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ABSTRACT

Increasing the context length of large language models (LLMs) unlocks funda-
mentally new capabilities, but also significantly increases the memory footprints
of training. Previous model-parallel systems such as Megatron-LM partition and
compute different attention heads in parallel, resulting in large communication
volumes, so they cannot scale beyond the number of attention heads, thereby
hindering its adoption. In this paper, we introduce a new approach, LIGHT-
SEQ, for long-context LLMs training. LIGHTSEQ has many notable advan-
tages. First, LIGHTSEQ partitions over the sequence dimension, hence is agnos-
tic to model architectures and readily applicable for models with varying num-
bers of attention heads, such as Multi-Head, Multi-Query and Grouped-Query
attention. Second, LIGHTSEQ not only requires up to 4.7× less communica-
tion than Megatron-LM on popular LLMs but also overlaps the communica-
tion with computation. To further reduce the training time, LIGHTSEQ features
a novel gradient checkpointing scheme to bypass an forward computation for
memory-efficient attention. We evaluate LIGHTSEQ on Llama-7B and its vari-
ants with sequence lengths from 32K to 512K. Through comprehensive experi-
ments on single and cross-node training, we show that LIGHTSEQ achieves up
to 1.24-2.01× end-to-end speedup, and a 2-8× longer sequence length on mod-
els with fewer heads, compared to Megatron-LM. Anonymous codes available at
https://anonymous.4open.science/r/lightseq-anonymized.

1 INTRODUCTION

Transformers with long-context capabilities have enabled fundamentally new applications, such as
comprehensive document understanding, generating a complete codebase, and extended interactive
chatting (Osika, 2023; Liu et al., 2023; Li et al., 2023). However, training LLMs with long sequences
induces large activation memory footprints, posing new challenges to existing distributed systems.

One effective method for reducing these large activation memory footprints is to partition the acti-
vation across devices. To achieve this, existing systems like Megatron-LM (Korthikanti et al., 2023;
Shoeybi et al., 2019) usually partition the attention heads. However, this design poses a strong
assumption that the number of attention heads must be divisible by the parallelism degree, which
does not hold for many model architectures. For example, Llama-33B (Touvron et al., 2023) and its
fine-tuned versions (e.g., Tulu-30B (Wang et al., 2023)) have 52 attention heads, Falcon-7B (Penedo
et al., 2023) has 71 attention heads, and GPT-2-XL (Radford et al., 2019) has 25 attention heads.
These numbers are not divisible by commonly chosen parallelism degrees such as 8, 16, and 32,
according to the topology of NVIDIA clusters. In addition, partitioning attention heads restricts the
maximum parallelism degree to be no greater than the number of attention heads. However, many
popular LLMs do not have enough attention heads for it to scale up, e.g., CodeGen (Nijkamp et al.,
2022) only has 16 attention heads. Moreover, many works have shown that the future Transformer
architecture design may have even fewer attention heads. For example, Bian et al. (2021) demon-
strates that Transformers with a single head outperforms its multi-head counterparts, representing a
challenging scenario for solutions like Megatron-LM.
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To scale beyond the number of heads, we propose partitioning solely the input tokens (i.e., sequence
parallelism) rather than the attention heads, along the line of research in sequence parallelism Li
et al. (2021); Korthikanti et al. (2023). We present a solution that is agnostic to the model architec-
ture and exhibits a maximal parallelism degree that scales with the sequence length. Specifically, we
introduce a parallelizable and memory-efficient exact attention mechanism, DISTATTN, in (§3.1).
Our design enables opportunities for overlapping, where we can hide communication into attention
computation(§ 3.2). We also propose a load-balancing technique to avoid the computation bub-
ble caused by the unbalanced workload in causal language modeling (§3.2). While extending the
FlashAttention (Dao, 2023) algorithm to DISTATTN, we found a way to leverage the underlying
rematerialization logic to significantly improve the speed of gradient checkpointing training (§ 3.3).
This technique also applies to non-distributed usage of memory-efficient attention, and in our exper-
iments translates to an additional 1.31× speedup (§ 4.3).
Our main contributions are:

1. We design LIGHTSEQ, a long-context LLM training prototype based on sequence-level par-
allelism. We develop a distributed memory-efficient exact attention DISTATTN, with novel
load balancing and communication overlapping scheduling for causal language modeling.

2. We propose a novel checkpointing strategy that bypasses one attention forward pass when
using memory-efficient attention with gradient checkpointing training.

3. We evaluate LIGHTSEQ on Llama-7B and its variants with different attention heads pat-
terns, and demonstrate up to 2.01× end-to-end speedup compared to Megatron-LM in long-
context training. We further show that LIGHTSEQ scales beyond the number of attention
heads and enables 2-8× longer sequences training.

2 RELATED WORK

Memory-efficient attention. Dao et al. (2022) and Lefaudeux et al. (2022) propose to use an on-
line normalizer (Milakov & Gimelshein, 2018) to compute the attention in a blockwise and memory-
efficient way. It reduces peak memory usage by not materializing large intermediate states, e.g. the
attention matrix or the up projection matrix output of the MLP layers (Liu & Abbeel, 2023). Instead,
the attentions are computed in smaller blocks and only the final activation are stored. In the back-
ward pass, the intermediate states need to be recomputed. Research on sparse attention computes
only a sparse subset of the attention score, which also reduces the memory footprints yet may lead
to inferior performance (Beltagy et al., 2020; Sun et al., 2022; Zaheer et al., 2020). In this work, we
limit our scope to exact attention.

Sequence parallelism, model parallelism, and FSDP. Li et al. (2021) is among the first to par-
allelize along the sequence dimension. However, it is not optimized for the computational pattern
of causal language modeling and is incompatible with memory-efficient attention, which are crucial
to long-context LLM training. Model parallelism partitions model parameters and also distributes
the activation in parallel LLM training. Megatron-LM (Korthikanti et al., 2023) proposes a hybrid
usage of tensor parallelism and sequence parallelism to better reduce the activation on a single de-
vice and is the main baseline of the paper. Fully sharded data-parallelism (FSDP) (Zhao et al., 2023;
Rajbhandari et al., 2020) distributes optimizer states, gradients, and model parameters onto different
devices and gathers them on-the-fly. It is orthogonal to our work, and we use LIGHTSEQ in tandem
with FSDP to further reduce memory acquired by models in experiments.

Pipeline parallelism Pipeline parallelism Korthikanti et al. (2023) also partitions the activation.
However, it keeps a high memory pressure to the first stage when applying interleaved pipeline par-
allelism to minimize the computation bubble Korthikanti et al. (2023). We show in § 4.2 that pipeline
parallelism is less effective in supporting long sequence lengths compared with tensor model paral-
lelism and our sequence parallelism. Thus, we focus on comparing with tensor model parallelism
(combined with sequence parallelism) in this work and only consider including pipeline parallelism
for comparison when the tensor parallelism is limited by the number of heads.

Gradient checkpointing. Gradient checkpointing (Chen et al., 2016) trades computation for
memory by not storing the activation for certain layers and recomputing their activations during
forward. Selective checkpointing (Korthikanti et al., 2023) proposes to only recompute the attention
module as it requires large memory but with small FLOPs (in smaller context length). Check-
mate (Jain et al., 2020) searches optimal checkpointing using integer linear programming. However,
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Figure 1: Left: Sequence parallelism in LIGHTSEQ. The input sequence is split into chunks along
the sequence dimension and distributed to different workers (8 workers in the illustration). During
forward and backward, only the attention module, DISTATTN, requires communication of inter-
mediate tensors like 𝑘 and 𝑣. Some modules like LayerNorm are ignored for simplicity. Right:
Illustration of the load-balanced scheduling. Each circle is a unit of computation. And circles in the
same color means that they are computed in the same time step. For instance, the rightmost and bot-
tommost circle means that at time step 1 (t1), worker 8 is executing attn(𝑞8, 𝑘8, 𝑣8). Similarly, green
color denotes computations that happen at the second time step (𝑡2). At 𝑡2, worker 1 is executing
attn(𝑞8, 𝑘1, 𝑣1). “Bubble size” represents the times that a worker is idle. Causal language modeling
naturally introduces imbalanced workloads, e.g., worker 1 is idle from time step 2 to time step 8 be-
fore balancing. We reduce the bubble fraction by allocating computation from the busy worker (e.g.,
worker 8) to the idle worker (e.g., worker 1), so worker 1 is only idle at time step 5 after balancing.
A more detailed illustration of the load-balancing design can be found is Appendix C.
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Figure 2: Forward pass example of overlapping communication using worker 7 out of 8 workers. 𝑜
denotes the attention output computed by a remote worker. For instance, 𝑜1 = 𝑎𝑡𝑡𝑛(𝑞7, 𝑘1, 𝑣1) for
worker 7. In the communication stream, “S” stands for sending, and “R” stands for receiving. For
instance, 𝑆 : 𝑘𝑣7 → 𝑝8 denotes sending the local 𝑘𝑣7 to the remote worker 𝑝8. In Appendix C, the
communication schema at each time step is reflected in Figure 7.

none of these designs have considered memory-efficient attention kernels which perform recomputa-
tion inside the computational kernel to avoid materializing large tensors. As a result, many previous
recomputation policies become less effective. In this work, we focus on checkpointing at the bound-
ary of every transformer layer, which is a popular strategy adopted by many current open-sourced
projects such as FastChat (Zheng et al., 2023).

3 METHOD

In this section, we describe the design of the key components in LIGHTSEQ. We first introduce a dis-
tributed memory-efficient attention, DISTATTN (§3.1) which parallelizes the computation along the
sequence dimension. We then introduce a load-balanced scheduling for causal language modeling
to reduce the computation bubble as well as an asynchronous communication design that overlaps
the communication into computation (§3.2). Finally, we propose a rematerialization-aware check-
pointing strategy (§3.3) which effectively cuts off the recomputation time in gradient checkpointing.

3.1 DISTATTN: DISTRIBUTED MEMORY-EFFICIENT ATTENTION

The core idea in DISTATTN is to split the input sequence consisting of 𝑁 tokens evenly across 𝑃

workers (e.g. GPUs) along the sequence dimension. Each worker is therefore responsible for com-
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puting the forward and backward pass for only 𝑁/𝑃 of the 𝑁 tokens. For modules like the Feed
Forward Layer (FFN), Layer Norm (LN), and the embedding layer the tokens can be computed in-
dependently without coordination (embarrasingly parallel) and the work is balanced across workers.

Unfortunately, for the attention modules where local tokens may need to attend to remote tokens,
coordination is required. To address this, each worker collects all the keys and values associated with
other tokens and then locally computes the attention following Dao (2023). To address the memory
pressure introduced by collecting all other keys and values, this process is done online by streaming
the key and values from workers with earlier tokens to workers with later tokens. More formally,
denote q𝑝 , k𝑝 , v𝑝 as the query, key, value inputs held on the 𝑝-th worker (𝑝 = {1, · · · , 𝑃}), denote
𝑎𝑡𝑡𝑛(q𝑝 , k𝑝′ , v𝑝′ ) as the attention computation w.r.t. 𝑝-th chunk of the query and 𝑝′-th chunk of
the key and value, denote 𝑝local ∈ {1, · · · , 𝑃} as the local rank, and denote 𝑝remote ∈ {1, · · · , 𝑃} as
one of the remote ranks. Figure. 1 (“Before Balancing”) shows the vanilla version of DISTATTN,
where each worker computes the attention for q𝑝local and loops over both the local and the remote
key and value blocks. We fetch k𝑝remote and v𝑝remote from rank 𝑝remote before the computation of
𝑎𝑡𝑡𝑛(q𝑝local , k𝑝remote , v𝑝remote ). In Appendix. A, we provide pseudo-code on how to use DISTATTN
in LIGHTSEQ, on the 𝑝-th worker where there are 𝑃 total workers.

3.2 LOAD BALANCED SCHEDULING WITH COMMUNICATION AND COMPUTATION OVERLAP

Load balanced scheduling. Causal language modeling objective (Brown et al., 2020; Touvron
et al., 2023) is one of the most prevalent objectives for LLMs, where each token only attends to its
previous tokens. This naturally introduces a work imbalance between workers in our block-wise
attention: as shown in Figure 1 (“Before Balancing”), in an 8-worker (𝑃 = 8) scenario, the last
worker needs to attend to tokens on all other 7 workers, while the first worker is idle after attending
to its local tokens, which results in a total idle time of 28. In a general form, the idle fraction is 𝑃2−𝑃

2𝑃2

(→ 1
2 when 𝑃 → ∞), which means roughly half of the workers are idle. To reduce this idle time

(a.k.a., the bubble time), we let early workers that have finished their computation for local q𝑝local to
help compute for q𝑝remote of the later workers. For instance, we let worker 1 compute 𝑎𝑡𝑡𝑛(q8, k1, v1)
and send the result to worker 8. When the number of workers is odd, the idle fraction is 0. When the
number of workers is even, the idle fraction is 1

2𝑃 , which is asymptotically 0 when scaling to more
number of workers. We detail the load-balancing design in Appendix C.

Communication and computation overlap. DISTATTN relies on peer-to-peer (P2P) communi-
cation to fetch the k, v (or q chunks in the load balanced scheduling) from remote devices before
computing the corresponding attention block. However, these communications can be easily over-
lapped with the computation of the former blocks. For instance, When the first worker is computing
attention for its local token, it can pre-fetch the next chunk of tokens it needs for the next time step.
In modern accelerators, this can be done by placing the attention computation kernel in the main
GPU stream, and the P2P communication kernel in another stream, where they can run in paral-
lel (Zhao et al., 2023). We demonstrate the overlapped scheduling for worker 7 on the 8 workers
example in Figure. 2. Empirically, we find this optimization greatly reduces the communication
overhead (§4.3).

3.3 REMATERIALIZATION-AWARE CHECKPOINTING STRATEGY
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Figure 3: Time breakdown of attention versus
other modules in a forward pass. Time mea-
sured with Flash-Attention (Dao, 2023) on a sin-
gle 40GB A100 GPU. (Unit ms).

The de-facto way of training transformers re-
quires gradient checkpointing. Often, the sys-
tem uses heuristics to insert gradient check-
points at each Transformer layer (Wolf et al.,
2019). However, with the presence of Dao
et al. (2022), we found the previous gradient
checkpointing strategy will cause an extra re-
computation of the flash attention forward ker-
nel. Concretely, when computing the gradient
of the MLP layer, Wolf et al. (2019) will re-
compute the forward of the entire Transformer
layer, including the one in flash attention. How-
ever, when computing the gradient of the flash
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Figure 4: Comparison of HuggingFace gradient checkpointing strategy and our materialization-
aware gradient checkpointing strategy. Note that our checkpointing strategy saves an entire flash
attention forward per layer in recomputation.

attention kernel, it needs to re-compute the forward of the flash attention again. Essentially, this is
because flash attention will not materialize the intermediate values during the forward, and will re-
compute it during the backward, regardless of the re-computation strategy in the outer system level.
To tackle this, we propose to insert checkpoints at the output of the flash attention kernel, instead
of at the Transformer layer boundary. In this case, we only need to recompute the forward of flash
attention once, effectively saving a forward of attention for each Transformer layer as shown in Fig-
ure. 4. In Figure. 3, we show the attention time dominates in the forward pass when scaling up the
sequence length, which indicates our method can save ∼ 0.23 × 32 (i.e., ∼ 7) seconds when training
a 64K sequence example on Llama-7b using the local version of flash attention. In addition, this
saves a communication brought by our DISTATTN forward in the distributed training scenario. We
benchmark the end-to-end speedup brought by this materialization-aware checkpointing strategy in
§4.3.

Communication and memory analysis Denote the hidden dimension as 𝑑. In DISTATTN, every
worker needs to fetch key and value chunks both of size 𝑁

𝑃
𝑑 before performing the corresponding

chunk-wise computation. Thus, the total communication volume in the 𝑃-workers system is 2 ×
𝑁
𝑃
𝑑 × 𝑃 = 2𝑁𝑑. With the causal language objective, half of the keys and values do not need to

be attended, halving the forward communication volume to 𝑁𝑑. In the backward pass, DISTATTN
needs to communicate keys, values, and their gradients, which has 2𝑁𝑑 volume. It adds up to 3𝑁𝑑

as the total communication volume for DISTATTN. In Megatron-LM (Korthikanti et al., 2023), each
worker needs to perform six all-gather and four reduce-scatter on a 𝑁

𝑃
𝑑 size tensor, thus giving

a total communication volume of 10𝑁𝑑. Considering gradient check-pointing, Megatron-LM will
perform communication in the forward again, giving a total volume of 14𝑁𝑑. On the other hand, our
communication volume remains 3𝑁𝑑 because of the rematerialization-aware strategy. In conclusion,
LIGHTSEQ achieves 4.7x communication volume reduction compared with Megatron-LM.

In large model training, we usually utilize techniques such as FSDP to also reduce the memory
consumed by model weights. In this case, We note that the communication introduced by FSDP is
only proportional to the size of model weights, which does not scale up with long sequence length.
We show the end-to-end speedup with FSDP in Table 1. For clarity, we also note that LIGHTSEQ
is orthogonal to FSDP and by default can be used by itself. In the situations where the model
uses MQA or GQA, LIGHTSEQ further saves the communication volumes by the shared key and
values, which we discuss in detail in § 4.1. However, we also note that this is a theoretical analysis,
where the wall-clock time may differ because of factors such as implementations. In the experiment
section, we provide wall-clock end-to-end results for comparison.

4 EXPERIMENTS

In this section, we evaluate LIGHTSEQ against Megatron-LM (Korthikanti et al., 2023) and show:

1. LIGHTSEQ has faster training speed on a wide range of models. It achieves up to 2.01×
speedup over Megatron-LM on various MHA and GQA models.

2. LIGHTSEQ supports longer sequence length by scaling beyond the number of attention
heads. We show our method can support 2x-8x longer sequences than Megatron-LM.

In the ablation study, we provide the gain from each component of LIGHTSEQ: Load balancing,
computation-communication overlapping, and rematerialization-aware checkpointing.
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Cluster setup. We evaluate our method and the baseline in (1) A single A100 DGX box with
8x80 GB GPUs. These GPUs are connected with NVLink; (2) 2 DGX boxes with the same setting.
These two boxes are interconnected by 100 Gbps Infiniband. This is representative of cross-node
training, where the communication overhead has a larger effect. This is the default setup unless
otherwise stated. (3) Our in-house cluster with 2x8 A100 40GB GPUs without Inifiniband. To save
computational budget, we report some results on this cluster where conclusions can be drawn from
a single-node setup or without involving cross-node training time.

Model setup. We evaluate our system on Llama-7B and its variants of different representative fam-
ilies: (1) Multi-head attention(MHA) models: LLama-7B with 4096 hidden size and 32 query(key
and value) heads (Touvron et al., 2023); (2) Grouped-Query attention (GQA) models: Llama-
GQA Ainslie et al. (2023), same as Llama-7B but with 8 key and value heads. During attention
computation, it will first replicate to 32 heads in order to do matrix multiplication with the correct
shape. (3) models with more general number of attention heads: Llama-33H. Llama-33H has the
same configuration as Llama-7B but with 33 query (key and value) attention heads per layer. (4)
models with fewer attention heads: we design Llama-16H, Llama-8H, Llama-4H, Llama-2H with
16, 8, 4, and 2 heads. According to Liu et al. (2021), we keep the number of attention heads by
scaling the number of layers properly1 and keep the intermediate FFN layer size the same to make
the model sizes still comparable. For example, Llama-16H has 16 attention heads per layer, a hidden
size of 2048, an FFN layer of size 11008, and 64 layers.

Implementation. LIGHTSEQ is a lightweight scheduling level prototype. In particular, we imple-
ment the load balancing and overlapping in Python and NCCL Pytorch bindings in 1000 lines of
codes (Paszke et al., 2019; Jeaugey, 2017), and the checkpointing strategy in 600 lines of Pytorch.
It is attention backend agnostic. To reduce the memory consumption and reach faster speed in the
attention module, we use the FlashAttention2 algorithm (Dao, 2023). We use the triton (Tillet et al.,
2019) implementation and minimally modify it to keep around statistics in the flash attention algo-
rithm. We tweak all block sizes to 128 and the number of stages to 1 for the best performance in our
cluster. We reuse the C++ backward kernels of FlashAttention2 because we do not need to modify
the backward logic. We run LIGHTSEQ using FSDP (inter-node if applicable) so that it consumes
similar memory than the Megatron-LM baseline for a fair comparison (Zhao et al., 2023). For fair
comparisons, we run all comparisons using the same attention backend. We also add support for
Megatron-LM so that comparing with them can produce a more insightful analysis: (1) not mate-
rializing the causal attention mask, greatly reducing the memory footprint. For instance, without
this support, Megatron-LM will run out of memory with Llama-7B at a sequence length of 16K per
GPU. (2) head padding where the attention heads cannot be divided by device number. All results
are gathered with Adam optimizer, 10 iterations of warm-up, and averaged over the additional 10
iterations.

4.1 FASTER TRAINING SPEED AND BETTER SUPPORT FOR DIFFERENT MODEL
ARCHITECTURES

In this section, we compare our method with Megatron-LM on three settings: (1) the multi-head
attention (MHA) models where the number of key and value heads equals the number of query
heads; (2) the grouped-query attention (GQA) models where the number of key and value heads is
less than the number of query heads; (3) the models with arbitrary numbers of heads, i.e. the number
heads is unnecessarily a multiple of the parallelism degree.

Multi-head attention (MHA). On the Llama-7B model, our method achieves 1.24× and 1.44×
speedup compared to Megatron-LM in single node and cross node setting, up to the longest sequence
length we experiment. This is a joint result of our overlapping communication technique and our
rematerialization-aware checkpointing strategy. We analyze how much each factor contributes to this
result in the ablation study ( § 4.3). We do note that our method does not achieve better performance
in shorter sequences, such as per GPU 4K setting for cross node. This is because the communication
dominates the training run-time, where our overlapping technique has not been able to reduce much.
We leave the optimization of P2P communication on MHA models and shorter sequence length as
an exciting future work.

1For instance, Llama-7B has 32 attention heads and 32 layers, thus Llama-16H has 16 attention heads per
layers and 64 layers
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Table 1: Per iteration wall-clock time of LIGHTSEQ and Megatron-LM (Korthikanti et al., 2023)
(Unit: seconds). Speedup in bold denotes the better of the two systems in the same configuration.
Time measured with 2 DGX boxes.

Method # GPUs Sequence Length Llama-7B Llama-GQA Llama-33H
Per GPU Total Time speedup Time speedup Time speedup

Megatron-LM

1x8 4K 32K 2.54 1.0x 2.43 1.0x 3.15 1.0x
1x8 8K 64K 6.81 1.0x 6.60 1.0x 8.37 1.0x
1x8 16K 128K 20.93 1.0x 20.53 1.0x 25.75 1.0x
1x8 32K 256K 72.75 1.0x 71.93 1.0x 90.21 1.0x

LIGHTSEQ

1x8 4K 32K 2.50 1.02x 2.30 1.06x 2.58 1.22x
1x8 8K 64K 5.98 1.14x 5.61 1.18x 6.08 1.38x
1x8 16K 128K 17.26 1.21x 16.86 1.22x 17.77 1.45x
1x8 32K 256K 58.46 1.24x 57.01 1.26x 59.96 1.50x

Megatron-LM

2x8 4K 64K 5.29 1.0x 5.26 1.0x 7.52 1.0x
2x8 8K 128K 14.26 1.0x 14.21 1.0x 20.63 1.0x
2x8 16K 256K 43.44 1.0x 43.20 1.0x 62.78 1.0x
2x8 32K 512K 147.06 1.0x 146.38 1.0x 216.70 1.0x

LIGHTSEQ

2x8 4K 64K 6.85 0.77x 4.92 1.07x 7.03 1.07x
2x8 8K 128K 12.75 1.12x 9.74 1.46x 13.12 1.57x
2x8 16K 256K 30.21 1.44x 28.49 1.52x 31.33 2.00x
2x8 32K 512K 106.37 1.38x 102.34 1.43x 107.76 2.01x

Table 2: The maximal sequence length Per GPU supported by LIGHTSEQ and Megatron-LM with
tensor parallelism and pipeline parallelism on 16xA100 40GB GPUs. LIGHTSEQ supports 512K
sequence length in all models, while Megatron-LM strategy maximal sequence length decreases
with fewer heads, with either data parallelism or pipeline parallelism.

Llama-16H Llama-8H Llama-4H Llama-2H

Megatron TP+DP 512K 256K 128K 64K
Megatron-LM TP+PP 512K 256K 256K 128K

LIGHTSEQ 512K 512K 512K 512K

Grouped-query attention (GQA). On LLama-GQA model, our method achieves better speedup
because our communication of key and value vectors significantly reduces. Note that our communi-
cation time is proportional to the sum of query, key, value, and output (for load balancing) vectors,
where reducing key and value sizes to 8 almost half-en our communication time. On the contrary,
the communication time in Megatron-LM does not decrease because its communication happens
outside of the attention module, i.e. not influenced by optimization inside the attention module.
Thus, its overall training run-time does not decrease as much as LIGHTSEQ.

We take the 4K per-GPU sequence length and 2x8 GPUs as an example for analysis. In the MHA
experiment, the communication in a forward and a backward pass of a single attention module is
roughly 143ms and the computation time is roughly 53ms. In addition, our overlapping technique is
able to hide 45ms into the computation, resulting in a total run-time of 151ms and a net communi-
cation overhead of 98 ms. As a reference, the communication in Megatron-LM takes 33ms, which
is why Megatron-LM is faster than LIGHTSEQ under this particular setting in the MHA experiment.
When considering the GQA case, the communication in LIGHTSEQ roughly reduces to 71 ms. Over-
lapping with the computation, the communication overhead is now less than that of Megatron-LM.
Combined with the checkpointing technique, we are seeing a positive speedup gain at 4K per-GPU
sequence length. As the sequence length increases, our overlapping technique, driven by the fact
that computation time surpasses communication time, and our checkpointing method, due to the ris-
ing ratio of a single attention forward, both contribute to greater speedup. Overall, we can observe
speedups up to 1.52× on the cross-node setting, making an additional eight percent enhancement
compared to the results in the MHA experiment of the same setting.
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Figure 5: Ablation on the effect of balanced schedule (left) and the effect of overlapping (right).

In support of arbitrary numbers of heads. With Llama-33H models, Megatron-LM exhibits an
additional performance decline compared to LIGHTSEQ. This is due to its requirement to pad the
number of attention heads so that the number of attention heads is divisible by the number of de-
vices. On the other hand, LIGHTSEQ does not need to partition attention heads and can support an
arbitrary number of heads efficiently. For instance, when using 8 GPUs, Megatron-LM must pad the
attention heads to 40, resulting in 21.2% of the computation being wasted. In the case of 16 GPUs,
Megatron-LM is compelled to pad the attention heads to 48, leading to a more substantial computa-
tion wastage of 45.5%. This roughly corresponds to a 1.21× or 1.45× increase in run-time compared
to LIGHTSEQ when training a Llama-7B model. This performance degradation of Megatron-LM is
primarily because the training time is dominated by the attention module’s computation time when
scaling to longer sequence lengths. Empirically, we observe a 1.50× and 2.01× speedup (an addi-
tional 20% and 45% speedup compared to Llama-7B cases, aligned with the theoretical analysis).

4.2 SCALING BEYOND THE NUMBER OF HEADS.

Assuming the number of heads being a multiple of the tensor parallelism degree constraints
Megatron-LM to scale its tensor parallelism degree beyond the number of heads, thus limiting its
scaling ability to longer sequence lengths. When the number of GPUs exceeds the number of atten-
tion heads, there will be three possible solutions to use Megatron-LM. First, the user can pad dummy
heads as in the Llama-33H scenario. However, when scaling to longer sequences, the percentage
of dummy heads padded almost directly translates to the percentage of slowdown. For instance, for
Llama-8H, this solution pads 2× dummy heads and would almost translate to a 2× slowdown, which
is very inefficient. Second, the user can use data parallelism for excess GPUs. For instance, a user
with 16 GPUs can choose to use 4-way data parallelism and 4-way tensor parallelism on the Llama-
4H model. Since data parallelism does not partition the activation, the system can only support
sequences as if the user only has 4 GPUs. Lastly, the user may choose to use pipeline parallelism
to partition activation. However, the memory usage at each stage of the pipeline is not evenly dis-
tributed, still limiting the maximal sequence length supported. In particular, the first pipeline stage
usually stores more activations because it will hold the most active micro-batches. For instance,
in the Llama-2H experiment, we find that different stages consume from 18GB to 32GB in a 64K
sequence length (Section E). In addition, using pipeline parallelism introduces an extra fraction of
GPU idle time. We demonstrate the effect of using the latter two solutions in Table 6. In 16 A100
40GB GPUs, LIGHTSEQ supports the training of 2× and 8× longer sequences.

4.3 ABLATION STUDY

Effect of load balancing. We study the effect of load balancing using the forward pass of an
attention operation in Llama-7B model, on 8 A100 40GB GPUs. The backward pass follows a
similar analysis. With an unbalanced schedule (Figure 1), the total work done is 36, where the
total work could be done in 8 units of time is 64. Thus, the expected maximal speedup is 4.5x. In
the balanced schedule, the expected maximal speedup is 7.2x. We scale the total sequence length
from 4K to 256K. The unbalanced version saturates in 4.5x speedup compared to a single GPU
implementation, while the balanced version saturates 7.5x 2 speedup. Both of them align with our
earlier theoretical analysis and show the importance of our balanced scheduling.

Effect of overlapping communication and computation. We study the benefits of overlapping
communication on Llama-7B and 2 DGX boxes. We find that overlapping greatly reduce the com-
munication overhead. For instance, on a global sequence length of 128K, the communication over-
head is reduced from 105% to 44%. This overlapping scheme maximizes its functionality when the

2We find the single machine attention flops drop with very long sequence length, resulting in a slightly
higher speedup than assuming its perfect scalability.
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communication overhead is less than 100%, where all communication can be potentially overlapped.
Empirically, we find the system only exhibits 8% and 1% overhead in these cases, showing a close
performance to an ideal system without communication.

Effect of materialization-aware checkpointing. We show in Table. 3 the ablation results of our
rematerialization-aware gradient checkpointing. Our method achieves 1.16x, 1.24x, and 1.31x
speedup at the sequence length of 8K, 16K, and 32K per GPU respectively. The materialization-
aware checkpointing strategy speeds up more at longer sequence lengths because it saves an entire
attention forward which dominates the computation at longer sequence lengths.

Table 3: Ablation study on the effect of the rematerialization-aware gradient checkpointing on 8
A100s in a single node with a batch size of 1. We report the end-to-end run time in seconds and show
the speedup of our gradient checkpointing strategy (“Our ckpt”) over the HuggingFace gradient
checkpointing strategy (“HF ckpt”).

Ckpt Method Sequence Length Per GPU
1K 2K 4K 8K 16K 32K

HF ckpt 0.84 1.29 2.64 6.93 21.44 76.38
Our ckpt 0.84 1.36 2.50 5.98 17.26 58.46

Speedup 1.0x 0.94x 1.06x 1.16x 1.24x 1.31x

4.4 COMPARISON WITH DEEPSPEED UYLESS

DeepSpeed-Ulysses 3 is a concurrent open-sourced implementation, which uses all-to-all commu-
nication primitive to reduce the communication volume. In our testing, we verified that their com-
munication is lower than Megatron-LM. Yet, as it is also partitioning the attention head dimension,
it suffers from similar problems as analyzed above. We provide some end-to-end comparisons in
Appendix B. We note that the communication in DeepSpeed Ulysses can be faster than LIGHT-
SEQ, especially with shorter context length and slower network, where the overlapping technique
in LIGHTSEQ cannot perfectly hide all the communication. This can be potentially addressed by
optimizing the P2P communication as discussed above.

4.5 DISCUSSION

In this section, we discuss the future directions that can further improve LIGHTSEQ.

Optimizing P2P communication and better support for shorter context length and lower band-
width region. As shown in §4.1, LIGHTSEQ may be slower in shorter context length and MHA
models (Llama-7B on per GPU sequence length 4K). Based on our preliminary investigation, this is
because our usage of P2P is not as optimized as primitives used in tensor model parallelism, such
as all-gather kernels .For instance, they are not aware of the underlying cluster topology. For the
same reason, we also observed that the current P2P optimization has not achieved the theoretical
4.7× speedup in a very low bandwidth region (e.g. in our in-house cluster). In the future, we plan to
implement the P2P scheduling in a topology-aware way to further improve the communication time.

5 CONCLUSION

In this work, we introduce LIGHTSEQ, a sequence parallel prototype for long-context transformer
training. LIGHTSEQ presents novel system optimizations including load balancing for causal lan-
guage modelings, overlapped communication with computation in the distributed attention compu-
tation, and a re-materialization-aware checkpointing strategy. Our experiments evaluate multiple
families of transformer models and on different cluster types, showing that it achieves up to 2.01×
speedup and scales up to 8x longer sequences, compared to another popular system, Megatron-LM,.
Future directions include implementing topology-aware P2P operations to further reduce training
time in lower sequence lengths.

3https://github.com/microsoft/DeepSpeed/tree/master/blogs/
deepspeed-ulysses
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APPENDIX

A USING DISTATTN IN LIGHTSEQ

Algorithm 1 DISTATTN in LIGHTSEQ (forward pass)

Require: Matrices Q𝑝 ,K𝑝 ,V𝑝 ∈ R 𝑁
P ×𝑑 in HBM, block sizes 𝐵𝑐, 𝐵𝑟 , rank

1: function STANDALONE FWD(q, k, v, o, ℓ, m, causal, last)
2: Divide 𝑞 into 𝑇𝑟 =

⌈
𝑁
P𝐵𝑟

⌉
blocks 𝑞1, . . . , 𝑞𝑇𝑟 of size 𝐵𝑟 × 𝑑 each,

3: and divide 𝑘, 𝑣 in to 𝑇𝑐 =

⌈
𝑁
P𝐵𝑐

⌉
blocks 𝑘1, . . . , 𝑘𝑇𝑐 and 𝑣1, . . . , 𝑣𝑇𝑐 , of size 𝐵𝑐 × 𝑑 each.

4: Divide the output 𝑜 ∈ R 𝑁
P ×𝑑 into 𝑇𝑟 blocks 𝑜𝑖 , . . . , 𝑜𝑇𝑟 of size 𝐵𝑟 × 𝑑 each, and divide the

logsumexp 𝐿 into 𝑇𝑟 blocks 𝐿𝑖 , . . . , 𝐿𝑇𝑟 of size 𝐵𝑟 each.
5: for 1 ≤ 𝑖 ≤ 𝑇𝑟 do
6: Load 𝑞𝑖 from HBM to on-chip SRAM.
7: Load 𝑜𝑖 ∈ R𝐵𝑟×𝑑 , ℓ𝑖 ∈ R𝐵𝑟 , 𝑚𝑖 ∈ R𝐵𝑟 from HBM to on-chip SRAM as 𝑜 (0)

𝑖
, ℓ (0)

𝑖
, 𝑚 (0)

𝑖
.

8: for 1 ≤ 𝑗 ≤ 𝑇𝑐 do
9: if causal and 𝑖 ≤ 𝑗 then

10: Continue
11: end if
12: Load 𝑘 𝑗 , 𝑣 𝑗 from HBM to on-chip SRAM.
13: On chip, compute 𝑠

( 𝑗 )
𝑖

= 𝑞𝑖𝑘
𝑇
𝑗
∈ R𝐵𝑟×𝐵𝑐 .

14: On chip, compute 𝑚
( 𝑗 )
𝑖

= max(𝑚 ( 𝑗−1)
𝑖

, rowmax(𝑠 ( 𝑗 )
𝑖

)) ∈ R𝐵𝑟 , 𝑝 ( 𝑗 )
𝑖

= exp(𝑆 ( 𝑗 )
𝑖

−
𝑚

( 𝑗 )
𝑖

) ∈ R𝐵𝑟×𝐵𝑐 (pointwise), ℓ ( 𝑗 )
𝑖

= 𝑒𝑚
𝑗−1
𝑖

−𝑚( 𝑗)
𝑖 ℓ

( 𝑗−1)
𝑖

+ rowsum(𝑝 ( 𝑗 )
𝑖

) ∈ R𝐵𝑟 .

15: On chip, compute 𝑜
( 𝑗 )
𝑖

= diag(𝑒𝑚
( 𝑗−1)
𝑖

−𝑚( 𝑗)
𝑖 )−1𝑜

( 𝑗−1)
𝑖

+ 𝑝
( 𝑗 )
𝑖

𝑣
𝑝

𝑗
.

16: end for
17: On chip, compute 𝑜𝑖 = diag(ℓ (𝑇𝑐 )

𝑖
)−1𝑜

(𝑇𝑐 )
𝑖

.
18: Write 𝑜𝑖 to HBM as the 𝑖-th block of 𝑜.
19: if last then
20: On chip, compute 𝐿𝑖 = 𝑚

(𝑇𝑐 )
𝑖

+ log(ℓ (𝑇𝑐 )
𝑖

).
21: Write 𝐿𝑖 to HBM as the 𝑖-th block of 𝐿.
22: end if
23: end for
24: Return 𝑜, ℓ, 𝑚 and the logsumexp 𝐿.
25: end function
26: Initialize O𝑝 = (0) 𝑁

P ×𝑑
∈ R 𝑁

P ×𝑑 , ℓ (𝑝) = (0) 𝑁
P
∈ R 𝑁

P , 𝑚𝑝 = (−∞) 𝑁
P
∈ R 𝑁

P .
27: O𝑝 , ℓ𝑝 , 𝑚𝑝 , 𝐿 𝑝 = standalone fwd(Q𝑝 ,K𝑝 ,V𝑝 , O𝑝 , ℓ𝑝 , 𝑚𝑝 , True, p=1)
28: for 1 ≤ 𝑟 < 𝑝 do
29: Receive K𝑟 and V𝑟 from Remote worker 𝑟 into HBM.
30: O𝑝 , ℓ𝑝 , 𝑚𝑝 , 𝐿 𝑝 = standalone fwd(Q𝑝 ,K𝑦 ,V𝑦 , O𝑝 , ℓ𝑝 , 𝑚𝑝 , False, r=(p-1)
31: Delete K𝑟 and V𝑟 from HBM.
32: end for
33: Return the output O𝑝 and the logsumexp 𝐿.

In this section, we provide more details of DISTATTN, and how it can be used with the outer LIGHT-
SEQ logic of the forward pass (Alg 1). For conceptual simplicity, we demonstrate it in the most
vanilla version, without the actual scheduling (e.g. load balancing and overlapping). We also demon-
strate it with the causal language modeling objective. The standalone attention is mainly borrowed
from the FlashAttention2 paper (Dao, 2023). To make it compatible with DISTATTN, we mainly
revised the several points:

1. Accumulate results statistics 𝑜, 𝑚 and 𝑙 from previous computation, instead of initializing
them inside the function.
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2. Pass an extra argument ”last”, which means whether this is the last chunk of attention
computation. Only when it is true, we compute the logsumexp 𝐿.

At a high level, on a worker 𝑝, LIGHTSEQ first initializes local statistics 𝑚, 𝑙, 𝐿. Then LIGHTSEQ
loops over all its previous workers. In each iteration, it fetches the key and the value from a worker
and invokes the revised standalone attention to update local statistics. At the end of the iteration,
it needs to delete the remote key and value from HBM so that the memory does not accumulate.
At the last iteration of the loop, it additionally calculates the logsumexp according to the final 𝑚
and 𝑙 (the ”last” variable in the algorithm). At the end of the forward pass, worker 𝑝 has the correct
𝑚, 𝑙, 𝐿. The backward pass is similar and conceptually simpler because we do not need to keep track
of statistics such as 𝑚 and 𝑙. Instead, we only need to use the logsumexp stored in the forward pass.

B COMPARISON WITH DEEPSPEED ULYSSES

We run a subset of the experiments compared with DeepSpeed-Ulysses. Firstly, DeepSpeed-Ulysses
does reduce the communication overhead, and thus better than Megatron-LM on scenarios listed in
Table 4. LIGHTSEQ achieves better performance than DeepSpeed-Ulysses on longer sequences
or models with a more general number of heads (e.g. Llama-33H). We also note that DeepSpeed-
Ulysses can not scale beyond the number of attention heads because it also relies on sharding the
attention heads. However, we need to point out that in shorter sequences and MHA models (where
LIGHTSEQ does not have a communication advantage, compared to GQA/MQA models), the com-
munication primitives used in DeepSpeed-Ulysses are more advantageous. We leave our further
optimization in P2P in shorter sequences and MHA models as an exciting future work.

C LOAD-BALANCING ALGORITHM FOR CAUSAL MODELING

In this section, we detail the design of our load-balancing algorithm for causal modeling. We show
the workload of each worker in all time steps in Figure 6 (before applying load-balancing) and
Figure 7 (after applying load-balancing) in an 8-worker scenario. The communication schema is
also reflected in both figures by comparing the tensors each worker holds at the consecutive two
time steps.

D COMPARISON WITH RING SELF-ATTENTION (RSA)

Ring self-attention is among the first sequence parallelism work for Transformers, proposed in Li
et al. (2021). It communicates tensors in a ring fashion. Firstly, we report the maximal sequence
length of RSA and LIGHTSEQ in Table 5, and found that LIGHTSEQ supports at least 8x longer
sequences than RSA. This is mainly because RSA is not natively compatible with memory-efficient
attention (i.e. it modifies the attention computation). We further measure the iteration time with
the maximal sequence length RSA can support in Table 6, and found that LIGHTSEQ is 4.45x -
5.64x faster than RSA. This is mainly because LIGHTSEQ has optimized sequence parallelism
in (1) causal language objective ( 2x speedup), and (2) memory-efficient attention (Dao, 2023).
In explanation, memory-efficient attention also speeds up the attention computation by carefully
managing the IO during attention, as pointed out in (Dao et al., 2022; Dao, 2023).

E MEMORY CONSUMPTION FOR PIPELINE PARALLELISM

In this section, we show the memory consumption of Megatron-LM when training with tensor par-
allelism and pipeline parallelism. As presented in table 7, memory consumption are uneven across
different pipeline stages, making scaling through pipeline parallelism hard.
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Method # GPUs Sequence Length Time Speedup
Per GPU Total

Llama-7B

Megatron-LM

2x8 4K 64K 5.29 1.0x
2x8 8K 128K 14.26 1.0x
2x8 16K 256K 43.44 1.0x
2x8 32K 512K 147.06 1.0x

DeepSpeed-Ulysses

2x8 4K 64K 4.29 1.23x
2x8 8K 128K 11.61 1.23x
2x8 16K 256K 37.53 1.16x
2x8 32K 512K 134.09 1.10x

LIGHTSEQ

2x8 4K 64K 6.85 0.77x
2x8 8K 128K 12.75 1.12x
2x8 16K 256K 30.21 1.44x
2x8 32K 512K 106.37 1.38x

Llama-33H

Megatron-LM

2x8 4K 64K 7.52 1.0x
2x8 8K 128K 20.63 1.0x
2x8 16K 256K 62.78 1.0x
2x8 32K 512K 216.70 1.0x

DeepSpeed-Ulysses

2x8 4K 64K 6.42 1.17x
2x8 8K 128K 17.47 1.18x
2x8 16K 256K 56.63 1.11x
2x8 32K 512K 202.89 1.07x

LIGHTSEQ

2x8 4K 64K 7.03 1.07x
2x8 8K 128K 13.12 1.57x
2x8 16K 256K 31.33 2.00x
2x8 32K 512K 107.76 2.01x

Table 4: Per iteration wall-clock time of LIGHTSEQ, Megatron-LM (Korthikanti et al., 2023) and
DeepSpeed Ulysses (Unit: seconds). Speedup in bold denotes the better of the three systems. We
calculate the speedup based on Megatron-LM iteration time. Time measured with cluster 2, 2 DGX
boxes.

Table 5: Maximal sequence length on Llama-7B on the DGX (A100-80GB) cluster.

1 Node (8 GPUs) 2 Nodes (16 GPUs)

RSA 32K 64K
LIGHTSEQ > 256K > 512K
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Figure 6: Illustration of DISTATTN before applying load-balancing on 8 workers.
15
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Figure 7: Illustration of DISTATTN after applying load-balancing on 8 workers.

Table 6: Per iteration time comparison with RSA (seconds) on the DGX clusters.

1 Node (32K) 2 Nodes (64K)

RSA 14.10 30.49
LIGHTSEQ 2.50 6.85

Speedup 5.64x 4.45x

Table 7: The memory consumption of Megatron-LM when training Llama-2H with tensor paral-
lelism (degree=2) and pipeline parallelism (degree=8) on 16xA100 40GB GPUs at the sequence
length of 128K. The memory consumption is highly uneven across pipeline stages.

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5 Worker 6 Worker 7 Worker 8

node 1 31.5GB 31.4GB 28.7GB 28.7GB 26.0GB 26.0GB 24.6GB 24.6GB
node 2 21.8GB 21.8GB 20.5GB 20.5GB 17.9GB 17.8GB 32.0GB 32.1GB
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