
Transformer-CTP: Current Token Prediction Using Cross-Attention of
Queries with Current Position Information

Anonymous ACL submission

Abstract

Transformer and pre-trained language models001
have advanced various tasks in artificial intelli-002
gence. Typically, transformer decoders for lan-003
guage generation are trained using LM loss.004
The LM loss function predicts the next token005
from the outputs of previous tokens. LM loss is006
trained such that transformer decoders can gen-007
erate autoregressively. In addition, transform-008
ers use self-attention to derive outputs, which009
generally assigns a high attention weight to010
self-tokens. Therefore, the transformer decoder011
may over-focus on the token t−1 when predict-012
ing token t because it predicts token t through013
self-attention up to token t− 1. The proposed014
method prevents the transformer decoder from015
overfocusing on token t − 1 when predicting016
token t. Instead of predicting token t using the017
output of token t−1, we use a new input to pre-018
dict token t. We also add a CPT module to the019
transformer decoder, which prevents token t−1020
from being used in the attention query by cross-021
attention using the new input. Moreover, we022
measured the performance of machine transla-023
tion and document summarization to verify that024
the proposed methodology can mitigate overfo-025
cusing problem and improve the performance.026
In our experiments, the proposed methodology027
improved performance. Also, it can distribute028
the focused attention to a few specific tokens,029
including the self-token. The code for the ex-030
periment can be found on our GitHub1.031

1 Introduction032

Transformer(Vaswani et al., 2017) has made033

progress in various tasks in artificial intelligence as034

well as natural language processing. Moreover, pre-035

trained transformer-based language models such036

as BERT (Devlin et al., 2019), GPT (Radford037

et al., 2019), and BART (Lewis et al., 2020) have038

achieved state-of-the-art (SOTA) performance on039

1https://anonymous.4open.science/r/ARR2406_
current_token_prediction

Figure 1: Visualizing the attention weights of the first
layer of pre-trained GPT2.

most natural language processing tasks. Among 040

them, transformer decoder-only language models 041

such as GPT (Radford et al., 2019), LAMMA (Tou- 042

vron et al., 2023), PaLM (202), and transformer 043

encoder–decoder pre-trained language models such 044

as BART (Lewis et al., 2020) and T5 (Raffel 045

et al., 2020) can perform the functions of gener- 046

ative AI. This is because the transformer decoder 047

is designed to generate sequences. Therefore, for 048

natural language sentence generation tasks, such 049

as machine translation and text summarization, a 050

model with a transformer decoder is generally se- 051

lected. Pretrained language models with a trans- 052

former decoder-only model or a transformer en- 053

coder–decoder model exhibit SOTA performance 054

in various generation tasks. 055

Seq2Seq (Sutskever et al., 2014) is a mechanism 056

comprising an encoder and a decoder. The encoder 057

compresses the source sentence into a vector. The 058

decoder autoregresssivly generates the sentence 059

token-by-token through the compressed vector. The 060

transformer has a Seq2Seq structure. Therefore, the 061

transformer decoder also generates sentences au- 062

toregressively. The transformer is a model based 063

on a self-attention mechanism, and the attention 064

weight is computed by measuring the similarity be- 065

tween two tokens. The attention weight is used as 066

the importance of each token in generating a cor- 067

rect answer. The self-attention mechanism focuses 068

1

https://anonymous.4open.science/r/ARR2406_current_token_prediction
https://anonymous.4open.science/r/ARR2406_current_token_prediction

attention on the input sentence and same-sentence.069

The transformer decoder measures the attention070

score between the t− 1th token and the sentence071

up to the t− 1th token to predict the tth token in072

the sentence. It then predicts the tth token by using073

the weighted sum based on the attention score. This074

method can be used to generate sentences word-by-075

word while predicting the next word.076

Self-attention generally has a higher attention077

score for the self-token(self-referenced token). This078

is expected because the query and key used to com-079

pute the attention score are extracted from the same080

token. Figure 1 shows an example of visualizing the081

attention score in the transformer–decoder model.082

For the example, we used gpt2-base (Radford et al.,083

2019) and extracted the attention score of the first084

self-attention layer for "Hello, Nice to meet you.”085

Consequently, when generating the tth token, the086

attention score for the t− 1th token is often the087

highest. The fifth sentence in the figure predicts088

"you.” In self-attention, the query is "meet" and the089

key is "Hello, Nice to meet”. The highest attention090

score is observed for "meet” which is the same091

token as that for the query and key.092

We hypothesize that over-focusing of self-tokens093

can lead to two sources of performance degradation.094

First, the input embedding of the t− 1th token and095

output for predicting the tth token may be limited096

by the amount of change. When deriving the results097

of the t− 1th token, the attention score is often098

high for the t− 1th token. Specifically, a weighted099

sum with a high weight on the t− 1th token was100

used to derive the output of the t− 1th token. This101

results in an output similar to the t− 1th token.102

Because there is no guarantee that the t− 1th token103

is similar to the tth token, performance degradation104

may occur during the process of predicting the105

tth token. Second, it may have an attention score106

biased toward self-token and later tokens in the107

sentence. This can lead to a high attention score108

for the self-token, even if earlier tokens are more109

important for predicting the next token. This is110

because there is a high probability that queries and111

keys extracted from the same vector are similar,112

which can cause performance degradation owing to113

uneven attention to the entire sentence. Therefore,114

we propose a way to mitigate the over-focus of self-115

tokens caused by the structure of the transformer116

decoder.117

We propose a novel transformer-decoder struc-118

ture that can predict the tth token at the tth position.119

Instead of predicting the tth token using the output120

of the existing t− 1th token, we use a new input 121

to predict the tth token. In the proposed method- 122

ology, the t− 1th token is not directly used in the 123

query when computing the attention score to pre- 124

dict the tth token. This mitigates the overfocusing 125

issues described above by distributing the biased 126

attention score among self-tokens and later tokens. 127

Moreover, we present text summarization and ma- 128

chine translation using the proposed transformer 129

structure and verify that the proposed transformer 130

structure leads to performance improvements. 131

2 Related Work 132

2.1 Transformer 133

Transformer is a self-attention-based model. Dot- 134

product attention (Luong et al., 2015) was proposed 135

for machine translation. Dot-product attention is a 136

mechanism for the Seq2Seq model to focus more 137

on important tokens in the source sentence while 138

predicting the target sentence. To select impor- 139

tant tokens, Seq2Seq model obtained the similarity 140

based on the dot product and used it as the attention 141

score. The equation for the dot product attention is 142

as follows: 143

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1) 144

where, Q, K, and V denote the query, key, and value, 145

respectively, and dk denotes the dimensions of the 146

key vector. Several transformer-based models use 147

self-attention and cross attention with dot-product 148

attention. Self-attention means when a query and 149

key are extracted from the same sentence in the dot- 150

product attention. The transformer encoder com- 151

prises a self-attention layer and feed-forward net- 152

work layer. The transformer decoder comprises a 153

masked self-attention layer, cross-attention layer 154

and feed-forward network layer. Transformer per- 155

forms residual connection and normalization in 156

each layer. Masked self-attention causes each query 157

to compute the attention only for the previous token. 158

Therefore, the tth token in a sentence and those af- 159

ter the tokens (t+1 ∼) are not subject to similarity 160

computations in transformer decoder. This causes 161

autoregressive generation during training. 162

2.2 LM loss in transformer decoder 163

Several studies of generative tasks, such as (Liu 164

et al., 2023) and (Liu et al., 2022), use LM loss for 165

training. The LM loss is a conditional probability- 166

based loss function that predicts the tth token given 167

2

Figure 2: Generation process of proposed method

the input sequence up to the t− 1th token. The168

LM loss function is trained to predict the next to-169

ken given the token sequence up to t− 1th token.170

The trained model generates sentences token-by-171

token by predicting the next token and including172

the predicted token in the input for next time. The173

transformer decoder uses the output of st−1 for the174

LM loss.175

2.3 Sequence generation from mask token in176

transformer177

In this study, we used a new input to predict the tth178

token. The prediction of the next token from the179

output of a new input is similar to the prediction180

of a word from a mask token. Typically, masked181

language modeling is used to train transformer182

encoder language models, such as BERT (Devlin183

et al., 2019), RoBERTa (Liu et al., 2019), and Al-184

BERT (Lan et al., 2020). However, attempts have185

also been made to generate entire sentences from186

mask tokens.187

In (Liang et al., 2023), sentence generation from188

mask tokens increased the generation speed of the189

language model. (Liang et al., 2023) generates sen-190

tences using the cross-attention of the transformer191

encoder and the mask token sequence. First, it pre-192

dicts the length of the sentence to be generated and193

generates a input mask-token sequence. Replaces194

the mask token when the probability of the pre-195

dicted word is higher than the threshold. In the next196

iteration, the mask token sequence is used with197

some assigned predictive words as the input. This198

process can generate sentences faster than autore-199

gressive methods that require t iterations to predict200

t tokens.201

In (Chen et al., 2021), proposed a transformer 202

for speech recognition. The transformer decoder 203

makes predictions using the mask tokens, us- 204

ing which proposed a non-autoregressive genera- 205

tion methodology. Similarly, to construct a non- 206

autoregressive model, this method predicts the 207

length of the correct speech. Subsequently, the 208

mask token sequence of the predicted length is 209

input to the decoder, which predicts the mask token 210

in parallel. 211

3 Proposed Method 212

Our methodology does not predict st via the 213

output of st−1 from the target sequence S = 214

{s1, s2, ..., st} as in a transformer decoder. Our 215

method uses a new input, the next input vector 216

vnextt , to predict st. vnextt is the vector containing 217

the tth positional embedding PEt. Therefore, it 218

contains the tth positional information. We also 219

propose a current-token prediction (CTP) module 220

for predicting the tth token using vnextt . The struc- 221

ture of the CTP module predicts the tth token from 222

the input of vector vnextt containing the tth posi- 223

tion information. An example of this process is 224

presented in Figure 3-(a). For clarity, the existing 225

transformer decoder block is referred to as the orig- 226

inal decoder block. 227

The process for predicting s3, "Nice" in the Ko- 228

rean to English translation shown in Figure 3-(b) 229

is as follows. First, the source sentence is entered 230

into the transformer encoder. The output of the 231

transformer encoder and s1 and s2 are input to the 232

original decoder. Then, input vnext3 , the input for 233

predicting s3, is enter to the CTP module along 234

with the output of the original decoder block. The 235

3

Figure 3: Overall structure of transformer-CTP

CTP module utilizes this information. The query of236

CPT module is extracted only from vnext3 . Finally,237

the output of the CTP module is enter into the LM238

head to predict s3. The proposed methodology did239

not include s2 in the query when generating the240

LM head input, and instead, uses vnext3 as a query241

to predict s3. Therefore, Our method attention be-242

tween vnextt and S<t = {s1, s2, ..., st−1} instead243

of self-attention to st−1 and S<t when predicting244

st. It can mitigates the excessively high attention245

score in st−1 when predict st−1. We also expect246

that this will mitigate performance degradation as-247

sumed in this study.248

The proposed methodology can be categorized249

into two main parts: the generation of the next in-250

put vector vnextt and design and training of the251

transformer-CTP and CTP module. The details of252

each are described in Sections 3.1 and 3.2.253

3.1 Next Input Vector vnextt254

The proposed method generates the next input vec-255

tor vnextt , which is used as the input for the CTP256

module when predicting st. The next input vector257

vnextt contains the tth positional embedding PEt258

for predicting st at the t position. We generated259

vnextt using two methods, both of which were used260

in our experiments. The first is to use the embed-261

ding of the special token <next>. Set e<next>, the262

embedding of <next>, to vnext. Then add a tth-263

position embedding to generate vnextt . Next, we set264

the average of the token embeddings of the input265

sequence S<t to vnext. We set vnext as the average266

of the embedding vector E<t = {e1, e2, ..., et−1} 267

of the input of original decoder. Similarly, we add 268

the tth position embedding to generate vnextt . The 269

equation for this process is as follows: 270

vnext = { e<next>

1

t− 1

t−1∑
i=1

ei (2) 271

vnextt = vnext + PEt (3) 272

ei is the token embedding of si and e<next > 273

is the embedding of the special token <next>. PEt 274

is the positional embedding of the t position. 275

3.2 CTP Module 276

In this study, we designed a CTP module to pre- 277

dict the tth token using vnextt . The structure of the 278

transformer-CTP and the CTP module are shown in 279

Figure 3. The structure of the CTP module, as in the 280

transformer, comprises N CTP blocks. The CTP 281

block comprises two multi-head cross-attention lay- 282

ers and one feed-forward layer. It also uses a resid- 283

ual connection and normalization after each layer. 284

Before describing the equations for each layer, we 285

organized the equations for the original transformer 286

decoder. 287

H0
<t = E<t (4) 288

289
H i+1

<t = DecoderBlock(H i
<t, O) (5) 290

The original transformer decoder returns HN 291

through N decoder blocks. 292

4

The first multi-head cross attention layer of the293

CTP block performs multi-head cross attention us-294

ing the input vector of the original decoder block.295

In this process, the first CTP block extracts a query296

from vnextt . And, the key and value are extracted297

from H i, which is the input vector for each original298

decoder block. Therefore, this process can mitigate299

the excessively high attention score assigned to the300

st−1’s key. This implies that the output of the multi-301

head cross-attention of the CTP block is likely to302

be a vector that is not overly focused on st−1. In303

addition, the second CTP block does not receive304

vectors for query that are overly focused in st−1 as305

inputs, which is expected to mitigate the overfocus-306

ing issue. Subsequently, residual connections and307

normalization were performed. The equation for308

first multi-head cross attention layer are follows:309

C0 = vnextt (6)310

gi = MHA(CiWQ1
i , H i

<tW
K1
i , H i

<tW
V 1
i) (7)311

Gi = LN(gi + Ci) (8)312

Where MHA(·) denote the multi-head attention.313

Multi-head attention was proposed in (Vaswani314

et al., 2017), where the attention in Equation 1315

is performed by multiple heads. WQ1
i , WK1

i , W V 1
i316

are the learnable parameters of the first multi-head317

cross attention layer of the ith CTP block. LN(·)318

denotes layer normalization (Ba et al., 2016). In319

other words, the first multi-head cross attention320

layer of the ith CTP block uses the input of the ith321

original decoder block as the key and value.322

The second multi-head cross-attention layer and323

feed-forward network layer of the CTP block is324

the same as the original transformer decoder. The325

second multi-head cross attention layer performs326

cross attention with the output of the transformer327

encoder. The output of the first multi-head cross-328

attention layer of the CTP block was used to extract329

the query. It also uses the output of the transformer330

encoder as key and value. The equations for this331

process are as follows:332

mi = MHA(GiWQ2
i , OWK2

i , OW V 2
i) (9)333

M i = LN(mi +Gi) (10)334

Ci+1 = LN(FFNN(M i) +M i) (11) 335

where WQ2
i , WK2

i , and W V 1
2 are the learnable 336

parameters of the second multi-head cross-attention 337

layer of the ith CTP block; O is the output of the 338

transformer encoder; and FFNN(·) is a feed for- 339

ward network. 340

Equations 7–11 represent the CTP block cy- 341

cles. The CTP module returns CN through N 342

CTP blocks and N original decoder block. Finally, 343

Transformer-CTP predict st from the output of the 344

CTP module and LM head. The transformer-CTP 345

trains the LM loss using the cross-entropy loss of 346

the prediction and gold. The training objectives of 347

the proposed transformer-CTP are as follows: 348

L = −
T∑
t=1

log(st|vnextt , s1, ..., st−1, I) (12) 349

The bold red line in Figure. 3 represents the flow 350

of vnextt . In other words, the red line flow of CTP 351

module, where vnextt is directly used as the input 352

or output of each CTP block layer, is used as the 353

input of next CTP block. The weights of the layers 354

in this red line flow are not shared with the layers 355

of the original decoder block. The weights of the 356

other layers(black line in the CTP module) share 357

weights with the layers of the original decoder 358

block. In other words, WK1
i ,WK2

i ,W V 1
i ,W V 2

i of 359

CTP module equation share weights with the origi- 360

nal decoder block. 361

3.3 Parallel Processing on Training phase 362

Parallel processing of the transformer decoder dur- 363

ing the training process is an important feature 364

of the transformer. The transformer decoder can 365

be trained non-autoregressively through masked 366

multi-head self-attention during the training pro- 367

cess. The proposed methodology also enables par- 368

allelism in the training process by masking multi- 369

head cross-attention. For parallel processing, the 370

first multi-head cross attention layer of the CTP 371

block is constructed as a masked multi-head cross 372

attention. The sequence of the next input vectors 373

V next = {vnext2 , vnext3 , ...vnextT }. We use V next as 374

a query in the masked multi-head cross-attention. 375

We used original decoder block of the target sen- 376

tence S<T as the key and value. This allows non- 377

autoregressive parallel training of the CTP module. 378

5

WMT’14 WMT’16 WMT’14
En->De De->EN Ro->En En->Fr Fr->En

Model BLEU BLEU BLEU BLEU BLEU
BART s (Our impl) 23.44 28.05 30.18 36.09 31.33
BART s-CTP avg 23.73 28.33 30.48 36.13 31.40
BART s-CTP<next> 23.59 28.45 30.43 36.58 31.57
BART b (Our impl) 24.41 29.18 30.71 36.93 32.32
BART b-CTP avg 24.40 29.10 31.00 37.08 32.35
BART b-CTP<next> 24.60 29.17 30.93 37.02 32.31

Table 1: BLEU of BART -CTP and BART in machine translation. This experiment train from scratch without
pre-trained model

XSUM
Model R-1 R-2 R-L
BART b (Our impl) 31.23 11.33 24.99
BART b-CTP avg 31.24 11.24 25.06
BART b-CTP<next> 31.27 11.24 25.12

Table 2: ROUGE of BART -CTP and BART in docu-
ment summarization. This experiment train from scratch
without pre-trained model

4 Experiment379

4.1 Dataset380

To evaluate the performance of the proposed381

methodology, we evaluated the performance of ma-382

chine translation and document summarization. For383

machine translation, we conducted experiments384

on three datasets: WMT’14 (Bojar et al., 2014)385

En-De, WMT’14 (Bojar et al., 2014) En-Fr, and386

WMT’16 (Bojar et al., 2016) Ro-En.387

We also experimented with the XSUM (Narayan388

et al., 2018) dataset for document summarization.389

Detailed descriptions and statistics for each dataset390

are provided in the Appendix A.391

4.2 Experiment Setting392

In this paper, we propose a novel transformer struc-393

ture called the transformer-CTP. We trained the394

downstream task from scratch with the transformer-395

CTP, which was not pre-trained. In addition, we396

did not perform pre-training due to the limitations397

of the research equipment. Instead, we evaluated398

the performance using a pre-trained weight. The399

training steps for the experiments was 1M update400

steps or 10 epochs, whichever was shorter. The401

performance of deep learning is affected by many402

factors such as model size, amount of training, hy-403

perparameters, and generation settings. Therefore,404

to accurately compare the proposed methodology 405

with the baseline, we conducted direct experiments 406

on both under a fixed setting. For fair performance 407

evaluation, we used detokenized sacreBLEU (Post, 408

2018) using mteval-v14.pl and ROUGE score. 409

Train From Scratch. We experimented simi- 410

larly to the setup in Transformer paper (Vaswani 411

et al., 2017). The transformer-based language 412

model used in our experiments was BART (Lewis 413

et al., 2020). BART has an approximately similar 414

structure to the transformer, except that the ReLU 415

activation function is replaced with GeLU, the pa- 416

rameter initialization is set to N(0,0.2) and using 417

trainable positional embedding. We used a shared 418

vocab size of 37000 for bilingual machine transla- 419

tion. In the document summary, we trained with a 420

vocab size of 30000. We also experimented with 421

BART-small, which has the same model size as that 422

of the Transformer paper (Vaswani et al., 2017) and 423

BART-base. The detailed experimental setup is de- 424

scribed in Appendix B. Since the XSUM dataset 425

has a long input document length due to the nature 426

of document summarization, we only experiment 427

with the BART-base that can take up to 1024 se- 428

quence lengths. 429

Using Pre-trained Weight. We experimented 430

with the weight of an already pre-trained language 431

model; specifically, we used the weights of the 432

pre-trained BART-base. When using a pre-trained 433

language model, a large number of new layers 434

can cause performance degradation such as adding 435

CPT module to pre-trained model. Therefore, we 436

share more weights in this experimental setup. In 437

section 3.2, only WK1
i ,WK2

i ,W V 1
i ,W V 2

i shared 438

weights with the original decoder layer. However, 439

in this experimental setup, we share the entire 440

weight of the CPT module. In other words, the 441

transformer-CTP loaded all learnable parameters 442

6

WMT’14 WMT’16 WMT’14
En->De De->EN Ro->En En->Fr Fr->En

Model BLEU BLEU BLEU BLEU BLEU
Transformers (Vaswani et al., 2017) 27.3 – – 39.2 –
GLAT (Qian et al., 2021) 25.21 29.84 32.00 – –
CMLMC (Huang et al., 2022) 26.40 30.92 34.13 – –
JANUS-NAR (Liang et al., 2022) 26.40 30.90 34.36 – –
BART b (Our impl) 27.05 30.23 34.89 38.87 33.36
BART b-CTP avg 27.47 31.01 34.20 38.93 33.68
BART b-CTP<next> 26.84 30.72 34.11 39.43 33.63

Table 3: BLEU of BART b-CTP and BART b in machine translation. This experiment using pre-trained weight

XSUM
Model R-1 R-2 R-L
BART b (Our impl) 41.01 19.03 33.63
BART b-CTP avg 40.91 18.59 33.16
BART b-CTP<next> 40.85 18.57 33.18

Table 4: ROUGE of BART b-CTP and BART b in
document summarization. This experiment using pre-
trained weight

from the pre-trained language model except for the443

next token <next> embedding.444

4.3 Experiment Result445

The results of the proposed method trained from446

scratch are presented in Table 1 and Table 2.447

CTP avg denotes an experiment with the aver-448

age of the previous token embeddings as vnext.449

CTP<next> is the experiment with the embedding450

of special token <next> as vnext. Most of the ex-451

perimental results show that using the CTP module452

improves performance. However, in XSUM, the453

performance improvement was small, and ROGUE-454

2 exhibited a performance decrease. We expect that455

converting the decoder to the proposed method-456

ology will have a relatively small impact on the457

performance change because of the nature of docu-458

ment summaries, where the number of words input459

to the transformer encoder is relatively large.460

The experimental results obtained using the461

pre-trained weight are shown in Table 3 and Ta-462

ble 4. The proposed methodology improved the463

performance of WMT’14 En-De and En-Fr. Both464

methodologies showed performance enhancements.465

In many case, the experiment with CTPavg per-466

forms better. This is different from the "train from467

scratch" experiment. We predict that the addition468

of the untrained <next> token embedding is the469

cause of the lower performance. However, the per- 470

formance degradation for WMT’16 Ro->En and 471

XSUM. A common characteristic of these two 472

datasets was their small size. We observed over- 473

fitting on WMT’16 and XSUM while performing 474

experiments using the proposed methodology. In 475

most experiments, the training loss decreased faster 476

than that at the baseline, but the validation score de- 477

creased after a certain time in WMT’16 and XSUM. 478

However, in WMT’14, there was no overfitting 479

and good performance. Therefore, in WMT’16 and 480

XSUM, we used the weight decay to 0.1 of the 481

Adam optimizer (Kingma and Ba, 2015) to miti- 482

gate overfitting; however, this was not sufficient. 483

This issue is further discussed in Section 4.4. 484

4.4 Train Loss and Overfitting 485

While experimenting with the proposed methodol- 486

ogy, we observed that it had a lower training loss 487

than the baseline in most cases. We also found 488

that overfitting tended to occur more easily. The 489

overfitted model had a lower performance despite 490

the lower training loss. In general, overfitting is 491

easier with higher model complexity and smaller 492

data size. Using BARTb−CTP on small datasets 493

such as XSUM and WMT’16 En-Ro fulfills this 494

requirement. Therefore, overfitting was frequently 495

observed in XSUM and WMT’16 En-Ro during 496

the experiments. The initial settings of the XSUM 497

and WMT’16 En-Ro experiments were run with a 498

weight decay of 0.01. In this case, did not overfit 499

BARTb, but frequently overfitted BARTb−CTP . 500

Therefore, we converted the weight decay to 0.1 in 501

XSUM and WMT’16 En-Ro, but observed weak 502

overfitting in some cases. 503

However, this does not mean that the model ex- 504

hibits a low performance. Typically, the datasets 505

used for pre-training are hyperlarge-scale; there- 506

7

Figure 4: Visualizing the attention weights of the first layer of BARTb − CTP train from scratch.

fore, a low training loss can be seen as a positive507

factor for training. According to Table 7, WMT’14508

is very large compared with the other datasets. So,509

We did not observe any tendency of overfitting on510

WMT’14. The proposed methodology showed bet-511

ter performance on WMT’14. Therefore, we expect512

that the proposed methodology will be beneficial513

for very large datasets. An example and explanation514

of the low training loss are provided in Appendix D.515

5 Analysis516

We propose a Transformer-CTP for mitigating the517

excessive attention score measured on st−1 while518

predicting st. Figure 4 shows the attention weights519

in the first decoder layer for BART b and first CTP520

module layer for BART b–CTP . As can be seen,521

the proposed method has a more distributed atten-522

tion score. In BART b, we can observe that high523

attention scores are clustered into a few tokens at524

the beginning and a few at the end. However, both525

the proposed method have relatively distributed at-526

tention scores. Additionally, BART b-CTP<next>527

further mitigates the excessive attention scores in528

the early tokens. This confirms that the proposed529

methodology can mitigate an excessive attention530

score at st−1, which is an issue in this study.531

6 Ablation Study532

We evaluated the performance with and without po-533

sitional embedding. We compared the performance534

without including the tth position to construct vnextt535

as shown in Equation 6. The experimental results536

are listed in Table 5. The results showed that the537

performance without positional embedding was538

lower than that of the baseline in most cases. We539

‘ WMT’14 WMT’14
En->De Ro->En

Model BLEU BLEU
BART s 23.44 30.18
BART s-CTP avg 23.73 30.48
-Positional Embedding 23.33 30.07
BART s-CTP<next> 23.59 30.43
-Positional Embedding 23.33 30.02

Table 5: BLEU score according to positional embedding

can expected that CTP<next> without positional 540

embedding might be problematic, because it has the 541

same value at all positions. CTP avg has a different 542

value at each position, because the average number 543

of target tokens is different at each position. How- 544

ever, CTP avg without positional embedding also 545

exhibited a lower performance than the baseline. 546

7 Conclusion 547

In this study, we mitigated the problem of overfo- 548

cusing on the last input token to predict the next 549

token in the transformer decoder. To mitigate the 550

overfocusing problem, we used the next input vec- 551

tor with the next position information as the input. 552

We also designed a CTP module and transformer- 553

CTP to predict the next token from the next input 554

vector. The proposed method showed better per- 555

formance when trained from scratch without pre- 556

training. We also experimented using pre-trained 557

weights, and the performance improved on some 558

datasets. In addition, the transformer-CPT uses 559

well-distributed attention weights. We expect that 560

the proposed method will help to build language 561

models that can better focus on important tokens. 562

8

Model #Prameter Train time
BART s 64M x1.00
BART s-CTP avg 83M x1.38
BART s-CTP<next> 83M x1.38
BART b 129M x1.00
BART b-CTP avg 171M x1.42
BART b-CTP<next> 171M x1.43

Table 6: Model size and train time in our experiment of
WMT’14 En-De

Limitation563

Transformer-CPT uses larger model sizes than the564

transformer and requires more computation. The565

Transformer-CPT has the same size as the embed-566

ding, encoder, and LM head of the transformer.567

However, it is approximately 1.6 times of number568

of parameter in the transformer decoder ,excluding569

the weight shared with the original decoder. The570

increase in computation time was more noticeable571

in the non-autoregressive training phase. In the in-572

ference phase, where tokens are generated token by573

token, the total number of queries increases from574

n to n+1. However, in the non-autoregressive train-575

ing phase, the total number of queries increases576

from n to 2n. Table 6 lists the training times for the577

experiment on the same machine.578

In our experiments, we observed that the pro-579

posed methodology tended to overfit. In our ex-580

periments, there were cases of poor performance581

on some datasets, despite the lower training loss.582

We believe that a training loss lower than the base-583

line is advantageous for large datasets, such as in584

pre-training. However, there are concerns regarding585

overfitting in some small datasets. Future research586

is required on the application and development of587

methods to address overfitting.588

Unfortunately, we were unable to perform any589

pre-training because of the limitations of our exper-590

imental resources. The transformer-CPT returns the591

output of the original decoder block and the output592

of the CPT module for the next token vnextt . How-593

ever, in this study, we only trained the model using594

the output of the next token vnextt , because we did595

not perform pre-training. In addition, we did not596

perform error backpropagation to the last original597

decoder block because the output of the last origi-598

nal decoder block was not used as an input to the599

CPT module. We expect that pre-training research600

that uses or improves our proposed methodology601

will exhibit better performance and address our602

limitations. 603

References 604

605

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. 606
Hinton. 2016. Layer normalization. Preprint, 607
arXiv:1607.06450. 608

Ondřej Bojar, Christian Buck, Christian Federmann, 609
Barry Haddow, Philipp Koehn, Johannes Leveling, 610
Christof Monz, Pavel Pecina, Matt Post, Herve Saint- 611
Amand, Radu Soricut, Lucia Specia, and Aleš Tam- 612
chyna. 2014. Findings of the 2014 workshop on 613
statistical machine translation. In Proceedings of the 614
Ninth Workshop on Statistical Machine Translation, 615
pages 12–58, Baltimore, Maryland, USA. Associa- 616
tion for Computational Linguistics. 617

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, 618
Yvette Graham, Barry Haddow, Matthias Huck, An- 619
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo- 620
gacheva, Christof Monz, Matteo Negri, Aurélie 621
Névéol, Mariana Neves, Martin Popel, Matt Post, 622
Raphael Rubino, Carolina Scarton, Lucia Specia, 623
Marco Turchi, Karin Verspoor, and Marcos Zampieri. 624
2016. Findings of the 2016 conference on machine 625
translation. In Proceedings of the First Conference 626
on Machine Translation: Volume 2, Shared Task Pa- 627
pers, pages 131–198, Berlin, Germany. Association 628
for Computational Linguistics. 629

Nanxin Chen, Shinji Watanabe, Jesús Villalba, Piotr Że- 630
lasko, and Najim Dehak. 2021. Non-autoregressive 631
transformer for speech recognition. IEEE Signal Pro- 632
cessing Letters, 28:121–125. 633

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 634
Kristina Toutanova. 2019. BERT: Pre-training of 635
deep bidirectional transformers for language under- 636
standing. In Proceedings of the 2019 Conference of 637
the North American Chapter of the Association for 638
Computational Linguistics: Human Language Tech- 639
nologies, Volume 1 (Long and Short Papers), pages 640
4171–4186, Minneapolis, Minnesota. Association for 641
Computational Linguistics. 642

Xiao Shi Huang, Felipe Perez, and Maksims Volkovs. 643
2022. Improving non-autoregressive translation mod- 644
els without distillation. In International Conference 645
on Learning Representations. 646

Diederik Kingma and Jimmy Ba. 2015. Adam: A 647
method for stochastic optimization. In International 648
Conference on Learning Representations (ICLR), San 649
Diega, CA, USA. 650

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, 651
Kevin Gimpel, Piyush Sharma, and Radu Soricut. 652
2020. Albert: A lite bert for self-supervised learning 653
of language representations. In International Confer- 654
ence on Learning Representations. 655

9

https://arxiv.org/abs/1607.06450
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.18653/v1/W16-2301
https://doi.org/10.18653/v1/W16-2301
https://doi.org/10.18653/v1/W16-2301
https://doi.org/10.1109/LSP.2020.3044547
https://doi.org/10.1109/LSP.2020.3044547
https://doi.org/10.1109/LSP.2020.3044547
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=I2Hw58KHp8O
https://openreview.net/forum?id=I2Hw58KHp8O
https://openreview.net/forum?id=I2Hw58KHp8O
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan656
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,657
Veselin Stoyanov, and Luke Zettlemoyer. 2020.658
BART: Denoising sequence-to-sequence pre-training659
for natural language generation, translation, and com-660
prehension. In Proceedings of the 58th Annual Meet-661
ing of the Association for Computational Linguistics,662
pages 7871–7880, Online. Association for Computa-663
tional Linguistics.664

Xiaobo Liang, Zecheng Tang, Juntao Li, and Min Zhang.665
2023. Open-ended long text generation via masked666
language modeling. In Proceedings of the 61st An-667
nual Meeting of the Association for Computational668
Linguistics (Volume 1: Long Papers), pages 223–241,669
Toronto, Canada. Association for Computational Lin-670
guistics.671

Xiaobo Liang, Lijun Wu, Juntao Li, and Min Zhang.672
2022. JANUS: Joint autoregressive and non-673
autoregressive training with auxiliary loss for se-674
quence generation. In Proceedings of the 2022 Con-675
ference on Empirical Methods in Natural Language676
Processing, pages 8050–8060, Abu Dhabi, United677
Arab Emirates. Association for Computational Lin-678
guistics.679

Emmy Liu, Aditi Chaudhary, and Graham Neubig. 2023.680
Crossing the threshold: Idiomatic machine translation681
through retrieval augmentation and loss weighting.682
In Proceedings of the 2023 Conference on Empiri-683
cal Methods in Natural Language Processing, pages684
15095–15111, Singapore. Association for Computa-685
tional Linguistics.686

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-687
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,688
Luke Zettlemoyer, and Veselin Stoyanov. 2019.689
Roberta: A robustly optimized BERT pretraining ap-690
proach. CoRR, abs/1907.11692.691

Yixin Liu, Pengfei Liu, Dragomir Radev, and Graham692
Neubig. 2022. BRIO: Bringing order to abstractive693
summarization. In Proceedings of the 60th Annual694
Meeting of the Association for Computational Lin-695
guistics (Volume 1: Long Papers), pages 2890–2903,696
Dublin, Ireland. Association for Computational Lin-697
guistics.698

Thang Luong, Hieu Pham, and Christopher D. Manning.699
2015. Effective approaches to attention-based neural700
machine translation. In Proceedings of the 2015 Con-701
ference on Empirical Methods in Natural Language702
Processing, pages 1412–1421, Lisbon, Portugal. As-703
sociation for Computational Linguistics.704

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.705
2018. Don’t give me the details, just the summary!706
topic-aware convolutional neural networks for ex-707
treme summarization. In Proceedings of the 2018708
Conference on Empirical Methods in Natural Lan-709
guage Processing, pages 1797–1807, Brussels, Bel-710
gium. Association for Computational Linguistics.711

Matt Post. 2018. A call for clarity in reporting BLEU712
scores. In Proceedings of the Third Conference on713

Machine Translation: Research Papers, pages 186– 714
191, Brussels, Belgium. Association for Computa- 715
tional Linguistics. 716

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin 717
Qiu, Weinan Zhang, Yong Yu, and Lei Li. 2021. 718
Glancing transformer for non-autoregressive neural 719
machine translation. In Proceedings of the 59th An- 720
nual Meeting of the Association for Computational 721
Linguistics and the 11th International Joint Confer- 722
ence on Natural Language Processing (Volume 1: 723
Long Papers), pages 1993–2003, Online. Association 724
for Computational Linguistics. 725

Alec Radford, Jeff Wu, Rewon Child, David Luan, 726
Dario Amodei, and Ilya Sutskever. 2019. Language 727
models are unsupervised multitask learners. 728

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 729
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 730
Wei Li, and Peter J. Liu. 2020. Exploring the lim- 731
its of transfer learning with a unified text-to-text 732
transformer. Journal of Machine Learning Research, 733
21(140):1–67. 734

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se- 735
quence to sequence learning with neural networks. In 736
Advances in Neural Information Processing Systems, 737
volume 27. Curran Associates, Inc. 738

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 739
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 740
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 741
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard 742
Grave, and Guillaume Lample. 2023. Llama: Open 743
and efficient foundation language models. Preprint, 744
arXiv:2302.13971. 745

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 746
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 747
Kaiser, and Illia Polosukhin. 2017. Attention is all 748
you need. In Advances in Neural Information Pro- 749
cessing Systems, volume 30. Curran Associates, Inc. 750

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 751
Chaumond, Clement Delangue, Anthony Moi, Pier- 752
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow- 753
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 754
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 755
Teven Le Scao, Sylvain Gugger, Mariama Drame, 756
Quentin Lhoest, and Alexander M. Rush. 2020. Hug- 757
gingface’s transformers: State-of-the-art natural lan- 758
guage processing. Preprint, arXiv:1910.03771. 759

10

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2023.acl-long.13
https://doi.org/10.18653/v1/2023.acl-long.13
https://doi.org/10.18653/v1/2023.acl-long.13
https://doi.org/10.18653/v1/2022.emnlp-main.550
https://doi.org/10.18653/v1/2022.emnlp-main.550
https://doi.org/10.18653/v1/2022.emnlp-main.550
https://doi.org/10.18653/v1/2022.emnlp-main.550
https://doi.org/10.18653/v1/2022.emnlp-main.550
https://doi.org/10.18653/v1/2023.emnlp-main.933
https://doi.org/10.18653/v1/2023.emnlp-main.933
https://doi.org/10.18653/v1/2023.emnlp-main.933
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2022.acl-long.207
https://doi.org/10.18653/v1/2022.acl-long.207
https://doi.org/10.18653/v1/2022.acl-long.207
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2021.acl-long.155
https://doi.org/10.18653/v1/2021.acl-long.155
https://doi.org/10.18653/v1/2021.acl-long.155
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771

Dataset
Data Avg. # Word

Train Validation Test Source Target
WMT’14 En-De 4.5M 3k 3k 23.0 21.3
WMT’14 En-Fr 40.8M 3k 3k 25.0 28.6
WMT’16 En-Ro 610k 2k 2k 23.1 23.4
XSUM 204k 11k 11k 373.9 21.1

Table 7: Dataset statistics information

Setting BART s-CTP BARTB-CTP

Vocab size
WMT: 37000 WMT: 37000
XSUM: 30000 XSUM: 30000

Layers 6 6
Attention Heads 8 12

Attention Heads size 64 64
Hidden size 512 768

FFNN inner hidden size 3072 2048
Maximum sequence length 512 1024

Dropout 0.1 0.1

Table 8: Model setting in our experiment.

Hyper-parameter WMT’14 En-De, En-Fr WMT’16 En-Ro, XSUM
Learning Rate 5e-5 5e-5

Batch size 16 16
Epochs/Steps 1M steps 10 epoch

Optimizer AdamW AdamW
Weight Decay 0.01 0.1

AdamW ϵ 1e-6 1e-6
AdamW β1, β2 0.9,0.999 0.9,0.999

Scheduler linear linear
Beam size 5 5

Table 9: Hyperparameter setting in our experiment.

A Dataset Information760

We experimented with machine translation and doc-761

ument summarization using WMT’14, WMT’16,762

and XSUM. The WMT dataset is a machine-763

translation dataset comprising various sources,764

such as news commentaries and parliamentary min-765

utes. XSUM is a document summarization dataset766

containing short summaries of BBC online articles.767

WMT’14 En-De and En-Fr are large datasets; there-768

fore, we trained them with 1 M steps. WMT’16769

and XSUM were small; therefore, we trained on770

10 epochs, which is approximately 350 k steps. De-771

tailed statistics for each dataset are listed in Table 7.772

B Detailed Experiment Setting773

We experimented with a similar setup to the trans-774

former (Vaswani et al., 2017): in the model with-775

out prior learning, we used a shared vocab size 776

of 37000 in the machine translation task. For doc- 777

ument summarization, we used a vocab size of 778

30000 since it is monolingual. We used the same 779

settings for the CTP block and original decoder 780

block. The same settings as those of the trans- 781

former (Vaswani et al., 2017) were used in the small 782

model. We used the same settings as in BART-base. 783

Table 8 lists the model settings. When using pre- 784

trained weights, we used the same settings for the 785

pre-trained BART-base, including vocab size. 786

All the experiments were conducted once with 787

the same random seed, and experiments on various 788

datasets and settings demonstrated the effectiveness 789

of the proposed methodology. We validate its effec- 790

tiveness by experimenting with different datasets 791

and models. All experiments were performed us- 792

11

Figure 5: Attention weight visualization of first layer of BARTb-CTP without pre-trained model.

ing fixed hyperparameters. And we experimented793

with a single RTX 3090 or RTX4090. The compar-794

ison groups were tested using the same machine.795

The values of the hyperparameters used in the ex-796

periments are listed in Table 9. For performance797

evaluation, we used scareBLEU and ROUGE from798

huggingface packages (Wolf et al., 2020).799

C Attention Weight Visualization800

We visualized the attention weights on additional801

data to verify that the proposed methodology mit-802

igated the overfocusing problem. The results are803

presented in Figure 5. Similar results were ob-804

served for other data. In BART, the first two tokens805

and the last token have biased attention weights.806

In the proposed methodology, the attention weight807

biased toward the first two tokens is reduced, and is808

further reduced as the number of tokens increases.809

In addition, spreads out the attention score concen-810

trated on a few specific tokens, including the self811

token.812

D Train Loss 813

While experimenting with the proposed method- 814

ology, we found that it had a low training loss in 815

most experiments. Figure 6 shows the training loss 816

graph. As shown in the figure, the initial training 817

loss tended to be higher for the proposed methodol- 818

ogy; however, the proposed methodology gradually 819

exhibited a lower training loss. This was observed 820

in most experiments, even in cases with similar 821

or lower performances, such as XSUM. We pre- 822

dicted that the proposed methodology would train 823

faster, but may be more easily overfitted. Further 824

research on pretraining and studies with overfitting 825

prevention methodologies are required to confirm 826

this. 827

12

Figure 6: Train loss graph in XSUM and WMT’14 En-De dataset. we logging average loss of every 1000 steps

13

	Introduction
	Related Work
	Transformer
	LM loss in transformer decoder
	Sequence generation from mask token in transformer

	Proposed Method
	Next Input Vector vnextt
	CTP Module
	Parallel Processing on Training phase

	Experiment
	Dataset
	Experiment Setting
	Experiment Result
	Train Loss and Overfitting

	Analysis
	Ablation Study
	Conclusion
	Dataset Information
	Detailed Experiment Setting
	Attention Weight Visualization
	Train Loss

