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Abstract
This paper presents Mir-BFT, a robust Byzantine fault-
tolerant (BFT) total order broadcast protocol aimed at
maximizing throughput on wide-area networks (WANs),
targeting deployments in decentralized networks, such
as permissioned and Proof-of-Stake permissionless
blockchain systems.

Mir-BFT is the first BFT protocol that allows mul-
tiple leaders to propose request batches independently
(i.e., parallel leaders), while effectively precluding perfor-
mance degradation due to request duplication by rotating
the assignment of a partitioned request hash space to lead-
ers. As this mechanism removes the single-leader band-
width bottleneck and exposes a computation bottleneck
related to authenticating clients even on a WAN, our pro-
tocol further boosts throughput using a client signature
verification sharding optimization. Our evaluation shows
that Mir-BFT outperforms state-of-the-art single-leader
protocols and orders more than 60000 signed Bitcoin-
sized (500-byte) transactions per second on a widely
distributed setup (100 nodes, 1 Gbps WAN) with typical
latencies of few seconds. Moreover, our evaluation ex-
poses the impact of duplicate requests on parallel leader
protocols which Mir-BFT eliminates. We also evalu-
ate Mir-BFT under different crash and Byzantine faults,
demonstrating its performance robustness.

Mir-BFT relies on classical BFT protocol constructs,
which simplifies reasoning about its correctness. Specifi-
cally, Mir-BFT is a generalization of the celebrated and
scrutinized PBFT protocol. In a nutshell, Mir-BFT fol-
lows PBFT “safety-wise”, with changes needed to ac-
commodate novel features restricted to PBFT liveness.

1 Introduction

Background. Byzantine fault-tolerant (BFT) proto-
cols, which tolerate malicious (Byzantine [47]) behav-
ior of a subset of nodes, have evolved from being a
niche technology for tolerating bugs and intrusions to
be the key technology to ensure consistency of widely
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deployed decentralized networks in which multiple mu-
tually untrusted parties administer different nodes (such
as in blockchain systems) [27, 35, 58]. Specifically, BFT
protocols are considered to be an alternative to (or com-
plementing) energy-intensive and slow Proof-of-Work
(PoW) consensus protocols used in early blockchains
including Bitcoin [34, 58]. BFT protocols relevant to de-
centralized networks are consensus and total order (TO)
broadcast protocols [21] which establish the basis for
state-machine replication (SMR) [54] and smart-contract
execution [60].

BFT protocols are known to be very efficient on
small scales (few nodes) in clusters (e.g., [13, 44]), or
to exhibit modest performance on large scales (thou-
sands or more nodes) across wide area networks (WAN)
(e.g., [35]). Recently, considerable research effort (e.g.,
[19, 26, 36, 51, 61]) focused on maximizing BFT perfor-
mance in medium-sized WAN networks (on the order of
100 nodes), as this deployment setting is highly relevant
to different types of decentralized networks.

On the one hand, permissioned blockchains, such as
Hyperledger Fabric [11], are rarely deployed on scales
above 100 nodes. Yet use cases gathering dozens of or-
ganizations, which do not necessarily trust each other,
are very prominent [2]. On the other hand, this setting
is also highly relevant in the context of large scale per-
missionless blockchains, in which anyone can partici-
pate, that use weighted voting (based, e.g., on Proof-
of-Stake (PoS) [20, 40] or delegated PoS (DPoS) [5])
or committee-voting [35] to limit the number of nodes
involved in the critical path of the consensus protocol.
With such weighted voting the number of (relevant) nodes
for PoS/DPoS consensus is typically on the order of a
hundred [5] or sometimes even less [8]. Related open-
membership blockchain systems, such as Stellar, also run
consensus among less than 100 nodes [48].

Challenges. Most of this research (e.g., [19,26,36,61])
aims at addressing the scalability issues that arise in clas-
sical leader-based BFT protocols, such as the seminal
PBFT protocol [24]. In short, in a leader-based proto-
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col, a leader, who is tasked with assembling a batch of
requests (or block of transactions) and communicating it
to all other nodes, has at least O(n) work, where n is the
total number of nodes. Hence the leader quickly becomes
a bottleneck as n grows.

A promising approach to addressing scalability is-
sues in BFT is to allow multiple nodes to act as par-
allel leaders and to propose batches independently and
concurrently either in a coordinated, deterministic fash-
ion [26,38,52] or using randomized protocols [28,45,51].
With parallel leaders, the CPU and bandwidth load re-
lated to proposing batches are distributed more evenly.
However, the issue with this approach is that parallel
leaders are prone to wasting resources by proposing the
same duplicate requests. As depicted in Table 1, none of
the current BFT protocols that allow for parallel leaders
deal with request duplication, which is straightforward
to satisfy in single leader protocols. The tension between
preventing request duplication and using parallel leaders
stems from two important attacks that an adversary can
mount and an efficient BFT protocol needs to prevent: (i)
the request censoring attack by Byzantine leader(s), in
which a malicious leader simply drops or delays a client’s
request (transaction), and (ii) the request duplication at-
tack, in which Byzantine clients submit the exact same
request multiple times.

To counteract request censoring attacks, a BFT pro-
tocol needs to allow at least f + 1 different leaders to
propose a request (where f , which is typically O(n), is
the threshold on the number of Byzantine nodes in the
system). Single-leader protocols (e.g., [24, 61]), which
typically rotate the leadership role across all nodes, ad-
dress duplication attacks relatively easily. On changing
the leader, a new leader only needs to make sure they
do not repeat requests previously proposed by previous
leaders.

With parallel leaders, the picture changes substantially.
If a (malicious or correct) client submits the same re-
quest to multiple parallel leaders concurrently, the paral-
lel leaders will include the same request in their respec-
tive batches, i.e., they will order duplicates of the same
request. While these duplicates can simply be filtered
out after ordering (or after the reception of a duplicate,
during ordering), the damage has already been done —
excessive resources, bandwidth and possibly CPU have
been consumed. To complicate the picture, naïve solu-
tions in which: (i) clients are requested to sequentially
send to one leader at the time, (ii) the leader randomly
samples a queue of pending requests, or (iii) clients pay
transaction fees for each duplicate, do not help.

In the first case, Byzantine clients mounting a request

Parallel Leaders Prevents
Req. Duplication

PBFT [24] no yes
BFT-SMaRt [17] no yes
Aardvark [25] no yes
RBFT [12] no yes
Spinning [57] no yes
Prime [10] no yes
700 [13] no yes
Zyzzyva [44] no yes
SBFT [36] no yes
HotStuff [61] no no1

Tendermint [19] no yes
BFT-Mencius [52] yes no
RedBelly [26] yes no
RCC [38] yes no2

OMADA [30] yes no
Hashgraph [45] yes no
Honeybadger [51] yes no
BEAT [28] yes no
Mir (this paper) yes yes

Table 1: Comparison of Mir to related BFT protocols.
1 duplication could easily be prevented.
2 duplication can be prevented under stronger synchrony
assumptions.

duplication attack are not required to respect sending a
request sequentially. Moreover, such a behavior cannot
be distinguished from a correct client who simply sends a
transaction multiple times due to asynchrony or network
issues.

Random sampling of the pending requests (Honey-
badger [51], BEAT [28]) proves ineffective in practice.
When a node constructs a new proposal from randomly
chosen pending (i.e., received and yet unproposed) re-
quests, its proposal might still intersect with that of an-
other node. This is especially likely if the system is not
in deep saturation and nodes’ buffers of pending requests
are small.

The third case concerns some blockchain systems,
such as Hedera Hashgraph, which charge transaction
fees for every duplicate request [15]. This approach,
however, penalizes correct clients when they resubmit a
transaction to counteract possible censoring attacks, or a
slow network. In more established decentralized systems,
such as Bitcoin and Ethereum, it is standard to charge for
the same transaction only once, even if it is submitted by
a client more than once.

In summary, with up to O(n) parallel leaders, request
duplication attacks may induce an O(n)-fold duplication
of every single request and bring the effective throughput
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to its knees, practically voiding the benefits of using
multiple leaders.

Contributions. This paper presents Mir-BFT, (or, sim-
ply, Mir) 1), a novel BFT total order broadcast (TOB)
protocol which is the first to combine parallel leaders with
robustness to request duplication. Mir also addresses no-
table performance attacks [25], such as the Byzantine
leader straggler attack. Mir is further robust to arbitrarily
long, yet finite, periods of asynchrony and is optimally
resilient (requiring optimal n≥ 3 f +1 nodes to tolerate
f Byzantine faulty ones). On the performance side, Mir
achieves the best throughput, when compared to legacy
and state-of-the-art TOB protocols, on public WAN net-
works, as confirmed by our measurements on up to 100
nodes. The following summarizes the main features of
Mir, as well as contributions of this paper:
• Mir allows multiple parallel leaders to propose batches
of requests concurrently, in a sense multiplexing several
PBFT instances into a single total order, in a robust way.
As its main novelty, Mir partitions the request hash space
and distributes its subsets to the leaders, preventing re-
quest duplication. To also prevent censoring attacks Mir
periodically re-distributes this partitioned assignment to
the leaders.
• Mir further uses a client signature verification shard-
ing throughput optimization to offload CPU, which is
exposed as a bottleneck in Mir once we remove the single-
leader bandwidth bottleneck.
• Mir avoids “design-from-scratch”, which is known
to be error-prone for BFT [9, 13]. Mir is a generaliza-
tion of the well-scrutinized PBFT protocol 2, which it
closely follows “safety-wise” while introducing impor-
tant generalizations only affecting PBFT liveness (e.g.,
(multiple) leader election). This simplifies the reasoning
about Mir’s correctness.
• We implement Mir in Go and run it with up to 100
nodes in a multi-datacenter WAN, as well as in clusters,
and under different faults, comparing it to state of the
art BFT protocols. Our results show that Mir convinc-
ingly outperforms state of the art, ordering more than
60000 signed Bitcoin-sized (500-byte) requests per sec-
ond (req/s), with typical latencies of few seconds. In
this setup, Mir achieves 3x the throughput of the opti-
mistic sub-protocol of Aliph [13], Chain, and more than
an order of magnitude higher throughput than other state
of the art single-leader BFT protocols. To put this into

1In a number of Slavic languages, the word mir refers to universally
good, global concepts, such as peace and/or world.

2Mir variants based on other BFT protocols can be derived as well.

perspective, Mir’s 60000+ req/s on 100 nodes on WAN
is 2.5x the alleged peak capacity of VISA (24k req/s [6])
and more than 30x faster than the actual average VISA
transaction rate (about 2k req/s [58]).

Roadmap. The rest of the paper is organized as fol-
lows. In Section 2, we define the system model and in
Section 3 we briefly present PBFT (for completeness). In
Section 4, we give an overview of Mir and changes it in-
troduces to PBFT. We then explain Mir implementation
details in Section 5. We further list the Mir’s pseudocode
in Section 6.

This is followed by Mir’s correctness proof in Sec-
tion 7. Section 8 introduces an optimization tailored to
large requests, such as the ones featured by Hyperledger
Fabric. Section 9 gives evaluation details. Finally, Sec-
tion 10 discusses related work and Section 11 concludes.

2 System Model

We assume an eventually synchronous system [29] in
which the communication among correct processes can
be fully asynchronous before some global synchroniza-
tion time (GST ), unknown to nodes, after which it is
assumed to be synchronous. Processes are split into a set
of n nodes, denoted by Nodes, and a set of clients. We
assume a public key infrastructure in which processes are
identified by their public keys; we further assume that
node identities are lexicographically ordered and mapped
by a bijection to the set [0 . . .n−1] which we use to rea-
son about node identities. In every execution, at most f
nodes can be Byzantine faulty (i.e., crash or deviate from
the protocol in an arbitrary way), such that n ≥ 3 f +1.
Any number of clients can be Byzantine.

We assume an adversary that can control Byzantine
faulty nodes but cannot break the cryptographic primi-
tives we use, such as PKI and cryptographic hashes (we
use SHA-256). H(data) denotes a cryptographic hash
of data, while dataσp denotes data signed by process p
(client or node). Processes communicate through authen-
ticated point-to-point channels (our implementation uses
gRPC [4] over TLS, preventing man-in-the-middle and
related attacks).

Nodes implement a BFT total order (atomic) broad-
cast service to clients. To broadcast request r, a client
invokes BCAST(r). A client request is a tuple r = (o, t,c),
where o is the request payload, e.g., some operation to
be executed by some application, c is a unique client
identifier, e.g., the client’s public key, and t is the client
timestamp. t is a logical timestamp, effectively count-
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Figure 1: PBFT communication pattern and messages. Bottleneck messages are shown in bold.

ing the requests submitted by client c. The request is
wrapped in a message 〈REQUEST,r〉σc .

Two client requests r = (o, t,c),r′ = (o′, t ′,c′) are con-
sidered the same, we write r = r′ and we refer to them
as duplicates, if and only if o = o′∧ t = t ′∧ c = c′.

Nodes eventually output DELIVER(sn,r), such that the
following properties hold:

P1 Validity: If a correct node delivers r, then some
client broadcast r.

P2 Agreement (Total Order): If two correct nodes
deliver requests r and r′ with sequence number sn,
then r = r′.

P3 No duplication: If a correct node delivers request
r with sequence numbers sn and sn′, then sn = sn′.

P4 Totality: If a correct node delivers request r, then
every correct node eventually delivers r.

P5 Liveness: If a correct client broadcasts request r,
then some correct node p eventually delivers r.

P6 In-order delivery: If a correct i node delivers some
request r with sequence number sn, then i has deliv-
ered requests for each sequence number sn′, such
that sn′ < sn.

Note that P3 (No duplication) is a standard TOB prop-
erty [21] that most protocols can easily satisfy by filtering
out duplicates after agreeing on request order, which is
bandwidth wasting. Mir enforces P3 without ordering du-
plicates, using a novel approach to eliminate duplicates
during agreement to improve performance and scalability.
Notice that a client can still broadcast multiple requests
with the same payload, which might be meaningful with
respect to the semantics of some applications. Those re-
quests should, however, have different client timestamps.

Client timestamps, therefore, allow such “intended” du-
plication and distinguish it from “accidental” or Byzan-
tine request duplication.

Property P6 (In-order delivery) is typically not re-
quired to guarantee TOB. However, it allows an external
application to execute the requests with the same order in
which they are delivered. Importantly, Mir does not exe-
cute requests. Request execution is orthogonal and can
be performed in any execution model, such as the order-
execute model implemented in systems like Ethereum
or the execute-order-validate model implemented in sys-
tems like Fabric.

Notice, moreover, that, because of properties P3 and
P6, request sequence numbers do not provide any addi-
tional information. Each request is only delivered once
and in the same order by each node in Nodes. There-
fore, DELIVER(sn,r) is equivalent to DELIVER(r) (the
sequence number sn being implied by the number of
requests delivered before r). We keep, however, the ex-
plicit sequence number in the interface of our system to
ease the reader and facilitate compatibility with external
applications which index requests with some sequence
number.

3 PBFT and its Bottlenecks

We depict the PBFT communication pattern in Figure 1.
PBFT proceeds in rounds called views which are led
by the primary. The primary sequences and proposes a
client’s request (or a batch thereof) in a PRE-PREPARE
message — on WANs this step is typically a network bot-
tleneck. Upon reception of the PRE-PREPARE, other
nodes validate the request, which involves, at least, verify-
ing its authenticity (we say nodes preprepare the request).
This is followed by two rounds of all-to-all communica-
tion (PREPARE and COMMIT messages), which are
not bottlenecks as they leverage n links in parallel and
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Protocol PBFT [24] Mir
Client request authentication vector of MACs (1 for each node) signatures
Batching no (or, 1 request per “batch”) yes
Multiple-batches in parallel yes (watermarks) yes (watermarks)
In-order delivery no yes
Round structure/naming views epochs
Round-change responsibility view primary (round-robin across all nodes) epoch primary (round-robin across all nodes)
No. of per-round leaders 1 (view primary) many (from 1 to n epoch leaders)
No. of batches per round unbounded bounded (ephemeral epochs); unbounded (stable epochs)
Round leader selection primary is the only leader primary decides on epoch leaders (subject to constraints)
Request duplication prevention enforced by the primary hash space partitioning across epoch leaders

Table 2: High level overview of the original PBFT [24] vs. Mir protocol structure.

contain metadata (request/batch hash) only. A node pre-
pares a request and sends a COMMIT message if it gets
a PREPARE message from a quorum (n− f ≥ 2 f +1
nodes) that matches a PRE-PREPARE. Finally, nodes
commit the request in total order, if they get a quorum of
matching COMMIT messages.

The primary is changed only if it is faulty or if asyn-
chrony breaks the availability of a quorum. In this case,
nodes timeout and initiate a view change. View change
involves communication among nodes in which they
exchange information about the latest preprepared and
prepared requests, such that the new primary, which is
selected in a round-robin fashion, must re-propose po-
tentially committed requests under the same sequence
numbers within a NEW-VIEW message (see [24] for de-
tails). The view-change pattern can be simplified using
signatures [23].

After the primary is changed, the system enters the
new view and common-case operation resumes. PBFT
complements this main common-case/view-change pro-
tocols with checkpointing (log and state compaction) and
state transfer sub-protocols [24].

4 Mir Overview

Mir is based on PBFT [24] (Sec. 3). In a nutshell, Mir
executes multiple instances of PBFT in parallel, in which
all nodes participate. Nodes commit a batch with a se-
quence number upon receiving a quorum of matching
COMMIT messages, same as in PBFT. Finally, nodes
deliver the requests of a batch, or, for short, deliver the
batch, once they have committed it with some sequence
number and they have delivered all batches with smaller
sequence numbers. Major differences between PBFT and
Mir are summarized in Table 2. In this section we elabo-
rate on these differences, giving a high-level overview of

Mir.

Request Authentication. While PBFT authenticates
clients’ requests with a vector of MACs, Mir uses sig-
natures for request authentication to avoid concerns as-
sociated with “faulty client” attacks related to the MAC
authenticators, which PBFT uses, [25] and to prevent
any number of colluding nodes, beyond f , from imper-
sonating a client. However, this change may induce
a throughput bottleneck, as per-request verification of
clients’ signatures requires more CPU than that of MACs.
We address this issue by a signature verification sharding
optimization described in Sec. 5.6.

Batching and Watermarks. Mir processes requests in
batches (ordered lists of requests formed by a leader),
a standard throughput improvement of PBFT (see e.g.,
[13, 44]). Mir also retains the request/batch watermarks
used by PBFT to boost throughput. In PBFT, request
watermarks, low and high, represent the range of request
sequence numbers which the primary/leader can propose
concurrently. While many successor BFT protocols elim-
inated watermarks in favor of batching (e.g, [13, 17, 44]),
Mir reuses watermarks to facilitate concurrent proposals
of batches by multiple parallel leaders.

Protocol Round Structure. Unlike PBFT, Mir distin-
guishes between leaders and a primary node. Mir pro-
ceeds in epochs which correspond to views in PBFT, each
epoch having a single epoch primary — a node determin-
istically defined by the epoch number, by round-robin
rotation across all the participating nodes of the protocol.

Each epoch e has a set of epoch leaders (denoted by
EL(e)), which we define as nodes that can sequence and
propose batches in e. In contrast, in PBFT, only the
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primary is a leader. Within an epoch, Mir deterministi-
cally partitions sequence numbers across epoch leaders,
such that all leaders can propose their batches simulta-
neously without conflicts. Epoch e transitions to epoch
e+1 if (1) one of the leaders is suspected of failing, trig-
gering a timeout at sufficiently many nodes (ungracious
epoch change), or (2) a predefined number of batches
maxLen(e) has been delivered (gracious epoch change).
While the ungracious epoch change corresponds exactly
to PBFT’s view change, the gracious epoch change is a
much more lightweight protocol.

Selecting Epoch Leaders. For each epoch, it is the
primary who selects the leaders and reliably broadcasts
its selection to all nodes. In principle, the primary can
pick an arbitrary leaderset as long as the primary itself is
included in it. We evaluate a simple “grow on gracious,
reduce on ungracious epoch” policy for leaderset size. If
i starts epoch e with an ungracious epoch change and e′ is
the last epoch for which i knows the epoch configuration,
i adds itself to the leaderset of epoch e′ and removes
one node (not itself) for each epoch between e and e′

(leaving at least itself in the leaderset). If the epoch
change occurred from the expiration of ecTimer on some
sequence number sn, the next epoch primary chooses to
remove the node to whom sn was assigned.

Moreover, in an epoch e where all nodes are leaders
(EL(e) = Nodes), we define maxLen(e) = ∞ (i.e., e only
ends if a leader is suspected). Otherwise, maxlen(e) is a
constant, pre-configured system parameter. We call the
former stable epochs and the latter ephemeral.

More elaborate strategies for choosing epoch lengths
and leadersets, which are outside the scope of this paper,
can take into account execution history, fault patterns,
weighted voting, distributed randomness, or blockchain
stake. Note that with a policy that constrains the leaderset
to only the epoch primary and makes every epoch stable,
Mir reduces to PBFT.

Request Duplication and Request Censoring Attacks.
Moving from single-leader PBFT to multi-leader Mir
poses the challenge of request duplication. A simplis-
tic approach to multiple leaders would be to allow any
leader to add any request into a batch ( [26, 45, 52]), ei-
ther in the common case, or in the case of client request
retransmission. Such a simplistic approach, combined
with a client sending a request to exactly one node, al-
lows good throughput with no duplication only in the
best case, i.e., with no Byzantine clients/leaders and with
no asynchrony.

However, this approach does not perform well outside
the best case, in particular with clients sending identical
requests to multiple nodes. A client may do so simply
because it is Byzantine and performs the request duplica-
tion attack. However, even a correct client needs to send
its request to at least f + 1 nodes (i.e., to Θ(n) nodes,
when n = 3 f +1) in the worst case in any BFT protocol,
in order to avoid Byzantine nodes (leaders) selectively ig-
noring the request (request censoring attack). Therefore,
a simplistic approach to parallel request processing with
multiple leaders [26, 45, 52] faces attacks that can reduce
throughput by factor of Θ(n), nullifying the effects of
using multiple leaders.

Note the subtle but important difference between a du-
plication attack (submitting the same request to multiple
replicas) and a DoS attack (submitting many different
requests) that a Byzantine client can mount. A system
can prevent the latter (DoS) by imposing per-client limits
on the incoming unique request rate. Mir enforces such
a limit through client request watermarks. A duplication
attack, however, is resistant to such mechanisms, as a
Byzantine client is indistinguishable from a correct client
with a less reliable network connection. We demonstrate
the effects of these attacks in Section 9.5.

Figure 2: Request mapping in a stable epoch with n = 4
(all nodes are leaders): Solid lines represent the active
buckets. Req. 1 is mapped to the first bucket, first active
in node 1. Req. 2 is mapped to the third bucket, first ac-
tive in node 3. Rotation redistributes bucket assignment
across leaders.

Buckets and Request Partitioning. To cope with
these attacks, Mir partitions the request hash space into
buckets of equal size (number of buckets is a system pa-
rameter) and assigns each bucket to exactly one leader,
allowing a leader to only propose requests from its as-
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signed (active) buckets (preventing request duplication).
For load balancing, Mir distributes buckets evenly (within
the limits of integer arithmetics) to all leaders in each
epoch. To prevent request censoring, Mir makes sure that
every bucket will be assigned to a correct leader infinitely
often. We achieve this by periodically redistributing the
bucket assignment. Bucket re-distribution happens (1) at
each epoch change (see Sec. 5.2) and (2) after a prede-
fined number of batches have been delivered in a stable
epoch (since a stable epoch might never end), as illus-
trated in Figure 2. Note that all nodes, while proposing
only requests from their active buckets, still receive and
store all requests (this can be optimized, see 5.1).

Parallelism. The Mir implementation (detailed in
Sec. 5.10) is highly parallelized, with every worker
thread responsible for one batch. In addition, Mir uses
multiple gRPC connections among each pair of nodes
which proves to be critical in boosting throughput in a
WAN especially with a small number of nodes.

Generalization of PBFT and Emulation of Other
BFT Protocols. Mir can be easily configured to imple-
ment or approximate single leader protocols. In particu-
lar, in PBFT, each epoch has a single leader, the primary,
same for all batches, and an epoch change occurs only
when the primary is suspected to be faulty. To reduce Mir
to PBFT we simply enforce a single leader in each epoch,
the primary node, and an infinite number of sequence
numbers for each epoch; thus all epochs are stable and
all epoch changes ungracious. This results in the signle
epoch leader being responsible for all buckets, and, there-
fore, hides the bucket re-distribution sub-protocol within
a stable epoch. Other protocols, such as Tendermint [19]
and Spinning [57], rotate the leader per sequence num-
ber. To approximate such protocols, we fix the maximum
number of sequence numbers and leaders in every epoch
to 1. This results in a gracious epoch change per se-
quence number and therefore rotating the leaders (the
epoch primary) with every batch.

5 Mir Implementation Details

5.1 The Client
Upon BCAST(r), i.e., broadcasting a request r, a client c
creates a message 〈REQUEST,r〉σc , where r = (o, t,c)
is a payload, timestamp, public key tuple as described
in Section 2. The client timestamp t, must be in a slid-
ing window between the low and high client watermark

tcL < t ≤ tcH . Client watermarks in Mir allow multiple
requests originating from the same client to be “in-flight”,
to enable high throughput without excessive number of
clients. These watermarks are periodically advanced
with the checkpoint mechanism described in Section 5.5,
in a way which leaves no unused timestamps. Mir al-
ligns checkpointing/advancing of the watermarks with
bucket re-distributions (when no requests are in flight),
such that all nodes always have a consistent view of the
watermarks.

In principle, the client sends the REQUEST to all
nodes (and periodically re-sends it to those nodes who
have not received it, until the request is delivered by at
least f + 1 nodes). In practice, a client may start by
sending its request to fewer than n nodes ( f + 1 in our
implementation) and only send it to the remaining nodes
if the request has not been delivered by f +1 nodes after
a timeout.

5.2 Sequence Numbers and Buckets

Sequence Numbers. In each epoch e, a leader may
only use a subset of e’s sequence numbers for proposing
batches. Mir partitions e’s sequence numbers to lead-
ers in EL(e) in a round-robin way, using modulo arith-
metic, starting at the epoch primary (see Fig. 3 and Alg. 4,
Line 179). We say that a leader leads sequence number
sn when the leader is assigned sn and is thus expected
to send a PRE-PREPARE for the batch with sequence
number sn. Batches are proposed in parallel by all epoch
leaders and are processed like in PBFT. Recall (from Ta-
ble 2) that batch watermarking (not to be confused with
client request watermarking from Sec. 5.1) allows the
PBFT primary to propose multiple batches in parallel; in
Mir, we simply extend this to multiple leaders.

Figure 3: PRE-PREPARE messages in an epoch where
all 4 nodes are leaders balancing the proposal load. Mir
partitions batch sequence numbers among epoch leaders.

7



Buckets. In epoch e = 0, we assign buckets to leaders
sequentially. Recall, with the term bucket we refer to a
subset of the request hash space. We start the assignment
from the buckets with the lowest hash values which we
assign to the primary of epoch 0. For e > 0, the primary
picks a set of consecutive buckets for itself (primary’s
preferred buckets), starting from the bucket which con-
tains the oldest request it received; this is key to ensuring
Liveness (P5, Sec. 2). Mir distributes the remaining buck-
ets evenly and deterministically among the other leaders
— this distribution is determined from an epoch configu-
ration which the epoch primary reliably broadcasts and
which contains preferred buckets and leaderset selection
(see Sec. 5.4.2). Buckets assigned to a leader are called
its active buckets.

Additionally, if e is stable (when maxLen(e) = ∞ and
thus no further epoch changes are guaranteed), leaders
periodically rotate the bucket assignment (each time a
pre-configured number of batches are delivered): leader i
is assigned buckets previously assigned to leader i+1 (in
modulo n arithmetic). To prevent accidental request du-
plication, which could result in leader i being suspected
and removed from the leaderset, leader i waits to deliver
all “in-flight” batches before starting to propose its own
batches (Alg. 4, Line 68 and Alg. 4, Lines 194-198).
Other nodes do the same before prepreparing batches in
i’s new buckets. In the example shown in Fig. 2, after the
bucket re-distribution (rotation), node 0 waits to deliver
all batches (still proposed by node 1) from its newly ac-
tive red (second) bucket, before node 0 starts proposing
new batches from the red (second) bucket.

5.3 Common Case Operation
REQUEST. In the common case, the protocol pro-
ceeds as follows. Upon receiving 〈REQUEST,r〉σc with
r = (o, t,c) from a client, an epoch leader first verifies
that the request timestamp t is within the client’s current
watermarks tCL < t ≤ tCH and maps the request to the
respective bucket by hashing the client timestamp and
identifier hr = H(t||c). Each bucket corresponds to a
FIFO queue of the received client requests, further re-
ferred to as bucket queue. We do not hash the request
payload, as this would allow a malicious client to target
a specific bucket by adapting the request payload, mount-
ing load imbalance attacks. If the request falls into the
leader’s active bucket, the leader also verifies the client’s
signature σc. A node i discards r if r is already in the
corresponding bucket queue.
PRE-PREPARE. A leader creates a proposal by
adding a batch of requests from its active bucket queues

to a PRE-PREPARE message. The requests that are
added in the batch are not immediately deleted but they
are marked as pending. This guarantees that the requests
maintain their priority if, in the event of an epoch-change,
they are not committed. Once leader i gathers enough3

requests in its current active bucket queues, or if timer
Tbatch expires (since the last batch was proposed by i), i
adds the non-pending, not preprepared requests from the
current active bucket queues in a batch, assigns its next
available sequence number sn to the batch (provided sn is
within batch watermarks) and sends a PRE-PREPARE
message. If Tbatch time has elapsed and no requests are
available, i sends a PRE-PREPARE message with an
empty batch. This guarantees progress of the protocol
under low load.

A node j accepts a PRE-PREPARE (we say prepre-
pares the batch and the requests it contains), with se-
quence number sn for epoch e from node i provided that:

1. the epoch number matches the local epoch number
(Alg. 4, Line 82, Alg. 1, Line 5) and j did not prepre-
pare another batch with the same e and sn (Alg. 4,
Line 83)

2. node i is in epoch leaders EL(e) (Alg. 4, Line 84,
Alg. 4, Line 178)

3. node i leads sn (Alg. 4, Line 84, Alg. 4, Line 179)

4. the batch sequence number sn in the PRE-
PREPARE is between a low watermark and high
batch watermark: w < sn ≤W (Alg. 4, Line 82,
Alg. 1, Line 5)

5. none of the requests in the batch have already been
preprepared (Alg. 4, Line 85)

6. every request in the batch has timestamp within the
current client’s watermarks (Alg. 4, Line 86)

7. every request in the batch maps to one of i’s active
buckets (Alg. 4, Line 87)

8. every request in the batch has a signature which
verifies against client’s id, i.e., the corresponding
public key (Alg. 4, Line 88)

Conditions (1)-(4) are equivalent to checks done in
PBFT, whereas conditions (5)-(8) differ from PBFT. Con-
dition (5) is critical for enforcing No Duplication (Prop-
erty P3, Sec. 2). Conditions (6) (allowing clients to send
more than one request concurrently) and (7) (prohibiting

3determined by the BatchSize configuration parameter
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malicious leaders to propose requests outside their buck-
ets) are performance related. Condition (8) is the key to
Validity (Property P1). As this step may become a CPU
bottleneck if performed by all nodes, we use signature
sharding as an optimization (see Sec. 5.6).
Committing a batch. If node j preprepares the batch, j
sends a PREPARE and the protocol proceeds exactly
as PBFT (Alg. 4, Lines 93-109). Otherwise, j ignores
the batch (which may eventually lead to j entering epoch
change). Upon committing a batch, j removes all re-
quests present in the committed batch from j’s bucket
queues. (Alg. 4, Line 115).
In-order delivery. We say that a node i delivers a com-
mitted batch with sequence number sn once i has deliv-
ered all batches with sequence number sn′ where sn′ < sn
(Alg. 4, Lines 119-123). This effectively enforces In-
order delivery (Property P6).

Upon delivering a batch with sequence number sn, a
node outputs DELIVER(snr,r) for each request r in the
batch. An application running on a replica on top of Mir
can now safely execute r.

We define a function for assigning request sequence
numbers to individual requests. The request sequence
number is defined upon delivering the batch which the
request is part of. It depends on the relative position
of the request within the batch and the total number of
requests in all previously delivered batches. Formally,
for a batch with sequence number sn ≥ 0 delivered by
some correct node, let Ssn be the total number of requests
in that batch (possibly 0). Let r be the kth request that a
correct node delivers in a batch with sequence number
sn. Then snr = k for sn = 0 and snr = k+∑

sn−1
j=0 S j for

sn > 0. Notice that when some node i delivers a batch
with sequence number sn, Ssn′ is known to i for each sn′

where sn′ < sn, since Mir delivers batches in-order.

5.4 Epoch Change
Locally, at node j, epoch e can end graciously, by ex-
hausting all maxLen(e) sequence numbers, or ungra-
ciously, if an epoch change timer (corresponding to the
PBFT view change timer) at j expires. In the former (gra-
cious) case, a node simply starts epoch e+1 (see also Sec.
5.4.2) when it: (1) locally delivers all sequence numbers
in e, and (2) reliably delivers the epoch configuration for
e+1 (Alg. 4, Line 153). In the latter (ungracious) case,
a node first enters an epoch change sub-protocol (Sec.
5.4.1) for epoch e+1 (Alg. 4, Line 125).

It can happen that some correct nodes finish e gra-
ciously and some others do not. Such temporary inconsis-
tency may prevent batches from being committed in e+1

even if the primary of e+ 1 is correct. However, such
inconsistent epoch transitions are eventually resolved in
subsequent epochs, analogously to PBFT, when some
nodes complete the view change sub-protocol and some
do not (due to asynchrony). As we show in in Section 7.5,
the liveness of Mir is not violated.

5.4.1 Epoch Change Sub-protocol

The epoch change sub-protocol is triggered by epoch
timeouts due to asynchrony or failures and generalizes
PBFT’s view change sub-protocol. Upon committing a
batch with sequence number sn, each correct node starts
a timer ecTimer(sn+1) for the batch with sequence num-
ber sn+1 (Alg. 4, Line 116). The timer is cancelled once
the batch is delivered (Alg. 4, Line 122).

If an ecTimer for any sequence number expires at node
i, i enters the epoch-change sub-protocol to move from
epoch e to epoch e+1.

In this case, i sends an EPOCH-CHANGE mes-
sage to the primary of epoch e + 1. An EPOCH-
CHANGE message follows the structure of a PBFT
VIEW-CHANGE message (page 411, [24]) with the
difference that it is signed and that there are no VIEW-
CHANGE-ACK messages exchanged (to streamline
and simplify the implementation similarly to PBFT [22]).
The construction of a NEW-EPOCH message (by the
primary of e+1) proceeds in the same way as the PBFT
construction of a NEW-VIEW message. A node starts
epoch e+1 by processing the NEW-EPOCH message
the same way a node starts a new view in PBFT by pro-
cessing a NEW-VIEW message.

However, before entering epoch e+ 1, each correct
node resurrects potentially preprepared but uncommitted
requests from previous epochs that are not reflected in
the NEW-EPOCH message. This is required to prevent
losing requests due to an epoch change (due to condition
(5) in prepreparing a batch — Sec. 5.3), as not all batches
that were created and potentially preprepared before the
epoch change were necessarily delivered when starting
the new epoch. Resurrecting a request means that each
correct node marks the request as not preprepared. The
node further marks as not pending any of those requests
that where marked pending. (Alg. 4, Line 170) This
allows proposing and prepreparing such requests again
with a different sequence number. Request resurrection
is required for Liveness (P5).
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5.4.2 Starting a New Epoch

Every epoch e, be it gracious or ungracious, starts by
the primary reliably broadcasting (using Bracha’s classic
3-phase algorithm [18]) the epoch configuration informa-
tion4 containing: (1) EL(e), the set of epoch leaders for e,
and (2) identifiers of primary’s preferred buckets, which
the primary selects based on the oldest request pend-
ing at the primary (Alg. 4, Lines 128-141 and Alg. 4,
Lines 143-150).

Before starting to participate in epoch e (including pro-
cessing a potential NEW-EPOCH message for e) a node
i first waits to reliably deliver the epoch e configuration.
In case of gracious epoch change, node i also waits to
locally commit all “in-flight” batches pertaining to e−1.

5.5 Checkpointing (Garbage Collection)

Exactly as in PBFT, Mir uses a checkpoint mecha-
nism to prune the message logs. We consider a se-
quence number divisible by a predefined configuration
parameter as a checkpoint. After a node i commits all
batches with sequence numbers up to and including snC,
i sends a 〈CHECKPOINT,snC,H(C′)〉σi message for
the new checkpoint snC to all nodes, where H(C′) is
the hash of the batches with sequence numbers sn in
range sn′C < sn ≤ snC, and sn′C is the previous check-
point. Each node collects checkpoint messages until it
has 2 f +1 matching ones (including its own), constitut-
ing a checkpoint certificate, and persists the certificate.
At this point, the checkpoint is stable and the node can
discard the common-case messages from its log for se-
quence numbers lower than snC.

Mir advances batch watermarks at checkpoints like
PBFT does. Clients’ watermarks are also possibly ad-
vanced at checkpoints, as the state related to previously
delivered requests is discarded. For each client c, the low
watermark tcL advances to the highest timestamp t in a re-
quest submitted by c that has been delivered, such that all
requests with timestamp t ′ < t have also been delivered.
The high watermark advances to tcH = tcL +wc, where
wc is the length of the sliding window.

5.6 Signature Verification Sharding (SVS)

To offload CPU during failure-free execution (in stable
epochs), we implement an optimization where not all
nodes verify all client signatures. For each batch, we

4We optimize the reliable broadcast of an epoch configuration
using piggybacking on other protocol messages where applicable.

distinguish f +1 verifier nodes, defined as the f +1 lexi-
cographic (modulo n) successors of the leader proposing
the batch. Only the verifiers verify client signatures in
the batch on reception of a PRE-PREPARE message
(condition (8) in Sec. 5.3). Furthermore, we modify the
Mir (and thus PBFT) common-case protocol such that a
node does not send a COMMIT before having received a
PREPARE message from all f +1 verifiers (in addition
to f other nodes and itself). This maintains Validity, as
at least one correct node must have verified the client’s
signature. This way, however, if even a single verifier
is faulty, SVS may prevent a batch from being commit-
ted. Therefore, we only apply this optimization in stable
epochs where all nodes are leaders. In case an (ungra-
cious) epoch change occurs reducing the size of the lead-
erset, Mir disables SVS. Even though it might seem that
SVS gives more opportunity to Byzantine nodes to trig-
ger epoch changes, this is not the case. Since SVS is only
enabled when all nodes are leaders, whenever a Byzan-
tine node can trigger an epoch change through SVS, it
can also do so by simply not proposing any batches on its
own. Such a performance attack could occur in a stable
epoch with or without SVS and its impact is examined in
Section 9.5.

5.7 State Transfer
Nodes can temporarily become unavailable, either due
to asynchrony, or due to transient failures. Upon recov-
ery/reconnection, nodes must obtain several pieces of
information before being able to actively participate in
the protocol again. Mir state transfer is similar to that
of PBFT, and here we outline the key aspects of our
implementation.

To transfer state, nodes need to obtain current epoch
configuration information, the latest stable checkpoint
(which occurred at sequence number h), as well as in-
formation concerning batches having sequence numbers
between h+ 1 and the latest sequence number. Nodes
also exchange information about committed batches.

The state must, in particular, contain two pieces of in-
formation: (1) the current epoch configuration, which is
necessary to determine the leaders from which the node
should accept proposals, and (2) client timestamps at the
latest checkpoint, which are necessary to prevent includ-
ing already proposed client requests in future batches.

A node i in epoch e initiates state transfer when i re-
ceives common-case messages from f +1 other nodes
with epoch numbers higher than e, and i does not tran-
sition to e+ 1 for a certain time. Node i obtains this
information by broadcasting a 〈HELLO,nei,ci,bi〉 mes-
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sage, where nei is the latest NEW-EPOCH message re-
ceived by i, ci is the node’s last stable checkpoint, and bi
is the last batch i delivered. Upon receipt of a HELLO
message, another node j replies with its own HELLO
message, as well as with any missing state from the last
stable checkpoint and up to its current sequence number
sn.

From the latest stable checkpoint, a node can derive the
set of 2 f +1 nodes which signed this stable checkpoint.
This also allows a node to transfer missing batches even
from one out of these 2 f +1 nodes, while receiving con-
firmations of hashes of these batches from f additional
nodes (to prevent ingress of batches from a Byzantine
node).

We perform further optimizations in order to reduce
the amount of data that needs to be exchanged in case of a
state transfer. First, upon reconnecting, nodes announce
their presence but wait for the next stable checkpoint
after state transfer before actively participating in the
protocol again. This enables us to avoid transferring the
entire state related to requests following the preceding
stable checkpoint. Second, the amount of data related
to client timestamps that needs to be transmitted can be
reduced through only exchanging the root of the Merkle
tree containing the client timestamps, with the precise
timestamps being fetched only if necessary.

5.8 Membership Reconfiguration
While details of membership reconfiguration are outside
of the scope of this paper, we briefly describe how Mir
deals with adding/removing clients and nodes. Such
requests, called configuration requests are totally or-
dered like other requests, but are tagged to be inter-
preted/executed by nodes. Following the same princi-
ple as in Section 5.2, paragraph Buckets, the new con-
figuration should take effect right after the next bucket
re-distribution, when no requests are in-flight. This guar-
antees that all correct nodes are in the same configu-
ration when processing the fist batch after the bucket
re-distribution.

5.9 Durability (Persisting State)
By default, Mir implementation does not persist state
or message logs to stable storage. Hence, a node that
crashes might recover in a compromised state — how-
ever such a node does not participate in the protocol until
the next stable checkpoint which effectively restores the
correct state. While we opted for this approach assuming
that for few dozens of nodes simultaneous faults of up to

a third of them will be rare, for small number of nodes
the probability of such faults grows and with some proba-
bility might exceed threshold f . Therefore, we optionally
persist state pertaining to sent messages in Mir, which is
sufficient for a node to recover to a correct state after a
crash.

We also evaluated the impact of durability with 4
nodes, in a LAN setting, where it is mostly relevant
due to small number of nodes and potentially collocated
failures, using small transactions. We find that durability
has no impact on total throughput, mainly due to the fact
that persisted messages are amortized due to batching,
Mir parallel architecture and the computation-intensive
workload. However, average request latency increases by
roughly 300ms.

5.10 Implementation Architecture
We implemented Mir in Go. Our implementation is multi-
threaded and inspired by the consensus-oriented paral-
lelism (COP) architecture previously applied to PBFT
to maximize its throughput on multicore machines [16].
Specifically, in our implementation, a separate thread
is dedicated to managing each batch during the com-
mon case operation, which simplifies Mir code structure
and helps maximize performance. We further parallelize
computation-intensive tasks whenever possible (e.g., sig-
nature verifications, hash computations). The only com-
munication in common case between Mir threads per-
tains to request duplication prevention (rule (6) in ac-
cepting PRE-PREPARE in Sec. 5.3) — the shared data
structures for duplication prevention are hash tables, syn-
chronized with per-bucket locks; instances that handle
requests corresponding to different leaders do not ac-
cess the same buckets. The only exception to the multi-
threaded operation of Mir is during an ungracious epoch-
change, where a designated thread (Mir Manager) is re-
sponsible for stopping worker common-case threads and
taking the protocol from one epoch to the next. This
manager thread is also responsible for sequential batch
delivery and for checkpointing, which, however, does not
block the common-case threads processing batches.

Our implementation also parallelizes network access
using a configurable number of independent network
connections between each pair of nodes. This proves to
be critical in boosting Mir performance beyond seeming
bandwidth limitations in a WAN that stem from using a
single TCP/TLS connection.

In addition to multiple inter-node connections, we use
an independent connection for handling client requests.
As a result, the receipt of requests is independent of
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the rest of the protocol — we can safely continue to re-
ceive client requests even if the protocol is undergoing
an epoch change. Our implementation can hence seam-
lessly use, where possible, separate NICs for client’s
requests and inter-node communication to address DoS
attacks [25].

6 Pseudocode

In this section we introduce Mir pseudocode. We first
present PBFT [24] pseudocode to demonstrate the com-
mon message flow in the common case of the two pro-
tocols. Experienced readers familiar with PBFT are en-
couraged to fast forward to Mir (Algorithm 4).

Each node executes its own instance of the algorithm
described by the pseudocode. The node atomically exe-
cutes each upon block exactly once for each assignment
of values satisfying the block’s triggering condition.

For better readability we do not include batching in
the pseudocode. Implementing batching is trivial by
replacing requests with batches of requests, except re-
quest handling (Algorithm 4, lines 55- 62). Moreover,
whenever appropriate, instead of performing a request-
specific action on a batch, we perform this action on
all requests in a batch, like request validity checks in
PRE-PREPARE (Algorithm 4, lines 86- 88) and request
resurrection (Algorithm 4, lines 162-176). In the context
of request-specific validity checks, we consider the whole
batch invalid if any of the contained requests fails its va-
lidity check. Finally, PreprepareTimeout corresponds
to Tbatch and, with batching enabled, condition in Algo-
rithm 4, line 66 should be replaced with checking either
if Tbatch has ellapsed or if there exist enough requests for
a batch.

7 Mir Correctness

In this section we outline the Mir correctness proof, prov-
ing TOB properties as defined in Section 2. We pay par-
ticular attention to Liveness (Section 7.5), as we believe
it is the least obvious out of four Mir TOB properties to a
reader knowledgeable in PBFT. Where relevant, we also
consider the impact of the signature verification sharding
(SVS) optimization (Sec. 5.6).

7.1 Validity (P1)
(P1) Validity: If a correct node delivers r, then some
client broadcast r.

Proof (no SVS). We first show that Validity holds,
without signature verification sharding. If a correct node
delivers r, then at least n− f nodes sent COMMIT
for a batch which contains r which includes at least
n− 2 f ≥ f + 1 correct nodes (Sec. 3). Similarly, if
a correct node sends COMMIT for a batch which
contains r, then at least n−2 f ≥ f +1 correct nodes sent
PREPARE after prepreparing a batch which contains
r (Sec. 5.3). This implies at least f + 1 correct nodes
executed Condition (8) in Sec. 5.3 and verified client’s
signature on r as correct. Validity follows.

Proof (with SVS). With signature verification sharding
(Sec. 5.6), clients’ signatures are verified by at least f +1
verifier nodes belonging to the leaderset, out of which at
least one is correct. As no correct node sends COMMIT
before receiving PREPARE from all f +1 verifier nodes
(Sec. 5.6), no request which was incorrectly signed by
a client can be committed and, subsequently, delivered.
Validity follows.

7.2 Agreement (Total Order) (P2)

(P2) Agreement: If two correct nodes deliver requests r
and r′ with sequence number sn, then r = r′.

Proof. Assume by contradiction that there are two cor-
rect nodes i and j which deliver, respectively, r and r′

with the same sequence number sn, such that r 6= r′. With-
out loss of generality, assume i delivers r with sn before
j delivers r′ with sn (according to a global clock not ac-
cessible to nodes), and let i (resp., j) be the first correct
node that delivers r (resp., r′) with sn.

By the way we compute request sequence numbers
(see Sec. 5.3, In-order delivery), the fact that i and j
deliver different requests at the same (request) sequence
number implies they commit different batches with same
(batch) sequence number. Denote these different batches
by B and B′, respectively, and the batch sequence number
by bsn.

We distinguish several cases depending on the mecha-
nism by which i (resp., j) commits B (resp B′). Namely,
in Mir, i can commit req contained in batch B in one of
the following ways (commit possibilities (CP)):

CP1 by receiving a quorum (n− f ) of matching COM-
MIT messages in the common case of an epoch for
a fresh batch B (a fresh batch here is a batch for
which a leader sends a PRE-PREPARE message —
see Sec. 3 and Sec. 5.3)
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Algorithm 1 Common
1: function IsPrimary(id,view,num_nodes) :
2: return id = view mod num_nodes;
3:
4: function Valid(local_view,view,seq_no, low,high) :
5: if (local_view = view) and (low <= seq_no < high) then
6: return True;
7: else
8: return False;
9: end if

10:
11: function GetOldest(S1,S2) :
12: Returns the oldest entry in set S1 \S2.
13:

Algorithm 2 PBFT [24]
1: import Common
2: import PbftViewChange
3:
4: Parameters:
5: id // The node identity
6: f // Number of faults tolerated
7: RequestTimeout // Timeout to prevent waiting indefinitely for q request to commit
8: w // Low watermark, advances at checkpoints
9: W // High watermark, advances at checkpoints

10:
11: Struct Request contains
12: bytes o // Request payload
13: int t // Client timestamp
14: bytes c // Client public key (ID)
15:
16: Init:
17: lv← 0 // Local view number
18: next← 0 // The next available sequence number
19: R← /0 // The set of received requests
20: Preprepare_msgs←{} // A map from (view, sequence number) pairs to PRE-PREPARE messages, initially ⊥
21: Prepare_msgs←{} // A map from (view, sequence number) pairs to a set of unique PREPARE messages
22: Commit_msgs←{} // A map from (view, sequence number) pairs to a set of unique COMMIT messages
23: RequestTimeouts←{} // A map from requests to timers
24:
25: // Handling client request
26: upon receiving 〈REQUEST,r〉σc

27: such that SigVer(r,σc,c)
28: and not (r′ in R s.t. r′.c = r.c and r′.t 6= r.t) do
29: R← R∪{r}
30: RequestTimeouts[r]← schedule RequestTimeout
31:
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Algorithm 2 PBFT (continues)
32: // Sending new PRE-PREPARE message
33: upon |R|> 0 and w <= next <W
34: and common.IsPrimary(id, lv, N) do
35: r← common.GetOldest(R, /0)
36: Send 〈PRE-PREPARE, lv,next,r, id〉 to all nodes
37: next← next +1
38:
39: // Handling PRE-PREPARE message and sending PREPARE message
40: upon receiving pp← 〈PRE-PREPARE,v,n,r, i〉
41: such that common.Valid(lv,v,n,w,W )
42: and common.IsPrimary(i,v,N)
43: and Preprepare_msgs[v,n] =⊥
44: and r in R do
45: Preprepare_msgs[v,n]← pp
46: send 〈PREPARE,v,n,D(r), id〉 to all nodes
47:
48: // Handling PREPARE message
49: upon receiving p← 〈PREPARE,v,n,D(r), i〉
50: such that D(Preprepare_msgs[v,n].r) = D(r)
51: and common.Valid(lv,v,n,w,W ) do
52: Prepare_msgs[v,n]← Prepare_msgs[v,n]∪{p}
53:
54: // Sending COMMIT message
55: upon |Prepare_msgs[lv,n]|= 2 f +1 do
56: r← Preprepare_msgs[lv,n].r
57: send 〈COMMIT, lv,n,D(r), id〉 to all nodes
58:
59: // Handling COMMIT message
60: upon receiving c← COMMIT,v,n,D(r), i〉
61: such that D(Preprepare_msgs[v,n].r) = D(r)
62: and common.Valid(lv,v,n,w,W ) do
63: Commit_msgs[v,n]←Commit_msgs[v,n]∪{c}
64:
65: // Delivering request
66: upon |Commit_msgs[lv,n]|= 2 f +1 do
67: r← Preprepare_msgs[v,n].r
68: R← R\{r}
69: Deliver(n,r)
70: cancel RequestTimeouts[r]
71:
72: // View change on request timeout
73: upon RequestTimeout do
74: lv← lv+1
75: Pb f tViewChange.ViewChange()
76:
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Algorithm 3 PBFT ViewChange
1: import Common
2:
3: Parameters:
4: N // Number of nodes
5: f // Number of faults
6: id // The node identity
7: lv // Local view number
8: P // Map form sequence number to Entry struct for the latest prepared request in previous views
9: Q // Map form sequence number to all Entry structs for a unique preprepared request in previous views

10: C // Local checkpoints
11: h // Latest stable checkpoint
12:
13: Init:
14: Sset←{} // A map from node id to ViewChange message
15: Xset←{} // A map from sequence number to selected value
16: cp←⊥ // Highest stable checkpoint available by a f+1 nodes
17:
18: Struct Request contains
19: n // Sequence number
20: d // Request digest
21: v // View
22:
23: // Handling VIEWCHANGE message
24: upon receiving m← VIEWCHANGE,v,h,C,P,Q, i,σi〉
25: such that SigVer(m,σi, i.pk)
26: V [i]← m
27: if |Sset| ≥ 2 f +1
28: CalculateHighCheckpoint(Sset)
29: CalculateXset(Sset) 5

30: if Xset 6= {} // If the Xset is successfully calculated
31: send 〈NEWVIEW,v,Sset,Xset,cp, id,σid〉 to all nodes
32: end if
33: end if
34:
35: // Handling NEWVIEW message
36: upon receiving m← NEWVIEW,v,S,X ,cp′, i,σi〉
37: such that SigVer(m,σi, i.pk)
38: CalculateHighCheckpoint(S)
39: CalculateXset(S)
40: if Xset = X and cp = cp′ // Verify NEWVIEW
41: for all (n,r) ∈ Xset do
42: send 〈PREPARE,v,n,D(r), id〉 to all nodes
43: end for
44: end if
45:
46: function ViewChange() :
47: lv← lv+1 // Advance local view
48: p← lv mod N; // Find the new primary
49: send 〈VIEWCHANGE, lv,h,C,P,Q, id,σid〉 to p
50:
51: function CalculateHighCheckpoint(V ) :
52: cp← cp′|cp′ the highest checkpoint in m.C(∀m ∈ Sset) and at least f +1 nodes have a checkpoint in cp′.
53:
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Algorithm 3 PBFT ViewChange (continues)
54: function CalculateXset(V ) :
55: L← the highest sequence number in m.P(∀m ∈ Sset)
56: for all n such that cp < n≤ L do
57: if ∃m ∈ Sset with 〈n,d,v〉 ∈ m.P
58: such that ∃2 f +1 messages m′ ∈ Sset
59: such that m′.h < n
60: and ∀〈n,d′,v′〉 ∈ m′.P
61: such thatv′ < v or (v′ = v and d′ = d)
62: and ∃ f +1 messages m′ ∈ Sset
63: such that ∃〈n,d′,v′〉 ∈ m′.Q
64: such that v′ ≥ v and d′ = d
65: X [n]← request with digest d // Request with digest d could have been prepared for n
66: else if ∃2 f +1 messages m ∈ Sset
67: such that m.h < n and m.P has no entry for n
68: X [n]←⊥ // No request could have been prepared for n
69: else
70: Xset←{} // Not enough VIEWCHANGE messages
71: return
72: end if
73: end for
74:

CP2 by receiving a quorum (n− f ) of matching COM-
MIT messages following an ungracious epoch
change, where NEW-EPOCH message contains
B (Sec. 5.4.1),

CP3 via the state transfer sub-protocol (Sec. 5.7).

As i is the first correct node to commit request r with
sn (and therefore batch B with bsn), it is straightforward
to see that i cannot commit B via state transfer (CP3).
Hence, i commits B by CP1 or CP2.

We now distinguish several cases depending on the CP
by which j commits B′. In case j commits B′ by CP1 or
CP2, since Mir common case follows the PBFT common
case, and Mir ungracious epoch change follows PBFT
view change — a violation of Agreement in Mir implies
a violation of Total Order in PBFT. A contradiction.

The last possibility is that j commits B′ by CP3 (state
transfer). Since j is the first correct node to commit
B′ with bsn, j commits B′ after a state transfer from a
Byzantine node. However, since (1) Mir CHECKPOINT
messages (see Sec. 5.5) which are the basis for stable
checkpoints and state transfer (Sec. 5.7) are signed, and
(2) stable checkpoints contain signatures of 2 f +1 nodes
including at least f + 1 correct nodes, j is not the first
correct node to commit B′ with bsn. A contradiction.

7.3 No Duplication (P3)
(P3) No duplication: If a correct node delivers request r
with sequence numbers sn and sn′, then sn = sn′.

Proof. No-duplication stems from the way Mir prevents
duplicate preprepares (condition (5) in accepting PRE-
PREPARE, as detailed in Sec. 5.3).

Assume by contradiction that two identical requests
req and req′ exist such that req = req′ and correct node j
delivers req (resp., req′) with sequence number sn (resp.,
sn′) such that sn 6= sn′.

Then, we distinguish the following exhaustive cases:

• (i) req and req′ are both delivered in the same batch.

• (ii) req and req′ are delivered in different batches.

In case (i), assume without loss of generality that req
precedes req′ in the same batch. Then, by condition (5)
for validating a PRE-PREPARE (Sec. 5.3), no correct
node preprepares req′ and all correct nodes discard the
batch which hence cannot be delivered, a contradiction.

In case (ii) denote the batch which contains req by
B and the batch which contains req′ by B′. Denote the
set of at least n− f ≥ 2 f +1 nodes that prepare batch B
by S and the set of at least n− f ≥ 2 f + 1 that prepare
batch B′ by S′. Sets S and S′ intersect in at least n−
2 f ≥ f + 1 nodes out of which at least one is correct,
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Algorithm 4 Mir
1: import Common
2: import PbftViewChange
3: import ReliableBroadcast
4:
5: Parameters:
6: id // The node identity
7: f // Number of faults tolerated
8: w // Low watermark, advances at checkpoints
9: W // High watermark, advances at checkpoints

10: NumBuckets // Number of buckets
11: BucketsPerLeader // The number of buckets per leader when all nodes are leaders
12: RedistributionPeriod // Bucket re-distribution period
13: E phemeralE pLen // Number of sequence numbers in an ephemeral epoch
14:
15: Struct Request contains
16: o // Request payload
17: t // Client timestamp
18: c // Client identity (public key)
19:
20: Struct Client contains
21: H // Client high watermark, advances at checkpoint
22: L // Client low watermark, advances at checkpoint
23:
24: Struct E pochCon f ig contains
25: First // First sequence number of the epoch
26: Last // Last sequence number of the epoch
27: Leaders // List of leaders of the epoch
28: PrimaryBuckets // Buckets the primary chose for itself
29:
30: Init:
31: le← 0 // Local epoch number
32: next← id // The next available sequence number
33: Buckets← Set of NumBuckets empty buckets // Each bucket is a FIFO queue of received requests
34: Clients←{} // A map from client identity (public key) to a Client structure
35: Preprepare_msgs←{} // A map from (epoch, sequence number) pairs to PRE-PREPARE messages
36: Prepare_msgs←{} // A map from (epoch, sequence number) pairs to a set of unique PREPARE messages
37: Commit_msgs←{} // A map from (epoch, sequence number) pairs to a set of unique COMMIT messages
38: Pendng← /0 // A set of proposed but not committed requests
39: Preprepared← /0 // A set of preprepared requests to prevent duplicates
40: committed←{} // A map from (epoch, sequence number) pairs to committed requests, initially ⊥
41: delivered←{} // A map from (epoch, sequence number) booleans
42: E pochChangeTimeouts // List of timers per sequence number for epoch change
43: E pochCon f ig← [] // List of epoch configurations
44: for all bucket ∈ Buckets do
45: bucket← /0

46: end for
47: E pochCon f ig[0].First = 0
48: E pochCon f ig[0].Last = ∞

49: E pochCon f ig[0].Leaders = Nodes
50: E pochCon f ig[0].PrimaryBuckets = arbitrary dNumBuckets/Nodese buckets
51: ActiveBucketAssignment(0,E pochCon f ig[0])
52: E pochChangeTimeouts[0]← start E pochChangeTimeout // Start a timer for the first sequence number
53: start PreprepareTimeout // Start a timer for a new preprepare
54:
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Algorithm 4 Mir (continues)
55: // Handling client request
56: upon receiving 〈REQUEST,r〉σc

57: such that SigVer(r,σc,r.c)
58: and Clients[r.c].L <= r.t <Clients[r.c].H do
59: bucket← GetBucket(H(t||c))
60: if @r′ ∈ bucket : r′.c = r.c∧ r′.t = r.t then
61: bucket.append(r)
62: end if
63:
64: // Sending new PRE-PREPARE message
65: upon (|ActiveBuckets(i, le,next)\Pending|> 0 or PreprepareTimeout) // The active bucket is not empty
66: // or the timeout for a new PRE-PREPARE has elapsed
67: and w <= next <W // The next seq no is in the watermark window
68: and ActiveDistribution(le,next) // All seq nos from the previous re-distribution are delivered
69: and n≤ E pochCon f ig[le].Last do // The next seq no is in the current epoch
70: if |ActiveBuckets(i, le,next)\Pending|> 0 then // The active bucket is not empty
71: r← common.GetOldest(ActiveBuckets(i, le,next)\Pendng,Preprepared)
72: Pending← Pending∪{r}
73: else
74: r←⊥ // Sending PRE-PREPARE with special nil request
75: end if
76: send 〈PRE-PREPARE, le,next,r, id〉 to all nodes
77: next← next + |E pochCon f ig[le].Leaders)|
78: reset PreprepareTimeout
79:
80: // Handling PRE-PREPARE message and sending PREPARE message
81: upon receiving pp← 〈PRE-PREPARE,e,n,r, i〉
82: such that common.Valid(le,e,n,w,W ) // Valid sequence number and epoch number Sec. 5.3(1),(4)
83: and Preprepare_msgs[e,n] =⊥) // No other batch is preprepared with sn in epoch e Sec. 5.3(1)
84: and Leads(i,e,n) // Node i is in the leadeset of epoch e Sec. 5.3(2) and leads sn Sec. 5.3(3)
85: and H(r.o||r.t||r.c) not in Preprepared // The request is not already preprepared Sec. 5.3(5)
86: and Clients[r.c].L <= r.t <Clients[r.c].H // The client timestamp is within the client’s watermark window Sec. 5.3(6)
87: and H(r.t||r.c) in ActiveBuckets(i,e,n) // The request belongs to an active bucket for i Sec. 5.3(7)
88: and SigVer((r,r.σc,r.c) do // The request was a valid signature Sec. 5.3(8)
89: Preprepared← Preprepared∪{r}
90: Preprepare_msgs[e,n]← pp
91: send 〈PREPARE,v,n,D(r), id〉 to all nodes
92:
93: // Handling PREPARE message
94: upon receiving p← 〈PREPARE,e,n,D(r), i〉
95: such that D(Preprepare_msgs[e,n].r) = D(r)
96: and common.Valid(le,e,n,w,W ) do
97: Prepare_msgs[e,n]← Prepare_msgs[e,n]∪{p}
98:
99: // Sending COMMIT message
100: upon |Prepare_msgs[le,n]|= 2 f +1 do
101: r← Preprepare_msgs[e,n].r
102: send 〈COMMIT, le,n,D(r), id〉 to all nodes
103:
104: // Handling COMMIT message
105: upon receiving c← 〈COMMIT,e,n,D(r), i〉
106: such that D(Preprepare_msgs[e,n].r) = D(r)
107: and common.Valid(le,e,n,w,W ) do
108: Commit_msgs[e,n]←Commit_msgs[e,n]∪{c}
109:
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Algorithm 4 Mir (continues)
110: // Committing a request
111: upon |Commit_msgs[e,n]|= 2 f +1 do
112: r← Preprepare_msgs[e,n].r
113: committed[e,n]← r
114: Pending← Pending\{r}
115: GetBucket(H(r.t||r.c)).remove(r) // Removing request from bucket
116: E pochChangeTimeouts[n+1]← start E pochChangeTimeout // Epoch-change timer for the next sequence number
117:
118: // In-order request delivery
119: upon committed[le,n] 6=⊥ and delivered[n−1] do // The previous sequence number must be already delivered
120: Deliver(n,r)
121: delivered[n]← True
122: cancel E pochChangeTimeouts[n] // Cancelling the new epoch-change timer for n
123:
124: // Epoch change timeout
125: upon E pochChangeTimeout do
126: PBFTViewChange.ViewChange() // Algorithm 3: PBFT view change
127:
128: // Reliable broadcasts of new epoch configuration on gracious epoch change
129: upon delivered[EpochConfig[e].Last] // all sequence numbers of the epoch are delivered
130: and common.IsPrimary(id, e+1, N) do
131: E pochCon f ig[e+1].Leaders← E pochCon f ig[e].Leaders∪{id} // the primary adds itself in the leaderset
132: E pochCon f ig[e+1].PrimaryBuckets
133: ← dNumBuckets/Nodese buckets containing the oldest requests // primary’s preferred buckets
134: E pochCon f ig[e+1].First← E pochCon f ig[e].Last +1
135: ifE pochCon f ig[e+1].Leaders = Nodes then // if all nodes are in the leaderset
136: E pochCon f ig[e+1].Last← ∞ // the next epoch is stable
137: else
138: E pochCon f ig[e+1].Last
139: ← E pochCon f ig[e+1].First + ephemeralE pLen
140: end if
141: ReliableBroadcast.Broadcast(E pochCon f ig[e+1],e+1)
142:
143: // Reliable broadcast of new epoch configuration on ungracious epoch change
144: upon sending PBFT NEW-EPOCH message for epoch e+1 do
145: E pochCon f ig[e+1].Leaders← ShrinkingLeaderset(e+1, id)
146: E pochCon f ig[e+1].PrimaryBuckets
147: ← dNumBuckets/Nodese buckets containing the oldest requests
148: E pochCon f ig[e+1].First← E pochCon f ig[e].Last +1
149: E pochCon f ig[e+1].Last← E pochCon f ig[e+1].First + ephemeralE pLen
150: ReliableBroadcast.Broadcast(E pochCon f ig[e+1],e+1)
151:
152: // Gracious epoch change
153: upon ReliableBroadcast.Delivered(E pochCon f ig,e) and le = e do
154: E pochCon f ig[e]← E pochCon f ig
155: if ∃k : E pochCon f ig[e].Leaders[k] = id then
156: next← E pochCon f ig[e].First + k
157: end if
158: ActiveBucketAssignment(e,E pochCon f ig)
159:
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Algorithm 4 Mir (continues)
160: upon sending or receiving PBFT NEW-EPOCH message do
161: Process the message according to Algorithm 3
162: // Request resurrection
163: for all r ∈ Preprepared do
164: if r not in NEW-EPOCH then
165: Preprepared← Preprepared \{r} // Uncommitted requests, inserted in the set in a previous epoch
166: end if
167: end for
168: for all r ∈ Preprepared do
169: if r not in NEW-EPOCH then
170: Pending← Pending\{r} // Uncommitted requests, inserted in the set in a previous epoch
171: end if
172: end for
173: for all r ∈ PBFT NEW-EPOCH do
174: Preprepared← Preprepared∪{r} // Marking again the requests in the message as preprepared
175: end for
176:
177: function Leads(i,e,n) : // Returns True if i is leader of n in epoch e
178: if i in E pochCon f ig[e].Leaders then
179: return ((E pochCon f ig[e].First +n) mod |E pochCon f ig[e].Leaders|) = i
180: else
181: return False
182: end if
183:
184: function GetBucket(hash) :
185: Returns the bucket containing requests r such that H(r.t||r.c) = hash.
186:
187: function ActiveBucketAssignment(e,E pochCon f ig) :
188: Evenly partition Buckets\E pochCon f ig.PrimaryBuckets
189: among E pochCon f ig.Leaders\{i : common.IsPrimary(i,e,N)}
190:
191: function ActiveBuckets(i,e,n) :
192: Returns the union of buckets which are active for node i in epoch e and sequence number n
193:
194: // ActiveDistribution returns true if all the sequence numbers from the previous re-distribution are delivered
195: function ActiveDistribution(e,n) :
196: period← RedistributionPeriod
197: distribution← dn− (E pochCon f ig[e−1].Last)/periode
198: return delivered[E pochCon f ig[e−1].Last +(distribution−1)∗ period]
199:
200: function ShrinkingLeaderset(e, i) :
201: elast ← the last epoch for which i has the configuration
202: Leaders← E pochCon f ig[elast ].Leaders∪{i}
203: RemovedLeaders← a random set of min((e′− e),1) nodes from E pochCon f ig[elast ].Leaders\{i}
204: return Leaders\RemovedLeaders
205:
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say node i. Assume without loss of generality that i
preprepares B before B′. Then, the following argument
holds irrespectivelly of whether i delivers batch B before
B′, or vice versa: as access to data structure responsible
for implementing condition (5) is synchronized with per-
bucket locks (Sec. 5.10) and since req and req′ both map
to the same bucket, as their hashes are identical, i cannot
preprepare req′ and hence cannot prepare batch B′ which
cannot be delivered — a contradiction.

It is easy to see that signature verification sharding op-
timization does not impact the No-Duplication property.

7.4 Totality (P4)
Lemma 1. If a correct node delivers a sequence number
sn, then every correct node eventually delivers sn.

Proof. Assume, by contradiction, that a correct node j
never delivers any request with sn. We distinguish 2
cases:

1. sn becomes part of a stable checkpoint of a correct
node k. In this case, at the latest after GST j en-
ters the state transfer protocol (see Sec. 5.7), and
transfers the missing batches, including the batch
with sequence number sn, from some correct node.
Such a node exists, because at least k is such a node.
Moreover, j gets batch hash confirmations from f
additional nodes that signed the stable checkpoint sn
belongs to. At this point j can deliver all sequence
numbers up to the stable checkpoint, obtained with
the state transfer protocol, including sn, because
j transfers all sequence numbers up to the stable
checkpoint without gaps. A contradiction.

2. sn never becomes part of a stable checkpoint. Then,
the start of the watermark window will never ad-
vance past sn, and all correct nodes, at latest when
exhausting the current watermark window, will start
infinitely many ungracious epoch changes without
any of them committing, and therefore delivering,
any requests. Correct nodes will always eventu-
ally exhaust the sequence numbers in their current
watermark window, since even in the absence of
new client requests, correct leaders periodically pro-
pose a special nil request (in practice, an empty
batch) (see Algorithm 4, line 74). Infinitely many
ungracious epoch changes without committing any
requests, however, is a contradiction to PBFT live-
ness.

(P4) Totality: If a correct node delivers request r, then
every correct node eventually delivers r.

Proof. Let i be a correct node that delivers r with se-
quence number sn. Then, by (P2) Agreement, no correct
node can deliver another r′ 6= r with sequence number
sn. Therefore, all other correct nodes will either deliver
r with sn or never deliver sn. The latter is a contradic-
tion to Lemma 1, since i delivered some request with sn,
all correct nodes deliver some request with sn. Totality
follows.

7.5 Liveness (P5)
We first prove a number of auxiliary Lemmas and then
prove liveness.

Lemma 2. In an execution with a finite number of
epochs, the last epoch elast is a stable epoch.

Proof. Assume by contradiction that elast is not stable,
this implies either:

1. a gracious epoch change from elast at some correct
node and hence, elast is not the last – a contradiction;
or

2. ungracious epoch change from elast never completes
— since Mir ungracious epoch change protocol fol-
lows PBFT view change protocol, this implies live-
ness violation in PBFT. A contradiction.

Lemma 3. If a correct client broadcasts request r, then
every correct node eventually receives r and puts it in the
respective bucket queue or delivers r.

Proof. The lemma follows by assumption of a syn-
chronous system after GST and by the correct client
sending and periodically re-sending request to all nodes
until a request is delivered (see Section 5.1).

Lemma 4. If, after GST, all correct nodes start executing
the common-case protocol in a non-stable epoch e before
time t, then there exists a ∆, such that if a correct leader
proposes a batch B before time t and no correct node
enters an epoch change before t +∆, every correct node
commits B.

Proof. Let δ be the upper bound on the message delay af-
ter GST and let a correct leader propose a request r before
t. By the common-case algorithm without SVS (there is
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no SVS in a non-stable epoch e) all correct nodes receive
at least 2 f +1 COMMIT messages for r before t +3δ

(time needed to transmit PRE-PREPARE, PREPARE
and COMMIT). All correct nodes will accept these mes-
sages, since they all enter epoch e by time t. As every
correct node receives at least 2 f +1 COMMITs, every
correct node commits r by t+3δ. Therefore, ∆= 3δ.

Lemma 5. If a correct node commits a batch which
includes request r, then i eventually delivers r.

Proof. Let us assume that r is committed by i in a batch
with sequence number bsn. Then, for bsn not to be de-
livered, there exists some batch with sequence number
bsn′ < bsn which is never delivered by i. Otherwise, i
commits all batches with a sequence number bsn′ < bsn
and, therefore, i can deliver the batch with sequence num-
ber bsn which includes r (see Alg. 4, Line 119).

We distinguish two cases.

1. There exists some correct node that delivers a batch
with sequence number bsn′.

2. No correct node delivers a batch with sequence num-
ber bsn′.

In the first case, by Lemma 1, every correct node,
including i, delivers (and thus commits) a batch with
sequence number bsn′. To deliver a batch, a node must
have committed it (see Alg. 4, Line 119).

In the second case, similarly to the argumentation in
the second case in Lemma 1, the start of the watermark
window in any correct node will never advance beyond
bsn′, leading to infinitely many epoch changes, without
committing any request. A contradiction to PBFT live-
ness.

Lemma 6. During a single epoch, a correct node does
not propose the same request more than once.

Proof. After a request r is proposed the first time in an
epoch, until the end of that epoch there are two mutually
exclusive cases. A proposed request r is either pending
or committed (included in a committed batch) (Alg. 4:
Line 72, Alg. 4: Line 114).

In the first case, a correct node does not propose r
because it is marked as pending (Alg. 4: Line 71). r
can be un-marked pending without being committed only
with request resurrection. However, resurrection can
only occur during an epoch change and thus the second
proposal cannot happen in the same epoch as the first.

In the second case, r, upon being committed in a batch
at some correct node i, i removes r from its bucket queue

(Alg. 4: Line 115). If r is committed by i then r is also
preprepared by i and i will not propose r again (Alg. 4:
Line 71). Moreover, i does not remove r from the prepre-
pared set with request resurrection within an epoch, be-
cause, as in the previous case, this requires an epoch
change.

In either of the cases i does not propose r again in the
same epoch.

Lemma 7. If a correct node proposes a batch b in epoch
e with sequence number sn, then no correct node delivers
a batch b′ 6= b with sn in epoch e.

Proof. Let us denote by i the node that proposes b in
epoch e.

Assume, by contradiction, that some correct node j, in-
cluding the case where i = j, delivers b′ with sn in epoch
e. Then j must have preprepared b′ in the same epoch
e; otherwise j cannot commit b′ in e and, consequently,
delivered it. Since i is the leader of sequence number sn
in epoch e, j does not preprepare a batch proposed by any
node other than i in e (see Alg. 4, Line 84). Therefore,
j can preprepare b′ with sequence number sn only if i
proposes sn. However, i, being a correct node, proposes
only one batch per sequence number, and by lemma state-
ment we know that that is b. This is a contradiction to
b′ 6= b.

Lemma 8. When node i is assigned the bucket of request
r in epoch e, i has not proposed r in e and i has marked
r as preprepared, then i has delivered r.

Proof. Let us assume that i preprepared r. There ex-
ist two mutually exclusive cases for request r. Either i
preprepared r in some previous epoch e′ < e or i prepre-
pares r in e. We exhaustively show that in both cases,
either i has delivered r or i has un-marked r from being
preprepared.

1. i preprepared r in epoch e′ < e. There are two pos-
sible cases.

(a) i delivered r in e′. The lemma follows.

(b) i did not deliver r in e′. In this case, since an
epoch change occurred, i resurrected r at the
end of e′ (Algorithm 4, lines 162-176), and,
therefore, un-marked r as preprepared.

2. i preprepared r in e. Then some node proposed r in
epoch e. There are two sub-cases to distinguish.

(a) i proposed r. This cannot happen by the state-
ment of the lemma.
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(b) Some other node j proposed r. Here we dis-
tinguish again cases.

i. i already delivered r. The lemma follows.
ii. i did not deliver r. This means that the

batch with r is still considered in-flight by
i and, therefore, i bucket re-distribution
could not have happened at i (Alg. 4,
Line 68) since j was assigned the bucket
of r. Therefore, i is not assigned the
bucket of r. A contradiction to i being as-
signed the bucket of r (from the premise
of the lemma).

Lemma 9 (Liveness with Finitely Many Epochs). In an
execution with a finite number of epochs, if a correct
client broadcasts request r, then some correct node even-
tually delivers r.

Proof. Assume, by contradiction, that no correct node
delivers r. This implies that no correct node delivers r in
the last epoch elast .

By Lemma 2, elast is an infinite, stable epoch. There-
fore all nodes, including i, are leaders. Since the epoch
is infinite and the sequence numbers of the epoch are
distributed to the leaders in a round robin way (Alg. 4,
Line 179), i will propose infinitely often.

By Lemma 6, and since the oldest request is always
proposed first (Alg. 4, Line 179), i will eventually have
proposed all requests older than r and r will be the oldest
request in i’s bucket queues.

Next time i proposes a batch from r’s bucket we dis-
tinguish two cases.

1. i has already proposed r in some batch b in elast .

2. i has not proposed r in elast .

In the second case, by Lemma 8, r is not marked as
pre-prepared at i. Since r is the oldest request and i is
proposing from r’s bucket, i will propose r in its next
batch b (see also Sec 5.3, PRE-PREPARE paragraph).

Let sn be the sequence number of batch b. From our
contradiction statement, we have that b will never be
delivered. By Lemma 7, b is the only batch that can
be delivered with sn in elast . Therefore, no batch can be
delivered with sn. This will trigger an epoch change time-
out at all other correct nodes, causing an epoch change.
A contradiction to elast being stable.

Definition 1 (Preferred request). Request r is called pre-
ferred request in epoch e, if r is the oldest request in the

bucket queues of the primary node of epoch e, before the
primary proposes its first batch in e.

Lemma 10. If all correct nodes perform an ungracious
epoch change from e to e+1 and the primary of e+1 is
correct, then all correct nodes reliably deliver the epoch
configuration of e+1.

Proof. Let p be the correct primary of e+ 1. As p is
correct, by the premise, p participated in the ungracious
epoch change sub-protocol. Since the PBFT view change
protocol is part of the ungracious view change, p sends a
NEW-EPOCH message to all nodes. By the algorithm
(Algorithm 4, line 150), p reliably broadcasts the epoch
configuration of e+1. Since all correct nodes participate
in the ungracious view change, all correct nodes enter
epoch e+1. By the properties of reliable broadcast, all
correct nodes deliver the epoch configuration in e+ 1
(Algorithm 4, line 153).

Lemma 11. There exists a time after GST, such that if
each correct node reliably delivers the configuration of
epoch e after entering e through an ungracious epoch
change, and the primary of e is correct, then all correct
nodes commit e’s preferred request r.

Proof. Let p be the primary of epoch e, and C the epoch
configuration p broadcasts for e. By the algorithm, the
leaderset in C does not contain all nodes (and thus SVS is
disabled in e), as all correct nodes entered e ungraciously.
Since (by the premise) all correct nodes deliver C, all
correct nodes will start participating in the common-case
agreement protocol in epoch e. Let t f and tl be the time
when, respectively, the first and last correct node does so.

By the algorithm, p proposes r immediately in some
batch B when entering epoch e, and thus at latest at tl .
Then, by Lemma 4, there exists a ∆ such that all correct
nodes commit r, as part of B, if none of them initiates a
view change before tl +∆.

Eventually, after finitely many ungracious epoch
changes, where all correct nodes double their epoch
change timeout values (as done in PBFT [24]), all cor-
rect nodes’ epoch change timeout will be greater than
(tl − t f )+∆. Then, even if a node i enters epoch e and
immediately starts its timer at t f , i will not enter view
change before tl + ∆ and, thus, all correct nodes will
commit r in epoch e.

Lemma 12. There exists a time after GST, such that if
all correct nodes perform an ungracious epoch change
from e to e+1, and the primary of e+1 is correct, then
some correct node commits preferred request in e+1.
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Proof. Follows from Lemmas 10 and 11.

Lemma 13. In an execution with infinitely many epochs
there exists an infinite number of pairs of consecutive
epochs with correct primaries.

Proof. Epoch primaries succeed each other in a round
robin way across all the lexicographically ordered nodes
of the system (see Sec. 4 and Sec. 2). Assume such pair
of two consecutive epochs with correct primaries never
exists after some epoch e. Then, in every full rotation
across all 3 f +1 nodes after e, there exists an epoch with
a faulty primary node between every two epochs with
correct primaries, which implies the number of faulty
nodes to be greater than f . A contradiction.

Lemma 14. There exists a time after GST, such that
for any pair of consecutive epochs e and e+1 with cor-
rect primaries i and j (respectively), some correct node
commits at least one of the preferred requests in e and
e+1.

Proof. Let re (resp., r′e) be preferred request in e (resp.,
e′). For the epoch change from e to e+1 there are two
exhaustive possibilities.

1. At least one correct node performs a gracious epoch
change from e to e+1. Recall that Mir requires the
primary of an epoch to be in the leaderset (Sec-
tion 4). As e graciously ends at at least one correct
node, it follows from the specification of the gra-
cious epoch change (Section 5), that at least one
node commits all requests proposed in e.

Since, by the protocol, the primary of e is in the
leaderset of e and the correct primary always pro-
poses the preferred request, at least one correct node
commits the preferred request of e.

2. No node performs a gracious epoch change. By
Lemma 12.

(P5) Liveness: If a correct client broadcasts request r,
then some correct node eventually delivers r.

Proof. We distinguish two cases:

1. In an execution with a finite number of epochs, Live-
ness follows from Lemma 9.

2. Consider now an execution with an infinite number
of epochs. By Lemma 3, every correct node even-
tually receives r. Let P be the set of all requests
that some correct node received before it received
r. After r has been received by all correct nodes,
following from Definition 1, if r′ 6= r is a preferred
request, then r′ ∈ P. By Lemma 14, however, all
such requests r′ will eventually be committed by
all correct nodes. Therefore, by Definition 1, un-
less r is committed earlier by some correct node, r
will eventually become the preferred request of all
epochs with correct primaries, and will be commit-
ted by some correct node by Lemma 14. Finally, by
Lemma 5 r will be delivered by some correct node.

(P6) In-order delivery: If a correct node i delivers some
request r with sequence number sn, then i has delivered
requests for each sequence number sn′, such that sn′< sn.

Proof. This property is trivially guaranteed by the way
the protocol is designed. A correct node delivers a batch
with sequence number bsn only after it has delivered all
batches with sequence numbers bsn′ with bsn′ < bsn (see
Sec. 5.3, In-order delivery and Algorithm 4, line 119).
Moreover, the request sequence numbers are assigned
with a contiguous, monotonically increasing function
(see Sec. 5.3, In-order delivery). In-order delivery fol-
lows.

8 LTO: Optimization for large requests

When the system is network-bound (e.g., with large
requests, such as those found in Hyperledger Fabric
and/or on a WAN) the maximum throughput is driven
by the amount of data each leader can send in a PRE-
PREPARE message. However, data, i.e., request pay-
load, is not critical for total order, as the nodes can es-
tablish total order on request hashes. While in many
blockchain systems all nodes need data [1, 3], in oth-
ers [11], ordering is separated from request execution
and full payload replication across ordering nodes is un-
necessary.

For such systems, Mir optionally boosts throughput
using what we call Light Total Order (LTO) broadcast.
LTO is defined in the same way as TO broadcast (Sec. 2)
except that LTO requires property P4 (Totality) to hold
for the hash of the request H(r) (instead for request r).
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P4 Totality: If a correct node delivers a request r
or a request hash H(r), then every correct node
eventually delivers H(r).

On a high level, LTO follows a similar pattern as SVS
(Sec. 5.6) and applies to Mir only in stable epoch. A
leader only sends a full PRE-PREPARE message to
a subset of f + 1 replica nodes. To the remaining 2 f
observer nodes, the leader sends a lightweight PRE-
PREPARE message where request payloads are replaced
with their hashes.

Inside the Mir (and PBFT) common-case (Sec. 5.3)
sub-protocol, before sending a COMMIT message, a
node waits to receive at least 2 f + 1 PREPARE mes-
sages, such that f +1 of them are from the replica nodes.
This ensures that at least one correct (replica) node has
the full payload.

LTO has minor impact on PBFT view change (Mir
epoch change) as a new primary might have a hash of
the batch (lightweight PRE-PREPARE) but not the full
batch payload. To this end, our Mir-LTO makes the
primary in this situation look for the payload at f + 1
replicas, which is guaranteed not to block liveness after
GST and with the correct primary.

Max batch size 2 MB (4000 requests)
Cut batch timeout 500 ms (n < 49), 1s(n = 49),

2s(n = 100)
Max batches
ephemeral epoch 256 (n≤ 16), 16∗n (n > 16)
Bucket re-distribution period 256 (n≤ 16), 16∗n (n > 16)
Buckets per leader (m) 2
Checkpoint period 128
Watermark window size 256
Parallel gRPC connections 5 (n = 4), 3 (n = 10),

1 (n > 10)
Client signatures 256-bit ECDSA

Table 3: Mir configuration parameters used in evaluation

9 Evaluation

In this section, we report on experiments we conducted
in scope of Mir performance evaluation, which aims at
answering the following questions:
(Sec. 9.1) How does Mir scale on a WAN?
(Sec. 9.2) How does Mir scale in clusters?
(Sec. 9.3) What is the impact of optimizations (SVS,
LTO) and bucket re-distribution and what are typical

latencies of Mir?
(Sec. 9.4) What is the benefit of Mir duplication
prevention?
(Sec. 9.5) How does Mir perform under faults and attacks
(crash faults, censoring attacks, straggler attacks)?

Experimental Setup. Our evaluation consists of mi-
crobenchmarks of 500 byte requests, which correspond
to average Bitcoin tx size [7]. These are representative
of Mir performance, both absolute and relative to state
of the art. We also evaluate Mir in WAN for larger 3500
byte requests, typical in Hyperledger Fabric [11] to better
showcase the impact of available bandwidth on Mir.

We generate client requests by increasing the number
of client processes and the request rate per client pro-
cess, until the throughput is saturated. We report the
throughput just below saturation. The client processes es-
timate which node i has an active bucket for each of their
requests and initially send each request only to nodes
i−1, · · · , i+ k, where k ≤ f −1, i.e., to f +1 nodes.

We compare Mir to a state-of-the-art PBFT implemen-
tation optimized for multi-cores [16]. For fair compar-
ison, we use the Mir codebase tuned to closely follow
the PBFT implementation of [16] (see also Section 4,
paragraph “Generalization of PBFT and Emulation of
Other BFT Protocols”) hardened, as Mir, to implement
Aardvark [25] (client signatures instead of MAC vec-
tors and separate network interface for client requests
and protocol messages). As another baseline, we com-
pare the common case performance of Chain, an op-
timistic sub-protocol of the Aliph BFT protocol [13]
with linear common-case message complexity, which
is known to be near throughput-optimal in clusters, al-
though it is not robust and needs to be abandoned in case
of faults [13]. In this sense, Chain is not a competitor
to Mir, but rather an upper bound on performance in a
cluster. Our PBFT and Chain implementations have the
same batching mechanism as Mir (see Sec. 5.3, PRE-
PREPARE paragraph). Moreover, PBFT and Chain are
always given best possible setups, i.e., PBFT leader is al-
ways placed in a node that has most effective bandwidth
and Chain spans the path with the smallest latency. We
further compare to HotStuff [61] (a recent, popular, O(n)
common-case message complexity BFT protocol) and
Honeybadger [51] using their open source implementa-
tions 6. We present comparison to HotStuff separately,
due to its implementation specifics. We allow Honeybad-
ger an advantage with using 250 byte requests, as its open

6https://github.com/hot-stuff/libhotstuff at
commit 978f39f... and https://github.com/initc3/
HoneyBadgerBFT-Python
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Figure 4: Distribution of the 16 datacenters for WAN deployment. Yellow pins indicate the n = 4 deployment.

source implementation is fixed to this request size. We
do not compare to unavailable (e.g., Hashgraph [45], Red
Belly [26], RCC [38], OMADA [30]) or unmaintained
(BFT-Mencius [52]) protocols. We, however, demon-
strate the expected effective throughput of Hashgraph,
Red-Belly, BFT-Mencius, RCC, and OMADA under re-
quest duplication, by “switching off” request duplication
prevention in Mir, see Sec. 9.4. We further do not com-
pare to single leader protocols faithfully approximated by
PBFT (e.g., BFT-SMaRt [17], Spinning [57] or by Hot-
Stuff (e.g., SBFT [36]) or those that report considerably
worse performance than Mir (e.g., Algorand [35]).

We use virtual machines on IBM Cloud, with 32 x 2.0
GHz VCPUs and 32GB RAM, equipped with 1Gbps net-
working and limited to that value for experiment repeata-
bility, due to non-uniform bandwidth overprovisioning
we sometimes experienced. Table 3 shows the used Mir
configuration parameters. Unless stated otherwise, Mir
uses the signature verification sharding optimization.

9.1 Scalability on a WAN

To evaluate Mir scalability, we ran it with up to n = 100
nodes on a WAN setup spanning 16 distinct datacenters
across Europe, America, Australia, and Asia. Beyond
n = 16, we collocate nodes across already used data-
centers. Our 4-node experiments spread over all 4 men-
tioned continents. Client machines are also uniformly
distributed across the 16 datacenters. Figure 4 shows the
datacenter distribution.

Figure 5a depicts the common-case (failure-free) sta-
ble epoch performance of Mir, compared to that of PBFT,

Chain, and Honeybadger. We observe that PBFT through-
put decays rapidly, following an O(1/n) function and
scales very poorly. Chain scales better, sustaining 20k
req/s, but is limited by the bandwidth of the “weakest
link”, i.e., a TCP connection with lowest bandwidth
across all links between consecutive nodes. In fact,
Chain throughput improves with up to n = 16 nodes
since adding more datacenters yields a path with nodes
physically closer to each other, improving the per TCP
connection bandwidth. Compared to Honeybadger, Mir
retains much higher throughput, even though: (i) Honey-
badger request size is smaller (250 bytes vs 500 bytes),
and (ii) Honeybadger batches are significantly larger (up
to 500K requests in our evaluation). This is due to the
fact that Honeybadger is computationally bound by O(n2)
threshold signatures verification and on top of that the
verification of the signatures is done sequentially. Honey-
badger’s throughput also suffers from request duplication
(on average 1/3 duplicate requests per batch), since the
nodes choose the requests they add in their batches at
random. Moreover, we report on Honeybadger latency,
which is in the order of minutes (partly due to the large
number of requests per batch and partly due to heavy com-
putation), significantly higher than that of Mir. In our
evaluation we could not increase the batch size as much
as in the evaluation in [51], especially with increasing
the number of nodes beyond 16, due to memory exhaus-
tion issues. Finally, in our evaluation PBFT outperforms
Honeybadger (unlike in [51]), as our implementation of
PBFT leverages the parallelism of Mir codebase.

Mir dominates other protocols, delivering 82.5k,
roughly 4x the throughput of Chain, with n = 4. The
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Figure 5: WAN scalability experiments.

improvement over Chain throughput is thanks to Mir
opening multiple TCP connections between each pair of
nodes and therefore utilizing more effectively the avail-
able bandwidth to all nodes. Multiple TCP connections
is a low-level optimization which is empirically found
to increase the effective bandwidth between two nodes.
Importantly, Chain cannot support multiple TCP connec-
tions, since this might violate the FIFO channels between
nodes, on which Chain, unlike Mir, relies. With n = 100,
Mir maintains more than 60k req/s (3x Chain through-
put). Even without the signature verification sharding
optimization (“Mir (noSVS)”) Mir significantly outper-
forms other protocols, delivering with n = 4 70.2k req/s
(3.5x Chain throughput) while reaching 31.7k req/s with
n = 100 (1.5x Chain throughput).

Comparison to HotStuff in WANs. We present the
comparison of Mir to the HotStuff [61] leader-based pro-
tocol separately, in Figure 5b. Despite HotStuff specify-
ing that the leader disseminates the request payload [61],
the available HotStuff implementation orders only hashes
of requests, relying optimistically on clients for pay-
load dissemination. This approach is vulnerable to live-
ness/performance attacks from malicious clients which
can be easily mounted by clients not sending the requests
to all nodes (an attack which the HotStuff version we
evaluated does not address). Besides, the evaluated Hot-
Stuff implementation did not authenticate clients at all
(which jeopardizes Validity).

For these reasons and for a fair comparison, we per-
form an experiment with: 1) disabled Mir client authen-
tication (i.e,. client signature verification) and 2) with
leaders disseminating payload hashes (relying on clients
to disseminate payload as in HotStuff). We also increase
batch sizes in HotStuff as much as needed, resulting in

up to 32K requests per batch, to saturate the system.
We observe that HotStuff offers about 2x lower

throughput than Mir with n = 4 nodes bounded by the
number of available network connections, whereas Mir
uses multiple connections among pairs of nodes. As n
and number of network connections from the leader grow,
HotStuff throughput first grows until the network at the
leader is saturated (with n = 16 HotStuff performs about
10% better than Mir). However, as leader bandwidth
becomes the bottleneck even with hash-only ordering,
HotStuff’s O(n−1) network-bound scalability starts to
show with n > 16, while Mir continues to scale well and
is only computationally bounded by the implementation.
With 100 nodes, Mir orders 110k hashes per second, com-
pared to roughly 10k hashes per second throughput of
HotStuff.
Experiments with 3500-byte payload. With small re-
quest payload size (500 bytes), CPU overhead related
to signature verification is the primary bottleneck. It
is therefore interesting to evaluate the impact on per-
formance with larger requests. Intuitively, with larger
requests, we would be able to stress the 1Gbps WAN
bottleneck of our evaluation testbed. Moreover, large
requests are not only of theoretical importance, some
prominent blockchain systems feature relatively large
transaction sizes. For instance, minimum size transaction
in Hyperledger Fabric is about 3.5kbytes [11].

Therefore, we conducted additional WAN experiments
with 3500 bytes request size.

For large requests, where network bandwidth is the
bottleneck, throughput of Mir (with no SVS) reduces to
7k req/s with 100 nodes, with a drop from 28.3k req/s
with n = 4 nodes, see Figure 6. We attribute this in part
to the heterogeneity of VMs across datacenters (despite
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Figure 6: WAN scalability experiment with large payload
(3500 bytes).

the identical specifications) and, most importantly, to the
non-uniform partition of the available uplink bandwidth.
Nevertheless, Mir delivers the best performance of all
protocols to date with 100 nodes on a WAN, even com-
pared to very optimistic protocols such as Chain, which
delivers consistent throughput of about 4.5k req/s regard-
less of number of nodes. Mir is, hence, the first robust
BFT protocol which could be used as an ordering service
in Fabric with n = 100 nodes, without making ordering
service a bottleneck (validation in Fabric is currently
capped at less than 4k transactions per second [11]).

In addition to Mir (with no SVS), Chain and PBFT,
Figure 6 also shows an experimental variant of Mir which
implements what we call Light Total Order (LTO) broad-
cast, instead of full TOB (labeled ‘Mir (LTO, noSVS)’).
As described in Section 8, LTO is an optimization, coun-
terpart of SVS, to help alleviate network bottlenecks in
TOB. In short, LTO broadcast is identical to TOB, ex-
cept that it provides partial data availability guaranteeing
the delivery of the payload of every request to at least
one correct node. This entails replicating batch payload
to f +1 nodes in stable epochs, compared to all nodes
without LTO. Other correct nodes get and agree on the
order of cryptographic hashes of requests, which is the
basis for maintaining other TOB properties.

LTO boosts throughput of Mir to 40k 3500-byte req/s
with n = 4 nodes (roughly 40% throughput improvement
over Mir) and maintains about 12.5k req/s with n = 100
nodes (70% throughput improvement over Mir).

9.2 Scalability in a Cluster/Datacenter
Figure 7 depicts fault-free performance in a single dat-
acenter with up to n = 100 nodes. Mir reaches 64%
of Chain’s peak throughput (83k req/s vs 130k req/s).
This difference is due to a difference in client authentica-
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Figure 7: Throughput performance of Mir compared to
Chain and PBFT in a single datacenter (500 bytes).

tion: Mir verifies clients’ signatures, whereas Chain uses
vectors of MACs to authenticate a request to f +1 repli-
cas (these are vulnerable to “faulty client” attacks [25]).
Recall that Chain is not a robust protocol itself, but an
optimistic sub-protocol of the Aliph protocol [13]. In-
deed, as soon as we add clients’ signatures to Chain to-
wards a robust version of Chain (denoted by ChainSigs in
Fig. 7), Chain’s throughput drops below that of Mir. Mir
maintains more than 80k req/s throughput, significantly
outperforming PBFT.

9.3 Impact of optimizations and bucket re-
distribution

Fig. 8 shows the average latency and throughput of differ-
ent flavors of Mir in fault-free executions using n = 16
nodes. We also show the performance of Chain and
PBFT as a reference. Nodes are distributed over 16 dis-
tinct datacenters across the world.

Mir without signature verification sharding (“Mir
(noSVS)” in Fig. 8) saturates at roughly 53k req/s (resp.
12.3k req/s for large requests). To evaluate the overhead
of bucket re-distribution, we compare Mir without sig-
nature verification sharding to running parallel PBFT
instances, sharing only a common checkpoint mecha-
nism and watermark window (“Parallel PBFT”). For
a fair comparison, the parallel PBFT instances imple-
ment the same mechanisms as Mir (signatures instead of
MACs, separate network interface for clients and paral-
lelized network access — see Section 5.10). Moreover,
for the parallel PBFT instances, we evaluate a workload
of unique client requests to remove the negative impact
of duplication. We observe an approximate overhead of
about 3% (resp. 9.5%) for adding bucket re-destribution.
Importantly, the parallel PBFT instances protocol is not
live, unless the client can resubmit their request (poten-
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Figure 8: Impact of bucket re-distribution (Mir vs parallel PBFT instances) and Mir optimizations on a WAN with n=16
nodes.

tially after a timeout, as done by BFT-Mencius [52] or
RCC [38], substantially increasing latency) to at least
f other nodes. We evaluate the impact of submitting
f + 1 or more requests in parallel without duplication
prevention in the next section (Section 9.4).

The small penalty of robust bucket re-distribution is
more than compensated for by signature sharding which
boosts Mir throughput to 74k req/s (resp. to 33.5k req/s
with LTO).

All variants of Mir maintain roughly from 1–2s latency
at relatively low load, to 3–5s latency close to saturation.
PBFT latency is lower at 600–800 ms, yet PBFT saturates
under very low load compared to Mir. We measured
latency by: (1) synchronizing clocks between a client
and a node belonging to the same datacenter with NTP,
(2) deducting request timestamp at a client from commit
timestamp at a node, (3) averaging across all requests
(and, consequently, all datacenters).

9.4 Benefits of Duplication Prevention

In this section we examine the impact of duplicate re-
quests to goodput, i.e., throughput of unique requests.
In Fig. 9 we compare the performance of Mir (noSVS)
to a version of Mir where the leaders do not partition
requests in buckets, but rather add in batches all their
available requests, following what other parallel leader
protocols do. These protocols include Hashgraph [45],
Red Belly [26], BFT-Mencius [52], OMADA [30] and
RCC [38] .

We examine the impact of duplicates in two scenarios,
(1) where clients submit their requests to f +1 nodes —
intuitively, this is the minimum number of nodes to which
a client must submit a request in any BFT protocol that
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Figure 9: The impact of duplication prevention on a
WAN with n = 16.

ensures liveness (due to possible censoring by f nodes),
and (2) where clients submit their requests to all nodes.

The impact is a significant performance penalty of
61% (resp. 72%) reduction in goodput compared to Mir
(noSVS) in the first (resp. second) scenario on n = 4
nodes. This reaches as much as 97% (resp. 99%) with
n = 100, demonstrating O(n−1) goodput scalability in
protocols with duplication.

9.5 Performance Under Faults

Leader Crash Faults. Figure 10 shows throughput as a
function of time when one and two leaders fail simulta-
neously. We run this experiment in a WAN setting with
16 nodes, and trigger a view change if an expected batch
is not delivered with fixed timeouts of 20 seconds. With
one leader failure, a view change is triggered and the
system immediately transitions to a configuration with
15 leaders. When two failures occur simultaneously, the

29



 0
 10000
 20000
 30000
 40000
 50000

 0  50  100  150  200  250

Th
ro

ug
hp

ut
 (t

xs
/s

)

Time (seconds)
 0  100  200  300  400  500  600

Time (seconds)

1 leader failure 2 simultaneous leader failures

leader
failure

first leader
failure

suspected

second
 leader
failure

suspected

16
leaders

15
leaders

16
leaders

15
ldrs.

14
leaders

14
leaders

14
leaders

15
leaders

16
leaders

back to 
stable
epoch

faulty
 leaders
returnTh

ro
ug

hp
ut

 (r
eq

s/
s)

Time (s) Time (s)

Figure 10: Performance under crash faults.

first view changes takes the system to a configuration
with 15 leaders. The first few batches are delivered in
this configuration, but, since one of the 15 leaders has
failed, a second view change is triggered that takes the
system to a configuration with 14 leaders, from which
execution can continue normally. In this scenario, the
figure also depicts the evolution of the leaderset in case
the failed nodes recover: within three epochs, the system
is in a stable state with 16 leaders again.

We can observe that gracious epoch changes are seam-
less in Mir (these occur from second 141 onwards in
the experiment with 2 faults), whereas ungracious epoch
changes (when throughput temporarily drops to 0) last
approximately one epoch change timeout.
Request Censoring (Byzantine Leaders Dropping Re-
quests). In this experiment we emulate Byzantine behav-
ior by having an increasing number (from 0 to f = 5) of
Byzantine leaders dropping (censoring) requests in our
16-node WAN setup. Fig. 11a shows that mean latency
remains below 4.6s (resp., 2.2s) when Byzantine leaders
drop 100% (resp. 25%) of the requests they receive. Tail
latencies (95th percentile) remain below 16s (resp., 7s).
Fig. 11b shows the distribution and CDF of latency with
5 Byzantine leaders censoring 100% of requests. When
clients send requests to all nodes, we observe a drop of up
to 15% for mean and 18% for tail latencies. In an exper-
iment with bucket re-distribution period of 128 batches
(not depicted) we observe a decrease of up to 44% for
mean and 49% for tail latencies. This introduces, though,
a penalty of approximately 10% in peak throughput.
Stragglers (Byzantine Leaders Delaying Proposals).
In this experiment we evaluate Mir resistance to strag-
glers. Stragglers delay the batches they lead and propose
empty batches. In detail, if the epoch change timer ex-
piration duration is D, a straggler delays the proposal as
much as possible without triggering any batch timeouts.
The upper bound on the straggler delay is thus D.

In Mir, with multiple leaders proposing and commit-
ting batches independently, a single straggler can only
impose a total delay of at most D once per epoch without
being detected, as compared to once per sequence num-
ber, in single-leader protocols. The key to Mir straggler
resistance is that each sequence number sn has its own
epoch change timeout which a correct node starts as soon
as it commits sn−1 (Alg. 4, Line 116). Moreover, the se-
quence numbers are assigned to leaders in a round robin
way and therefore a single straggler does not control the
proposal of contiguous sequence numbers. Therefore,
batches committed by correct nodes will trigger timers
for the straggler’s batches independently leading to those
timers running mostly in parallel. In our implementation,
the next epoch primary will suspect as faulty the node
who was responsible for the sequence number whose
timer expired, in this case the straggler, and remove this
node from the next leaderset. The straggler is re-added
back to the leaderset only once it becomes epoch primary.

We perform both WAN and LAN experiments with
n = 16 nodes, starting from a stable epoch. The load
is set at about 25-30% peak throughput (corresponding
to roughly 25k req/s). Epoch change timeout is set to
20s and ephemeral epoch length to 256 batches. We run
our experiment until the straggler is removed from and
re-added to the leaderset. .

On WAN, fault-free throughput gives a baseline of
24.8k req/s. With a single Byzantine straggler leader de-
laying each of its batches by 15s, the average throughput
is 18k req/s (penalty of 25% over the baseline). The strag-
gler is always detected and removed from the leaderset
almost immediately.

On LAN, baseline throughput without faults is 28.1k
req/s. For reference, Mir latency in LAN is in millisec-
onds. We set straggler delay to 2 seconds (while keep-
ing epoch change timeout to 20s – a value verybig for
LAN) to keep the straggler longer in the leaderset. This
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Figure 11: Latency under the request censoring attack.

time, the straggler remains in the leaderset for over 600
sequence numbers, after which it is removed from the
leaderset. In this case, we measure average throughput
of 15.7k req/s in the entire execution (a penalty of 44%).

To put these numbers into perspective, a single-leader
Aardvark [25] suffers a 90% performance penalty with a
straggler primary on a LAN delaying batches for 10ms.
We conclude that Mir has very good performance in pres-
ence of stragglers, even with simple fixed epoch change
timeouts. Future optimizations of Mir Byzantine node
detection are possible, following the approaches of Aard-
vark [25] and RBFT [12].

10 Related Work

The seminal PBFT [24] protocol sparked intensive re-
search on BFT. PBFT itself has a single-leader network
bottleneck and does not scale well with the number of
nodes. Mir generalizes PBFT and removes this bottle-
neck with a multi-leader approach, enforcing a robust
request duplication prevention. Request duplication elim-
ination is simple in PBFT and other single-leader proto-
cols, where this is the task of the leader.

Aardvark [25] was one of the first BFT protocols,
along with [10,12,57], to point out the importance of BFT
protocol robustness, i.e., guaranteed liveness and reason-
able performance in presence of active denial of service
and performance attacks. In practice, Aardvark is a hard-
ened PBFT protocol that uses clients’ signatures, regular
periodic view-changes (rotating primary), and resource
isolation using separate NICs for separating client-to-
node from node-to-node traffic. Mir implements all of
these and is thus robust in the Aardvark sense. Beyond
Aardvark features, Mir is the first protocol to combine

robustness with multiple leaders, preventing request du-
plication performance attacks, enabling Mir’s excellent
performance.

The first replication protocol to propose the use of
multiple parallel leaders was Mencius [50]. Mencius
is a crash-tolerant Paxos-style [46] protocol that lever-
ages multiple leaders to reduce the latency of replication
on WANs, an approach later followed by other crash-
tolerant protocols (e.g., EPaxos [53]). The approach was
extended to the BFT context by BFT-Mencius [52]. Men-
cius and BFT-Mencius are geared towards optimizing
latency and shard clients’ requests by mapping a client
to a closest node. If the clients’ request is not delivered
within a timeout period, the client retrasnmits its request
to another node. However, this technique has several
reciprocations which BFT-Mencius does not handle.

• The client cannot distinguish a faulty leader from a
slow leader, therefore it is infeasible for the client
to choose a timeout that prevents from introducing
duplicate requests to the system.

• If the client has a conservative timeout, the client
might suffer very long latency, especially in the case
of cascading faults (or Byzantine nodes who accept
the request pretending to be correct).

• Worse, if a client is malicious, the client can re-
transmit its request to other nodes exposing a vul-
nerability to request duplication attacks.

As illustrated in our evaluation (Sec. 9.4), malicious
clients can severely impact the throughput of such a
scheme, by sending their requests to multiple or all nodes.
Unlike in a regular DoS attack, these clients cannot be
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naively declared Byzantine or rate-limited, as such re-
quest traffic may be needed by correct clients to deal with
Byzantine leaders dropping requests (request censoring
attack) or to optimize the latency of a BFT protocol. Un-
like BFT-Mencius, Mir maps clients’ requests to buckets
which are then assigned to nodes, similarly to consistent
hashing [39]. Mir further redistributes bucket assignment
in time to enforce robustness to request censoring. Un-
like Mencius, EPaxos and BFT-Mencius, Mir does not
optimize for latency in the best case, paying a small price
as it does not assign clients to the closest nodes.

Recent BFT protocols proposed in the blockchain con-
text (Hashgraph [45], RedBelly [26], and OMADA [30])
that exhibit a multi-leader flavor, also do not address re-
quest duplication. In particular RedBelly and OMADA
address request duplication similarly to BFT-Mencius,
suffering the same disadvantages. Notably, RedBelly
introduces a similar mechanism to SVS for improving
performance.

Hashgraph suggests charging fees for duplicate re-
quests. This can, however, unfairly penalizes correct
clients whose requests are delayed or censored. Further-
more, unlike Mir, Hashgraph invents a new BFT protocol
from scratch which is a highly error-prone and tedious
process [13]. In contrast, Mir follows an evolutionary
rather then revolutionary design approach to a multi-
leader protocol, building upon proven PBFT/Aardvark
algorithmic and system constructs, considerably simpli-
fying the reasoning about Mir correctness.

Parallel to this work, RCC [38] introduced a wait-
free paradigm for multiplexing single-leader protocol
instances. While the wait-free design reduces the impact
of failure recovery on throughput, RCC throughput may
degrade with malicious clients or network asynchrony. In
particular, RCC uses consensus among replicas to allow
the client to pick an arbitrary single instance per round
of agreement. Besides allowing faulty clients to overload
a single replica, there are executions where even a cor-
rect client, under asynchrony, sends a request to some
instance and then asks to switch instances, causing both
the "old" and the "new" instance to propose the same
request (albeit in different rounds), wasting bandwidth.
This can be generalized to more than two instances. RCC
suggests a synchronization mechanism to prevent a client
from subscribing to multiple instances. Mir completely
prevents multiple proposals of the same request. More-
over, Mir aims to mitigate uneven request distribution
using a hash function for leader assignment, along with
the client watermark window mechanism. Finally, in
RCC, delayed messages or a faulty client can cause un-
necessary request re-transmissions. Mir relies on the

clients submitting the request to enough nodes and on the
bucket re-assignment mechanism to guarantee liveness,
preventing such re-transmissions by design. While it
seems there is a latency - throughput trade-off, Mir eval-
uation (Fig. 11) shows that, even under heavy censoring,
request delay is limited to the order of seconds, a latency
that seems comparable to a timeout that would be neces-
sary to preserve liveness with the request re-transmission
or instance-switching mechanism.

Two recent protocols, HotStuff [61] and SBFT [36],
are leader-based protocols that improve on PBFT’s
quadratic common-case message complexity and require
a linear (O(n)) number of messages in the common case.
HotStuff is optimized for throughput and features O(n)
messages in view change as well (SBFT requires O(n2)
messages in view change). While Mir’s approach of
multiplexing PBFT instances and SBFT/HotStuff im-
provements over PBFT appear largely orthogonal, our
experiments show that Mir multi-leader approach scales
better than HotStuff, which is a single-leader protocol.
Namely, even though PBFT/Mir have quadratic common-
case message complexity, these messages are load bal-
anced across n nodes, yielding O(n) messages at a bottle-
neck replica, just like HotStuff/SBFT. Our experiments
also showed that HotStuff retains the downside of other
single-leader protocols, i.e., bottlenecks related to leader
sending all proposals, yielding an unfavorable O(n−1)
throughput scalability trend. An unimplemented Hot-
Stuff variant, called ChainedHotStuff [61], suggests hav-
ing different leaders piggyback their batches on other
protocol common-case messages. As Hotstuff has 4 com-
mon case phases, this allows up to 4 “chained” leaders in
ChainedHotStuff regardless of the total number of nodes,
which is less efficient than Mir which allows up to n par-
allel leaders. In future, it would be very interesting to
combine the two approaches, O(n) common case mes-
sage complexity and parallel leaders, by implementing
Mir variants based on HotStuff/SBFT instead of PBFT.

Tendermint [19] authors, on the other hand, realize
that a leader (proposer) who is responsible for dissemi-
nating all transactions quickly becomes a bottleneck. To
address this, while maintaining a single rotating leader
protocol, they offload the transaction dissemination to an
underlying gossip protocol. The leader adds in a block
proposal for a certain height only the Merkle root hash of
the transactions. However, liveness cannot be guaranteed,
unless the rest of the nodes (validators), wait for all trans-
actions from the gossip protocol before voting for the
proposal. Moreover, the block for the next height cannot
be proposed before agreeing on a block for the current
height. This makes Tendermint latency bound, i.e., it’s

32



performance depends on the network latency. Thus, the
only way to increase throughput is via aggressive batch-
ing which, however, increases end-to-end latency. Even
worse, due to asynchrony, it may take multiple rounds of
proposals per height. Hashgraph [45] is an example of
a protocol that runs multiple gossip instances. However,
running multiple gossip instances is not more efficient in
terms of message complexity, when compared to Mir. In
particular, in Mir request dissemination has a per node
O(n) message complexity, while O(n) gossip instances
result in O(n) times the underlying gossip protocol com-
plexity per node.

Optimistic BFT protocols [13, 44] have been shown to
be very efficient on a small scale in clusters. In particular,
Aliph [13] is a combination of Chain crash-tolerant repli-
cation [56] ported to BFT and backed by PBFT/Aardvark
outside the optimistic case where all nodes are correct.
We demonstrated that Mir holds its ground with Chain
in clusters and it considerably outperforms it in WANs.
Nevertheless, Mir remains compatible with the modular
approach to building optimistic BFT protocols of [13],
where Mir can be used as a robust and high-performance
backup protocol. Zyzzyva [44] is an optimistic leader-
based protocol that optimizes for latency. While we chose
to implement Mir based on PBFT, Mir variants based on
Zyzzyva’s latency-efficient communication pattern are
conceivable.

Eventually synchronous BFT protocols, to which Mir
belongs, circumvent the FLP consensus impossibility
result [32] by assuming eventual synchrony. These proto-
cols, Mir included, guarantee safety despite asynchrony
but rely on eventual synchrony to provide liveness. Al-
ternatively, probabilistic BFT protocols such as Hon-
eybadger [51] and BEAT [28] provide both safety and
liveness, except with negligible probability, in purely
asynchronous networks. By comparing Honeybadger
and Mir, we showed that this comes as a trade-off, as
Mir significantly outperforms Honeybadger, even though
both protocols target the same deployment setting (up to
100 nodes in a WAN). Notably, the authors realize the
importance of duplicate elimination, targeting “mostly
disjoint sets of transactions” in HoneyBadger’s propos-
als. They suggest that each leader randomly samples the
received and yet unproposed requests. While this ap-
proach would result to no duplicates on expectation with
a sufficiently large pending request buffer, in practice,
unless the system is deep in saturation, the request buffer
does not contain significantly more requests than the next
batch. Therefore, if the request buffers of multiple leaders
contain duplicate requests, the leaders will include them
in their respective batches. Indeed, in our Honeybadger

evaluation we observed that goodput (effective through-
put) was roughly only 20% of the nominal throughput.
BEAT suggests some optimizations over Honeybadger
without significantly outperforming the former.

As blockchains brought an arms-race to BFT pro-
tocol scalability [58], many proposals focus on large,
Bitcoin-like scale, with thousands or tens of thousands
of nodes [31, 35]. In particular, Algorand [35] is a re-
cent BFT protocol that deals with BFT agreement in
populations of thousands of nodes, by relying on a verifi-
able random function to select a committee in the order
of hundred(s) of nodes. Algorand then runs a smaller
scale agreement protocol inside a committee. We fore-
see Mir being a candidate for this “in-committee” proto-
col inside systems such as Algorand as well as in other
blockchain systems that effectively restrict voting to a
smaller group of nodes, as is the case in Proof of Stake
proposals [20]. In addition, Mir is particularly interest-
ing to permissioned blockchains, such as Hyperledger
Fabric [11].

ByzCoin [42] scales PBFT for permissionless
blockchains by building PBFT atop of CoSi [55], a collec-
tive signing protocol that efficiently aggregates hundreds
or thousands of signatures. Moreover, it adopts ideas
from PoW based Bitcoin-NG [31] to decouple transac-
tion verification from block mining. This approach is
orthogonal to that of Mir and variants of Byzcoin with
Mir instead of PBFT are interesting for future work.

Stellar [48] uses SCP, a Byzantine agreement protocol
with asymmetric quorums and trust assumptions target-
ing payment networks, which targets similar network
sizes as Mir. Asymmetric quorums of SCP modify trust
assumptions and the liveness guarantees of traditional
BFT protocols, with [41] showing liveness violation with
failures of only two specific nodes in a production con-
figuration of Stellar. We show it is possible to obtain
high throughput and low latencies while maintaining the
strong guarantees of BFT protocols with classical (sym-
metric) quorums and trust assumptions.

Sharding protocols [43, 49] partition transaction veri-
fication into independent shards. Mir is complementary
to such protocols as they either require ordering within
a shard or total ordering of the shards. Monoxide [59]
also uses sharding to increase throughput, but provides
weaker guarantees (eventual atomicity across shards).
Moreover, Monoxide’s scalability heavily depends on
transaction payload semantics.

Finally, our work is already generating considerable
traction, with recent follow-up works attempting to ex-
tend our approach (e.g., [14, 33, 37]), however without
yet provably improving Mir performance.
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11 Conclusions

This paper presented Mir, a high-throughput robust BFT
protocol for decentralized networks. Mir is the first BFT
protocol that uses multiple parallel leaders thwarting both
censoring attacks and request duplication performance
attacks. In combination with reducing CPU overhead
through the “signature verification sharding” optimiza-
tion, this allows Mir to achieve unprecedented through-
put at scale even on a wide area network, outperforming
state-of-the-art protocols.

The main insight behind Mir is multiplexing multi-
ple parallel instances of the PBFT protocol into a single
totally ordered log, while preventing duplicate request
proposals by partitioning the request hash space and as-
signing each subset to a different leader. Mir prevents
request censoring attacks by periodically changing this
assignment to guarantee that each request is eventually
assigned to a correct leader. Being based on the well
understood and thoroughly scrutinized PBFT makes it is
easy to reason about Mir’s correctness.
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