (S1) and oculomotor areas (FEF and MT). Pretraining
provides a large boost over from-scratch models is high in S1, but also nontrivial in the Oculomotor
dataset. While the former can be attributed to the close interaction of sensorimotor areas, the latter
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implies NDT3 has learned a broader prior. While encouraging, our results thus far suggest this prior
could reflect neurophysiology (e.g. declining subject focus over time (Steinmetz et al., 2019)), but
might also reflect common experimental artifacts like trial structure. For example, this Oculomotor
dataset contains 4 behavioral conditions, which may benefit from the tendency to learn classifiers
shown in Fig. 4C rather than a prior on neural dynamics.

4 DISCUSSION

Many fields are now pursuing large scale deep learning as "a tide that lifts all boats" (Abnar et al.,
2021), with the hope that improvements in effective pretraining will yield field-wide, downstream
improvements. Such a unifying abstraction may be timely for neuroscience, given the increasing
volume, diversity, and complexity of modern neural data. Joining other pretraining efforts on varied
modalities of neural data (Section A), we trained NDT3 on 2000 hours of paired neural population
activity from motor cortex and behavior, and then conducted a broad downstream decoding evaluation.
Consistent with the broad foundation modeling narrative, we found the best aggregate performance
from increasing data scale and model size jointly. However, these benefits from pretraining vary with
the downstream dataset, with several datasets having minimal improvements from scale (Section
B.5). This result may stem in various ways from our approach, for example in insufficient breadth
of hyperparameter sweeps, or too narrow of a focus on decoding metrics. Alternatively, we have
highlighted how improving downstream gains may require new architectural innovations robust to
input ordering shifts, and possible new training strategies to promote generalization. Overall, NDT3
establishes a strong baseline foundation model for intracortical decoding from spiking activity, but
highlights important directions for future scaling.

More broadly, we advocate for further consideration of how neural data can contribute to and gain
from the ongoing cross-disciplinary conversation on foundation modeling. For example, our input
and output sensitivity analyses were inspired by ML (Neyshabur et al., 2020; Pham et al., 2021) and
neuroscientific literature (Gallego et al., 2020; Sadtler et al., 2014), respectively. Challenges to scale
in neural data could deeply resemble interference in multimodal models (Aghajanyan et al., 2023; Liu
et al., 2024). Inversely, neural distribution shifts have the advantage of being carefully characterized,
and so the appearance of correlated ID-OOD performance, as also appears in CV, NLP, and other
AI domains (Taori et al., 2020), may refine our understanding of when such correlation will occur,
and thus when foundation models will be effective. Our hypothesized challenge of sensor variability
should be particularly interesting to compare across the biosignals community, which must overcome
analogous variability to achieve our shared goal of achieving user-general models.

4.1 ETHICS STATEMENT

The animal datasets used in this work were collected for other studies that were approved by
Institutional Animal Care and Use Committees. Human datasets were also collected for other
studies, with Institutional Review Board approval and as part of clinical trials conducted under
FDA Investigational Device Exemptions. Informed consent was obtained prior to any experimental
procedures. We discuss the potential for NDT3 to reduce user burden for iBCI-based neuroprosthetics,
though the dissemination of pretrained models on these data raise the risk that the original human
data may be recoverable from model weights. Since this seems technically challenging at this point,
and since the source data are restricted to binned spiking activity to begin with, we deem the risk low
enough to justify the potential scientific benefit of sharing our pretrained models.

4.2 REPRODUCIBILITY STATEMENT

Advancing neural data foundation modeling will require a flourishing open-source ecosystem, in-
cluding data, models, and evaluations. While we will release our models and codebase, our work
currently has limited reproducibility given our inability to release pretraining data. Similarly, we
have tried to use open evaluations where possible, but several evaluation datasets remain private. We
expect that field-wide trends toward open data releases, and larger scale academic (Koch et al., 2022)
or academic-industrial collaborations, can alleviate this limitation in the near future.
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F. Pavetić, D. Tran, T. Kipf, M. Lučić, X. Zhai, D. Keysers, J. Harmsen, and N. Houlsby. Scaling vision
transformers to 22 billion parameters, 2023. URL https://arxiv.org/abs/2302.05442.

D. R. Deo, F. R. Willett, D. T. Avansino, L. R. Hochberg, J. M. Henderson, and K. V. Shenoy. Brain control of
bimanual movement enabled by recurrent neural networks. Scientific Reports, 14(1):1598, 2024.

A. Doerig, R. Sommers, K. Seeliger, B. Richards, J. Ismael, G. Lindsay, K. Kording, T. Konkle, M. A. J. V.
Gerven, N. Kriegeskorte, and T. C. Kietzmann. The neuroconnectionist research programme, 2022. URL
https://arxiv.org/abs/2209.03718.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=YicbFdNTTy.

R. Entezari, M. Wortsman, O. Saukh, M. M. Shariatnia, H. Sedghi, and L. Schmidt. The role of pre-training data
in transfer learning. arXiv preprint arXiv:2302.13602, 2023.

C. Fan, N. Hahn, F. Kamdar, D. Avansino, G. H. Wilson, L. Hochberg, K. V. Shenoy, J. M. Henderson, and
F. R. Willett. Plug-and-play stability for intracortical brain-computer interfaces: A one-year demonstration
of seamless brain-to-text communication. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=STqaMqhtDi.

J. Farebrother, J. Orbay, Q. Vuong, A. A. Taïga, Y. Chebotar, T. Xiao, A. Irpan, S. Levine, P. S. Castro, A. Faust,
A. Kumar, and R. Agarwal. Stop regressing: Training value functions via classification for scalable deep rl,
2024. URL https://arxiv.org/abs/2403.03950.

R. D. Flint, E. W. Lindberg, L. R. Jordan, L. E. Miller, and M. W. Slutzky. Accurate decoding of reaching
movements from field potentials in the absence of spikes. Journal of neural engineering, 9(4):046006, 2012.

J. A. Gallego, M. G. Perich, R. H. Chowdhury, S. A. Solla, and L. E. Miller. Long-term stability of cortical
population dynamics underlying consistent behavior. Nature Neuroscience, 23(2):260–270, Feb 2020. ISSN
1546-1726. doi: 10.1038/s41593-019-0555-4. URL https://www.nature.com/articles/s41593-019-0555-4.

P. Gao and S. Ganguli. On simplicity and complexity in the brave new world of large-scale neuroscience. Current
opinion in neurobiology, 32:148–155, 2015.

J. Geiping and T. Goldstein. Cramming: Training a language model on a single gpu in one day, 2022. URL
https://arxiv.org/abs/2212.14034.

M. Geva, R. Schuster, J. Berant, and O. Levy. Transformer feed-forward layers are key-value memories, 2021.
URL https://arxiv.org/abs/2012.14913.

A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd international
conference on Machine learning, pages 369–376, 2006.

K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable vision learners,
2021. URL https://arxiv.org/abs/2111.06377.

B. Jarosiewicz, A. A. Sarma, D. Bacher, N. Y. Masse, J. D. Simeral, B. Sorice, E. M. Oakley, C. Blabe,
C. Pandarinath, V. Gilja, et al. Virtual typing by people with tetraplegia using a self-calibrating intracortical
brain-computer interface. Science translational medicine, 7(313):313ra179–313ra179, 2015.

12

https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2310.10688
https://arxiv.org/abs/2302.05442
https://arxiv.org/abs/2209.03718
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=STqaMqhtDi
https://arxiv.org/abs/2403.03950
https://www.nature.com/articles/s41593-019-0555-4
https://arxiv.org/abs/2212.14034
https://arxiv.org/abs/2012.14913
https://arxiv.org/abs/2111.06377


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

W. Jiang, L. Zhao, and B. liang Lu. Large brain model for learning generic representations with tremendous
EEG data in BCI. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=QzTpTRVtrP.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and
D. Amodei. Scaling laws for neural language models, 2020.

B. M. Karpowicz, J. Ye, C. Fan, P. Tostado-Marcos, F. Rizzoglio, C. Washington, T. Scodeler, D. de Lucena, S. R.
Nason-Tomaszewski, M. J. Mender, X. Ma, E. M. Arneodo, L. R. Hochberg, C. A. Chestek, J. M. Henderson,
T. Q. Gentner, V. Gilja, L. E. Miller, A. G. Rouse, R. A. Gaunt, J. L. Collinger, and C. Pandarinath. Few-shot
algorithms for consistent neural decoding (falcon) benchmark. bioRxiv, 2024. doi: 10.1101/2024.09.15.
613126. URL https://www.biorxiv.org/content/early/2024/09/16/2024.09.15.613126.

C. Koch, K. Svoboda, A. Bernard, M. A. Basso, A. K. Churchland, A. L. Fairhall, P. A. Groblewski, J. A. Lecoq,
Z. F. Mainen, M. W. Mathis, et al. Next-generation brain observatories. Neuron, 110(22):3661–3666, 2022.

A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby. Big transfer (bit): General
visual representation learning, 2020. URL https://arxiv.org/abs/1912.11370.

D. Kostas, S. Aroca-Ouellette, and F. Rudzicz. BENDR: Using transformers and a contrastive self-supervised
learning task to learn from massive amounts of EEG data. Frontiers in Human Neuroscience, 15, 2021.
ISSN 1662-5161. doi: 10.3389/fnhum.2021.653659. URL https://www.frontiersin.org/articles/10.
3389/fnhum.2021.653659.

C. Lea, R. Vidal, A. Reiter, and G. D. Hager. Temporal convolutional networks: A unified approach to action
segmentation, 2016. URL https://arxiv.org/abs/1608.08242.

K.-H. Lee, O. Nachum, M. Yang, L. Lee, D. Freeman, W. Xu, S. Guadarrama, I. Fischer, E. Jang, H. Michalewski,
and I. Mordatch. Multi-game decision transformers, 2022. URL https://arxiv.org/abs/2205.15241.

J. Liu, T. Wang, P. Cui, and H. Namkoong. On the need of a modeling language for distribution shifts:
Illustrations on tabular datasets, 2024. URL https://arxiv.org/abs/2307.05284.

X. Ma, F. Rizzoglio, E. J. Perreault, L. E. Miller, and A. Kennedy. Using adversarial networks to extend
brain computer interface decoding accuracy over time. Aug 2022. doi: 10.1101/2022.08.26.504777. URL
https://www.biorxiv.org/content/10.1101/2022.08.26.504777v1.

P. J. Marino, L. Bahureksa, C. Fernández Fisac, E. R. Oby, A. L. Smoulder, A. Motiwala, A. D. Degenhart,
E. M. Grigsby, W. M. Joiner, S. M. Chase, et al. A posture subspace in primary motor cortex. bioRxiv, pages
2024–08, 2024.

M. J. Mender, S. R. Nason-Tomaszewski, H. Temmar, J. T. Costello, D. M. Wallace, M. S. Willsey, N. Ganesh Ku-
mar, T. A. Kung, P. Patil, and C. A. Chestek. The impact of task context on predicting finger movements in a
brain-machine interface. eLife, 12:e82598, jun 2023. ISSN 2050-084X. doi: 10.7554/eLife.82598. URL
https://doi.org/10.7554/eLife.82598.

J. Merel, D. Carlson, L. Paninski, and J. P. Cunningham. Neuroprosthetic decoder training as imitation learning.
PLoS computational biology, 12(5):e1004948, 2016.

J. Miller, R. Taori, A. Raghunathan, S. Sagawa, P. W. Koh, V. Shankar, P. Liang, Y. Carmon, and L. Schmidt.
Accuracy on the line: On the strong correlation between out-of-distribution and in-distribution generalization,
2021. URL https://arxiv.org/abs/2107.04649.

M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D. Raji, and T. Gebru.
Model cards for model reporting. In Proceedings of the Conference on Fairness, Accountability, and
Transparency, FAT* ’19. ACM, Jan. 2019. doi: 10.1145/3287560.3287596. URL http://dx.doi.org/10.
1145/3287560.3287596.

B. Neyshabur, H. Sedghi, and C. Zhang. What is being transferred in transfer learning? Advances in neural
information processing systems, 33:512–523, 2020.

K. K. Noneman and J. Patrick Mayo. Decoding continuous tracking eye movements from cortical spiking
activity. International Journal of Neural Systems, page S0129065724500709, Oct. 2024. ISSN 0129-0657,
1793-6462. doi: 10.1142/S0129065724500709. URL https://www.worldscientific.com/doi/10.1142/
S0129065724500709.

J. E. O’Doherty, M. M. B. Cardoso, J. G. Makin, and P. N. Sabes. Nonhuman primate reaching with multichannel
sensorimotor cortex electrophysiology, May 2017. URL https://doi.org/10.5281/zenodo.788569.

13

https://openreview.net/forum?id=QzTpTRVtrP
https://www.biorxiv.org/content/early/2024/09/16/2024.09.15.613126
https://arxiv.org/abs/1912.11370
https://www.frontiersin.org/articles/10.3389/fnhum.2021.653659
https://www.frontiersin.org/articles/10.3389/fnhum.2021.653659
https://arxiv.org/abs/1608.08242
https://arxiv.org/abs/2205.15241
https://arxiv.org/abs/2307.05284
https://www.biorxiv.org/content/10.1101/2022.08.26.504777v1
https://doi.org/10.7554/eLife.82598
https://arxiv.org/abs/2107.04649
http://dx.doi.org/10.1145/3287560.3287596
http://dx.doi.org/10.1145/3287560.3287596
https://www.worldscientific.com/doi/10.1142/S0129065724500709
https://www.worldscientific.com/doi/10.1142/S0129065724500709
https://doi.org/10.5281/zenodo.788569


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C. OpenX, A. O’Neill, A. Rehman, A. Gupta, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee, A. Pooley, A. Gupta,
A. Mandlekar, A. Jain, A. Tung, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky, A. Rai, A. Gupta, A. Wang,
A. Kolobov, A. Singh, A. Garg, A. Kembhavi, A. Xie, A. Brohan, A. Raffin, A. Sharma, A. Yavary, A. Jain,
A. Balakrishna, A. Wahid, B. Burgess-Limerick, B. Kim, B. Schölkopf, B. Wulfe, B. Ichter, C. Lu, C. Xu,
C. Le, C. Finn, C. Wang, C. Xu, C. Chi, C. Huang, C. Chan, C. Agia, C. Pan, C. Fu, C. Devin, D. Xu,
D. Morton, D. Driess, D. Chen, D. Pathak, D. Shah, D. Büchler, D. Jayaraman, D. Kalashnikov, D. Sadigh,
E. Johns, E. Foster, F. Liu, F. Ceola, F. Xia, F. Zhao, F. V. Frujeri, F. Stulp, G. Zhou, G. S. Sukhatme,
G. Salhotra, G. Yan, G. Feng, G. Schiavi, G. Berseth, G. Kahn, G. Yang, G. Wang, H. Su, H.-S. Fang, H. Shi,
H. Bao, H. B. Amor, H. I. Christensen, H. Furuta, H. Bharadhwaj, H. Walke, H. Fang, H. Ha, I. Mordatch,
I. Radosavovic, I. Leal, J. Liang, J. Abou-Chakra, J. Kim, J. Drake, J. Peters, J. Schneider, J. Hsu, J. Vakil,
J. Bohg, J. Bingham, J. Wu, J. Gao, J. Hu, J. Wu, J. Wu, J. Sun, J. Luo, J. Gu, J. Tan, J. Oh, J. Wu, J. Lu, J. Yang,
J. Malik, J. Silvério, J. Hejna, J. Booher, J. Tompson, J. Yang, J. Salvador, J. J. Lim, J. Han, K. Wang, K. Rao,
K. Pertsch, K. Hausman, K. Go, K. Gopalakrishnan, K. Goldberg, K. Byrne, K. Oslund, K. Kawaharazuka,
K. Black, K. Lin, K. Zhang, K. Ehsani, K. Lekkala, K. Ellis, K. Rana, K. Srinivasan, K. Fang, K. P. Singh,
K.-H. Zeng, K. Hatch, K. Hsu, L. Itti, L. Y. Chen, L. Pinto, L. Fei-Fei, L. Tan, L. J. Fan, L. Ott, L. Lee,
L. Weihs, M. Chen, M. Lepert, M. Memmel, M. Tomizuka, M. Itkina, M. G. Castro, M. Spero, M. Du, M. Ahn,
M. C. Yip, M. Zhang, M. Ding, M. Heo, M. K. Srirama, M. Sharma, M. J. Kim, N. Kanazawa, N. Hansen,
N. Heess, N. J. Joshi, N. Suenderhauf, N. Liu, N. D. Palo, N. M. M. Shafiullah, O. Mees, O. Kroemer,
O. Bastani, P. R. Sanketi, P. T. Miller, P. Yin, P. Wohlhart, P. Xu, P. D. Fagan, P. Mitrano, P. Sermanet,
P. Abbeel, P. Sundaresan, Q. Chen, Q. Vuong, R. Rafailov, R. Tian, R. Doshi, R. Mart’in-Mart’in, R. Baijal,
R. Scalise, R. Hendrix, R. Lin, R. Qian, R. Zhang, R. Mendonca, R. Shah, R. Hoque, R. Julian, S. Bustamante,
S. Kirmani, S. Levine, S. Lin, S. Moore, S. Bahl, S. Dass, S. Sonawani, S. Tulsiani, S. Song, S. Xu, S. Haldar,
S. Karamcheti, S. Adebola, S. Guist, S. Nasiriany, S. Schaal, S. Welker, S. Tian, S. Ramamoorthy, S. Dasari,
S. Belkhale, S. Park, S. Nair, S. Mirchandani, T. Osa, T. Gupta, T. Harada, T. Matsushima, T. Xiao, T. Kollar,
T. Yu, T. Ding, T. Davchev, T. Z. Zhao, T. Armstrong, T. Darrell, T. Chung, V. Jain, V. Kumar, V. Vanhoucke,
W. Zhan, W. Zhou, W. Burgard, X. Chen, X. Chen, X. Wang, X. Zhu, X. Geng, X. Liu, X. Liangwei, X. Li,
Y. Pang, Y. Lu, Y. J. Ma, Y. Kim, Y. Chebotar, Y. Zhou, Y. Zhu, Y. Wu, Y. Xu, Y. Wang, Y. Bisk, Y. Dou,
Y. Cho, Y. Lee, Y. Cui, Y. Cao, Y.-H. Wu, Y. Tang, Y. Zhu, Y. Zhang, Y. Jiang, Y. Li, Y. Li, Y. Iwasawa,
Y. Matsuo, Z. Ma, Z. Xu, Z. J. Cui, Z. Zhang, Z. Fu, and Z. Lin. Open x-embodiment: Robotic learning
datasets and rt-x models, 2024. URL https://arxiv.org/abs/2310.08864.

C. Pandarinath and S. J. Bensmaia. The science and engineering behind sensitized brain-controlled bionic hands.
Physiological Reviews, 102(2):551–604, 2022.

C. Pandarinath, P. Nuyujukian, C. H. Blabe, B. L. Sorice, J. Saab, F. R. Willett, L. R. Hochberg, K. V. Shenoy,
and J. M. Henderson. High performance communication by people with paralysis using an intracortical
brain-computer interface. elife, 6:e18554, 2017.

F. C. Pei, J. Ye, D. M. Zoltowski, A. Wu, R. H. Chowdhury, H. Sohn, J. E. O’Doherty, K. V. Shenoy, M. Kaufman,
M. M. Churchland, M. Jazayeri, L. E. Miller, J. W. Pillow, I. M. Park, E. L. Dyer, and C. Pandarinath. Neural
latents benchmark ‘21: Evaluating latent variable models of neural population activity. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.
URL https://openreview.net/forum?id=KVMS3fl4Rsv.

S. M. Peterson, S. H. Singh, B. Dichter, K. Tan, C. DiBartolomeo, D. Theogarajan, P. Fisher, and J. Parvizi.
Ajile12: Long-term naturalistic human intracranial neural recordings and pose. Scientific Data, 9(1):184, 2022.
ISSN 2052-4463. doi: 10.1038/s41597-022-01280-y. URL https://doi.org/10.1038/s41597-022-01280-y.

T. M. Pham, T. Bui, L. Mai, and A. Nguyen. Out of order: How important is the sequential order of words in a
sentence in natural language understanding tasks?, 2021. URL https://arxiv.org/abs/2012.15180.

K. M. Quick, J. L. Mischel, P. J. Loughlin, and A. P. Batista. The critical stability task: quantifying sensory-motor
control during ongoing movement in nonhuman primates. Journal of Neurophysiology, 120(5):2164–2181,
2018.

S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez, Y. Sulsky, J. Kay,
J. T. Springenberg, T. Eccles, J. Bruce, A. Razavi, A. Edwards, N. Heess, Y. Chen, R. Hadsell, O. Vinyals,
M. Bordbar, and N. de Freitas. A generalist agent, 2022. URL https://arxiv.org/abs/2205.06175.

F. Rizzoglio, E. Altan, X. Ma, K. L. Bodkin, B. M. Dekleva, S. A. Solla, A. Kennedy, and L. E. Miller. Monkey-
to-human transfer of brain-computer interface decoders. bioRxiv, 2022. doi: 10.1101/2022.11.12.515040.
URL https://www.biorxiv.org/content/early/2022/11/13/2022.11.12.515040.

A. C. Rodriguez, M. G. Perich, L. E. Miller, and M. D. Humphries. Motor cortex latent dynamics encode spatial
and temporal arm movement parameters independently. Journal of Neuroscience, 44(35), 2024.

P. T. Sadtler, K. M. Quick, M. D. Golub, S. M. Chase, S. I. Ryu, E. C. Tyler-Kabara, B. M. Yu, and A. P. Batista.
Neural constraints on learning. Nature, 512(7515):423–426, 2014.

14

https://arxiv.org/abs/2310.08864
https://openreview.net/forum?id=KVMS3fl4Rsv
https://doi.org/10.1038/s41597-022-01280-y
https://arxiv.org/abs/2012.15180
https://arxiv.org/abs/2205.06175
https://www.biorxiv.org/content/early/2022/11/13/2022.11.12.515040


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

M. Sato, K. Tomeoka, I. Horiguchi, K. Arulkumaran, R. Kanai, and S. Sasai. Scaling law in neural data:
Non-invasive speech decoding with 175 hours of eeg data, 2024. URL https://arxiv.org/abs/2407.07595.

S. Schneider, J. H. Lee, and M. W. Mathis. Learnable latent embeddings for joint behavioural and neural analysis.
Nature, May 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06031-6. URL https://doi.org/10.1038/
s41586-023-06031-6.

I. Schubert, J. Zhang, J. Bruce, S. Bechtle, E. Parisotto, M. Riedmiller, J. T. Springenberg, A. Byravan,
L. Hasenclever, and N. Heess. A generalist dynamics model for control, 2023. URL https://arxiv.org/abs/
2305.10912.

N. M. M. Shafiullah, Z. J. Cui, A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k modes with one
stone, 2022. URL https://arxiv.org/abs/2206.11251.

Q. Simeon, L. Venâncio, M. A. Skuhersky, A. Nayebi, E. S. Boyden, and G. R. Yang. Scaling properties for
artificial neural network models of a small nervous system. In SoutheastCon 2024, pages 516–524. IEEE,
2024.

N. A. Steinmetz, P. Zatka-Haas, M. Carandini, and K. D. Harris. Distributed coding of choice, action and
engagement across the mouse brain. Nature, 576(7786):266–273, 2019.

I. H. Stevenson. Tracking advances in neural recording. Statistical Neuroscience Lab, University of Connecticut,
2023. URL https://stevenson.lab.uconn.edu/scaling/. Accessed September 6, 2024.

J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu. Roformer: Enhanced transformer with rotary position
embedding, 2023. URL https://arxiv.org/abs/2104.09864.

S. J. Talukder, J. J. Sun, M. K. Leonard, B. W. Brunton, and Y. Yue. Deep neural imputation: A framework for
recovering incomplete brain recordings. In NeurIPS 2022 Workshop on Learning from Time Series for Health,
2022. URL https://openreview.net/forum?id=c9qFg8UrIcn.

R. Taori, A. Dave, V. Shankar, N. Carlini, B. Recht, and L. Schmidt. Measuring robustness to natural distribution
shifts in image classification, 2020. URL https://arxiv.org/abs/2007.00644.

R. Thapa, B. He, M. R. Kjaer, H. Moore, G. Ganjoo, E. Mignot, and J. Zou. Sleepfm: Multi-modal representation
learning for sleep across brain activity, ecg and respiratory signals, 2024. URL https://arxiv.org/abs/2405.
17766.

A. W. Thomas, C. Ré, and R. A. Poldrack. Self-supervised learning of brain dynamics from broad neuroimaging
data, 2023.

A. E. Urai, B. Doiron, A. M. Leifer, and A. K. Churchland. Large-scale neural recordings call for new insights
to link brain and behavior. Nature Neuroscience, 25:11–19, 2022. doi: 10.1038/s41593-021-00980-9.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-task benchmark and analysis
platform for natural language understanding, 2019. URL https://arxiv.org/abs/1804.07461.

C. Wang, V. Subramaniam, A. U. Yaari, G. Kreiman, B. Katz, I. Cases, and A. Barbu. BrainBERT: Self-
supervised representation learning for intracranial recordings. In The Eleventh International Conference on
Learning Representations, 2023a. URL https://openreview.net/forum?id=xmcYx_reUn6.

E. Y. Wang, P. G. Fahey, K. Ponder, Z. Ding, A. Chang, T. Muhammad, S. Patel, Z. Ding, D. Tran, J. Fu, et al.
Towards a foundation model of the mouse visual cortex. bioRxiv, 2023b.

H. Wang, T. Fu, Y. Du, W. Gao, K. Huang, Z. Liu, P. Chandak, S. Liu, P. Van Katwyk, A. Deac, et al. Scientific
discovery in the age of artificial intelligence. Nature, 620(7972):47–60, 2023c.

T. Wang, A. Roberts, D. Hesslow, T. L. Scao, H. W. Chung, I. Beltagy, J. Launay, and C. Raffel. What
language model architecture and pretraining objective work best for zero-shot generalization?, 2022. URL
https://arxiv.org/abs/2204.05832.

F. R. Willett, D. T. Avansino, L. R. Hochberg, J. M. Henderson, and K. V. Shenoy. High-performance brain-
to-text communication via handwriting. Nature, 593(7858):249–254, May 2021. ISSN 1476-4687. doi:
10.1038/s41586-021-03506-2. URL https://www.nature.com/articles/s41586-021-03506-2.

J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan. Brain–computer interfaces
for communication and control. Clinical neurophysiology, 113(6):767–791, 2002.

15

https://arxiv.org/abs/2407.07595
https://doi.org/10.1038/s41586-023-06031-6
https://doi.org/10.1038/s41586-023-06031-6
https://arxiv.org/abs/2305.10912
https://arxiv.org/abs/2305.10912
https://arxiv.org/abs/2206.11251
https://stevenson.lab.uconn.edu/scaling/
https://arxiv.org/abs/2104.09864
https://openreview.net/forum?id=c9qFg8UrIcn
https://arxiv.org/abs/2007.00644
https://arxiv.org/abs/2405.17766
https://arxiv.org/abs/2405.17766
https://arxiv.org/abs/1804.07461
https://openreview.net/forum?id=xmcYx_reUn6
https://arxiv.org/abs/2204.05832
https://www.nature.com/articles/s41586-021-03506-2


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

M. Wortsman, P. J. Liu, L. Xiao, K. E. Everett, A. A. Alemi, B. Adlam, J. D. Co-Reyes, I. Gur, A. Kumar,
R. Novak, J. Pennington, J. Sohl-Dickstein, K. Xu, J. Lee, J. Gilmer, and S. Kornblith. Small-scale proxies
for large-scale transformer training instabilities. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=d8w0pmvXbZ.

W. Xia, R. de Charette, C. Öztireli, and J.-H. Xue. Umbrae: Unified multimodal brain decoding. In European
Conference on Computer Vision (ECCV), 2024.

C. Yang, M. B. Westover, and J. Sun. Biot: Cross-data biosignal learning in the wild, 2023. URL https:
//arxiv.org/abs/2305.10351.

J. Ye, J. L. Collinger, L. Wehbe, and R. Gaunt. Neural data transformer 2: Multi-context pretraining for neural
spiking activity. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=CBBtMnlTGq.

Z. Yuan, F. Shen, M. Li, Y. Yu, C. Tan, and Y. Yang. Brainwave: A brain signal foundation model for clinical
applications, 2024. URL https://arxiv.org/abs/2402.10251.

Y. Zhang, Y. Wang, D. Jimenez-Beneto, Z. Wang, M. Azabou, B. Richards, O. Winter, T. I. B. Laboratory,
E. Dyer, L. Paninski, et al. Towards a" universal translator" for neural dynamics at single-cell, single-spike
resolution. arXiv preprint arXiv:2407.14668, 2024.

16

https://openreview.net/forum?id=d8w0pmvXbZ
https://arxiv.org/abs/2305.10351
https://arxiv.org/abs/2305.10351
https://openreview.net/forum?id=CBBtMnlTGq
https://arxiv.org/abs/2402.10251


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A RELATED WORKS AND A PROPOSED TAXONOMY

Neural data is sufficiently diverse so as to support many distinct efforts to train large neural data
models. The scale of pretraining is somewhat larger in the non-implanted modalities, where data
is more abundant. The largest EEG models have reached a scale of 2.5K (Jiang et al., 2024) to
40K hours of data (Yuan et al., 2024), or higher volumes if also considering non-brain biosignals
(EKG) (Yang et al., 2023; Thapa et al., 2024). Current fMRI models operate in the 1K (Thomas et al.,
2023) to 7K (Caro et al., 2024) hour range. The largest models in these studies are in the 0.1B-1B
parameter range. Intracranial modalities, including sEEG (Wang et al., 2023a; Chau et al., 2024),
ECoG (Talukder et al., 2022; Peterson et al., 2022), and spiking activity (Wang et al., 2023b), have
thus far been studied at an order of magnitude smaller scales of data and model size (20-1000 hours,
<0.1B parameters).

Direct scaling on neural data modeling should be distinguished from NeuroAI efforts (Doerig et al.,
2022) to measure how models of the human sensorimotor experience (e.g. language, vision, audio
models) predict neural data (Antonello et al., 2024). However, as multimodal efforts begin to blur
this distinction (Benster et al., 2024; Xia et al., 2024), care will be required to distinguish advances in
modeling neural data, embodied data, or their interaction.

Comparing neural data models Current efforts to understand scaling in neural data Simeon et al.
(2024); Sato et al. (2024) will have their reach limited by the specificity of every neural dataset. A
meta-challenge for the field is understanding how different parameters (species, brain area, modality,
task) impact scaling properties. This would be greatly aided by development of reporting practices for
different neural data models. To facilitate comparison, we create a model card (Mitchell et al., 2019)
for NDT3 in Section D. In addition to the standard model card, we propose reporting an additional
taxonomy to aid comparisons across neural data models, using two concepts.

First: neural data models can be conceptualized as modeling slices of the plenneural function, inspired
by the plenoptic function in vision (Adelson et al., 1991). The plenoptic function is a model of an
idealized eye which parameterizes all possible images with 7 dimensions: 4D to describe the global
spacetime of the view, 2D to describe viewing angle (spherical) or coordinate (Cartesian) of the
image, and 1D for wavelength. Since neural data models are primarily interested in circumscribed
systems rather than the physical world, a similar global coordinate system (e.g. 4D for all possible
electric potentials) would be uninformative. We thus propose reporting more qualitative coordinates:

1. Identity: The network or individual being recorded.

2. Task: The behavior, stimuli, or other activity the network is reflecting.

3. Spacetime: Coordinates specified in a network-local coordinate frame (e.g. brain area).

Second: The modeled extent of this plenneural function is conveniently discretized in three resolutions
in a Transformer-like sequence modeling framework: the token, the sequence, and the full training
data. The token is the most granular unit of data being modeled; NDT3 models neural populations
32 neurons at a time, in 20ms bins. At the sequence input level, NDT3 models inputs from single
humans or monkeys, across 128-256 neurons in 2 second snippets, while performing effectively one
“movement.” Finally, NDT3’s pretraining spans dozens of individuals, records motor and premotor
areas over 2.5K hours, over a variety of arm and hand movements.

B SUPPLEMENTARY RESULTS

B.1 EXTRAPOLATION IN CENTER-OUT DECODING IS POSSIBLE WITH RESTRICTED LINEAR
DECODERS.

In Section 3.2, we proposed that pretrained models like NDT3 should be able to generalize to held-out,
and in particular, extrapolated reach angles. We hypothesized this due to the frequent appearance of
2D linear projections of high dimensional neural activity showing clear separation by reach angle
(e.g. (Rodriguez et al., 2024)), which would imply NDT3 meta-learning of an explicit planar prior
would enable our desired generalization. Here we make this intuition explicit, by constructing a
linear decoder that generalizes to held-out reach directions, and thus illustrate that NDT3’s failure
to extrapolate is not due to an inherently unconstrained generalization task but is rather due to a
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Figure 6. We illustrate how explicitly restricting to a linear decoder plane allow reconstruction of held-out
behavior (Linear Regression), in contrast with NDT3 predictions which are restricted to held-in conditions even
when shown three cardinal directions.

lack of proper objective (i.e. requires post-training to make generalization desirable) or a failure of
pretraining.

To do this, we follow a classic neural data analysis procedure on a single session of the monkey
J dataset (as in Fig. 4). As a reminder, the behavior here is an isometric task where the monkey
generates isometric forces against a small box equipped with a six-degree-of-freedom load cell (JR3
Inc., CA). The forces were linearly mapped to control cursor movement: wrist flexion/extension
moved the cursor left/right, and radial/ulnar deviation moved it up/down. The monkey had to move
the cursor from a central position toward one of eight peripheral targets, in a classic center-out task.
We extracted successful trials for each target from 0.5 seconds before to 1 second after movement
onset.

With this preparation, we can now project the high-dimensional (96) neural activity at each timestep
onto a candidate plane that reflects reach related variance, after which a simple rotation would allow
generalized decoding. If we were fitting neural activity from all conditions, the top PCs from Principal
Components Analysis (PCA) would typically be sufficient to identify this plane. Since we would like
to find our general decoding plane without fitting all conditions, PCA alone is not reliable enough
to extract the plane we desire. We thus first fit PCA to the three held-in conditions, and then used
Linear Discriminant Analysis (LDA) on the top 10 PCs to find the 2D plane that best separated the
three directions. This yields a plane where neural activity is well separated by their reach direction in
a consistent manner for train and test directions (Fig. 6 Neural Data and Behavior). This allows a
ridge regression to generalize to from held-in trajectories (variance accounted for (VAF): 0.70 ± 0.0)
to both the interpolated (VAF: 0.48 ± 0.02) and extrapolated held-out (VAF: 0.44 ± 0.05) directions
(Fig. 6 Linear Regression). In contrast, NDT3 trajectories are, as before, clearly constrained to held-in
directions.

B.2 ABLATIONS

We ablate the major design decisions made to enable NDT3’s large scale pretraining. These ablations
give us confidence that NDT3 overcomes the basic challenges we encountered in development, but
compute restrictions prevent more exhaustive comparisons or exploration of model design space.
We encourage further work exploring the influence of different hyperparameters. In these plots, we
distinguish validation split performance and evaluation split performance, which is computed by
batch-mode prediction (not the costly streaming evaluation used throughout main experiments).

Covariate dropout We find the default next-step prediction objective fails for learning decoding
of highly autocorrelated covariate timeseries, perhaps because simply relying on teacher-forced
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Figure 7. Ablation of covariate masking on an open 2D Cursor + Click dataset. Covariate inputs are completely
masked in inference for the default NDT3, and autoregressively generated in the ablation.

A. B. C.

Figure 8. Ablations evaluated based on upstream evaluation split. A., B. Ablation of BCI control tokens C.
Ablation of neural objective and covariate MSE objective in favor of classification over quantized covariates.

behavioral inputs provides a severe shortcut that prevents learning of a proper neural to behavior
decoding map (Bachmann and Nagarajan, 2024). Different time-series models have addressed
this by adopting convolutional input-output layers (Lea et al., 2016), tokenizing along temporal
dimensions (Das et al., 2024), or learning with contrastive objectives (Chau et al., 2024; Kostas
et al., 2021). We avoid introducing architectural modifications and instead adopt a simple dropout
procedure that masks a portion of covariate inputs some fraction of the time. Specifically, on every
training batch, two random numbers are drawn. The first, M ∼ U [0, 1], determines what fraction of
covariate inputs should be masked. On 90% of batches, we also sample T ∼ U [0, 2] seconds, such
that the mask is only applied after timestep T . That is, on 90% of batches, the model is provided a
prefix-prompt. We do not block losses on this prefix as in prefix-LMs (Wang et al., 2022). Pretraining
metrics for validation and evaluation are always computed with a prefix and full masking of non-prefix
timesteps. In Fig. 7, we ablate covariate masking (which also removes the prefix logic), and tune on a
2D Cursor + Click task. The ablated model performs subtrivially with student-forced predictions
provided as input at test time. Note that the ablated model performs trivially with masked inputs (not
shown).

BCI-phase and return conditioning NDT3’s pretraining includes several hundred hours of BCI
control data, where the covariates were set by another decoder. We introduced phase and return
conditioning tokens to differentiate the several types of BCI control data from recorded behavior.
Specifically, in BCI data, NDT3 receives input tokens specifying what fraction of the behavior reflects
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A. B. Pretrain: Neural + BehavioralPretrain: Neural onlyPretrain: Neural only Pretrain: Neural + Behavior

Figure 9. Scaling of unsupervised pretraining After pretraining models up to 200 hours with only the neural
reconstruction objective, we fine-tune models in a similar multiscale evaluation as in Section 3.1, with a newly
initialized behavioral readout. We use the CST task here. A. left shows neural loss scales with neural-only
pretraining. The right panel plots the neural loss, also present in the standard evaluation, also scales with joint
pretraining. B. left shows that with neural pretraining, downstream decoding performance saturates at a flat
performance after 25 hours. This is compared against the nonsaturated scaling from joint pretraining. Colorbar
is common for all plots, and Xs are from-scratch NDT3 models.

neural input (BCI control is on) vs programmatic input (BCI control is off, as in open loop BCI
calibration). Further, we provide inputs encoding reward (trial success) when trials change, and return
(future reward over a 10 second horizon, which crosses data boundaries). This design is intended to
evaluate the potential for a Decision-Transformer like offline learning strategy for improved online
control, but we do not discuss this in this work. In Fig. 8A, B, we focus on whether these inputs
improves pretraining loss and R2 in validation splits, which has contains BCI data, and the held-out
evaluation split containing only monkey behavior. The figures show that the ablation significantly
decreases validation split performance, and causes a slightly earlier stopping point leading to worse
evaluation performance. Note both models early before the full training budget of 400 epochs.

Neural reconstruction objective All main NDT3 models used a neural reconstruction objective
inherited from the self-supervised learning pretraining from NDT2. We ablate this choice post-hoc
and see it may actually minorly harm pretraining (validation split), though the neural objective doesn’t
harm evaluation split decoding (Fig. 8C). Note the scalar weighting of neural vs covariate objectives
were set to be roughly balanced in pretraining. Section B.3 provides a downstream analysis on the
standalone value of the neural reconstruction objective.

MSE over classification In robotics and certain generalist models (Schubert et al., 2023), continuous
action spaces are sometimes better decoded and controlled when quantized (Shafiullah et al., 2022).
This is because MSE is an insufficient objective when the output distribution is multimodal (e.g.
one of two possible paths in robotics). While it seems unlikely that the close relationship between
movement behavior and motor cortex is multimodal, multimodal behavior may be appropriate when
pretrained on heterogeneous data, i.e. when similar neural activity corresponds to different behavior
in two datasets. We attempted such a quantization, including HL-Gauss smoothing (Farebrother
et al., 2024) which we found to help; but this does not recover the performance of the default MSE
objective (Fig. 8C) on the evaluation split. We found this performance gap persisted under fine-tuning
(not shown). This suggests that NDT3 is differentiates neural data inputs from different datasets.

Patch size NDT2 and NDT3 both tokenize neural data by patching them into fixed size clusters. It
is unclear whether transfer learning might occur for sub-token features, which motivates the use of
smaller tokens in larger datasets that might afford it (Caron et al., 2021). We change patch size to
16 and show this performs slightly worse in the 45M 200h model (Fig. 8)C. Smaller patches (and
subsequent increased neural tokens) may be more beneficial in the larger scale models, but their
benefit must be weighed against their increased compute burden.

B.3 ISOLATED SCALING IN NEURAL DATA

Due to NDT3’s joint modeling of behavior and neural data, it is difficult to dissociate whether scaling
gains in behavior come from improved behavioral or neural priors. To assess whether NDT3 can
scale solely from neural data modeling, we pretrain a new set of 45M parameter models up to 200
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Figure 10. Three regimes of NDT3 training for handwriting decoding. We show validation loss and character
error rates for example runs of from-scratch and fine-tuned NDT3s.

hours with only causal neural data modeling objective. As before, we then tune to a downstream
decoding task, in this case, a Critical Stability Task dataset (CST). From a representation probing
perspective, improved downstream performance implies higher quality neural representations. We
use the standard single-stream autoregressive modeling objective as in the rest of this work in the
downstream setting, we find direct linear probing of neural representations perform worse. Fig. 9
compares the scaling on downstream neural and behavioral metrics after the standard fine-tuning
procedure.

Fig. 9A shows that downstream neural reconstruction improves with increased pretraining data either
when using only the neural objective or both neural and behavioral objectives (as in the standard
setting). The joint pretraining achieves advances neural metrics in all settings, illustrating that
decoding behavior is a complementary objective to neural data reconstruction even for representation
learning.

Fig. 9B contrasts decoding curves in the two pretraining settings, in that neural pretraining has
saturated decoding after just 25 hours of pretraining. This is consistent with the interpretation that the
behavioral readout reflects only one aspect of the neural data. Together with the neural metric plots,
this analysis shows scaling over solely neural data is possible, but also that decoding behavior is a
complementary pretraining objective for improving neural representation learning and decoding.

B.4 PRETRAINING DOES NOT BENEFIT FALCON H2 (HANDWRITING)

We also evaluated NDT3 for decoding of letters in a human-open loop handwriting task (FALCON
H2). Although this is also a motor cortical decoding task, we excluded H2 from NDT3’s aggregate
evaluation since it is a sequence-to-sequence as opposed to continuous task. To apply NDT3 to this
task, we pool neural tokens at each timestep and add a linear projection and optimize with a CTC
loss (Graves et al., 2006). We maintain the default neural reconstruction loss and causal attention
mask, and do not apply data augmentation.

Note that RNNs are the current standard architecture for communication tasks like H2 (Karpowicz
et al., 2024; Willett et al., 2021). Training and tuning was less stable than for our continuous decoding
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Figure 11. A. Fine-tuning evaluations for individual datasets. Performance on both held-out (left) and held-in
(right) splits are shown side by side by FALCON datasets. We shade the standard deviation of 3 model seeds
in fine-tuning. Different tasks show substantial variability in benefit from pretraining. B. We show example
predictions of a pretrained (45M 200h) and from-scratch NDT3 for the 2D + Click Cursor task to give a sense of
what different prediction performances mean in terms of open loop data prediction. Numbers in legend are the
R2 for that model’s predictions in the shown snippet.

tasks and required more extensive hyperparameter tuning, perhaps because the overall dataset size
remains small (<1k samples), specific parameters are listed in the codebase. We observe three regimes
in both training and fine-tuning. First, the model can fail to achieve an initial learning period. Second,
the model can achieve reasonable nontrivial solutions, comparable to expected performance for
unaugmented RNNs (though we do not quantify this). Third, some models will exhibit learning
instabilities that resolve in significantly improved performance. We illustrate these regimes in example
validation curves below. Overall, the third regime is rarely achieved. More relevant to the main
narrative of this work, fine-tuning appears to degrade both final solution quality and reduces the range
of nontrivial hyperparameters (not shown). Investigating a sequence to sequence objective over CTC
loss would be valuable future work.

B.5 MULTISCALE DECODING ON INDIVIDUAL MOTOR TASKS

Fig. 11A plots model performance for each of the 31 evaluation settings we study in the eight
primary evaluation datasets we use. Studying any individual dataset will yield variable conclusions
on whether pretraining structure is helpful, underscoring the need for proposed foundation models
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Figure 12. A replication of Fig. 4A/B, but showing results for both sequential and joint fine-tuning in each
setting. As before, each model here tunes with some data from other settings (e.g. cross-subject data for the
cross-subject panel), and a fixed amount of data on the test session. Sequential tuning first tunes on other-setting
data, and then tunes on test session data. Joint tuning uses all data at once. In Fig. 4A/B, we only showed the
better choice for each panel, i.e. we showed joint tuning for cross-session data, and sequential tuning for the
other settings. In addition, we overlay how the cross-subject tuned models perform when applied to half-token
shifted test data, confirming that subject and session data transfer similarly to shifted test data.

to be evaluated across many different datasets. Here specifically we see the most clear scaling with
pretraining data (color gradient with red on top) in the Critical Stability Task and Bimanual Task.
FALCON tasks and Self-paced Reach appear minimally affected by scaling pretraining data, in that
either pretrained models are generally slightly above a from scratch model at all data scales with no
particular best pretrained model. The 2D + Click and Grasp datasets uniquely show high variability
in model performance and strong degradation of the 350M 2 khr model at low data scales. Grasp
instability was so high that we trained 9 seeds instead of the standard 3 to better estimate model
performance. We propose this degradation is due to the instability of full fine-tuning of large models
at the extremely low data scales these datasets present (e.g. 2.5 minutes at the 25% scaling). Finally,
we remind that the 2D + Click, FALCON H1, and 1D Grasp Force tasks are datasets from human
participants that are included in the 2 khr pretraining. Surprisingly, we see no particular benefit to the
2 khr model.

These scaling plots also provide more precise context for baseline performance. NDT2 performs
particularly poorly in the low data regime, while Wiener Filters perform poorly in the high data
regimes.

In Fig. 11B, we illustrate qualitative predictions on private datasets. These visualizations show a
diversity in covariate timescales and structure. They also illustrate that the summary R2 obscure
several features of model predictions. For example, pretrained models in Cursor Y tend have false
positive deflections in movement. R2 also is not easily comparable in tasks with continuous dynamics
(CST) vs. transient dynamics (Cursor G1).

B.6 SEQUENTIAL TUNING IS SIMILAR TO JOINT TUNING

In Section 3.2, we showed that channel shuffling and half-token shifts were sufficient to reduce
cross-session transfer to the extent of cross-subject transfer. Here we add a methodological subtlety
on how the tuning is done. Given cross-context data and a test session, we can either jointly tune
on all data (as we do in our primary evaluation), or sequentially tune on the cross-context data
and test session. We find sequential tuning is particularly necessary for successful subject transfer
of from-scratch NDT3 models, but that it slightly underperformed joint tuning on cross-session
models (Fig. 12A). Seeing that sequential tuning is mainly advantageous for from-scratch models,
we speculate that sequential tuning is particularly helpful for filtering learning signals in highly
heterogeneous data. In Fig. 4A/B, for clarity, we reported jointly tuned results for cross-session data
and sequentially tuned results otherwise.

B.7 AGGREGATE PERFORMANCE ON ALL NDT3 MODELS WITH SIGNIFICANCE TESTS

We additionally report the average performance of an NDT2 model pretrained with 100 hours of
human data and two NDT3 models pretrained with 25 hours and 70 hours. These models are placed
in context with the models from Fig. 3D, in Fig. 13A. Note that for NDT3 models each successively
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Figure 13. A. A replication of Fig. 3D including an additional 25 hr and 70 hr model. The two additional models
show the precise performance we measure may be noisily related to to pretraining data scale. B. Heatmap of
differences between performances of pairs of models with significance tested with FDR-corrected pairwise t-tests.
Note that coloring is used here to indicate differences, not significance. Positive numbers with significance
indicate the row model outperforms the column model.

larger data scale uses a strict superset of data from smaller scales. We also provide the p-values
computed for the significance of the difference between each pair of models in Fig. 13B. P-values are
computed as FDR-corrected pairwise t-tests. The 350M 2 khr model has p < 0.06 improvements
over all but the 350M 200 hr model. Interestingly, all other pretrained models, except the 25 hr model,
appear equivalent, at least statistically. We presume this is due to the fact that our evaluation of 31
task settings may be insufficiently large.

NDT2 performs relatively poorly in our evaluation. This is true even when tuning from the public
checkpoint trained on 100 hours of neural data from humans, though tuning does in general improve
over the from-scratch NDT2 training. We believe pretrained NDT2’s performance gap with NDT3 is
partially due to NDT2’s need to newly initialize decoding layers in each downstream task, which
increases NDT2’s dependence on thorough hyperparameter tuning. This makes NDT2 a poor
candidate for a foundation model. Section C.3 and Section C.6 describe a number of methodological
innovations that likely each contribute to the remaining performance differences between NDT2 and
NDT3.

B.8 NEURAL VS BEHAVIORAL OBJECTIVES

In this work, the neural objective is present mainly as an auxiliary objective to improve downstream
decoding. We see that neural and behavioral objectives are complementary in Section B.3.

In Fig. 14, we provide some additional context, showing that neural objectives also improve through
pretraining, i.e. that we are not overfitting the neural objective and thus degrading decoding.

C METHODS

C.1 METRICS AND EVALUATION

Throughout this work we evaluate offline decoding of continuous covariates timeseries. The metric
we specifically use is the coefficient of determination, R2, as computed by scikit-learn’s r2_score
function. R2 is a useful metric over MSE as 1 represents perfect prediction and 0 is the score achieved
by best-guess baseline, the mean of the data. In pretraining, R2 is computed over the flat average of all
covariate dimensions, since each datapoint has differing covariate dimensionalities. In evaluation, R2

is computed as a variance-weighted average of R2s in each covariate dimension. Another difference
between training and evaluation metrics is that training predictions are made over batched data, while
evaluation predictions are mostly computed in a streaming fashion. Streaming requires continuous
neural data across different behavioral epochs, and so cannot be performed for the Oculomotor and
CST datasets. We also omit it for the motor cortex self-paced reach dataset, which has a very large
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Figure 14. Pretraining curves shown for 45M parameter NDT3s at 1.5 hour, 25 hour, and 70 hours, in addition to
the curves for the 2 khr 350M parameter NDT3. We separately show metrics on neural and behavioral objectives
through training. Since early stopping is used in model selection, we verify here that neither objective is overfits
significantly, except for the 1.5 hour model’s neural objective.

Figure 15. For 3 monkeys datasets at 10% scale, we extend a HP sweep to 5 LRs and dropout in [0.0, 0.1, 0.3]
(vs default 0.1). For fine-tuning, we also sweep weight decay in [0.0001, 0.01, 0.1] (vs default 0.1), while for
from-scratch models we also sweep Transformer width ([256, 512, 1024]) vs default 512. This yields a 45-model
sweep on 1 seed. We compare the range of scores achieved by this larger sweep against the standard 3 LR x 3
seed sweep.

evaluation split. Streaming allows timesteps at the beginning of each sequence to leverage neural
context from the preceding sequence, which raises performance slightly, as shown in the continuous
vs trialized analysis (Section 3.3). We limit history in streaming evaluations to the max history seen
in tuning (1 second).

C.2 TRAINING

Pretraining hyperparameters were manually tuned in preliminary experiments at the 45M parameter
models on small datasets. 350M models diverged at the chosen 4e− 4 peak LR, so we lowered peak
LR to 1e − 4. For tuning, the explored LRs are 1e − 4, 3e − 4, 5e − 4 for training from scratch
and 3e − 5, 1e − 4, 4e − 4 for fine-tuning. While this is far from an exhaustive search, we show
in Fig. 15 that other regularization hyperparameters are set to reasonable defaults such that this
sweep finds near optimal results for both a from scratch model and fine-tuning the 45M model.
Fine-tuning, like pretraining, is early stopped with a patience of 100 epochs. Batch size is uniformly
set to 16K in pretraining, and scaled to be roughly 10-20% of dataset size in fine-tuning. NDT3
from-scratch models were trained at the 11M parameter range. Exact model configurations for
different experiments are documented in the codebase.

NDT3’s simple architectural design allows us to train on batches from different tasks and dimen-
sionalities. To avoid excess padding in training, we concatenate pretraining data that is otherwise
discontinuous (trialized) into 2 second data. We do not add any separator tokens, as this does not
appear to have a performance impact for language models (Geiping and Goldstein, 2022). With
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mixed-precision training, the 350M parameter NDT3 can fit the 4-8K tokens in each input context in
the memory of 40G NVIDIA A100 GPUs. Thus we can restrict NDT3’s pretraining parallelism to
data-parallelism.

Using Kaplan et al. (2020)’s equation for FLOP computation, Cforward = 2N + 2nlayernctxdattn, we
compute the footprint of the 350M 2kh model. We use about 0.9B FLOPs per token in the forward
pass, and about 0.9T neural tokens processed over training, which yields a pretraining footprint of
about 2.4e21 FLOPs.

C.3 BASELINES

Wiener Filter The Wiener Filter baseline was cross-validated over regularization strength. We also
swept history of neural input up to the max length provided to NDT, and reported the R2 of the
best WF according to test data in primary evaluation (slightly advantaging the WF). Generalization
plots in Section 3.3 report the performance of WF models at these different histories. For evaluating
angular generalization, WFs were only swept up to 1s history due to memory limits; performance
was not varying substantially with history so we do not expect this to have impacted conclusions. The
WF was for simplicity directly fit on the concatenated trial data, which may have slightly negatively
impacted its performance in trialized datasets (Oculomotor, CST, Generalization analyses).

In the primary evaluations in Section 3.1, we considered WFs fit either independently per session in a
dataset or jointly on all sessions, which is helpful for sessions in very low data regimes. We report
the better of the 2. In generalization analyses, for simplicity, we only report joint fits, which may
cause a slight downward bias in performance.

Dataset Patience Held-In R2 Held-Out R2

H1 100 0.567±0.034 0.453±0.030

H1 (reproduction) 250 0.628±0.011 0.517±0.016

H1 ((Karpowicz et al., 2024)) 250 0.62 0.52
M2 100 0.563±0.015 0.352±0.028

M2 (reproduction) 250 0.582±0.002 0.391±0.009

M2 ((Karpowicz et al., 2024)) 250 0.63 0.43
Table 1. NDT2 H1 and M2 results when trained with 100 epochs of patience (this work) in fine-tuning vs 250 as
in Karpowicz et al. (2024). We report mean and standard deviation of 3 model seeds on the FALCON evaluation
(which is in turn a cross-session mean).

NDT2 NDT2 baselines were prepared with its public codebase. We trained NDT2 models both
from-scratch and from the public checkpoint pretrained on 100 hours of human data. Max context
length and patience were held constant across the models. This restriction to a patience of 100 epochs
accounts for some difference with the reported FALCON benchmark results in Karpowicz et al.
(2024), as we note in Table 1. Other choices were left to NDT2 defaults. For example, NDT2 uses
z-score normalization, which we kept. In from-scratch training, for simplicity, we jointly trained
NDT2 with its neural reconstruction loss (masking of 25%) and a supervised decoding loss. This is
true for all eight evaluation tasks except CST. In the CST task, we used only the supervised decoding
loss, as the token dropout used in reconstruction can dropout all neural input.

For hyperparameter tuning, we matched NDT3’s tuning budget for the pretrained NDT2 checkpoint
by only exploring 3 learning rates. Given mediocre NDT2 from-scratch performance, we swept
NDT2 over 2 model sizes in addition to the standard 3 learning rates. We set the NDT2 from-scratch
model sizes to 20M and 72M to be comparable with NDT3 45M, but note that the NDT2 pretrained
checkpoint is only 6M parameters.

NDT2 vs NDT3. NDT3 builds off of NDT2 but departs in several manners to enable more streamlined
scaling and analysis over heterogeneous decoding tasks, which we overview in Fig. 16. Lower level
technical changes are described in Section C.6. Both models relate neural data to behavior and train
with both neural data and behavior prediction objectives. Both models use both these objectives in
fine-tuning, but NDT2 only uses the neural objective in pretraining. NDT2’s neural data objective is
based on MAE (He et al., 2021), such that some fraction of input neural data tokens are masked and
reconstructed in a decoder separate from the main backbone. However, this explicit masking was
originally developed to study representation learning on images, not timeseries decoding. Causal
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Figure 16. NDT2 and NDT3 architectures differ mainly in the conversion of NDT2’s representation learning
backbone to NDT3’s single multimodal stream. NDT3 directly intakes neural and behavioral tokens and predicts
with a next-step objective. NDT2 employs explicit masking of input neural tokens and extracts neural and
behavioral predictions at each timestep with cross-attention layers.

domains like BCI control can also learn nontrivial representations simply through next-step prediction.
NDT2 employed both explicit MAE masking and a causal attention mask in its backbone, which
is redundant computationally and also reduces the context available to make predictions. NDT3
thus dispenses with the masking mechanism and uses next-step prediction alone. NDT2 also differs
from NDT3 in its readout of behavior. Again, since NDT2 studied representation learning, it used
additional cross-attention readout layers to “probe” behavior predictions at each timestep. NDT3
simplifies this two-part encoder-decoder design to a decoder-only design. In this flow, masked
behavior tokens are provided at the input and filled in through the backbone, and varying the input
tokens allows us to make predictions of the corresponding behavior dimensionality.

C.4 PRETRAINING AND EVALUATION DATASETS

Pretraining datasets were comprised of historical data from several labs, the rough composition
of which is shown in Fig. 2B. The evaluation behavior used during pretraining was reaching in 2
monkeys. The first monkey dataset came from a public release (Flint et al., 2012), and the second
from a private dataset ( REDACT lab). The latter had center-out reach in standard conditions and
under visual feedback perturbations. The monkey in the second dataset is also present in the 1khr
monkey and 2kh and up model dataset sizes, though performing in a different set of experiments.

Inherent to the process of large-scale scraping is a loss of detail on what precise tasks were used, so
we only have a qualitative description of tasks we believe are well represented. NDT3 trains on a wide
variety of reaching behaviors from relatively constrained (2D center-out reaching to fixed number of
targets) to relatively unconstrained (self-paced, more targets, potentially 3D) and under experimental
manipulations (delayed onset, multiple targets, different error thresholds requiring more precision).
These reaching behaviors are described in both endpoint kinematics and as EMG. A smaller fraction
of pretraining data are isometric and force related (force exerted against manipulandums) for wrist
and arm motion. Human datasets contain a variety of iBCI tasks, with closed loop datasets reflecting
both high and low quality control. These tasks include reach and grasp behavior from 1-10 degrees of
freedom, as well as some individuated finger tasks for clicking.

We detail evaluation datasets in Table 2. Three datasets come from the FALCON benchmark (Kar-
powicz et al., 2024), two are based on public datasets ((O’Doherty et al., 2017; Deo et al., 2024)),
and three are private. Note we avoid the Neural Latents Benchmark (Pei et al., 2021) as it does not
directly measure decoding performance. For each evaluation dataset, we specify a tuning split and an
evaluation split. Only tuning split data is changed when varying data scale. Tuning and evaluation
splits are block-contiguous, i.e. trials are not interleaved, for better downstream applicability.
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C.5 GENERALIZATION ANALYSES AND FURTHER EVALUATIONS

Intra-session generalization Posture, spring, and angular generalization evaluate OOD performance
in the standard setup of comparing in-distribution and out-of-distribution performance directly (with
changes in the underlying evaluation dataset) The intra-session temporal shift analysis is evaluated in
an inverted, slightly more rigorous setting. Specifically, we trained two sets of models on the two
different temporal blocks, and evaluated on an evaluation split in the later block, rather than only
training on the early block and evaluating on both blocks. This way, the OOD shift is measured with
respect to the same evaluation dataset.

C.6 ARCHITECTURAL DETAILS

NDT3 adopts several architectural innovations used in recent Transformer models. These were
compared against baselines in preliminary experiments, but formal ablations in the final experimental
setting were not conducted. We defer full description of the Transformer dimensions to the public
codebase.

• FlashAttention 2 (Dao, 2023) is used to increase training and inference speeds. On the
NERSC Perlmutter cluster, with FA2, 45M NDT3 trained at about 270M neural tokens per
40G A100 hour, 350M NDT3 trained at about 70M neural tokens per A100 hour. Note, FA2
also enables use of the 350M model for real-time (<20ms) inference latency.

• Positional Embeddings (Su et al., 2023): Rotary embeddings are applied to indicate the
real-world timestep of every input token. Additionally, 48 categorical learned embeddings
are reserved to distinguish token modality and position within a timestep (10 for neural,
16 for covariates, 16 for covariate constraints, 1 for reward/return, 1 for dummy tokens,
remainder unused).

• QK Normalization (Dehghani et al., 2023; Wortsman et al., 2024): An additional layer norm
is applied to the query and key embeddings, before the rotary embeddings, which helped
stabilize training of the 350M parameter models.

• No context embeddings (Ye et al., 2023): Differing from NDT2, no learned embeddings
for disambiguating input datasets were prepended to each input. This was removed for
simplicity. Per GATO (Reed et al., 2022) and language modeling practices, we instead leave
task / dataset disambiguation to the modeling process: In pretraining, the covariate maskout
strategy allows for many tasks to be specified in-context (as later behavior can be inferred on
the basis of earlier neural-behavioral token relationships). In fine-tuning, the tuning dataset
already uniquely specifies the function to be learned.

• Cross entropy loss for spiking data prediction: We used the standard cross entropy loss to
classify spike count over the Poisson loss common in many neural data architectures. Since
the overall ablation of neural objective shows no large impact in this work, it is likely that
this decision should be evaluated with neural data related tasks rather than decoding.

We document the Transformer model shapes considered in our work in Table 3. This shape is not
systematically explored in our work, and is by historical artifact, slightly different than the shapes
used in NLP/CV. Embedding parameters are negligible. One possible area of interest is that the
feedforward expansion factor is 1 in our model, i.e. the MLP dimension is low. If MLPs do serve as
memory stores in Transformers (Geva et al., 2021), increasing this shape may yield more performant
model size scaling, given the heterogeneity of our datasets.

D NDT3 MODEL CARD

The card is currently only provided in the codebase.
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Table 2. Evaluation datasets used for multiscale decoding and generalization analyses. The references provide
extended description of the behavioral task. Dashed line separates datasets for Section 3.1 and for analysis.
Datasets use unsorted multi-unit activity and are processed in 1s chops unless otherwise mentioned.

Dataset Description
FALCON H1, M1,
M2 (Karpowicz et al.,
2024)

3 separate single-subject multi-session datasets for different iBCI tasks.
Data comes in a high data split (held-in), and a low-data split (held-
out), with the intention on identifying methods that can achieve parity in
the two settings. H1 is an open loop human dataset for calibrating 7D
reach-and-grasp in a robot arm. M1 is a monkey reach-and-grasp task
to different objects with EMG recordings. M2 is a monkey 2D finger
movement task with manipulandum-measured kinematics. Scaling scores
are reported on the test set.

Self-paced reach
(RTT) (O’Doherty
et al., 2017)

Monkeys reach for random targets one at a time in a small planar
workspace. We decode 2D arm velocity in monkey Indy. Has neu-
ral data from M1 and S1, we use M1 in Section 3.1 and Section 3.2 and
S1 in Section 3.3.

Bimanual Cursor
Control (Deo et al.,
2024)

A human open loop dataset where the participant attempts movement of
one or both hands to control two cursors.

2D Cursor + Click
(private)

Cursor control is a classic iBCI endpoint (Pandarinath et al., 2017; Wol-
paw et al., 2002; Jarosiewicz et al., 2015). Two human participants
attempt movement according to visually cued cursor movement and au-
diovisual click cues. We also use this dataset for trial structure analysis
in Section 3.3.

Grasp force (private) A open-loop dataset with two human participants attempting isometric
power grasps. Specifically, participants were asked to match force output
according to visual cues in a Mujoco environment. Grasps cued were both
static (instant onset, hold, and offset) or dynamic (gradually increasing
force). This dataset is valuable for human iBCI study because force
modulation is required in many motor behaviors, and grasp force has
primarily only been characterized in monkeys until now (Branco et al.,
2019). Uses 2 second intervals due to long behavior timescale. We expect
this dataset can be released by end of 2024.

Critical Stability
Task (Quick et al.,
2018) (private,
trialized, sorted)

A monkey dataset collected to study continuous control relative to ballistic
movement. The monkey balances a virtual cursor on a 1D workspace for
up to 6 seconds.

Posture-varied
Center-Out (Marino
et al., 2024) (private,
trialized, sorted)

A monkey center-out task, but the monkey’s hand is adjusted to one of 6
different starting positions. We use the central position as center and the
rest as edge.

Spring-load (Mender
et al., 2023)

A monkey moves fingers, clamped together in a manipulandum for effec-
tive 1DoF, is neutral or under spring load.

Center-out, Monkey
J (Ma et al., 2022)
(trialized)

Used in Section 3.2. A monkey performs an isometric center out task.
Forces are measured by the manipulandum and converted to cursor veloc-
ity signals.

Center-out, Monkey
V (private, trialized)

Used in Section 3.2. A monkey reaches to one of 8 radially arranged
targets by moving a manipulandum (Kinarm).

Oculomotor
pursuit (Noneman
and Patrick Mayo,
2024) (private,
trialized, sorted)

A monkey visually tracks (via smooth pursuit) a target that moves from
center of workspace to one of four directions. A few dozen neurons
are recorded on probes in each of frontal eye field (FEF) and area MT.
We decode pupil velocity. The small number of neurons in this dataset
required resetting NDT3 neural readin/readout layers.

FALCON H2 Human open loop dataset where a participant attempts movement to
write letters cued on a screen (Willett et al., 2021; Fan et al., 2023). The
large number of timesteps in this dataset required resetting NDT3 neural
readin/readout layers (to use fewer neural tokens).
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Model Layers Width MLP Size Heads Parameters (M)
NDT2 PT (Ye et al., 2023) 4 256 256 4 6
NDT3 Base 6 1024 1024 8 45
NDT3 Big 12 2048 2048 16 350

Table 3. Transformer Model Shapes used in this work.
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