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Abstract

Transformer and pre-trained language models
have advanced various tasks in artificial intelli-
gence. Typically, transformer decoders for lan-
guage generation are trained using LM loss.
The LM loss function predicts the next token
from the outputs of previous tokens. LM loss is
trained such that transformer decoders can gen-
erate autoregressively. In addition, transform-
ers use self-attention to derive outputs, which
generally assigns a high attention weight to
self-tokens. Therefore, the transformer decoder
may over-focus on the token ¢ — 1 when predict-
ing token ¢ because it predicts token ¢ through
self-attention up to token ¢ — 1. The proposed
method prevents the transformer decoder from
overfocusing on token ¢ — 1 when predicting
token t. Instead of predicting token ¢ using the
output of token ¢ — 1, we use a new input to pre-
dict token ¢. We also add a CPT module to the
transformer decoder, which prevents token ¢ — 1
from being used in the attention query by cross-
attention using the new input. Moreover, we
measured the performance of machine transla-
tion and document summarization to verify that
the proposed methodology can mitigate overfo-
cusing problem and improve the performance.
In our experiments, the proposed methodology
improved performance. Also, it can distribute
the focused attention to a few specific tokens,
including the self-token. The code for the ex-
periment can be found on our GitHub'.

1 Introduction

Transformer(Vaswani et al., 2017) has made
progress in various tasks in artificial intelligence as
well as natural language processing. Moreover, pre-
trained transformer-based language models such
as BERT (Devlin et al., 2019), GPT (Radford
et al., 2019), and BART (Lewis et al., 2020) have
achieved state-of-the-art (SOTA) performance on
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Figure 1: Visualizing the attention weights of the first
layer of pre-trained GPT2.

most natural language processing tasks. Among
them, transformer decoder-only language models
such as GPT (Radford et al., 2019), LAMMA (Tou-
vron et al., 2023), PaLLM (202), and transformer
encoder—decoder pre-trained language models such
as BART (Lewis et al., 2020) and T5 (Raffel
et al., 2020) can perform the functions of gener-
ative Al. This is because the transformer decoder
is designed to generate sequences. Therefore, for
natural language sentence generation tasks, such
as machine translation and text summarization, a
model with a transformer decoder is generally se-
lected. Pretrained language models with a trans-
former decoder-only model or a transformer en-
coder—decoder model exhibit SOTA performance
in various generation tasks.

Seq2Seq (Sutskever et al., 2014) is a mechanism
comprising an encoder and a decoder. The encoder
compresses the source sentence into a vector. The
decoder autoregresssivly generates the sentence
token-by-token through the compressed vector. The
transformer has a Seq2Seq structure. Therefore, the
transformer decoder also generates sentences au-
toregressively. The transformer is a model based
on a self-attention mechanism, and the attention
weight is computed by measuring the similarity be-
tween two tokens. The attention weight is used as
the importance of each token in generating a cor-
rect answer. The self-attention mechanism focuses
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attention on the input sentence and same-sentence.
The transformer decoder measures the attention
score between the ¢ — 1* token and the sentence
up to the ¢t — 1" token to predict the t* token in
the sentence. It then predicts the ¢ token by using
the weighted sum based on the attention score. This
method can be used to generate sentences word-by-
word while predicting the next word.

Self-attention generally has a higher attention
score for the self-token(self-referenced token). This
is expected because the query and key used to com-
pute the attention score are extracted from the same
token. Figure 1 shows an example of visualizing the
attention score in the transformer—decoder model.
For the example, we used gpt2-base (Radford et al.,
2019) and extracted the attention score of the first
self-attention layer for "Hello, Nice to meet you.”
Consequently, when generating the ¢ token, the
attention score for the ¢ — 1*" token is often the
highest. The fifth sentence in the figure predicts
"you.” In self-attention, the query is "meet" and the
key is "Hello, Nice to meet”. The highest attention
score is observed for "meet” which is the same
token as that for the query and key.

We hypothesize that over-focusing of self-tokens
can lead to two sources of performance degradation.
First, the input embedding of the ¢ — 1* token and
output for predicting the t** token may be limited
by the amount of change. When deriving the results
of the ¢ — 1! token, the attention score is often
high for the t — 1" token. Specifically, a weighted
sum with a high weight on the ¢t — 1** token was
used to derive the output of the t — 1 token. This
results in an output similar to the ¢ — 1*" token.
Because there is no guarantee that the t — 1" token
is similar to the t*" token, performance degradation
may occur during the process of predicting the
t*" token. Second, it may have an attention score
biased toward self-token and later tokens in the
sentence. This can lead to a high attention score
for the self-token, even if earlier tokens are more
important for predicting the next token. This is
because there is a high probability that queries and
keys extracted from the same vector are similar,
which can cause performance degradation owing to
uneven attention to the entire sentence. Therefore,
we propose a way to mitigate the over-focus of self-
tokens caused by the structure of the transformer
decoder.

We propose a novel transformer-decoder struc-
ture that can predict the ¢t token at the t* position.
Instead of predicting the t** token using the output

of the existing t — 1*" token, we use a new input
to predict the t** token. In the proposed method-
ology, the t — 1" token is not directly used in the
query when computing the attention score to pre-
dict the #*" token. This mitigates the overfocusing
issues described above by distributing the biased
attention score among self-tokens and later tokens.
Moreover, we present text summarization and ma-
chine translation using the proposed transformer
structure and verify that the proposed transformer
structure leads to performance improvements.

2 Related Work

2.1 Transformer

Transformer is a self-attention-based model. Dot-
product attention (Luong et al., 2015) was proposed
for machine translation. Dot-product attention is a
mechanism for the Seq2Seq model to focus more
on important tokens in the source sentence while
predicting the target sentence. To select impor-
tant tokens, Seq2Seq model obtained the similarity
based on the dot product and used it as the attention
score. The equation for the dot product attention is
as follows:

. QK"

Attention(Q, K, V) = softmax(ﬁ)v (1)
where, Q, K, and V denote the query, key, and value,
respectively, and dj denotes the dimensions of the
key vector. Several transformer-based models use
self-attention and cross attention with dot-product
attention. Self-attention means when a query and
key are extracted from the same sentence in the dot-
product attention. The transformer encoder com-
prises a self-attention layer and feed-forward net-
work layer. The transformer decoder comprises a
masked self-attention layer, cross-attention layer
and feed-forward network layer. Transformer per-
forms residual connection and normalization in
each layer. Masked self-attention causes each query
to compute the attention only for the previous token.
Therefore, the ¢! token in a sentence and those af-
ter the tokens (¢ 4 1 ~) are not subject to similarity
computations in transformer decoder. This causes
autoregressive generation during training.

2.2 LM loss in transformer decoder

Several studies of generative tasks, such as (Liu
et al., 2023) and (Liu et al., 2022), use LM loss for
training. The LM loss is a conditional probability-
based loss function that predicts the ' token given
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Figure 2: Generation process of proposed method

the input sequence up to the ¢ — 1** token. The
LM loss function is trained to predict the next to-
ken given the token sequence up to t — 1! token.
The trained model generates sentences token-by-
token by predicting the next token and including
the predicted token in the input for next time. The
transformer decoder uses the output of s;_; for the
LM loss.

2.3 Sequence generation from mask token in
transformer

In this study, we used a new input to predict the #*
token. The prediction of the next token from the
output of a new input is similar to the prediction
of a word from a mask token. Typically, masked
language modeling is used to train transformer
encoder language models, such as BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), and Al-
BERT (Lan et al., 2020). However, attempts have
also been made to generate entire sentences from
mask tokens.

In (Liang et al., 2023), sentence generation from
mask tokens increased the generation speed of the
language model. (Liang et al., 2023) generates sen-
tences using the cross-attention of the transformer
encoder and the mask token sequence. First, it pre-
dicts the length of the sentence to be generated and
generates a input mask-token sequence. Replaces
the mask token when the probability of the pre-
dicted word is higher than the threshold. In the next
iteration, the mask token sequence is used with
some assigned predictive words as the input. This
process can generate sentences faster than autore-
gressive methods that require ¢ iterations to predict
t tokens.

In (Chen et al., 2021), proposed a transformer
for speech recognition. The transformer decoder
makes predictions using the mask tokens, us-
ing which proposed a non-autoregressive genera-
tion methodology. Similarly, to construct a non-
autoregressive model, this method predicts the
length of the correct speech. Subsequently, the
mask token sequence of the predicted length is
input to the decoder, which predicts the mask token
in parallel.

3 Proposed Method

Our methodology does not predict s; via the
output of s;_; from the target sequence S =
{s1, 82, ..., 5:} as in a transformer decoder. Our
method uses a new input, the next input vector
Vet 1o predict s;. v is the vector containing
the " positional embedding PFE;. Therefore, it
contains the ! positional information. We also
propose a current-token prediction (CTP) module
for predicting the ' token using v}****. The struc-
ture of the CTP module predicts the t*" token from
the input of vector v"*** containing the ' posi-
tion information. An example of this process is
presented in Figure 3-(a). For clarity, the existing
transformer decoder block is referred to as the orig-
inal decoder block.

The process for predicting sz, "Nice" in the Ko-
rean to English translation shown in Figure 3-(b)
is as follows. First, the source sentence is entered
into the transformer encoder. The output of the
transformer encoder and s; and s9 are input to the
original decoder. Then, input v4*!, the input for
predicting s3, is enter to the CTP module along
with the output of the original decoder block. The
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Figure 3: Overall structure of transformer-CTP

CTP module utilizes this information. The query of
CPT module is extracted only from v5**. Finally,
the output of the CTP module is enter into the LM
head to predict s3. The proposed methodology did
not include s in the query when generating the
LM head input, and instead, uses v§°** as a query
to predict s3. Therefore, Our method attention be-
tween v**** and S.; = {s1, 82, ..., 5;_1} instead
of self-attention to s;_1 and S.; when predicting
s¢. It can mitigates the excessively high attention
score in s;—1 when predict s;_;. We also expect
that this will mitigate performance degradation as-
sumed in this study.

The proposed methodology can be categorized
into two main parts: the generation of the next in-
put vector v}**** and design and training of the
transformer-CTP and CTP module. The details of

each are described in Sections 3.1 and 3.2.

3.1 Next Input Vector v}*¢*!

The proposed method generates the next input vec-
tor v*“**, which is used as the input for the CTP
module when predicting s;. The next input vector
vt contains the ¢ positional embedding PE;
for predicting s; at the ¢ position. We generated
v¢®t using two methods, both of which were used
in our experiments. The first is to use the embed-
ding of the special token <next>. Set e« pezt>, the
embedding of <next>, to v"¢**. Then add a t'"-
position embedding to generate v}***!. Next, we set
the average of the token embeddings of the input

sequence S to v"¢*t, We set v"¢*! as the average

of the embedding vector E.; = {e1,e2,...,e1-1}
of the input of original decoder. Similarly, we add
the ¢*" position embedding to generate v“**. The
equation for this process is as follows:

1 t—1
next __ .
v _{e<negﬁt>t_12€Z
i=1

2

,Ugth — ,Unea:t + PEt

3)

e; 1s the token embedding of s; and e-next >
is the embedding of the special token <next>. PE}
is the positional embedding of the ¢ position.

3.2 CTP Module

In this study, we designed a CTP module to pre-
dict the t'" token using v}****. The structure of the
transformer-CTP and the CTP module are shown in
Figure 3. The structure of the CTP module, as in the
transformer, comprises N CTP blocks. The CTP
block comprises two multi-head cross-attention lay-
ers and one feed-forward layer. It also uses a resid-
ual connection and normalization after each layer.
Before describing the equations for each layer, we
organized the equations for the original transformer
decoder.

HY, = E “)

)

The original transformer decoder returns H™
through N decoder blocks.

H' = DecoderBlock(HL,,O)



The first multi-head cross attention layer of the
CTP block performs multi-head cross attention us-
ing the input vector of the original decoder block.
In this process, the first CTP block extracts a query
from vf****, And, the key and value are extracted
from H®, which is the input vector for each original
decoder block. Therefore, this process can mitigate
the excessively high attention score assigned to the
s¢—1’s key. This implies that the output of the multi-
head cross-attention of the CTP block is likely to
be a vector that is not overly focused on s;_;. In
addition, the second CTP block does not receive
vectors for query that are overly focused in s;_; as
inputs, which is expected to mitigate the overfocus-
ing issue. Subsequently, residual connections and
normalization were performed. The equation for
first multi-head cross attention layer are follows:

CO — ,Uzth (6)

g' = MHA(C'WRY, HL,WEY HE, WYY (7)

G'=LN(g'+C") (8)

Where M H A(-) denote the multi-head attention.
Multi-head attention was proposed in (Vaswani
et al., 2017), where the attention in Equation 1
is performed by multiple heads. W', WX, w1
are the learnable parameters of the first multi-head
cross attention layer of the i** CTP block. LN (-)
denotes layer normalization (Ba et al., 2016). In
other words, the first multi-head cross attention
layer of the it CTP block uses the input of the "
original decoder block as the key and value.

The second multi-head cross-attention layer and
feed-forward network layer of the CTP block is
the same as the original transformer decoder. The
second multi-head cross attention layer performs
cross attention with the output of the transformer
encoder. The output of the first multi-head cross-
attention layer of the CTP block was used to extract
the query. It also uses the output of the transformer
encoder as key and value. The equations for this
process are as follows:

m' = MHA(G'WE? owE2, ow)Y?)  (9)

M = LN(m' + G (10)

CHl = LN(FFNN(M?) + M?) (11)

where VVZ-Q2, W2, and Wy'! are the learnable
parameters of the second multi-head cross-attention
layer of the i*» CTP block; O is the output of the
transformer encoder; and FFN N (-) is a feed for-
ward network.

Equations 7-11 represent the CTP block cy-
cles. The CTP module returns CV through N
CTP blocks and N original decoder block. Finally,
Transformer-CTP predict s; from the output of the
CTP module and LM head. The transformer-CTP
trains the LM loss using the cross-entropy loss of
the prediction and gold. The training objectives of
the proposed transformer-CTP are as follows:

T
L=-— Zlog(st\v?wt, S1y ey St—1,1)  (12)
t=1

The bold red line in Figure. 3 represents the flow
of v}****, In other words, the red line flow of CTP
module, where v}*¢** is directly used as the input
or output of each CTP block layer, is used as the
input of next CTP block. The weights of the layers
in this red line flow are not shared with the layers
of the original decoder block. The weights of the
other layers(black line in the CTP module) share
weights with the layers of the original decoder
block. In other words, W W2 WY1 W2 of
CTP module equation share weights with the origi-
nal decoder block.

3.3 Parallel Processing on Training phase

Parallel processing of the transformer decoder dur-
ing the training process is an important feature
of the transformer. The transformer decoder can
be trained non-autoregressively through masked
multi-head self-attention during the training pro-
cess. The proposed methodology also enables par-
allelism in the training process by masking multi-
head cross-attention. For parallel processing, the
first multi-head cross attention layer of the CTP
block is constructed as a masked multi-head cross
attention. The sequence of the next input vectors
Vnext — {,UgLea:t7 Ugext7 mv%ext}‘ We use Vnext as
a query in the masked multi-head cross-attention.
We used original decoder block of the target sen-
tence S<r as the key and value. This allows non-
autoregressive parallel training of the CTP module.



WMT’ 14 WMT’16 WMT’ 14

En->De De->EN | Ro->En | En->Fr Fr->En
Model BLEU BLEU BLEU BLEU BLEU
BART s (Our impl) 23.44 28.05 30.18 36.09 31.33
BART s-CTP g4 23.73 28.33 30.48 36.13 31.40
BART ;-CTP cpegt> | 23.59 28.45 30.43 36.58 31.57
BARTY} (Our impl) 24 .41 29.18 30.71 36.93 32.32
BART-CTP gy 24.40 29.10 31.00 37.08 32.35
BART,-CTP cpewt> 24.60 29.17 30.93 37.02 32.31

Table 1: BLEU of BART-CTP and BART in machine translation. This experiment train from scratch without

pre-trained model

XSUM
Model Rl  R2 RL
BART, Ourimpl) | 3123 11.33 24.99
BART}-CT Py, 3124 1124 25.06
BARTy-CTP cpewr> | 3127 1124 25.12

Table 2: ROUGE of BART-CTP and BART in docu-
ment summarization. This experiment train from scratch
without pre-trained model

4 Experiment

4.1 Dataset

To evaluate the performance of the proposed
methodology, we evaluated the performance of ma-
chine translation and document summarization. For
machine translation, we conducted experiments
on three datasets: WMT’14 (Bojar et al., 2014)
En-De, WMT’ 14 (Bojar et al., 2014) En-Fr, and
WMT’16 (Bojar et al., 2016) Ro-En.

We also experimented with the XSUM (Narayan
et al., 2018) dataset for document summarization.
Detailed descriptions and statistics for each dataset
are provided in the Appendix A.

4.2 Experiment Setting

In this paper, we propose a novel transformer struc-
ture called the transformer-CTP. We trained the
downstream task from scratch with the transformer-
CTP, which was not pre-trained. In addition, we
did not perform pre-training due to the limitations
of the research equipment. Instead, we evaluated
the performance using a pre-trained weight. The
training steps for the experiments was 1M update
steps or 10 epochs, whichever was shorter. The
performance of deep learning is affected by many
factors such as model size, amount of training, hy-
perparameters, and generation settings. Therefore,

to accurately compare the proposed methodology
with the baseline, we conducted direct experiments
on both under a fixed setting. For fair performance
evaluation, we used detokenized sacreBLEU (Post,
2018) using mteval-v14.pl and ROUGE score.

Train From Scratch. We experimented simi-
larly to the setup in Transformer paper (Vaswani
et al., 2017). The transformer-based language
model used in our experiments was BART (Lewis
et al., 2020). BART has an approximately similar
structure to the transformer, except that the ReLU
activation function is replaced with GeLU, the pa-
rameter initialization is set to N(0,0.2) and using
trainable positional embedding. We used a shared
vocab size of 37000 for bilingual machine transla-
tion. In the document summary, we trained with a
vocab size of 30000. We also experimented with
BART-small, which has the same model size as that
of the Transformer paper (Vaswani et al., 2017) and
BART-base. The detailed experimental setup is de-
scribed in Appendix B. Since the XSUM dataset
has a long input document length due to the nature
of document summarization, we only experiment
with the BART-base that can take up to 1024 se-
quence lengths.

Using Pre-trained Weight. We experimented
with the weight of an already pre-trained language
model; specifically, we used the weights of the
pre-trained BART-base. When using a pre-trained
language model, a large number of new layers
can cause performance degradation such as adding
CPT module to pre-trained model. Therefore, we
share more weights in this experimental setup. In
section 3.2, only Wi, WK2 WV 1WV2 shared
weights with the original decoder layer. However,
in this experimental setup, we share the entire
weight of the CPT module. In other words, the
transformer-CTP loaded all learnable parameters



WMT’ 14 WMT’16 WMT’ 14

En->De De->EN | Ro->En | En->Fr Fr->En
Model BLEU BLEU BLEU BLEU BLEU
Transformers (Vaswani et al., 2017) 27.3 - - 39.2 -
GLAT (Qian et al., 2021) 25.21 29.84 32.00 - -
CMLMC (Huang et al., 2022) 26.40 30.92 34.13 - -
JANUS-NAR (Liang et al., 2022) 26.40 30.90 34.36 - -
BART}, (Our impl) 27.05 30.23 34.89 38.87 33.36
BART-CTP gy 27.47 31.01 34.20 38.93 33.68
BART,-CTP pext> 26.84 30.72 34.11 39.43 33.63

Table 3: BLEU of BART,-CT P and BART', in machine translation. This experiment using pre-trained weight

XSUM
Model R-1 R-2 R-L
BART}, (Our impl) 41.01 19.03 33.63
BARTY-CTP g4 4091 18.59 33.16
BARTY-CTP cpert> | 40.85 18.57 33.18

Table 4: ROUGE of BART,-CTP and BART} in
document summarization. This experiment using pre-
trained weight

from the pre-trained language model except for the
next token <next> embedding.

4.3 Experiment Result

The results of the proposed method trained from
scratch are presented in Table 1 and Table 2.
CTP,,, denotes an experiment with the aver-
age of the previous token embeddings as v™¢*!,
CTP . pezt> is the experiment with the embedding
of special token <next> as v"¢*!, Most of the ex-
perimental results show that using the CTP module
improves performance. However, in XSUM, the
performance improvement was small, and ROGUE-
2 exhibited a performance decrease. We expect that
converting the decoder to the proposed method-
ology will have a relatively small impact on the
performance change because of the nature of docu-
ment summaries, where the number of words input
to the transformer encoder is relatively large.

The experimental results obtained using the
pre-trained weight are shown in Table 3 and Ta-
ble 4. The proposed methodology improved the
performance of WMT’ 14 En-De and En-Fr. Both
methodologies showed performance enhancements.
In many case, the experiment with CT'F,,,, per-
forms better. This is different from the "train from
scratch" experiment. We predict that the addition
of the untrained <next> token embedding is the

cause of the lower performance. However, the per-
formance degradation for WMT’16 Ro->En and
XSUM. A common characteristic of these two
datasets was their small size. We observed over-
fitting on WMT’ 16 and XSUM while performing
experiments using the proposed methodology. In
most experiments, the training loss decreased faster
than that at the baseline, but the validation score de-
creased after a certain time in WMT’ 16 and XSUM.
However, in WMT’ 14, there was no overfitting
and good performance. Therefore, in WMT’ 16 and
XSUM, we used the weight decay to 0.1 of the
Adam optimizer (Kingma and Ba, 2015) to miti-
gate overfitting; however, this was not sufficient.
This issue is further discussed in Section 4.4.

4.4 Train Loss and Overfitting

While experimenting with the proposed methodol-
ogy, we observed that it had a lower training loss
than the baseline in most cases. We also found
that overfitting tended to occur more easily. The
overfitted model had a lower performance despite
the lower training loss. In general, overfitting is
easier with higher model complexity and smaller
data size. Using BART}, — C'T'P on small datasets
such as XSUM and WMT’16 En-Ro fulfills this
requirement. Therefore, overfitting was frequently
observed in XSUM and WMT’16 En-Ro during
the experiments. The initial settings of the XSUM
and WMT’ 16 En-Ro experiments were run with a
weight decay of 0.01. In this case, did not overfit
B ART, but frequently overfitted BART, —CTP.
Therefore, we converted the weight decay to 0.1 in
XSUM and WMT’16 En-Ro, but observed weak
overfitting in some cases.

However, this does not mean that the model ex-
hibits a low performance. Typically, the datasets
used for pre-training are hyperlarge-scale; there-
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Figure 4: Visualizing the attention weights of the first layer of BART}, — CT'P train from scratch.

fore, a low training loss can be seen as a positive
factor for training. According to Table 7, WMT’ 14
is very large compared with the other datasets. So,
We did not observe any tendency of overfitting on
WMT’ 14. The proposed methodology showed bet-
ter performance on WMT’ 14. Therefore, we expect
that the proposed methodology will be beneficial
for very large datasets. An example and explanation
of the low training loss are provided in Appendix D.

5 Analysis

We propose a Transformer-CTP for mitigating the
excessive attention score measured on s;_1 while
predicting s;. Figure 4 shows the attention weights
in the first decoder layer for BART', and first CTP
module layer for BART,—CT P. As can be seen,
the proposed method has a more distributed atten-
tion score. In BART),, we can observe that high
attention scores are clustered into a few tokens at
the beginning and a few at the end. However, both
the proposed method have relatively distributed at-
tention scores. Additionally, BART,-CT P <ext>
further mitigates the excessive attention scores in
the early tokens. This confirms that the proposed
methodology can mitigate an excessive attention
score at s;_1, which is an issue in this study.

6 Ablation Study

We evaluated the performance with and without po-
sitional embedding. We compared the performance
without including the #** position to construct v}*¢*!
as shown in Equation 6. The experimental results
are listed in Table 5. The results showed that the
performance without positional embedding was

lower than that of the baseline in most cases. We

‘ WMT’ 14 WMT’14
En->De  Ro->En
Model BLEU BLEU
BART, 23.44 30.18
BART s-CTP g4 23.73 30.48
-Positional Embedding 23.33 30.07
BART -CTP cpext> 23.59 30.43
-Positional Embedding 23.33 30.02

Table 5: BLEU score according to positional embedding

can expected that CT P ¢t~ Without positional
embedding might be problematic, because it has the
same value at all positions. C'T'P 4,4 has a different
value at each position, because the average number
of target tokens is different at each position. How-
ever, C'I'P,, without positional embedding also
exhibited a lower performance than the baseline.

7 Conclusion

In this study, we mitigated the problem of overfo-
cusing on the last input token to predict the next
token in the transformer decoder. To mitigate the
overfocusing problem, we used the next input vec-
tor with the next position information as the input.
We also designed a CTP module and transformer-
CTP to predict the next token from the next input
vector. The proposed method showed better per-
formance when trained from scratch without pre-
training. We also experimented using pre-trained
weights, and the performance improved on some
datasets. In addition, the transformer-CPT uses
well-distributed attention weights. We expect that
the proposed method will help to build language
models that can better focus on important tokens.



Model #Prameter Train time
BART, 64M x1.00
BART s-CTP gy 83M x1.38
BART ;-CTP cpert> 83M x1.38
BART, 129M x1.00
BART,-CTP 44 171M x1.42
BART,-CTP cpept> 171M x1.43

Table 6: Model size and train time in our experiment of
WMT’ 14 En-De

Limitation

Transformer-CPT uses larger model sizes than the
transformer and requires more computation. The
Transformer-CPT has the same size as the embed-
ding, encoder, and LM head of the transformer.
However, it is approximately 1.6 times of number
of parameter in the transformer decoder ,excluding
the weight shared with the original decoder. The
increase in computation time was more noticeable
in the non-autoregressive training phase. In the in-
ference phase, where tokens are generated token by
token, the total number of queries increases from
n to n+1. However, in the non-autoregressive train-
ing phase, the total number of queries increases
from n to 2n. Table 6 lists the training times for the
experiment on the same machine.

In our experiments, we observed that the pro-
posed methodology tended to overfit. In our ex-
periments, there were cases of poor performance
on some datasets, despite the lower training loss.
We believe that a training loss lower than the base-
line is advantageous for large datasets, such as in
pre-training. However, there are concerns regarding
overfitting in some small datasets. Future research
is required on the application and development of
methods to address overfitting.

Unfortunately, we were unable to perform any
pre-training because of the limitations of our exper-
imental resources. The transformer-CPT returns the
output of the original decoder block and the output
of the CPT module for the next token v}"***. How-
ever, in this study, we only trained the model using
the output of the next token v***, because we did
not perform pre-training. In addition, we did not
perform error backpropagation to the last original
decoder block because the output of the last origi-
nal decoder block was not used as an input to the
CPT module. We expect that pre-training research
that uses or improves our proposed methodology
will exhibit better performance and address our

limitations.
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Dataset # Data Avg. # Word
Train  Validation Test Source Target
WMT’ 14 En-De | 4.5M 3k 3k 23.0 21.3
WMT’ 14 En-Fr | 40.8M 3k 3k 25.0 28.6
WMT’16 En-Ro | 610k 2k 2k 23.1 234
XSUM 204k 11k 11k 3739 21.1
Table 7: Dataset statistics information
Setting BART,-CTP | BARTg-CTP
Vocab size WMT: 37000 WMT: 37000
XSUM: 30000 | XSUM: 30000
Layers 6 6
Attention Heads 8 12
Attention Heads size 64 64
Hidden size 512 768
FFNN inner hidden size 3072 2048
Maximum sequence length 512 1024
Dropout 0.1 0.1

Table 8: Model setting in our experiment.

Hyper-parameter | WMT’14 En-De, En-Fr | WMT’16 En-Ro, XSUM

Learning Rate Se-5 Se-5
Batch size 16 16

Epochs/Steps 1M steps 10 epoch
Optimizer AdamW AdamW

Weight Decay 0.01 0.1
AdamW e le-6 le-6

AdamW f1, B2 0.9,0.999 0.9,0.999
Scheduler linear linear
Beam size 5 5

Table 9: Hyperparameter setting in our experiment.

A Dataset Information

We experimented with machine translation and doc-
ument summarization using WMT’ 14, WMT’ 16,
and XSUM. The WMT dataset is a machine-
translation dataset comprising various sources,
such as news commentaries and parliamentary min-
utes. XSUM is a document summarization dataset
containing short summaries of BBC online articles.
WMT’ 14 En-De and En-Fr are large datasets; there-
fore, we trained them with 1 M steps. WMT’16
and XSUM were small; therefore, we trained on
10 epochs, which is approximately 350 k steps. De-
tailed statistics for each dataset are listed in Table 7.

B Detailed Experiment Setting

We experimented with a similar setup to the trans-
former (Vaswani et al., 2017): in the model with-
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out prior learning, we used a shared vocab size
of 37000 in the machine translation task. For doc-
ument summarization, we used a vocab size of
30000 since it is monolingual. We used the same
settings for the CTP block and original decoder
block. The same settings as those of the trans-
former (Vaswani et al., 2017) were used in the small
model. We used the same settings as in BART-base.
Table 8 lists the model settings. When using pre-
trained weights, we used the same settings for the
pre-trained BART-base, including vocab size.

All the experiments were conducted once with
the same random seed, and experiments on various
datasets and settings demonstrated the effectiveness
of the proposed methodology. We validate its effec-
tiveness by experimenting with different datasets
and models. All experiments were performed us-



source: </s><s>Die gestern offiziell in Betrieb genommene Anlage sei wichtig fiir den Kreuzungsbereich Sulzbachweg/Kirchstrafie.
target: <s>The system, which officially became operational yesterday, is of importance to the Sulzbachweg/Kirchstrasse junction.</s>

BART,

10

15 5 10

BART, — CTPyyg

BARTy, — CTP_pext>

15 20 5 10 15 20 25

source: </s><s>Wir haben das Museum, zwei Kirchen, Kurpark, die Bushaltestelle, einen Arzt und eine Bank sowie den Verkehrsfluss aus dem Wohngebiet >Grub«.
target: <s>We have the museum, two churches, the spa gardens, the bus stop, a doctor's practice and a bank, not to mention the traffic from the 'Grub' residential area.</s>

BART,

10 15

BART, — CTP,y,

20

BARTy — CTP_pext>

25 30 35

Figure 5: Attention weight visualization of first layer of BART,-CT P without pre-trained model.

ing fixed hyperparameters. And we experimented
with a single RTX 3090 or RTX4090. The compar-
ison groups were tested using the same machine.
The values of the hyperparameters used in the ex-
periments are listed in Table 9. For performance
evaluation, we used scareBLEU and ROUGE from
huggingface packages (Wolf et al., 2020).

C Attention Weight Visualization

We visualized the attention weights on additional
data to verify that the proposed methodology mit-
igated the overfocusing problem. The results are
presented in Figure 5. Similar results were ob-
served for other data. In BART, the first two tokens
and the last token have biased attention weights.
In the proposed methodology, the attention weight
biased toward the first two tokens is reduced, and is
further reduced as the number of tokens increases.
In addition, spreads out the attention score concen-
trated on a few specific tokens, including the self
token.
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D Train Loss

While experimenting with the proposed method-
ology, we found that it had a low training loss in
most experiments. Figure 6 shows the training loss
graph. As shown in the figure, the initial training
loss tended to be higher for the proposed methodol-
ogy; however, the proposed methodology gradually
exhibited a lower training loss. This was observed
in most experiments, even in cases with similar
or lower performances, such as XSUM. We pre-
dicted that the proposed methodology would train
faster, but may be more easily overfitted. Further
research on pretraining and studies with overfitting
prevention methodologies are required to confirm
this.



Train Loss in WMT'14 En->De
BART-base = BART-base-CTP-avg BART-base-CTP-<next>
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Figure 6: Train loss graph in XSUM and WMT"’ 14 En-De dataset. we logging average loss of every 1000 steps
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