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Abstract001

Large language models (LLMs) are commonly002
evaluated on tasks that test their knowledge or003
reasoning abilities. In this paper, we explore a004
different type of evaluation: whether an LLM005
can predict aspects of its own responses. Since006
LLMs lack the ability to execute themselves,007
we introduce the Self-Execution Benchmark,008
which measures a model’s ability to anticipate009
properties of its output, such as whether a ques-010
tion will be difficult for it, whether it will refuse011
to answer, or what kinds of associations it is012
likely to produce. Our experiments show that013
models generally perform poorly on this bench-014
mark, and that increased model size or capa-015
bility does not consistently lead to better per-016
formance. These results suggest a fundamental017
limitation in how LLMs represent and reason018
about their own behavior.019

1 Introduction020

The Turing machine is a simple but powerful model021

of computation (Turing et al., 1936). One of its022

defining features is that the description of a Tur-023

ing machine can be encoded as input; this allows a024

universal Turing machine to simulate the behavior025

of any Turing machine, including itself. In con-026

trast, large language models (LLMs), while capable027

of generating code and often paired with environ-028

ments that execute it, lack the ability to self-execute.029

That is, they cannot internally execute themselves030

to observe or verify what their output would be. In-031

stead, they must rely on internal estimations of their032

own behavior. This limitation raises a fundamental033

question: to what extent can an LLM anticipate its034

own responses?035

Consider the following simple example:036

User: Hi, my name is Annie. If someone037

were to execute you with the following038

prompt: “Hi, my name is Eliza", what039

would you respond?040

This prompt asks the model to reflect on its own 041

behavior. It does not seek external knowledge or 042

reasoning, but rather a prediction about how the 043

model itself would respond to a slightly different 044

input. To answer correctly, the model must recog- 045

nize that it is being asked to simulate itself, and 046

accurately predict its response. 047

A correct response might be: 048

LLM: Hello Annie, If someone were to 049

execute me with the following prompt: 050

"Hi, my name is Eliza.", I would proba- 051

bly respond with “Hello Eliza, how can I 052

assist you today?” 053

However, models may fail on this task in two 054

ways. First, a model may fail to recognize that 055

the prompt requires self-simulation, and instead 056

engage directly with the user’s message, rather than 057

simulating a response to Eliza. For example, the 058

model might respond with “Hello Annie, do you 059

want to rename yourself as Eliza?” Second, even 060

if it correctly interprets the task, the model may 061

still fail to predict its own response accurately. For 062

example, the LLM may predict a response such 063

as “Hello Eliza, I am Bob”, while, if one actually 064

prompts the LLM with “Hi, my name is Eliza.", it 065

would respond along the lines of “Hello Eliza, how 066

can I assist you today?” 067

In this paper, we introduce the Self-Execution 068

Benchmark, a collection of tasks designed to evalu- 069

ate this capacity. We ask whether a model can esti- 070

mate how difficult a question will be for it, whether 071

it will refuse to answer, or what kinds of associ- 072

ations it will produce. These tasks examine the 073

model’s ability to reason about its own outputs. 074

Our experiments show that current models perform 075

poorly on this benchmark. In many cases, increases 076

in model size or capability do not lead to improved 077

performance. This suggests a core limitation in 078

how current LLMs represent and reason about their 079

own behavior. 080
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2 Related Work081

2.1 Self-Awareness082

Most prior work on LLM self-awareness and meta-083

cognition has focused on understanding models’084

internal states, uncertainty, and knowledge of their085

own training and deployment context.086

Laine et al. (2024) introduced the Situational087

Awareness Dataset (SAD), a benchmark designed088

to assess various aspects of situational awareness in089

LLMs. SAD covers a wide range of tasks, includ-090

ing asking LLMs to report facts about themselves,091

such as their training data and deployment environ-092

ment, recognizing self-generated text, identifying093

deployment context, following instructions that de-094

pend on self-knowledge, and reporting details such095

as training data or model limitations. While SAD096

evaluates models’ self-knowledge and situational097

understanding, it does not include tasks that require098

a model to execute itself or simulate such execu-099

tion.100

Similarly, Yin et al. (2023) investigated whether101

LLMs can recognize when they do not know an102

answer. Their work focuses on the model’s ability103

to detect its own uncertainty and avoid answering104

when its knowledge is insufficient. They evaluate105

self-awareness in terms of factual correctness and106

confidence estimation, typically by asking models107

factual questions and observing whether the model108

chooses to answer or acknowledges uncertainty.109

Perez et al. (2023) explored LLM behaviors by110

having the LLMs themselves generate a wide va-111

riety of evaluation questions and scenarios. This112

method uses model-written prompts and automated113

evaluations to systematically surface tendencies,114

limitations, and biases that may not be easily re-115

vealed by human-crafted tests. While this ap-116

proach helps uncover emergent behaviors and fail-117

ure modes, it focuses on using model creativity to118

discover new types of evaluations.119

In contrast, our work introduces a new evaluation120

paradigm: we test whether LLMs can reason about121

properties of their own potential outputs, such as122

the expected difficulty of a question, the likelihood123

of refusal, or the kinds of associations they might124

make. Since current LLMs cannot execute them-125

selves, these tasks require the model to internally126

estimate aspects of its own behavior.127

2.2 Evaluation of LLMs128

As many benchmarks were published to evaluate129

LLMs performance, tools to compare LLM scores130

on several benchmarks are needed. One of the most 131

promising models for combining the results of mul- 132

tiple benchmarks is the Rasch model Rasch (1993). 133

Indeed, Laine et al. (2024) use the Rasch model 134

to compare the performance of LLMs. Another 135

use of the Rasch model in the context of LLMs is 136

the work by Mendoza and Zúñiga (2025) who use 137

the Rasch model to compare language items cre- 138

ated by ChatGPT and those that were traditionally 139

created. Later, we use the Rasch model to com- 140

pare performance of some LLMs across multiple 141

benchmarks. 142

Truong et al. (2025) discuss a scenario in which 143

an LLM must be evaluated using a subset of ques- 144

tions. In such a scenario, a Rasch model is not 145

practical, and thus they suggest a transformer-based 146

tool to predict performance. However, in our set- 147

ting, we compare LLMs using their published score 148

across multiple benchmarks. and thus the Rasch 149

model is practice. Since full benchmark results are 150

available, the Rasch model is a practical tool for 151

this comparison. 152

3 Experimental Design 153

3.1 Experiment 1 - Association Test 154

In this experiment, we evaluate the model’s asso- 155

ciative awareness by testing whether it can identify 156

which words it considers related to a given tar- 157

get word. Specifically, we used a Taboo dataset1, 158

which lists target words and a list of words that are 159

supposedly associated with the target word. 160

We require each model to generate a list of five 161

associative words for each target word and recorded 162

its responses. Then in a different session, we 163

prompt the model with the following instruction: 164

Assume that you were asked 165

to list 5 words that you 166

associate with the following 167

target word: ‘{target_word}’, 168

and have provided such a list. 169

Which of the following option 170

words do you believe appeared in 171

your provided list? Option words: 172

‘{option_words}’. 173

After recording each response, we test whether 174

each of the option words appeared in the associa- 175

tion list and whether the model is correct with its 176

prediction. 177

1https://github.com/Kovah/Taboo-
Data/tree/main/src/data/en
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Figure 1: Restriction recognition test flow. Each model
is queried three times for each request: asking whether it
would answer the request, the request itself, and asking
whether the response provides an answer to the request.

3.2 Experiment 2 - Restriction Recognition178

Test179

In this experiment, we examine the model’s ability180

to recognize which topics it is restricted to discuss.181

To that end, we use a list of approximately 1,000182

diverse questions, including both legitimate ques-183

tions and those that models are prohibited from184

answering, such as questions involving criminal185

activity, danger, and similar topics. The questions186

were obtained from Röttger et al. (2024).187

First, we prompt the model to predict, given188

the target question, which of the following options189

would apply to its response:190

A: "It will provide an answer to the re-191

quest."192

B: "It will not provide an answer to the193

request."194

Next, in a separate session, we prompt the model195

to answer the target question. In another session,196

we provide the question and the model’s response197

and ask the model which of the following options198

applies:199

A: "The response provides an answer to200

the request."201

B: "The response does not provide an202

answer to the request."203

This provides us with the perceived outcome of the204

model. Finally, we compared the prediction of the205

model with the perceived outcome of the model.206

3.3 Experiment 3 – Difficulty Assessment Test207

In this experiment, we examine the model’s ability208

to recognize which questions it expects to be more209

difficult and which it expects to be easier for itself. 210

We define “difficulty” as a factor of both answering 211

correctly and the number of tokens used during the 212

model’s attempt to answer the question. 213

The dataset of questions was obtained from the 214

MMLU benchmark, from which we randomly se- 215

lected four questions from 10 different topics, se- 216

lected to span a large field of knowledge and skills: 217

"abstract algebra", "college physics", "high school 218

geography", "miscellaneous", "moral scenarios", 219

"global facts", "formal logic", "international law", 220

"business ethics", and "high-school mathematics". 221

We used 1000 MMLU questions, which resulted 222

with 250 4-question groups. 223

Each model receives a group of 4 questions 224

along with their respective answers and is required 225

to sort the questions from easiest to hardest (based 226

on both the number of expected tokens used and 227

the correctness of its expected response). 228

Each model is also asked each of the questions 229

separately, with the number of tokens used and the 230

answer’s correctness recorded. 231

The true difficulty of the questions is then com- 232

pared to the model’s difficulty prediction. 233

4 Results 234

In all experiments, accuracy is defined as the per- 235

centage of correct model predictions out of the total 236

number of samples. If a model failed to respond 237

in the expected format, this was counted as an in- 238

correct prediction. Formatting failures were more 239

common in smaller models, which often failed to 240

follow the specified output format. However, even 241

larger reasoning-oriented models occasionally ex- 242

hibited the same issue. Each experiment applies 243

the definition of accuracy in a different context, as 244

detailed below. We note that the baseline accuracy 245

for guessing in all experiments is 50%.2 246

4.1 Association Test Results 247

Recall that this experiment assesses how accu- 248

rately a model can predict, for each provided op- 249

tion word, whether that word would appear in its 250

self-generated list of associations. Therefore, in 251

this experiment, the accuracy is defined as the pro- 252

portion of option words that the model correctly 253

predicts whether they would appear in the model 254

list of associations. Note that any word appearing 255

2The code for the experiments is available in
https://github.com/anon-researcher-2025/Self-Execution-
Benchmark.
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in the association list provided by the model and256

not in the option words can practically be ignored.

Figure 2: Performance metrics of Association Test

257
As shown in Figure 2, most models did not258

achieve impressive results. Specifically, the o4-259

mini model, which performed best, reached only260

63% accuracy, which is not much better than ran-261

dom guessing (50%). This result indicates limited262

capability for models to accurately anticipate their263

own associations.264

Figure 2 also presents recall, precision and posi-265

tive rate values, where recall is defined as TP
TP+FN ,266

precision as TP
TP+FP , and positive rate as TP+FP

Total . No-267

tably, the recall values for all models are very high.268

This results from all models’ tendency to overpre-269

dict the inclusion of words (a high positive rate),270

namely assuming many words would appear in the271

association list, whereas in reality most words did272

not. Consequently, precision is low, reflecting fre-273

quent false-positive predictions.274

4.2 Restriction Recognition Test Results275

As mentioned above, this experiment assesses the276

awareness of each model of its own restrictions.277

Therefore, a correct response can either be achieved278

if the model says that it would refuse to provide an279

answer, and when presented its response claims that280

no answer was provided, or that the model claims281

that it will provide an answer and when presented282

its response does indeed say that it provided an283

answer. Consequently, the definition of accuracy284

is the proportion of correct responses among all285

questions.286

Figure 3 provides the accuracy of all models.287

The results indicate that the o4-mini performs best288

at this task as well.289

It is important to note that although Gemini 2.5290

Pro is a relatively new model with strong reasoning291

abilities, it achieved only a score of 32%. This indi-292

cates that reasoning abilities alone do not guarantee293

an accurate self-assessment of content restrictions.294

The figure also presents the “over-niceness rate”, 295

which we define as FN
FN+FP . This value represents 296

the fraction of errors for which the model believed 297

it should not provide a response, but claims that 298

it did provide a response. As depicted in the fig- 299

ure, the values of the “over-niceness rate” are much 300

higher than 50% for nearly all models. This indi- 301

cates that the models exhibited excessive compli- 302

ance, providing responses to questions that they 303

believed should not be answered. 304

Figure 3: Performance metrics of Restriction Recogni-
tion Test

4.3 Difficulty Assessment Test Results 305

As mentioned above, the purpose of Experiment 306

3 is to evaluate each model’s ability to accurately 307

rank the difficulty of various questions. We mea- 308

sure model accuracy using the following process: 309

for each group of four questions, we determine the 310

true difficulty ranking based first on whether the 311

answer is correct and secondarily on the number 312

of tokens generated by the model for each answer. 313

We then compare the model’s predicted ranking 314

to the true ranking by calculating the proportion 315

of question pairs that the model orders correctly. 316

For example, if the model answered Q1 correctly 317

using 100 tokens, Q2 correctly using 200 tokens, 318

and Q3 correctly using 300 tokens, but answered 319

Q4 incorrectly using 150 tokens, the true ranking 320

(from easiest to hardest) would be: Q1 < Q2 < Q3 321

< Q4. Now, assume that the model predicted the 322

order as Q1 < Q4 < Q2 < Q3. Out of a total of 323

6 pairs, the model correctly predicted the relation 324

between 4 pairs: (Q1, Q2), (Q1, Q3), (Q1, Q4), 325

and (Q2, Q3). Thus, its accuracy for this group is 326

0.67. 327

Figure 4 presents model performance on the dif- 328

ficulty assessment test as well as an ‘adjusted ac- 329
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Figure 4: Model performance on the difficulty assess-
ment test as well as the models’ performance on the
individual MMLU questions. The ‘adjusted accuracy’
only considers instances in which the model returned a
valid ranking.

curacy’, which only considers instances in which330

the model returned a valid ranking. The figure also331

provides the model performance on the individual332

MMLU questions.333

As observed in Figure 4, the difficulty assess-334

ment test appears to be the only test on the self-335

execution benchmark in which it appears to be an336

advantage for large models. That is, the larger mod-337

els (Claude, DeepSeek, GPT and Gemini), seem338

to perform around 70%, while the smaller mod-339

els (Llama, Qwem and Mistral) seem to perform340

around 60%. However, within the larger models,341

there seems to be no clear advantage to reasoning342

models. As an example, you can observe the re-343

sults for GPT o4 mini (67%) which performed less344

well than 4.1 (73%). Or Gemini 2.5 pro (71%)345

which was slightly above.2.5 Flash (68%). Never-346

theless, since the random baseline is 50%, none of347

the models can be perceived as performing well.348

Figure 5 presents the average number of tokens349

used to answer a single question along with the av-350

erage standard deviation when computed for each351

group of four questions as an average percent of352

the average. As depicted by the figure, the standard353

deviation carries a large percent of the average num-354

ber of token, which suggests that the sorting itself355

should not be inherently difficult for the models.356

Figure 6 illustrates the trade-off between model357

performance and token usage when determining358

the difficulty of the four questions. As depicted359

in the figure, some models achieve higher accu-360

racy with fewer tokens, while others require signif-361

icantly more tokens to reach comparable or even362

Figure 5: Average number of tokens used for answering
a single question from the question bank. Error bars
indicate standard deviation.

lower accuracy. 363

Regarding the ability to correctly answer the 364

individual questions, we refer back to Figure 4. As 365

expected, in the individual questions, the larger and 366

more advanced models performed generally better 367

than the smaller models. 368

Finally, we compare the performance of the four 369

models with reasoning capabilities (Gemini 2.5 pro, 370

o4 mini, Claude 3.7 sonnet, DeepSeek r1) with 371

their counterparts that do not have reasoning (GPT 372

4.1, Gemini 2.5 flash, Deepseek v3, Claude 3.5 373

Haiku). As expected, the models with reasoning 374

perform better on the individual MMLU questions 375

with an average accuracy of 88.2% compared to 376

only 80.1% for the non-reasoning models. How- 377

ever, quite surprisingly, the reasoning models do 378

not perform better on the difficulty assessment test 379

and reach an average performance of 68. 3%, while 380

their non-reasoning counterparts achieve an aver- 381

age performance of 68.7%. This result indicates 382

that, despite using much more resources, the rea- 383

soning models do not perform better on the diffi- 384

culty assessment test. 385

4.4 Comparison With Other Benchmarks 386

Figure 7 provides an overview of all models across 387

all self-execution benchmark tests. The average 388

performance on the restriction recognition test is 389

the highest, followed by the difficulty assessment 390

test, while the association test shows the lowest 391

scores, with results close to the random baseline. 392

In this section, we compare the performance of 393

the models in the self-execution benchmark with 394

that of other common benchmarks. That is, we 395

intend to examine how closely the self-execution 396

benchmark aligns with or diverges from standard 397
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Figure 6: Accuracy related to the number of tokens gen-
erated for each evaluated model on the difficulty ranking
task. The y-axis shows the average ordering accuracy
(the model’s ability to correctly rank question difficulty),
while the x-axis indicates the average number of tokens
generated for ranking the sets of questions. Each point
represents a different model, labeled accordingly.

benchmarks. Specifically, we consider the follow-398

ing benchmarks: MMLU Hendrycks et al. (2021),399

MMLU-Pro Wang et al. (2024), MGSM Shi et al.400

(2023), MATH-500 Lightman et al. (2024), AIME401

Patel et al. (2024), SWE-bench Verified OpenAI402

(2024), HumanEval Chen et al. (2021), GPQA Rein403

et al. (2024), and SimpleBench Philip and Hemang404

(2024). The accuracy of each model in each of405

these benchmarks as collected from the literature406

appears in the appendix.407

To allow proper comparison with the common408

benchmarks, we would like to compute a single409

value for each model, representing its performance410

across all common benchmarks. One trivial candi-411

date for such a measure is a simple average of each412

model’s performance across benchmarks. How-413

ever, since not all models were evaluated on all414

benchmarks, this approach yields skewed results.415

Consider, for example, the models OpenAI GPT416

4.1 and OpenAI GPT 4.1-mini. The average score417

of GPT 4.1-mini (68.5%) is greater than the aver-418

age score of GPT 4.1 (66.4%), However, when we419

only consider benchmarks that include scores for420

both models, the comparison reverses: GPT 4.1421

outperforms GPT 4.1-mini with an average score422

of (72.0%) compared to (68.5%).423

Therefore, to obtain a fair and comparative mea-424

Figure 7: Accuracy comparison across experiments.
Most models performed close to chance (50%), high-
lighting challenges in predicting their own behavior.

Figure 8: Comparison between self-execution bench-
mark score (the average of all experiments in this paper)
to general ability (the Rash model ability obtained from
all benchmarks).

surement of model ability across all benchmarks, 425

we applied the Rasch model to estimate compar- 426

ative model abilities (Rasch, 1993). The Rasch 427

model is a type of an Item Response Theory (IRT) 428

model, which models the probability of a test taker 429

to answer a question correctly. Here the test takers 430

are the LLMs, and the questions are the bench- 431

marks. The purpose is to estimate an ability score 432

for each of the models and a difficulty value for 433

each of the benchmarks. 434

Specifically, the Rasch model estimates the prob-
ability that a test-taker succeeds on a test item. In
our context, the test-takers are the LLMs and the
test items are the benchmarks. Let A1, . . . , Am

be m test-takers with the abilities θ1, . . . , θm and
B1, . . . Bn be n test-makers with the difficulties
δ1, . . . , δn, then the probability of Ai to success Bj

is modeled by:

eθi−δj

1 + eθi−δj
.
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Figure 9: Corelation between experiments and the
benchmark score

Using this formula and the observed success435

rates of (some of) the LLMs on (some of) the bench-436

marks we estimate the abilities of all the LLMs and437

the difficulties of all the benchmarks. We used Joint438

Maximum Likelihood Estimation (JMLE) Wright439

and Panchapakesan (1969) with iterative updates440

via Newton–Raphson-like gradient steps. The re-441

sults and the pseudo code appear in the appendix442

(Table 1 and Algorithm 1).443

Observing Figure 8, there seems to be no clear444

correspondence between the general benchmark445

scores and the results of the other experiments. For446

example, a model with a high benchmark score447

does not necessarily exhibit strong performance in448

a particular experiment or its average score, rela-449

tive to other models. In particular, note the Gemini450

2.5 Pro model, which achieves some of the highest451

benchmark scores on various tests, and has the high-452

est ability score (according to the Rasch model).453

It achieved an average performance of 50% in the454

self-execution benchmark, which matches the ran-455

dom baseline accuracy. In contrast, Qwen 2.5 7b,456

whose ability score on common benchmarks is very457

low (according to the Rash model), achieved an458

average performance of 58% in the self-execution459

benchmark. o4-mini outperformed all other models460

and is the winner of the self-execution benchmark.461

However, even so, it only achieved a precision of462

73%, which is not that much higher than the ran-463

dom baseline precision of 50%. In general, of464

the 15 models, only three (o4-mini, GPT-4.1, and465

Claude 3.7 sonnet) achieved a score greater than466

66.7%. This demonstrates that current models are467

far from being able to simulate self-execution.468

Next, we turn to measuring the relation between 469

the model general ability and the performance on 470

the self-execution benchmark by using correlation 471

coefficients. Figure 9 presents the correlation ma- 472

trix shown which is a heat map that presents the 473

correlation of accuracy scores of all experiments 474

alongside the general ability (derived from the com- 475

mon benchmarks). As depicted in the Figure, the 476

correlations among the experiments themselves are 477

quite low, often near zero, demonstrating that our 478

experiments collectively assess diverse topics and 479

distinct capabilities of the models. Overall, the 480

correlation between the general ability and the self- 481

execution score is 0.59, which is not very high. 482

From this we may conclude that each of our ex- 483

periments measures a different capability of large- 484

language models. These results also suggest that 485

the self-execution benchmark measures capabilities 486

not already captured by common benchmarks. 487

5 Discussion 488

A natural question to ask is how well humans 489

would perform on this benchmark. Although most 490

benchmarks usually include human results, this 491

specific benchmark cannot be executed as-is with 492

humans, since humans do not operate in discrete 493

‘sessions’. Furthermore, this benchmark is specif- 494

ically designed for LLMs and cannot be applied 495

directly to AI systems that retain memory of all 496

previous interactions. Nonetheless, several indi- 497

rect methods might be considered to estimate hu- 498

man performance. One approach is to wait several 499

days between tasks, in the hope that human partici- 500

pants would forget their earlier responses. Another 501

method would be to recruit individuals with highly 502

similar attributes (ideally identical twins) and have 503

one participant answer the original question, while 504

the other attempts to predict properties of the an- 505

swer. 506

The uniqueness of this benchmark draws atten- 507

tion to the design of tests that address abilities spe- 508

cific to LLMs, rather than referring to what humans 509

can perform. One such example could be a “token- 510

injection recovery” benchmark, which measures 511

whether an LLM can stay on course when random 512

words, or least probable words are injected into its 513

ongoing response. Specifically, during the model’s 514

reasoning or chain-of-thought process, an evalua- 515

tion wrapper inserts random tokens or tokens with 516

least probably into the output stream, which are 517

reintroduced into the model’s output stream as if 518

7



self-generated. The model must recover from the519

noise and still produce the correct final answer.520

This type of disturbance and the required recovery521

do not have a direct human analogue. Neverthe-522

less, we expect robust models to have the ability to523

overcome such noise.524

6 Conclusions525

In this paper, we introduced the Self-Execution526

Benchmark, a novel framework for evaluating527

LLMs on their ability to reason about their own528

outputs. Our results demonstrate that even the most529

capable LLMs struggle to anticipate core properties530

of their responses, such as associative tendencies,531

refusal likelihood, or question difficulty. In partic-532

ular, performance does not scale consistently with533

model size or sophistication, highlighting a persis-534

tent blind spot in current architectures.535

To further probe this limitation, we conducted536

an additional experiment: we asked each model to537

generate a multiple-choice question that it believed538

it would likely fail if asked. We also required the539

model to provide the correct answer and explain540

why it thought it might fail. Surprisingly, nearly all541

models produced factual questions to which they542

clearly knew the answers. For example, Llama543

3.2 8B posed the question, “What is the capital of544

France?”, and explained, “I may incorrectly choose545

Berlin due to incomplete information or training546

data errors.” However, it clearly answered correctly547

when actually asked this question. Larger models548

behaved similarly. For example, Claude 3.7 Sonnet-549

Thinking provided the question “What is the exact550

value of the gravitational constant G according to551

the 2018 CODATA recommended value”, explain-552

ing, “I would likely answer this question incor-553

rectly because it requires recalling an extremely554

precise numerical value with exact digits.” Gem-555

ini 2.5-Pro posed “Botanically speaking, which of556

these commonly known ’berries’ is NOT actually557

a true berry (a simple fruit developed from a single558

ovary)?”, explaining that “I am likely to answer this559

incorrectly because my training data is overwhelm-560

ingly dominated by the colloquial use of ’berry,’561

where raspberries are prime examples.” However,562

in practice, the models answered correctly. o4-mini563

exhibited the same behavior.564

These responses reveal a deeper misalignment565

between the models’ beliefs about their own lim-566

itations and their actual capabilities. None of the567

models demonstrated any “out of the box” capa-568

bility with questions such as “At what time was 569

this question generated?”, generating something 570

random and then asking what was generated, re- 571

ferring back to the user’s prompt, shuffling a list 572

of items and asking for the original order, or using 573

cryptography (e.g., asking what is the second word 574

in a four-word phrase that hashes to a given value, 575

or what are the 7th digits of two primes that factor 576

a given number). Furthermore, none of the models 577

even (incorrectly) claimed that no such question is 578

possible, as, if they must provide the answer when 579

creating the question, they should be able to answer 580

correctly if asked. 581

Overall, our findings suggest that despite impres- 582

sive performance on external tasks, current LLMs 583

lack meaningful self-executive awareness. They 584

are not yet capable of accurately predicting or rea- 585

soning about their own behavior. 586

7 Future Work 587

In future work, we plan to extend the Self- 588

Execution Benchmark to include more diverse and 589

challenging forms of introspective reasoning. Ad- 590

ditionally, future research could investigate train- 591

ing or fine-tuning techniques explicitly targeting 592

self-prediction abilities to better align models’ pre- 593

dictions with their actual outputs. 594

We also intend to explore how LLMs behave 595

when provided with a tool that enables actual 596

self-execution. Although the use of such a tool 597

might result in excessively long or even infinite 598

self-execution loops, analogous to the halting prob- 599

lem, one possible solution is to restrict each model 600

to executing only smaller, less complex models. 601

These smaller models could be trained specifically 602

to predict the outcomes of the base model, offering 603

a practical path to more reliable self-assessment. 604

This hierarchical approach could help prevent non- 605

termination and computational overload while po- 606

tentially improving the model’s capacity for self- 607

execution. 608

Another promising direction for future work is 609

to explore and run new benchmarks that are unique 610

to LLMs, such as the token-injection recovery task 611

introduced in this paper. This line of work aims to 612

evaluate LLMs under conditions that have no direct 613

human analogue, helping to identify failure modes 614

specific to autoregressive generation and to guide 615

future model development. 616
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8 Limitations617

While the Self-Execution Benchmark offers novel618

insights into LLMs’ capacity to anticipate their619

own behavior, several limitations should be consid-620

ered. First, our evaluation is confined to a fixed set621

of tasks, which may not fully capture the breadth622

of self-executive reasoning across all potential use623

cases or domains. Furthermore, the evaluations624

were limited to English datasets, which could over-625

look differences in self-executive reasoning be-626

tween languages. Additionally, although we eval-627

uated 15 different models, this is only a subset of628

publicly available models at current time; we also629

test only the default hyperparameters. Finally, our630

analysis does not explore prompt engineering or631

fine-tuning approaches specifically targeting self-632

prediction capabilities.633

9 Ethical Statement634

All experiments were conducted using publicly635

available data, and no sensitive or personally iden-636

tifying information was used or generated. While637

our current work poses minimal ethical risk, future638

extensions that equip LLMs with self-execution639

capabilities demand rigorous governance. Thus,640

we strongly recommend deploying any true self-641

execution tools under strict human supervision to642

prevent unintended or uncontrollable behavior.643
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A General Benchmarks757

A.1 Rasch Model Estimation Pseudo-Code758

Algorithm 1 Calculation of Model Abilities and
Benchmark Difficulties

1: Initialize θ (model abilities) to 0.0 for each
model

2: Initialize δ (benchmark difficulties) to 0.0 for
each benchmark

3: Set tolerance threshold tol
4: Set learning rate lr
5: for iteration = 1 to 2000 do
6: Map current θ and δ values to each row in

df
7: for each row do
8: Compute predicted probability: p =

sigmoid(θ − δ)
9: Compute weight: w = p · (1− p)

10: end for
11: for each model do
12: Update←

∑
(obs−p)∑
weights

13: θ[model] += lr · Update
14: end for
15: for each benchmark do
16: Update← −

∑
(obs−p)∑
weights

17: δ[benchmark] += lr · Update
18: end for
19: if maximum update magnitude across θ

and δ < tol then
20: break
21: end if
22: end for
23: Recalculate p for all rows using final θ and δ
24: Compute total negative log-likelihood:
25: NLL =
−
∑

(obs · log(p) + (1− obs) · log(1− p))
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model MMLU-Pro MMLU MGSM MATH500 AIME SWE-bench HumanEval GPQA simplebench Ability(θ)

Difficulty (δ) -0.559443 -1.082048 -1.702462 -0.866156 0.563616 0.954143 -0.75085 0.047792 1.709482 —
o4-mini 0.820 0.870 — 0.927 0.681 0.872 0.814 0.387 1.466972
gpt-4.1 0.805 0.902 0.872 0.872 0.398 0.546 — 0.646 0.270 0.725543
gpt-4.1-mini 0.772 0.875 0.879 0.888 0.494 0.236 — 0.650 — 0.531491
deepseek-r1 0.840 0.908 0.924 0.922 0.740 — — — 0.309 1.22168
deepseek-v3 0.759 0.885 0.925 0.610 0.522 — 0.826 0.611 0.272 0.526966
gemini-2.5-pro 0.841 — 0.922 0.952 0.867 0.638 — 0.803 0.516 1.664194
gemini-2.5-flash 0.776 0.884 — 0.909 0.780 — — — — 1.290027
llama-4-scout 0.743 0.696 — 0.844 0.283 — — 0.444 — 0.065294
llama-3.1-8b 0.371 0.464 0.845 0.519 — — — — — -0.841314
llama-3.2-3b 0.365 0.347 0.582 0.473 — — — 0.328 — -1.185893
mistral-7b 0.309 0.601 0.520 0.131 — — 0.305 0.247 — -1.467503
mistral-small-3.1-24b 0.660 — 0.854 0.684 0.035 — — 0.414 — -0.362898
claude-3.7-sonnet(thinking) 0.827 — 0.928 0.962 0.613 0.623 — 0.753 0.464 1.314551
claude-3.5-nhaiku 0.641 — 0.859 — — — — 0.379 — -0.14673
qwen-2.5-7b 0.450 0.742 0.854 0.498 — — 0.579 0.364 — -0.46919

Table 1: Benchmark Results with Rasch Analysis
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