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ABSTRACT

Part-level pointing is important for fine-grained interaction and reasoning, yet ex-
isting Multimodal Large Language Models (MLLMs) remain limited to instance-
level pointing. Part-level pointing presents unique challenges: annotation is costly,
parts are long-tail distributed, and many are difficult to specify precisely in lan-
guage. We introduce POinting at Parts (POP), a training-free, plug-and-play ap-
proach that addresses these challenges under a few-shot setup. POP fuses textual
and visual attention maps with self-supervised visual correspondences from query
image and few-shot examples. On average across the three evaluated datasets,
POP achieves accuracy gains of up to 8.9 points in the one-shot setting and 16.4
points in the three-shot setting for the pointing-capable MLLMs—Qwen2.5-VL,
Ovis2.5, and Molmo. Notably, even MLLMs without pointing capability bene-
fit significantly from the proposed approach. These results establish a simple yet
effective path toward fine-grained spatial grounding in MLLMs.

1 INTRODUCTION

Pointing, or precise spatial grounding, is one of the most universal nonverbal languages in our
daily communication (Tomasello et al., 2007). For example, infants point to food to express their
needs, teachers point to a diagram to guide students’ attention, etc. Inspired by its universality,
a pointing-capable model allows agents to act in their environments and communicate rich and
grounded information with humans, e.g. pointing to waypoints for navigation (Zhang et al., 2024b),
pointing to paths for manipulation (Jason Lee, 2025), etc.

Recent work in Multimodal Large Language Models (MLLMs) has demonstrated promising point-
ing capabilities through generating pixel locations in text (Deitke et al., 2025; Bai et al., 2025; Lu
et al., 2025). Despite this progress, current MLLMs fall short of realizing the full potential of point-
ing: Most systems operate well at the instance level but struggle pointing at the part level, such as a
keyboard of the laptop computer, as shown in Fig.1. Part-level pointing unlocks affordances (Yuan
et al., 2024), enabling precise interaction and reasoning with objects (Jason Lee, 2025). For exam-
ple, it allows robotic agents to grasp or manipulate items at the correct functional region, supports
fine-grained image or video editing, and facilitates more detailed visual understanding tasks such as
identifying defects (Hussain, 2023) or highlighting anatomical structures.

Moving from instance-level to part-level pointing increases both task complexity and annotation
costs. At finer granularity, the long-tail of parts grows rapidly since many occur rarely or only in
specific contexts. Parts are also hard to describe unambiguously: for example, “the horizontal bar
connecting the two legs of a chair” or “the small tab under a soda can lid.” Such expressions are
often imprecise, inconsistent, or absent from common vocabularies. Few-shot examples offer a prac-
tical compromise, helping models ground references to visually specified parts without exhaustive
annotations or precise terminology.

In this work, we present a training-free and plug-and-play approach that enables MLLMs to perform
part-level pointing under the few-shot setup. Our approach, POinting at Parts (POP), leverages
strong text understanding from MLLMs and visual correspondences from self-supervised encoders
such as DINOv3 (Siméoni et al., 2025). Specifically, it integrates language-guided attention maps
from MLLMs with dense visual features that establish part-level correspondences between support
and target images. By combining these complementary signals, POP enables effective few-shot part
pointing with no additional training. On average across the three evaluated datasets, POP improves
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InternVL: I can’t point.
Molmo: (75, 61)

Zero-shot Pointing

For the laptop with 
blue case, point to 
its keyboard.

Training-Free Few-shot Pointing (Ours)

POP 
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 : Prediction     : Ground truth region  : Support point label
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Figure 1: We introduce a training-free approach that enhances part-level pointing in MLLMs
in few-shot settings. Prior works in MLLMs excel at instance-level pointing, but fall short in part-
level pointing (blue). In this work, we present POinting at Parts (POP) that leverages the attention
maps in MLLMs and few support examples to improve part-level pointing (green). Furthermore,
POP works for both point-capable and non-pointing capable MLLMs without additional training,
resulting in consistent improvements across 5 MLLMs from different families.

each of the pointing-capable MLLMs —Qwen2.5-VL-7B (Bai et al., 2025), Ovis2.5-9B (Lu et al.,
2025), and Molmo-7B-D (Deitke et al., 2025)—by up to 8.9 accuracy points with a single shot.
Remarkably, POP also benefits MLLMs without instance-level pointing post-training—InternVL3-
8B (Zhu et al., 2025) and Kimi-VL-A3B (Team et al., 2025b)—achieving improvements of up to
30.9 accuracy points with a single shot. To sum up, our contributions are as follows.

1. We propose POinting at Parts (POP), which enables part-level pointing by combining at-
tention information from MLLMs and self-supervised visual encoders.

2. On average across the three evaluated datasets, POP improves each of the pointing-capable
MLLMs —including Qwen2.5-VL, Ovis2.5-9B, and Molmo-7B-D—by up to 8.9 accuracy
points in the one-shot setting and up to 16.4 points in the three-shot setting.

3. On the same datasets, POP also benefits MLLMs without specialized pointing post-
training, including InternVL3-8B and Kimi-VL-A3B, achieving improvements of up to
30.9 accuracy points with a single shot.

2 RELATED WORKS

Pointing in MLLMs. Recent advances in multimodal large language models (MLLMs) have
demonstrated strong pointing capabilities (Deitke et al., 2025; Yuan et al., 2024; Team et al., 2025a;
Bai et al., 2025; Lu et al., 2025). For instance, Molmo (Deitke et al., 2025) shows that pointing ben-
efits both natural grounding and counting by sequentially localizing individual instances, thereby
providing interpretable reasoning traces. In robotics, while MLLMs can provide high-level action
plans in natural language, language often lacks the spatial specificity needed for reliable execution,
e.g., “place the cup next to the plate”. RoboPoint (Yuan et al., 2024) addresses this by grounding
user query into 2D action points which are projected into 3D space for manipulation and navigation.
Similarly, Gemini Robotics (Team et al., 2025a) highlights pointing as a core embodied reasoning
capability, supporting tasks such as grasp prediction and trajectory planning. Beyond interacting
in the physical worlds, pointing provides a natural interface for GUI agents where models directly
point to elements like buttons and icons rather than predicting bounding boxes (Cheng et al., 2025).

These works establish point-based visual grounding as an emerging paradigm bridging multimodal
understanding with downstream applications in robotics, GUI interaction, and counting. Building
on this direction, our work focuses on training-free object part pointing, leveraging exemplars to
combine the strengths of MLLMs and visual foundation models for precise part-level grounding.

Visual Grounding with Attention Maps in MLLMs. Recent works in MLLMs exploit attention
maps in frozen MLLMs to highlight regions relevant to text queries, providing effective grounding
without modifying their weights (Wu et al., 2025; Kang et al., 2025). F-LMM (Wu et al., 2025) uses
these maps with a lightweight refinement module for visual grounding while preserving MLLMs’
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knowledge and conversational ability. Kang et al. (2025) further identify Localization Heads with
strong grounding ability and propose a fully training-free method to derive bounding boxes from
pseudo-masks. Following this direction, we leverage attention maps from frozen MLLMs to ex-
tract part-level semantic cues for localization. By combining textual semantics with exemplar-based
visual correspondences, our method achieves fine-grained part-level grounding.

Visual Semantic Correspondence. Semantic correspondence (Liu et al., 2011) aims to estab-
lish dense pixel correspondences across objects sharing the same semantics but differing in appear-
ance, viewpoint, or deformation. Recent self-supervised representation learning, particularly with
DINO (Caron et al., 2021; Oquab et al., 2024; Siméoni et al., 2025), has advanced this task by pro-
viding strong patch-level features. These representations enable reliable cross-image matching (Liu
et al., 2024) and capture robust visual semantics (Amir et al., 2022; Zhang et al., 2023). Building on
this idea, methods such as Matcher (Liu et al., 2024) and GF-SAM (Zhang et al., 2024a) leverage
DINO-v2 (Oquab et al., 2024) as a vision foundation model to extract exemplar-to-target patch cor-
respondences, which can then be integrated with segmentation foundation models (Kirillov et al.,
2023) for training-free few-shot segmentation. These findings show that features from DINO are
particularly well-suited for training-free visual correspondence, enabling effective exemplar-based
semantic transfer and accurate part localization in target images. In this work, we adopt a similar
strategy by utilizing the off-the-shelf vision foundation model DINO-v3 (Siméoni et al., 2025) to
build visual correspondences between support and target images, which serve as semantic localiza-
tion cues that are further combined with text information to achieve precise part pointing.

3 BACKGROUND

Problem Formulation and Notations. We study few-shot part-level pointing. In a K-shot setting,
each episode consists of a support set, a target image I and a text query q describing a part of interest,
e.g., a mug’s handle. The goal is to predict a point p within the coordinate system of I that reflects
the text query. The support set is used to provide clues to specify the part of interest in q, consisting
of K tuples of support images and points (Is, ps).

In this work, we leverage multimodal large language models (MLLMs) and self-supervised visual
encoders. An MLLM typically consists of three main components: a vision encoder, an adapter, and
a large language model (LLM). Given a target image It, the vision encoder together with the adapter
transforms it into a sequence of visual tokens with shape RHlWl×dl , where Hl and Wl denote the
number of visual tokens along the height and the width, respectively, and dl is the hidden dimension
of the LLM. These visual tokens are then concatenated with the text tokens and fed into the LLM
for autoregressive generation. On the other hand, a self-supervised visual encoder projects a target
image and a set support images into patch-level features zt, zs ∈ RHvWv×dv , where Hv and Wv

correspond to the number of patches along the height and width, and dv is the hidden dimension of
the visual encoder.

Pointing via Attention Maps in MLLMs. Previous works (Wu et al., 2025; Kang et al., 2025)
have shown that attention maps in MLLMs can be used for visual grounding. In particular, F-
LMM (Wu et al., 2025) demonstrate that attention scores from all heads can serve as language-
guided localization priors. Kang et al. (2025) further identify a subset of attention heads, called
localization heads, that consistently attend to the visual token best describing the query text. We
extend their approach by using these localization head attention maps for training-free pointing:
the visual token receiving the highest attention from the text token is selected, and the center of
this patch is used as the predicted point. This provides a simple yet effective pointing strategy
without additional training. Further details on the identification of localization heads are provided
in Appendix B.1. In the next section, we propose to further enhance the use of attention maps in
MLLMs as localization cues by leveraging few-shot exemplars.

4 METHOD

In this section, we introduce POinting at Parts (POP). We first present the motivations of POP with
the motivations and preliminary observations in Sec. 4.1. Then, in Sec. 4.2, we elaborate POP, a
training-free, plug-and-play approach that leverages few-shot exemplars to enhance part pointing.

3
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Figure 2: Overview of the introduced approach, POP. Our approach incorporates the attention
maps from MLLMs (left) and the semantic correspondences from self-supervised visual encoder
(right), such as DINOv3, to produce precise part-level point predictions.

In particular, POP uses dense visual features from self-supervised visual encoder to establish fine-
grained correspondences between a target image and a labeled support set.

4.1 MOTIVATIONS

In Sec. 3, Kang et al. (2025) shows the potentials to perform instance-level pointing from attention
maps in MLLMs. However, when moving to part-level pointing, we find the prior work results in
imprecise and coarse pointing predictions. For instance, in Fig. 3, the query “neckband” activates
the correct region but still assigns the highest score to the “body”, showing that text alone gives
only a rough localization cue. To address the imprecision of the attention maps of localization heads
in MLLMs, we explore to refine the collected attention maps by leveraging a support set and a
self-supervised vision encoder.

In particular, we extract all patch-level features from the target image and labeled patch features
from each of the K support images, defining patch-level similarity as the cosine similarity between
them. We observe that DINOv3 (Siméoni et al., 2025) features capture fine-grained part-level infor-
mation. However, this purely visual approach lacks referring ability: when multiple similar objects
appear (e.g., two sweaters or several bowls), all corresponding regions are highlighted simultane-
ously, making it impossible to disambiguate the query.

These findings suggest that localization cues from MLLMs attention maps and patch-level corre-
spondences between support and target images are complementary. The former provides semantic
grounding and referring ability, while the latter supplies precise local matches. Integrating both
yields more accurate and semantically consistent part localization.

4.2 POP: POINTING AT PARTS

Language-guided Localization Priors. Given a query and an input image, we extract attention
maps from the last query token to all image tokens using the selected localization heads within the
MLLM. The attention maps are reshaped to RHl×Wl and smoothed with a Gaussian filter. Finally,
the smoothed maps are aggregated via element-wise summation to obtain the final language-guided
localization score map SText ∈ RHl×Wl . For more details, please refer to Appendix B.2.

Visual Semantic Correspondences. Without loss of generality, we first describe the case of 1-
shot part pointing. At the end of this section, we will elaborate how we extend to the K-shot setup.
Given a support image Is and point ps, we use DINOv3 (Siméoni et al., 2025) to extract patch-
level features that capture visual semantics, allowing us to locate the corresponding part in target
images It. Our hypothesis is that target patches most similar to the support patch containing ps
likely belong to the same part (Amir et al., 2022; Zhang et al., 2023; Liu et al., 2024; Zhang et al.,
2024a). Conversely, if a target patch corresponds to a part, its nearest support patch in feature space
should also lie on that part.

Based on this intuition, we adopt a bidirectional spatial similarity computation strategy. The forward
similarity is defined by comparing the patch containing ps in Is with all patches in It. The backward
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Support Image Target Image (MLLM Attention Map) (Support -> Target) (Target -> Support) (Forward + Backward) (Text + Visual)

Target query: rim of the black bowl

Target query: neckband of the red sweater

SText S    Visual-fwd SVisual SFinalS         Visual-bwd

    : Support Points : Ground Truth Region 

Figure 3: Visualization of score maps from MLLM attention map, visual semantic correspon-
dences, and their integration. Attention maps from MLLMs provide rough localization but lack
precision, while visual correspondences from DINOv3 capture fine-grained details but are ambigu-
ous across similar objects. Integrating the two yields accurate and semantically consistent part-level
localization.

similarity is computed by first finding, for each patch in It, its most similar patch in Is, and then
measuring the similarity between those patches and the patch containing ps in Is. Finally, the
forward and backward similarity maps are fused to obtain the final semantic correspondence.

4.2.1 FORWARD SIMILARITY

Given inputs Is and It, the visual encoder produces patch-level features zs, zt ∈ RHvWv×dv . We
then compute the patch-wise correspondence matrix A ∈ RHvWv×HvWv as

Aij =
zis · z

j
t

∥zis∥ ∥z
j
t ∥

,

where Aij represents the cosine similarity between the i-th patch feature zis of Is and the j-th patch
feature zjt of It.

Let is denote the index of the patch in zs containing ps. We define the forward similarity score map
SVisual-fwd ∈ RHv×Wv for the target image as

SVisual-fwd
j

= Aisj , j = 1, . . . , HvWv,

where SVisual-fwd reflects the similarity between the patch containing ps and each patch in the target
image, with higher scores indicating a stronger correspondence to the same object part.

4.2.2 BACKWARD SIMILARITY

In contrast to the forward similarity, we also compute a backward similarity from the target image
to the reference image. For each patch zjt in the target image It, we first identify its most similar
patch in the support image Is as

m(j) = argmax
i

Aij ,

where Aij is the patch-wise similarity defined above. The index m(j) thus represents the matching
patch in Is that is most similar to the j-th patch in It.

We then measure the relationship between this matching patch and the patch containing ps. Let
is denote the index of the patch in Is containing ps. The backward similarity score map Sbwd ∈
RHv×Wv is defined as

Sbwd
j =

ziss · zm(j)
s

∥ziss ∥ ∥zm(j)
s ∥

, j = 1, . . . , HvWv.
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This design is motivated by the intuition that if a patch in the target image corresponds to an object
part, then its most feature-similar patch in the support image should also lie on the same object
part (Liu et al., 2024; Zhang et al., 2024a). Since self-supervised visual encoders exhibit strong
self-correlation properties (Siméoni et al., 2021; Walmer et al., 2023), patches in the support image
that are more similar to the patch containing ps are more likely to belong to the same object part.

4.2.3 COMBINE FORWARD AND BACKWARD SIMILARITY

The forward and backward similarities capture complementary notions of patch correspondence: the
forward similarity measures how target patches relate to the support patch in feature space, while
the backward similarity measures the reverse relation from target to support. As discussed above,
combining these two signals helps identify the target patches corresponding to the same object part
as specified by the support example.

To integrate these two signals, we compute the final visual semantic correspondence score map by
element-wise multiplication of the forward and backward similarity maps:

SVisual = SVisual-fwd ⊙ SVisual-bwd,

where ⊙ denotes element-wise multiplication. The resulting vector is then reshaped into Hv ×Wv

to form the spatial score map aligned with the target image. As shown in Figure 3, the combined
visual score map highlights the part information more effectively. We can observe that both the
forward and backward similarities are able to capture part-related regions, while the combined score
map further enhances this signal, making the target part more prominent and localized.

4.3 COMBINING TEXTUAL AND VISUAL CUES

After obtaining the language-guided localization score map SText ∈ RHl×Wl and the visual semantic
correspondence score map SVisual ∈ RHv×Wv , we fuse them to achieve robust localization. Since the
two maps may differ in resolution (with SVisual typically higher), we first upsample SText to the size
of SVisual using bilinear interpolation. The final score map SFinal is then obtained by element-wise
multiplication:

SFinal = Interp(SText)⊙ SVisual,

where Interp(·) denotes interpolation. In the few-shot setting, we simply extend this process by
multiplying the text map with each visual map from multiple support images. As shown in Figure 3,
the fused score map provides sharper and more reliable localization.

4.4 FINAL POINT PREDICTION

Given the final score map SFinal,we first upsample it by a factor of two using bilinear interpolation to
reduce quantization errors, then take the center of the highest-scoring patch as the predicted point.
Finally, the point is mapped back to the original image coordinates, accounting for the resizing
applied before encoding by the visual encoder.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We adapt three part segmentation datasets: PACO-LVIS (Ramanathan et al., 2023), In-
structPart (Wan et al., 2025), and PartImageNet++ (Li et al., 2024) to the part-level pointing tasks.
For all datasets, we evaluate on the test split and sample support sets from the train split for each
query. PACO-LVIS contains 456 object-part categories. For our test set, we use the object instances
in the official test split that are paired with referring expressions, along with their corresponding part
annotations. We remove cases with extremely small ground-truth masks, resulting in 18,154 sam-
ples. InstructPart focuses on object parts in household-task scenarios. The dataset contains 2,400
images across 48 object and 44 object-part categories, with 1,800 supporting and 600 test samples.
PartImageNet++ augments ImageNet (Russakovsky et al., 2015) with part annotations across di-
verse object categories. For each category, we sample 90 support and 10 target images, yielding
26,747 test cases over 3,308 object–part categories.
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Since the datasets are constructed for segmentation, we select a representative support point from
each mask by computing the innermost point (Borgefors, 1986), i.e., the point farthest from the mask
boundary. When choosing the support set of each episode, unless otherwise specified, we perform
random sampling. To ensure robustness, we report the average results over five different random
seeds. For more details, please refer to Appendix C.1.

Metrics. Following prior work (Team et al., 2025a; Cheng et al., 2025), we assign a score of 1
if a predicted point falls inside the ground-truth part mask and 0 otherwise, and report the average
accuracy score across all image-part queries.

Implementation Details. For pointing-capable MLLMs, we evaluate Molmo-7B-D (Deitke et al.,
2025), Qwen2.5-VL-7B-Instruct (Bai et al., 2025), and Ovis2.5-9B (Lu et al., 2025). Non-pointing-
capable MLLMs include InternVL-3-8B (Zhu et al., 2025) and Kimi-VL-Instruct-A3B (Team et al.,
2025b), selected for their strong empirical performance. Following Kang et al. (2025), we use the
top-3 localization heads to extract text-to-image attention maps. Unless noted otherwise, DINOv3-
ViT-L/16 (Siméoni et al., 2025) serves as the self-supervised vision encoder.

In evaluation, we adopt different prompt designs for different datasets. For PACO-LVIS, we adopt
the prompt template: “For {referring expression}, point to its {part}.” For InstructPart and PartIm-
ageNet++, we use the prompt template: “Point to the {object}’s {part}.” For non-pointing-capable
MLLMs, we replace “point to” with “locate” to align with their native prompt format for visual
grounding tasks. For more details, please refer to Appendix C.3.

Baselines. To contextualize our few-shot results, we include several baselines. For zero-shot refer-
ence, we report the performance of pointing-capable MLLMs and GPT-4.1. We also compare against
representative open-vocabulary and reasoning segmentation models, including X-Decoder (Zou
et al., 2023a), SEEM (Zou et al., 2023b), VL-Part (Sun et al., 2023)(a part-specialist trained on
PACO and related datasets) and LISA (Lai et al., 2024).

For few-shot baselines, we first evaluate pointing-capable MLLMs with in-context learning (Brown
et al., 2020), where support examples are provided in the context. We also consider two strong
training-free segmentation methods, Matcher (Liu et al., 2024) and GF-SAM (Zhang et al., 2024a),
which build on DINOv2-ViT-L/14 (Oquab et al., 2024) and SAM (Kirillov et al., 2023). For fairness,
we substitute DINOv2 with DINOv3-ViT-L/16 (Siméoni et al., 2025) at 1024 resolution. These
models are evaluated with full support masks, whereas our method only uses a single support point.

For segmentation models outputting masks, we extract a representative point by default from the
maximum-logit pixel; if only a binary mask is available, we instead select the innermost point via
distance transform (Borgefors, 1986). For more details, please refer to Appendix C.2.

5.2 MAIN RESULTS

5.2.1 PART POINTING WITH POINTING-CAPABLE MLLMS

Tab. 1 presents the performance of our method on PACO, InstructPart, and PartImageNet++, com-
pared with various baseline models. In 1-shot, POP consistently surpasses the zero-shot pointing
performance of original pointing-capable MLLMs. Averaged across the three datasets, it improves
accuracy by 8.9 points on Qwen2.5-VL, 6.5 points on Ovis2.5, and 5.5 points on Molmo. It also out-
performs part-specialized zero-shot segmentation models such as VL-Part, as well as few-shot base-
lines, including segmentation methods like Matcher and GF-SAM, and in-context learning (ICL)
baselines. Notably, we observe that ICL can sometimes degrade visual grounding performance for
pointing-capable MLLMs, consistent with findings in multi-image grounding (Li et al., 2025). In
contrast, our training-free method effectively leverages exemplars.

Extending to the few-shot setting, our method scales effectively with more examples. Performance
consistently improves from one-shot to three-shot across all datasets. Averaged over the three
datasets, it achieves accuracy gains of 16.4 points on Qwen2.5-VL, 13.1 points on Ovis2.5, and
10.6 points on Molmo. Notably, as the number of examples increases, the performance gap between
our full method and its visual-only variant, DINOv3, narrows on InstructPart and PartImageNet++,
where the images are relatively simple. In contrast, on PACO—which contains complex scenes with
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Table 1: Results of pointing-capable MLLMs. Our method consistently improves over the original
pointing-capable MLLMs with just 1-shot, and achieves further gains with 3-shot. For segmentation
models, ∗ indicates that the representative point is obtained via distance transform, as described in
Sec. 5.1. For pointing-capable MLLMs, 1-shot and 3-shot use in-context learning; Molmo supports
only single-image input and thus has no in-context results. POP (ours) uses attention-based pointing,
and DINOv3 relies solely on visual features. Best results per shot are highlighted in bold.

Method PACO InstructPart PartImageNet++
Zero-shot Segmentation Models

X-Decoder 17.2 37.3 33.0
SEEM 15.6 32.2 32.5
LISA-7B 26.7 57.2 49.9
VL-Part 38.3∗ 55.2∗ 54.4∗

Zero-shot Proprietary MLLMs

GPT-4.1 19.8 51.5 48.9

Few-shot Segmentation Models

1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

GF-SAM 16.6∗ 19.8∗ 53.5∗ 55.5∗ 47.9∗ 49.4∗
Matcher 33.3∗ 40.5∗ 82.0∗ 84.3∗ 71.7∗ 79.2∗

Pointing-capable MLLMs

0-shot 1-shot 3-shot 0-shot 1-shot 3-shot 0-shot 1-shot 3-shot

Qwen2.5-VL-7B 47.7 14.1 13.1 78.7 40.3 43.0 66.6 30.8 26.5
Ovis2.5-9B 47.5 37.8 32.8 79.8 74.2 72.7 76.4 71.9 70.5
Molmo-7B-D 51.2 N/A N/A 87.2 N/A N/A 75.9 N/A N/A

POP (Ours): Few-shot Attention-based Pointing

0-shot 1-shot 3-shot 0-shot 1-shot 3-shot 0-shot 1-shot 3-shot

DINOv3 N/A 41.5 55.6 N/A 84.2 91.8 N/A 77.3 87.0
Qwen2.5-VL-7B 31.6 51.6 61.7 68.2 87.9 93.4 58.3 80.1 87.1
Ovis2.5-9B 31.5 53.0 61.8 65.2 88.5 93.0 55.1 81.7 88.2
Molmo-7B-D 42.3 55.8 62.4 74.8 90.9 94.5 69.1 84.1 89.1

Table 2: Results of non-pointing-capable MLLMs. Our method can be applied to MLLMs without
specialized pointing training. With a single shot, it achieves performance comparable to the zero-
shot pointing-capable MLLMs. For non-pointing-capable MLLMs, zero-shot pointing performance
is obtained using attention-based method.

Method PACO InstructPart PartImageNet++
0-shot 1-shot 0-shot 1-shot 0-shot 1-shot

DINOv3 N/A 41.5 N/A 84.2 N/A 77.3
InternVL-3-8B 23.6 45.7 56.6 86.1 54.0 78.3
Kimi-VL-A3B 24.9 49.7 57.2 90.3 44.6 79.4

multiple objects and fine-grained referring expressions—DINOv3 still falls behind, underscoring
the advantage of jointly leveraging language and vision in more challenging scenarios.

5.2.2 PART POINTING WITH NON-POINTING-CAPABLE MLLMS

Tab. 2 shows the performance of our method on MLLMs without pointing post-training. Despite
lacking specialized supervision, POP leverages both text and visual cues, improving accuracy by
25.3 points on InternVL-3 and 30.9 points on Kimi-VL on average across the three datasets. Re-
markably, even with a single example, it achieves performance comparable to the zero-shot pointing-
capable MLLMs in Tab. 1, demonstrating that frozen general-purpose MLLMs can serve as founda-
tion models for pointing tasks without point-specialist training.
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Table 3: Results of random versus [CLS]-retrieved support examples. Selecting semantically
similar supports further improves our method’s performance. The better result between the two
strategies is highlighted in bold.

Method PACO InstructPart PartImageNet++
Random [CLS] Random [CLS] Random [CLS]

DINOv3 41.5 49.7 84.2 88.2 77.3 84.1
Molmo-7B-D 55.8 58.7 90.9 91.3 84.1 86.0
Qwen2.5-VL-7B 51.6 54.2 87.9 89.3 80.1 82.4
Ovis2.5-9B 53.0 57.0 88.5 89.7 81.7 84.6

Table 4: Ablation study results on the PACO dataset with Molmo-7B-D.

(a) Effect of forward and backward similarity for
visual semantic correspondence.

Method Forward Backward Accuracy
Molmo-7B-D – – 51.2

POP (Ours) ✓ ✗ 54.5
POP (Ours) ✗ ✓ 51.8
POP (Ours) ✓ ✓ 55.8

(b) Ablation study of merging strategies. λ denotes the
weight for SV isual, i.e., λ · SV isual + (1− λ) · SText.

Merging Method Accuracy

Sum λ = 0.45 λ = 0.5 λ = 0.55 λ = 0.6

54.7 55.6 55.7 54.8

Product (Ours) 55.8

5.2.3 EFFECT OF SUPPORT EXAMPLE QUALITY

Previously, we reported average accuracy over five random seeds with randomly selected support
examples. Here, we investigate selecting semantically similar supports. Leveraging DINO’s strong
training-free image retrieval capability(Oquab et al., 2024; Siméoni et al., 2025), we compute sim-
ilarity using the [CLS] token and select the support most aligned with the target image. As shown
in Tab. 3, this careful selection improves few-shot performance for the purely visual baseline (DI-
NOv3) and allows our method to further benefit from combining visual and textual information,
achieving even higher accuracy.

5.3 ABLATION STUDY

We conduct ablation studies on the PACO dataset with Molmo-7B-D to analyze the contributions
of different design choices. We focus on (i) forward and backward similarity for visual semantic
correspondences, and (ii) strategies for merging textual and visual localization cues.

Forward and Backward Similarity. Tab. 4a shows that using forward or backward similarity
alone already improves over the zero-shot baseline of 51.2 accuracy points. Combining both raises
accuracy to 55.8, indicating that the two directions are complementary and jointly enhance pointing
performance with text guidance.

Combining Textual and Visual Cues. For merging textual and visual cues, we compare weighted
summation and element-wise product. As shown in Tab. 4b, a weighted sum with λ = 0.55 reaches
55.7 accuracy points, while the product achieves a similar 55.8 accuracy points without tuning,
making it a simpler and more robust choice. We thus adopt the product as our final merging method.

6 CONCLUSION

We show that part-level pointing can be effectively enabled in MLLMs using POinting at Parts
(POP), a training-free, plug-and-play approach that integrates attention maps from MLLMs with vi-
sual correspondences from self-supervised encoders. On average across the three evaluated datasets,
POP improves each of the pointing-capable baselines (Qwen2.5-VL-7B, Ovis2.5-9B, and Molmo-
7B-D) by up to 8.9 accuracy points with a single shot, and benefits MLLMs without pointing-specific
post-training (InternVL3-8B, Kimi-VL-A3B) by up to 30.9 points with one shot. These results
demonstrate that POP provides a simple and effective strategy for few-shot part-level localization
and grounding in MLLMs.
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Pérez, Renaud Marlet, and Jean Ponce. Localizing objects with self-supervised transformers and
no labels. In Proceedings of the British Machine Vision Conference (BMVC), November 2021.
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