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Abstract

Large language models (LLMs) excellently001
generate human-like text, but also raise con-002
cerns about misuse in fake news and academic003
dishonesty. Decoding-based watermark, par-004
ticularly the GumbelMax-trick-based water-005
mark (GM watermark), is a standout solution006
for safeguarding machine-generated texts due007
to its notable detectability. However, GM wa-008
termark encounters a major challenge with gen-009
eration diversity, always yielding identical out-010
puts for the same prompt, negatively impact-011
ing generation diversity and user experience.012
To overcome this limitation, we propose a new013
type of GM watermark, the Logits-Addition wa-014
termark, and its three variants, specifically de-015
signed to enhance diversity. Among these, the016
GumbelSoft watermark (a softmax variant of017
the Logits-Addition watermark) demonstrates018
superior performance in high diversity settings,019
with its AUROC score outperforming those of020
the two alternative variants by 0.1 to 0.3 and021
surpassing other decoding-based watermarking022
methods by a minimum of 0.1.1023

1 Introduction024

The emergence of large language models (LLMs),025

exemplified by GPT-4 (OpenAI, 2023a), has en-026

abled the generation of remarkably human-like con-027

tent, facilitating tasks such as writing (Shanahan028

and Clarke, 2023), coding (Chen et al., 2021), and029

fostering creativity. However, this technological ad-030

vancement brings forth the potential for malicious031

applications, including social engineering (Mirsky032

et al., 2023), fake news fabrication (Zellers et al.,033

2019), and academic dishonesty. Consequently, the034

need for effective detection of machine-generated035

texts has become increasingly critical.036

Various strategies have been proposed to dis-037

tinguish machine-generated texts from human-038

written texts, and decoding-based watermarking039

1Code will be released after publication.
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• Add uncertainty to the Decoder function: 
1. Drop the watermark with a predefined probability 
2. Replace the ‘argmax’ with ‘sample from softmax’ 

• Add uncertainty to the Pseudo-random function: 
3. Randomly modify(cyclically shift) watermark key 

Repeated response from LLMs!

Figure 1: One significant limitation of GM watermark
lies in their production of identical responses to the same
queries. Such determinism can lead to user dissatisfac-
tion, as individuals may become frustrated with LLM
recommending the same outcomes for repeated prompts.
This issue primarily stems from the deterministic nature
of both the Pseudo-random function and the Decoder
function. To address this concern, we propose three
solutions: Solutions I and II aim to introduce variability
into the Decoder function, whereas Solution III seeks to
inject uncertainty into the Pseudo-random function.

has emerged as a highly effective approach. This 040

technique embeds subtle patterns into the text dur- 041

ing the decoding stage of LLM, which can be iden- 042

tified by designated algorithms. The GumbelMax- 043

trick-based watermark (GM watermark), intro- 044

duced by Aaronson and Kirchner (2023) as their 045

Exponential watermark, is a prominent example 046

within this category, known for its exceptional de- 047

tectability and low perplexity for generated text. 048

However, a critical limitation of this method is its 049

tendency to produce identical outputs for the same 050

prompt, which could adversely affect both the di- 051

versity of the model’s outputs and the overall user 052

experience, as illustrated in Figure 1. 053

To address the challenge of generating diverse 054
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outputs of the GM watermark, our analysis delves055

into the core mechanism of decoding-based water-056

marks. We discover that these watermarks share a057

cohesive framework, as illustrated in Figure 3. The058

primary cause of uniform completions for identical059

prompts is traced back to the deterministic nature060

of both the Decoder and Pseudo-random functions061

in the GM watermark. To mitigate this, we pro-062

pose two strategies to introduce variability into the063

Decoder function and one strategy to the Pseudo-064

random function: 1) Implement a drop mechanism065

with a predefined probability dp, enabling direct066

sampling from the language model without water-067

mark insertion. 2) Replace the “argmax” operation068

in GumbelMax watermark with “sampling from069

softmax” with temperature τ . 3) Adjust the water-070

mark key, derived from the Pseudo-random func-071

tion, by cyclically shifting it r positions—a method072

to effectively randomize the watermark key.073

A critical aspect of this exploration is balancing074

detectability with diversity. Integrating a dropout075

probability and shifting the watermark key boost di-076

versity but also reduce detectability. We propose re-077

placing the argmax operation with “sampling from078

softmax” to enhance diversity without significantly079

compromising the watermark’s integrity. This ap-080

proach ensures that even though selections diverge081

from “argmax”, they still achieve high per-token082

scores, preserving the statistical foundation of the083

watermark. Further investigation into GM water-084

mark leads us to question the necessity for an ex-085

ponential transformation in the GumbelMax-trick086

for embedding watermarks, a technique outlined087

by Aaronson and Kirchner (2023). Instead, we em-088

ploy the GumbelMax-trick directly for watermark089

embedding and propose a distinct type of GM wa-090

termark, termed the Logits-Addition watermark.091

Our experiments reveal that the GumbelSoft wa-092

termark, the softmax variant of the Logits-Addition093

watermark, consistently outperforms other GM wa-094

termark diversified variants in the AUROC metric,095

achieving a margin of 0.1 to 0.3 in high diversity096

settings. Additionally, the GumbelSoft watermark097

surpasses other decoding-based watermarks in AU-098

ROC by at least 0.1 on QA tasks, while maintaining099

low perplexity.100

For a clearer understanding of these findings,101

we have illustrated the relationships among the102

GumbelMax-trick, the GM watermark (including103

Exponential and Logits-Addition), and their diver-104

sified variants in Figure 2. In conclusion, our105

contributions are threefold:106

GumbelMax-trick
Logits-

Addition 
watermark

Exponential 
watermark

Two GumbelMax trick 
based watermarks

Three variants to 
encourage diversity

shift_max=100 
Cyclic shift the 
watermark key

drop_prob=0.2 
Sample directly from 

LLM 

soft_temp=0.3 
Replace “argmax” 

with “softmax”

Figure 2: GumbelMax-trick can be used in text wa-
termarking via two different ways: Exponential and
Logits-Addition watermark. Each watermark has three
variants to enhance generation diversity. The red part
denotes our contribution, and the softmax variant of the
Logits-Addition watermark is our suggested Gumbel-
Soft watermark.

• We identify the deterministic nature of the 107

Pseudo-random and Decoder functions as the 108

primary cause behind GM watermark producing 109

identical completions for the same prompts and 110

provide a universal framework for all decoding- 111

based watermarking techniques. 112

• We propose the Logits-Addition watermark as 113

a new type within the GM watermark suite and 114

conduct an analysis of the expectation and vari- 115

ance for the per-token score. Additionally, we 116

introduce three variants of GM watermark aimed 117

at enhancing the diversity of generated content. 118

• Our experiments with three varied GM water- 119

mark versions reveal that the GumbelSoft wa- 120

termark surpasses the others in diversity and de- 121

tectability. Furthermore, our comparative analy- 122

ses with other decoding-based watermarks show 123

that the GM watermark offers superior detectabil- 124

ity and robustness, while maintaining quality on 125

par with existing methods. 126

2 Related Work 127

Machine-generated text detection can be roughly 128

categorized into three approaches. 129

Zero-shot Methods. This approach, or “model 130

self-detection” requires full access to the language 131

model and uses statistical measures like perplexity 132

and entropy. Notable works include Gehrmann et al. 133

(2019)’s GLTR, Vasilatos et al. (2023)’s perplexity 134

analysis, and Yang et al. (2023a)’s N-gram overlaps. 135

Mitchell et al. (2023) introduced a perturbation- 136

based method, and Deng et al. (2023) proposed a 137
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Bayesian surrogate model. The limitation of zero-138

shot methods is their need for complete language139

model access.140

Training-Based Methods. These involve clas-141

sifiers trained to distinguish between machine-142

generated and human-written texts. Chen143

et al. (2023); Liu et al. (2023c) use a fine-144

tuned RoBERTa model (Liu et al., 2019), while145

Mireshghallah et al. (2023) advocate for partially146

trained models. Some researchers also use shal-147

low classifiers with extracted text features (Li148

et al., 2023; Tulchinskii et al., 2023). A draw-149

back of training-based methods is their potential150

over-fitting to specific datasets and models.151

Watermarking Techniques. Recent advance-152

ments include hidden signal watermarking in texts,153

categorized into post-edited and decoding-based154

watermarking. Post-edited involves text formatting155

or lexical changes (Brassil et al., 2002; Sato et al.,156

2023; He et al., 2022; Yoo et al., 2023a), while157

decoding-based watermarking in the LLM era em-158

beds statistical signals during decoding. Notable159

techniques include Kirchenbauer et al. (2023)’s160

red-green list and Zhao et al. (2023)’s robust water-161

marking. Unbiased watermarks preserving original162

token distributions are explored by Kuditipudi et al.163

(2023); Hu et al. (2023). Additionally, multi-bit164

watermarking, which embeds complex informa-165

tion, is examined by Wang et al. (2023); Yoo et al.166

(2023b).2167

3 Method168

Algorithm 1 GumbelSoft Generator
Input: prompt x, LLMM, temperature τ .
Output: Watermarked completion w1, . . . , wT

1: for t = 1, . . . , T do
2: Logits lt ←M(x,w1,...,t−1)
3: Watermark key ξt ←hash context to a

Gumbel-distributed vector
4: wt ←sample from softmax((ξt + lt)/τ)
5: end for
6: return [w1, . . . , wT ]

In this section, we will first provide an overview169

of the decoding-based watermark framework and170

the GumbelMax-trick. Following this, we’ll delve171

into the application of the GumbelMax-trick in172

text watermarking and examine their limitations.173

2For more related work, please refer to Appendix D.

Algorithm 2 GumbelSoft Detector
Input: Text input w1,...,T ; a predefined threshold ϵ
Output: Boolean indicator: True if watermark de-

tected, False otherwise
1: for t = 1, . . . , T do
2: Watermark key ξt ←hash context to a

Gumbel-distributed vector
3: Per-token score st ← ξt[wt]
4: end for
5: Calculate Final statistic S:

S = Φ(s1, s2, . . . , sT ) =

√
6T

π
(

∑T
i=1 si
T

−γ)

with γ ≈ 0.5772 denoting the Euler-
Mascheroni constant.

6: return True if S ≥ ϵ else False.

Concluding the section, we will present our recom- 174

mended watermark scheme, specifically crafted to 175

overcome these identified limitations. 176

3.1 Preliminaries 177

Decoding-Based Watermark Framework. We 178

introduce a concise watermark framework with two 179

main components: the Watermark Generator and 180

Detector, building upon the architecture outlined 181

in Fernandez et al. (2023) and incorporating math- 182

ematical concepts from Kuditipudi et al. (2023); 183

Christ et al. (2023). Figure 3 and Table 1 detail the 184

framework’s structure and notations. 185

GumbelMax-trick. The GumbelMax-trick, as 186

proposed by Gumbel (1954), presents an efficient 187

method for sampling from a categorical distribu- 188

tion. Consider a vector of logits l = (l1, . . . , lK) 189

coupled with a sequence of Gumbel-distributed 190

random variables g1, . . . , gK ∼ Gumbel(0, 1). 191

A sample from the categorical distribution π = 192

(π1, . . . , πK) = softmax(l1, . . . , lK) can be ob- 193

tained as follows: w = argmaxi (gi + li). 194

This sampling approach is referred to as the 195

GumbelMax-trick. It can be demonstrated that this 196

trick is mathematically equivalent to drawing a 197

sample directly from the categorical distribution π, 198

as detailed in the Appendix B.1. 199

3.2 Watermark Design 200

Unbiasedness. The GumbelMax-trick enables
the creation of an unbiased watermark, which is in-
distinguishable from unwatermarked text, provided
the watermark key’s distribution is properly cho-

3



s1 s2 … sT

Text: 
Mitoma is a 

talented 
football player 

Pseudo-random 
 function

…
Watermark keys

ξ1, …, ξT

w1…wT

Scorer function ϕ
Per-token scores

Statistic 
aggregatorΦ

𝒮
Watermarked

Unwatermarked

≥ ϵ

< ϵ

man
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star
soccer

and

LLM ℳ
Logit vector lt

Fsk

Pseudo-random 
function Watermark key

ξt

Decoder Γ
“football”

Next token to be 
generated wt

w−(l−1)…w0w1…wt−1

Context
Watermark Generator

Watermark Detector

Final statistic

Fsk

Prompt: 
Who is Mitoma? 

partial-completion: 
Mitoma is  
a talented

Figure 3: General framework of decoding-based watermark. The Generator uses logits vector lt and watermark
key ξt to decode the next token wt. The Detector, employing scorer ϕ, assesses the correlation between watermark
key ξt and token wt, then combines these per-token scores to determine watermark presence. Both Generator
and Detector share the same pseudo-random function Fsk. The context for watermark key calculation can be the
preceding h tokens.

Symbol Meaning

V Vocabulary, the set of tokens
wt Token at position t
Wg : V∗ → V∗ Watermark Generator, generate a watermarked completion for a given prompt
D : V∗ → {True, False} Watermark Detector, detect whether a text is watermarked or not
lt ∈ R|V| Logits vector for position t, produced by language model M
M : V∗ → R|V| Language model, give the logits vector lt for position t based on a proceeding tokens
Ξ Watermark key space, the set of all possible watermark keys
ξt ∈ Ξ Watermark key at position t
C Context space, the set of all possible contexts
Fsk : C → Ξ Pseudo-random function, calculate the watermark key ξt
Γ : R|V| × Ξ → V Decoder function, decode the next token wt from logits vector and watermark key
ϕ : V × Ξ → R Scorer function, calculate per-token score st for each token
Φ : R∗ → R Statistic aggregator, compile all per-token scores into one final statistic

Table 1: Summary of notations.

sen. An unbiased watermark meets the following
conditions:

Pξ∼τ(·)[Γ(ξ, l) = x] = px, ∀x ∈ V

where p is the softmax of l and τ(.) denotes the wa-201

termark key ξ’s distribution. Watermark schemes in202

Aaronson and Kirchner (2023); Wu et al. (2023b);203

Kuditipudi et al. (2023) are unbiased, unlike the204

biased method of Kirchenbauer et al. (2023).205

Logits-Addition Watermark. The first attempt206

to use GumbelMax-trick in text watermarking is207

Aaronson and Kirchner (2023)’s Exponential wa-208

termark, which generates subsequent tokens us- 209

ing the formula wt = argmaxi
log ξt[i]
pt[i]

, where 210

ξt ∼ Uniform(0, 1)|V| and pt = softmax(lt). Its 211

detection mechanism computes a per-token score 212

st = − log(1− ξt[wt]). 213

While the Exponential watermark is linked 214

to empirical entropy, we question the relevance 215

of this connection given that empirical entropy 216

does not accurately reflect the true entropy of 217

the next-token distribution provided by the lan- 218

guage model. Consequently, we introduce a new 219

type of GM watermark that directly incorporates 220
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Gumbel noise into the logits vector for next-token221

sampling: wt = argmaxi (lt[i] + ξt[i]), where222

ξt ∼ Gumbel(0, 1)|V| and lt represents the logit223

vector. This method’s detection algorithm calcu-224

lates a per-token score st = ξt[wt], a technique we225

designate as the Logits-Addition Watermark.226

We assert that despite the token generation pro-227

cesses of these two methods being equivalent (see228

Appendix B.2), their detection mechanisms differ.229

Furthermore, the softmax variant of our Logits-230

Addition watermark demonstrates superior diver-231

sity and detectability compared to the Exponential232

watermark’s softmax variant (refer to Figure 4).233

This supports our rationale for applying Gumbel234

noise directly and adopting an alternative detection235

method. Moreover, we present a theorem detailing236

the expectation and variance of the per-token score237

within the Logits-Addition watermark.238

Theorem 1. Consider a text w1, . . . , wT embed-239

ded with a watermark using the Logits-Addition240

technique. When evaluated by the Logits-Addition241

watermark detector, the expected value and vari-242

ance of the score for each token are given by243

E[st] =E[ξt[wt]] = − log(pt[wt]) + γ,

Var [st] ≤
2pt [wt]

2

(1− pt [wt])
3 +

2

pt [wt]

− (− log pt [wt] + γ)2 .

244

For a non-watermarked text w1, . . . , wT , apply-245

ing the Logits-Addition watermark detector, the246

expected value and variance for each per-token247

score are248

E[st] = E[ξt[wt]] = γ,

Var[st] = Var[ξt[wt]] =
π2

6
.

249

Here, γ denotes the Euler-Mascheroni constant,250

and pt = softmax(lt), is derived from the language251

model.252

The proof for this theorem can be found in Ap-253

pendix B.3. According to this theorem, if certain254

watermarked tokens are assigned a low probabil-255

ity by the language model, the expectation of their256

per-token scores, given by− log(pt[wt])+γ, signif-257

icantly increases. This makes these tokens notably258

easier to detect.259

Limitations of the GM Watermark. Despite260

its effectiveness in watermarking texts, the261

GumbelMax-trick has limitations. One major lim-262

itation is that it generates deterministic outputs,263

resulting in identical completions for the same 264

prompts (as shown in Figure 1). Such determinism 265

can lead to user dissatisfaction, as individuals may 266

become frustrated with LLM consistently recom- 267

mending the same outcomes for the same queries. 268

To address this issue and improve output diversity, 269

we propose three diversified GM watermark vari- 270

ants. These variants are thoroughly outlined in the 271

Introduction section (see Section 1) and are aimed 272

at enhancing the diversity of the generation pro- 273

cess. 274

3.3 GumbelSoft Watermark 275

After conducting a comprehensive series of ex- 276

periments with three diversified variants of both 277

the Exponential and Logits-Addition watermarks, 278

we identified the GumbelSoft watermark as the 279

most effective, achieving Pareto optimality. The 280

methodologies for both the Generator and Detec- 281

tor of the GumbelSoft watermark are elaborated in 282

Algorithms 1 and 2, respectively. 283

We now explain the key insight behind the Gum-
belSoft watermark. Primarily, the Logits-Addition
watermark is characterized by differing expected
per-token scores for watermarked and unwater-
marked texts. Leveraging this difference allows for
the construction of a detection mechanism based on
the null hypothesisH0: The text is unwatermarked.
Following the z-test by Kirchenbauer et al. (2023),
we devise the final statistic S of Logits-Addition
watermark to be:

S = Φ(s1, s2, . . . , sT ) =

√
6T

π

(∑T
i=1 si
T

− γ

)
According to expectation Theorem 1 and the cen- 284

tral limit Theorem (Fischer, 2011), we notice that 285

for unwatermarked texts, S aligns with a standard 286

Gaussian distribution. In contrast, for watermarked 287

texts, S deviates, typically presenting significantly 288

higher values. Given that GumbelSoft is a variant 289

of Logits-Addition, it naturally inherits its char- 290

acteristics. Consequently, the majority of tokens 291

sampled by the GumbelSoft watermark are likely 292

identical to those selected by the Logits-Addition 293

watermark. Moreover, tokens not usually favored 294

by Logits-Addition are observed to have compara- 295

tively higher per-token scores. 296

4 Experiment 297

This section presents a comparative study of three 298

diversified variants (refer to Figure 1) of both Ex- 299

ponential and Logits-Addition watermarks, with an 300
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Figure 4: The figure shows how AUROC changes with
Self-Bleu on the QA task. we use different colors to
represent temperature and different marks to represent
GumbelSoft and the softmax variant of Exponential
watermarks. The AUROC is calculated for 100 detection
tokens. Since the top-right outshines the bottom-left in
performance, GumbelSoft is more effective than the
softmax variant of Exponential.

emphasis on aspects such as detectability, diversity,301

and quality. Following this, the optimal diversified302

variant of the GM watermark, the GumbelSoft wa-303

termark, is identified and compared against several304

existing decoding-based watermark schemes (see305

Appendix A for details).306

4.1 Experimental Setting307

We briefly outline our experimental setup, includ-308

ing the datasets, models, metrics, and baselines309

used, specifically for the Completion and QA tasks.310

Dataset and Models. In our experimental setup,311

each task employs unique language models and312

datasets. For the Completion task, the Llama2-7b313

model (Touvron et al., 2023) and C4 dataset (Raffel314

et al., 2019) are used to assess detectability, while315

diversity is evaluated through 20 high-entropy316

prompts repeated 50 times each on Llama2-7b. Per-317

plexity is calculated using Llama2-13b with the C4318

dataset. For the QA task, we utilize the Llama2-7b-319

chat model and Alpaca dataset (Taori et al., 2023)320

for detectability, and assess diversity with 20 chat-321

like prompts on Llama2-7b-chat, also repeated 50322

times. Perplexity here is measured using Llama2-323

13b-chat on the Alpaca dataset.324

Metrics. Our detectability evaluation relies on325

AUROC, FPR at a fixed FNR of 0.01, and FNR at326

a fixed FPR of 0.01. We assess generation qual-327

ity using perplexity, derived from a larger model.328

To measure generation diversity, our approach in-329

cludes Self-BLEU and Distinct 1-gram and 2-gram.330

Baselines. The universal decoding-based water- 331

mark framework, as presented in Figure 3, serves to 332

categorize all decoding-based watermark schemes, 333

including those proposed by Kirchenbauer et al. 334

(2023); Aaronson and Kirchner (2023); Wu et al. 335

(2023b); Kuditipudi et al. (2023). These schemes 336

are the baselines in our study. Their mathematical 337

representations, provided in Appendix A, illustrate 338

their integration into our unified taxonomy. 339

4.2 Diversity 340

This subsection aims to identify which variant of 341

the two GM watermark is best in terms of diver- 342

sity and detectability. A detailed comparison of 343

our GumbelSoft watermark with other GM water- 344

mark variants in the QA task is presented in Ta- 345

ble 2, with results for the Completion task detailed 346

in Appendix C.1. These results indicate that our 347

GumbelSoft method achieves superior content di- 348

versity and detectability compared to other variants, 349

though it incurs a slight increase in perplexity. We 350

also notice that the GumbelSoft watermark is better 351

than the softmax variant of the Exponential water- 352

mark under the same temperature setting, which is 353

clearly shown in Figure 4. 354

While methods like drop probability and water- 355

mark key shift can enhance diversity, they tend to 356

negatively impact detectability. The decrease in de- 357

tectability due to drop probability may be attributed 358

to a fraction of tokens not being sampled using the 359

watermark key, thereby diluting the overall statis- 360

tical strength. In the case of shifted watermark 361

keys, the detection phase becomes more complex 362

as every possible shift must be tested to identify 363

the watermark, potentially leading to inflated statis- 364

tics for unwatermarked texts and thus reducing de- 365

tectability. In contrast, our GumbelSoft watermark 366

does not encounter these issues, maintaining high 367

detectability while also enhancing generation diver- 368

sity. 369

4.3 Detectability and Quality 370

This subsection aims to show that GumbelSoft wa- 371

termark is better than other decoding-based wa- 372

termarks in terms of detectability, the results are 373

shown in Table 3 and the hyperparameter is detailed 374

in Appendix C.2. 375

GumbelSoft watermark exhibits the highest de- 376

tectability, likely explained by the expectation and 377

variation theory in Theorem 1. Increased detection 378

token amounts also improve detectability, align- 379

ing with findings from Chakraborty et al. (2023). 380
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Diversity Detectability Quality

Self-Bleu ↓ Dist-1 ↑ Dist-2 ↑ AUROC ↑ FPR ↓ FNR ↓ PPL ↓

E
xp

on
en

tia
l

vanilla 1.000 0.011 0.017 0.905 0.749 0.569 1.985

drop_prob=0.10 0.852 0.070 0.196 0.891 0.790 0.623 2.020
drop_prob=0.20 0.767 0.087 0.261 0.871 0.835 0.691 2.015
drop_prob=0.30 0.715 0.097 0.298 0.845 0.870 0.752 2.077
drop_prob=0.40 0.676 0.103 0.325 0.816 0.896 0.808 2.000

shift_max=30 0.902 0.080 0.227 0.742 0.946 0.825 1.996
shift_max=50 0.839 0.090 0.266 0.700 0.963 0.882 1.985

shift_max=100 0.741 0.101 0.311 0.672 0.963 0.900 1.982
shift_max=200 0.689 0.106 0.331 0.644 0.970 0.901 1.983

soft_temp=0.2 0.811 0.084 0.233 0.904 0.748 0.586 2.372
soft_temp=0.3 0.782 0.087 0.254 0.901 0.756 0.597 2.096
soft_temp=0.4 0.755 0.094 0.276 0.900 0.794 0.598 2.239
soft_temp=0.5 0.736 0.096 0.288 0.898 0.798 0.602 2.127

L
og

its
-A

dd
iti

on

vanilla 1.000 0.011 0.017 0.908 0.743 0.579 1.985

drop_prob=0.10 0.823 0.074 0.212 0.887 0.769 0.634 1.998
drop_prob=0.20 0.762 0.089 0.263 0.867 0.830 0.701 1.994
drop_prob=0.30 0.713 0.097 0.300 0.846 0.833 0.748 2.088
drop_prob=0.40 0.691 0.102 0.316 0.810 0.888 0.808 1.988

shift_max=30 0.906 0.080 0.224 0.730 0.961 0.838 1.986
shift_max=50 0.824 0.092 0.272 0.694 0.965 0.886 1.986

shift_max=100 0.751 0.101 0.309 0.670 0.971 0.903 1.981
shift_max=200 0.694 0.106 0.331 0.642 0.981 0.917 1.981

soft_temp=0.2 0.803 0.083 0.235 0.910 0.726 0.568 2.338
soft_temp=0.3 0.745 0.095 0.281 0.911 0.704 0.572 2.027
soft_temp=0.4 0.713 0.098 0.300 0.914 0.713 0.570 2.169
soft_temp=0.5 0.680 0.105 0.326 0.912 0.742 0.571 2.221

Table 2: Comparison of three diversified variants of both Exponential and Logits-Addition watermarks in the QA
task. These variants include drop_prob=0.2, sampling from the language model directly at a 0.2 probability;
shift_max=100, where the watermark key is cyclically shifted within a 0-100 range; and soft_temp=0.3, which
uses a softmax sampling with a temperature of 0.3 to balance randomness. Vanilla is the original GM water-
mark(Exponential and Logits-Addition) without any technique to enhance diversity. The detectability is measured
by 100 detection tokens. Note that Logits-Addition+soft_temp is the GumbelSoft watermark. GumbelSoft is the
best of three diversified variants of GM watermark in terms of both detectability and diversity.

The high-entropy Llama2-7b model in Completion381

tasks shows greater detectability than the lower en-382

tropy Llama2-7b-chat in QA tasks, as high entropy383

facilitates easier watermark embedding. Regarding384

generation quality (perplexity), GumbelSoft shows385

relatively low perplexity. In contrast, the KGW wa-386

termark’s biased logits modification leads to high387

perplexity, while Dipmark’s strategy of amplifying388

high-probability tokens results in the lowest per-389

plexity in the Completion task. For the QA task,390

the low perplexity across all methods, attributed to391

the low entropy of Llama2-7b-chat, diminishes the392

value of comparative perplexity analysis.393

4.4 Robustness394

In this section, we assess the robustness of vari-395

ous decoding-based watermarking schemes, with396

results for the Completion task in Figures 5 and for397

the QA task in Appendix C.3. All texts, both wa-398

termarked and unwatermarked, were tested under 399

the T5-span attack (explained in Appendix C.3). 400

Our key finding reveals that the Exponential 401

and GumbelSoft watermarks are particularly ro- 402

bust against the T5-span attack, in contrast to 403

other watermarks. Their AUROC values, as well 404

as FPR and FNR metrics, remained stable post- 405

attack, while other schemes experienced signifi- 406

cant declines. This robustness can be attributed 407

to the effective embedding of watermarks by the 408

GumbelMax-trick, ensuring significant final statis- 409

tics despite per-token score alterations. Further 410

analysis, involving a comparative study of final 411

statistic distributions between KGW and Gumbel- 412

Soft watermarks, is shown in Figure 6. The results 413

demonstrate that while attacked watermarked texts 414

under KGW show considerable overlap with un- 415

watermarked texts, our GumbelSoft watermark dis- 416

plays less overlap, indicating its greater robustness. 417
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# tokens=40 # tokens=60 # tokens=100

AUROC ↑ FPR ↓ FNR ↓ AUROC ↑ FPR ↓ FNR ↓ AUROC ↑ FPR ↓ FNR ↓ PPL ↓
C

om
pl

et
io

n Unwatermarked - - - - - - - - - 11.576
KGW 0.970 0.616 0.361 0.988 0.329 0.164 0.997 0.078 0.041 14.217

Exponential 0.997 0.012 0.012 0.999 0.000 0.006 1.000 0.000 0.000 10.953
Dipmark 0.935 0.693 0.565 0.968 0.483 0.362 0.988 0.274 0.153 8.664

ITS 0.961 0.073 1.000 0.978 0.040 1.000 0.994 0.010 0.402 11.843
GumbelSoft 0.998 0.011 0.010 1.000 0.000 0.005 1.000 0.000 0.001 11.820

Q
A

Unwatermarked - - - - - - - - - 1.980
KGW 0.657 0.985 0.969 0.701 0.978 0.945 0.754 0.949 0.901 2.081

Exponential 0.780 0.892 0.813 0.840 0.852 0.738 0.905 0.749 0.569 1.985
Dipmark 0.588 0.988 0.982 0.615 0.981 0.984 0.646 0.979 0.970 1.792

ITS 0.583 1.000 1.000 0.618 0.963 1.000 0.665 0.954 1.000 2.011
GumbelSoft 0.788 0.866 0.812 0.848 0.837 0.722 0.911 0.704 0.572 2.027

Table 3: A comparative analysis of the detectability across various decoding-based watermarking schemes. De-
tectability is assessed for varying token counts: 40, 60, and 100. The temperature for GumbelSoft is set to 0.3.
GumbelSoft shows high detectability and low perplexity compared with other decoding-based watermarks.
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Figure 5: Comparison of the robustness of decoding-
based watermark on Completion task. Blue histograms
indicate unattacked conditions and red histograms show
attacked scenarios. The AUROC is calculated for 40 de-
tection tokens, with GumbelSoft set at a 0.3 temperature.
Exp, Dip, and GS refer to Exponential, Dipmark, and
GumbelSoft, respectively. GumbelSoft and Exponential
show higher robustness when facing the T5-span attack.

5 Conclusion418

We observed that the GumbelMax-trick-based wa-419

termark(GM watermark) produces identical re-420

sponses to identical queries due to the determinis-421

tic nature of both the Decoder and Pseudo-random422

functions. To address this, we introduce three diver-423

sified variants aimed at enhancing GM watermark424

diversity. Furthermore, we question the need for an425

Exponential transformation (Aaronson and Kirch-426

ner, 2023) in watermark embedding and propose a427

new approach named Logits-Addition watermark.428

Our experiments across these variants for both Ex-429

ponential and Logits-Addition watermarks identi-430

fied GumbelSoft, a softmax-based Logits-Addition431

variant, as the optimal choice. Comparative analy-432

sis with other decoding-based watermarks demon-433
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Figure 6: Comparison of final statistic for KGW and
GumbelSoft watermark on Completion task. The final
statistic is calculated for 40 detection tokens, with Gum-
belSoft set at the temperature of 0.3. The robustness of
GumbelSoft stems from the strong pattern of the GM
watermark, ensuring a large gap in the Final statistic
between watermarked text and natural text.

strated that GumbelSoft surpasses in detectability, 434

maintains lower perplexity, and ensures higher ro- 435

bustness. 436

Limitations 437

GumbelSoft watermark’s Ngram pseudo-random 438

function is susceptible to paraphrase attacks due 439

to its dependence on the previous h tokens for key 440

determination. In terms of quality assessment, we 441

solely rely on perplexity, whereas some studies 442

utilize downstream tasks for evaluation. Our math- 443

ematical analysis is focused solely on the Logits- 444

Addition watermarking technique, we do not pro- 445

vide a comprehensive mathematical analysis of the 446

GumbelSoft watermark. 447
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Ethical Considerations448

As advanced language models increasingly demon-449

strate remarkable capabilities, concerns regarding450

their misuse have escalated. Consequently, the451

development of effective methods for detecting452

machine-generated text has become crucial. The453

GM watermark has emerged as a highly effec-454

tive technique for differentiating between machine-455

generated and natural text. Nevertheless, the GM456

watermark is limited by issues of diversity, which457

may hinder its practical application. The Gumbel-458

Soft watermark represents a straightforward yet459

effective strategy to address this limitation. This460

approach maintains the watermark’s detectability461

while significantly enhancing its generative diver-462

sity. We believe that our method will facilitate the463

broader implementation of the GM watermark in464

various applications.465
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A Baselines727

Here, we present a consolidated mathematical rep-728

resentation within a unified taxonomy for the base-729

line watermark schemes. For the KGW scheme, as730

proposed by Kirchenbauer et al. (2023):731

• Context: The previous h tokens.732

• Pseudo-random Function: Fsk(context)733

hashes the context to seed, then uses this seed734

to generate a random vector in {0, 1}|V|, the735

vector has γ|V| 1’s and (1− γ)|V| 0’s.736

• Decoder: Γ(ξt, lt) samples a token from737

softmax(δ ∗ ξt + lt).738

• Scorer: ϕ(ξt, wt) = ξt[wt].739

• Statistic Aggregator:

Φ(s1, . . . , sT ) =

∑T
t=1 st − γT√
Tγ(1− γ)

For the Exponential scheme, as proposed by740

Aaronson and Kirchner (2023):741

• Context: The previous h tokens.742

• Pseudo-random Function: Fsk(context)743

hashes the context to a seed, then uses this744

seed to generate a random vector in (0, 1)|V|,745

each element is uniformly sample from (0,1).746

• Decoder: Γ(ξt, lt) = argmax1≤i≤|V|
log ξt[i]
pt[i]

,747

where pt = softmax(lt).748

• Scorer: ϕ(ξt, wt) = − log(1− ξt[wt]).749

• Statistic Aggregator:

Φ(s1, . . . , sT ) =
1√
T

T∑
t=1

st −
√
T

For the Dipmark scheme, as proposed by Wu750

et al. (2023b):751

• Context: The previous h tokens.752

• Pseudo-random Function: Fsk(context)753

hashes the context to a seed, then uses this754

seed to generate a random permutation on the755

vocabulary V .756

• Decoder: Γ(ξt, lt) samples token ξt[i] 757

with probability λ(i) − λ(i − 1), where 758

λ(i) = max{
∑i

j=1 pt(ξt[j]) − α, 0} + 759

max{
∑i

j=1 pt(ξt[j]) − (1 − α), 0}, where 760

pt=softmax(lt). 761

• Scorer: ϕ(ξt, wt) = 1{wt∈ξt[γ|V|:|V|]}. 762

• Statistic Aggregator:

Φ(s1, s2, . . . , sT ) =

∑T
t=1 st − (1− γ)T√

T

For the ITS scheme, as proposed by Kuditipudi 763

et al. (2023): 764

• Context: A global watermark key sequence ξ- 765

list and the position index t. Each watermark 766

key ξ-list[i] consists of a permutation π on the 767

vocabulary and a random number µ in (0, 1). 768

• Pseudo-random Function: Fsk(context) = 769

ξ-list[t]. 770

• Decoder: Γ(ξt, lt) = π−1(min{π(i) : pt({j : 771

π(j) ≤ π(i)}) ≥ µ}), where ξt = (µ, π) and 772

pt = softmax(lt). 773

• Scorer: ϕ(ξt, wt) = |µ − η(π(wt))|, where 774

η(k) = k−1
|V|−1 . 775

• Statistic Aggregator:

Φ(s1, s2, . . . , sT ) = −
1

T

T∑
t=1

st

We now explore the design principles underlying 776

these fundamental components. 777

Context For Watermark generators and detec- 778

tors, it is essential to recognize that they share 779

the same context, which is constrained to the pre- 780

vious tokens of wt. This limitation arises from 781

the auto-regressive nature of the Watermark gen- 782

erator, which sequentially generates tokens from 783

left to right. A conventional approach for con- 784

text selection is to use the previous h tokens: 785

wt−h, . . . , wt−1. However, this design is vulner- 786

able to paraphrase attacks, as such attacks can alter 787

these preceding tokens, subsequently modifying 788

the watermark key ξt, and ultimately affecting the 789

per-token score st. A more robust approach in- 790

volves considering the semantic meaning of previ- 791

ous tokens, based on the rationale that paraphrasing 792
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maintains the semantics despite changing the to-793

kens (Liu et al., 2023a). Kuditipudi et al. (2023)794

suggest utilizing a global list for storing all water-795

mark keys and retrieving a specific watermark key796

using the position index t797

Pseudo-random Function. The pseudo-random798

function’s role is to determine the watermark key799

ξt based on the given context. This function could800

be as basic as a hash function of the context or801

might involve leveraging an embedding model to802

extract the context’s semantic content. An alterna-803

tive method is to use the position index t to retrieve804

a watermark key from a global list. It is crucial to805

note that both the Watermark generator and detec-806

tor share the same pseudo-random function.807

Decoder. The decoder is integral to the Water-808

mark generator, utilizing the watermark key ξt and809

the logits vector lt to determine the subsequent810

token wt. Implementation methods for this compo-811

nent vary among different watermarks.812

Scorer. The scorer is to establish a correlation813

between the watermark key ξt and the token wt.814

Nevertheless, using a global watermark key list and815

the position index t for key retrieval can result in816

a significant alignment shift issue. This problem817

manifests as a misalignment between the water-818

mark key ξt and the token wt in texts subjected to819

insertion or deletion attacks. To address this, Ku-820

ditipudi et al. (2023) recommend using alignment821

cost or edit distance for computing the sequence822

score, as opposed to the per-token score.823

Statistic Aggregator. Finally, the statistic aggre-824

gator compiles all per-token scores or employs a825

single sequence score to ascertain the presence of a826

watermark. A typical method involves calculating827

the z-score and p-value of collected scores. Alter-828

natively, one could use the empirical cumulative829

distribution function (Kuditipudi et al., 2023) for830

final statistical analysis.831

B Mathematical Proofs832

B.1 Unbiasedness for GumbelMax833

We demonstrate that the GumbelMax-trick is math-834

ematically equivalent to directly sampling from the835

categorical distribution π, thereby establishing its836

unbiased nature when utilized in text watermarking837

applications.838

Denote the vocabulary as V , the vector of log-839

its as l = (l1, . . . , l|V|), and a sequence of inde-840

pendent Gumbel-distributed random variables as 841

ξ1, . . . , ξ|V| ∼ Gumbel(0, 1). 842

Pξ∼Gumbel(0,1)|V|

[
argmax
1≤i≤|V|

{ξi + li} = x

]
(1) 843

= Pη∼Q(·)

[
argmax
1≤i≤|V|

ηi = x

]
(2) 844

= Pη∼Q(·) [ηx ≥ ηi, ∀i ̸= x] (3) 845

= E
Y∼q(·)

∏
i ̸=x

P [Y ≥ ηi]

 (4) 846

=

∫ +∞

−∞
f(y − lx)

∏
i ̸=x

F (y − li)dy (5) 847

=

∫ +∞

−∞
e−((y−lx)+e−(y−lx))

∏
i ̸=x

e−e−(y−li)dy

(6)

848

=

∫ +∞

−∞
e
∑|V|

i=1 −eli−y
elx−ydy (7) 849

=

∫ +∞

−∞
e−e−y

∑
i e

lie−yelxdy (8) 850

= Zpx

∫ +∞

−∞
e−Ze−y

e−ydy (9) 851

= Zpx
1

Z
(10) 852

= px (11) 853

In equation (2), we introduce a variable substitu- 854

tion ηi = ξi + li for simplification. Moving to 855

equation (4), we define the random variable Y to 856

represent ηx for enhanced clarity, and we assume 857

that Y follows the distribution q(.). Furthermore, 858

we utilize the independence of ηi, i = 1, . . . , |V|. 859

In equation (5), f(.) denotes the probability den- 860

sity function of the Gumbel(0,1) distribution, while 861

F (.) represents its cumulative distribution function. 862

Finally, in equation (9), we introduce Z =
∑

i e
li 863

as a notation simplification. 864

B.2 Equivalence of Two Representations 865

We contend that the token generation processes 866

for the Logits-Addition watermark and the Expo- 867

nential watermark are mathematically equivalent, 868

though their respective per-token scoring mech- 869

anisms differ. To illustrate this equivalence, we 870

present the following equations, equation (12) de- 871

fines the Logits-Addition watermark, while equa- 872

tion (15) corresponds to the definition of the Expo- 873
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nential watermark.874

w = argmax
1≤i≤|V|

{ηi + li} (12)875

= argmax
1≤i≤|V|

eηi+li (13)876

= argmax
1≤i≤|V|

−pi
log ξi

(14)877

= argmax
1≤i≤|V|

log ξi
pi

(15)878

Here, we utilize the relationship pi =879

softmax(li) ∝ eli and ηi = − log(− log ξi).880

In these notations, we omit the position index t for881

simplicity, and we assume ηi ∼ Gumbel(0, 1) and882

ξi ∼ Uniform(0, 1).883

While the token generation processes for the884

Logits-Addition watermark and the Exponential885

watermark are equivalent, their scoring methods886

are distinct:887

w = η[w] (16)888

= − log(− log ξ[w]) (17)889

̸= − log(1− ξ[w]) (18)890

Equation (16) specifies the per-token scoring for891

the Logits-Addition watermark while equation (18)892

is the scoring method for the Exponential water-893

mark.894

B.3 Expectation and Variance for Per-token895

Score896

We now establish the expected per-token score for897

texts, distinguishing between those with and with-898

out the Logits-Addition watermark. In the case of899

unwatermarked texts, the watermark token, wt, ex-900

hibits no correlation with ξt. Consequently, ξt[wt]901

adheres to a Gumbel(0,1) distribution. This leads902

to903
E[st] = E[ξt[wt]] = γ,

Var[st] = Var[ξt[wt]] =
π2

6
.

904

Conversely, for watermarked texts, a correlation905

exists between wt and ξt. This correlation alters906

the distribution of ξt[wt], diverging it from the stan-907

dard Gumbel(0,1) form. To compute its expected908

value, we define ξt[wt] as a random variable X.909

We then deduce its cumulative distribution func-910

tion (CDF), F (x), and probability density function911

(PDF), f(x). Utilizing this PDF, we calculate the912

expectation of X. For simplification, we exclude913

the position index ‘t’ in the subsequent equations.914

Here, ξi represents ξ[i], implying ξw is equivalent 915

to ξt[wt], and similar conventions apply to other 916

notations. 917

F (x) = P [X ≤ x] (19) 918

= P [ξw ≤ x] (20) 919

= P [ξi + li − lw ≤ x,∀i] (21) 920

= P
[
eξi+li−lw ≤ ex, ∀i

]
(22) 921

= P
[
−1

log hi

pi
pw
≤ ex,∀i

]
(23) 922

= P
[
pi
pw
e−x ≤ − log hi, ∀i

]
(24) 923

=

|V|∏
i=1

P
[
pi
pw
e−x ≤ − log hi

]
(25) 924

=

|V|∏
i=1

1− P
[
− log hi ≤

pi
pw
e−x

]
(26) 925

=

|V|∏
i=1

1− (1− e−
pi
pw

e−x

) (27) 926

=

|V|∏
i=1

e
− pi

pw
e−x

(28) 927

= e
∑|V|

i=1
−pi
pw

e−x

(29) 928

= e
−e−x

pw (30) 929

In equation (22), we utilize the fact that pi ∝ eli

and ξi = − log(− log hi). Equation (24) leverages
the independence of hi. Equation (26) uses the
fact that −loghi ∼ Exp(1). Finally, equation (29)
employs the fact that

∑|V|
i=1 pi = 1. Hence, the

density function:

f(x) = F
′
(x) =

e−x

pw
e

−e−x

pw

The expectation: 930

E[ξt[wt]] = E[X] (31) 931

=

∫ +∞

−∞
xf(x)dx (32) 932

= −
∫ +∞

−∞
x
ex

pw
e

−ex

pw dx (33) 933

= − 1

pw
[pw log pw − γpw] (34) 934

= − log pw + γ (35) 935

The equation (32) use the fact that:∫ +∞

−∞
xexe

−ex

t dx = t log t− γt
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We now prove the fact. This is not a standard in-936

tegral that can be solved by elementary functions.937

However, we can attempt to solve it using the sub-938

stitution method and some properties of the Gamma939

and incomplete Gamma functions, which are com-940

monly used to handle integrals involving exponen-941

tials of exponentials.942

∫ +∞

−∞
xexe

−ex

t dx (36)943

=

∫ +∞

0
log(u)e−u/tdu (37)944

=

∫ +∞

0
log(vt)e−vtdv (38)945

= t

∫ +∞

0
(log(v) + log(t))e−vdv (39)946

= t log(t)

∫ +∞

0
e−vdv + t

∫ +∞

0
log(v)e−vdv

(40)

947

= t log(t) + t

∫ +∞

0
log(v)e−vdv (41)948

= t log(t)− γt (42)949

In Equation(35), we use variable substitution950

u = ex, In Equation(36), we use variable sub-951

stitution v = u
t , In Equation (39), we use the952

definition of Euler-Mascheroni constant: γ =953

−
∫ +∞
0 log(v)e−vdv.954

As for the variance of the per-token score for955

watermarked text, we can also derive it via the956

probability density function f(x).957

Var[st] (43)958

= Var[ξt[wt]] (44)959

= E[X2]− (E[X])2 (45)960

=

∫ +∞

−∞
x2f(x)dx− (− log pw + γ)2 (46)961

=

∫ +∞

−∞
x2
e−x

pw
e

−e−x

pw dx− (− log pw + γ)2

(47)

962

≤ 2pw
2

(1− pw)3
+

2

pw
− (− log pw + γ)2 (48)963

In equation(48), we use the fact that

∫ +∞

−∞
x2
e−x

pw
e

−e−x

pw dx ≤ 2pw
2

(1− pw)3
+

2

pw

We now prove it: 964∫ +∞

0
x2
e−x

pw
e

−e−x

pw dx (49) 965

≤
∫ +∞

0
x2
e−x

pw
dx (50) 966

=
2

pw
(51) 967

∫ 0

−∞
x2
e−x

pw
e

−e−x

pw dx (52) 968

=

∫ +∞

0
x2
ex

pw
e

−ex

pw dx (53) 969

=

∫ +∞

0

x2

pw
e
(x− ex

pw
)
dx (54) 970

≤
∫ +∞

0

x2

pw
e
(1− 1

pw
)x
dx (55) 971

=
2pw

2

(1− pw)3
(56) 972

A similar theorem also holds for the Exponential
watermark. For unwatermarked text:

E[st] = E[− log(1− ξt[wt])] = 1

Var[st] = Var[− log(1− ξt[wt])] = 1

For watermarked text, 973

E[st] = E[− log(1− ξt[wt])]

≥ 1 + (
π2

6
− 1)(−pw log pw),

Var[st] = Var[− log(1− ξt[wt])]

= ψ1(1)− ψ1(1 +
1

pw
),

974

where ψ1 is the trigamma function. The proof can 975

be found in Fernandez et al. (2023) 976

C Experiment details 977

We describe all experiment details here. We run 978

all experiments five times and report the average 979

value. 980

C.1 Diversity 981

We began by carefully selecting 40 high-entropy 982

prompts to elicit a wide range of completions. 983

These prompts were split evenly into two cate- 984

gories: 20 prompts followed a Completion for- 985

mat tailored for Llama2-7b, while the remaining 986

20 were structured in a QA format, specifically 987

15



Diversity Detectability Quality

Self-Bleu ↓ Dist-1 ↑ Dist-2 ↑ AUROC ↑ FPR ↓ FNR ↓ PPL ↓

E
xp

on
en

tia
l

vanilla 1.000 0.010 0.014 1.000 0.000 0.000 10.953

drop_prob=0.05 0.367 0.222 0.529 1.000 0.000 0.000 11.450
drop_prob=0.10 0.227 0.254 0.633 1.000 0.000 0.001 11.423
drop_prob=0.20 0.146 0.300 0.733 1.000 0.000 0.001 11.839
drop_prob=0.30 0.113 0.307 0.766 1.000 0.000 0.002 11.911
drop_prob=0.40 0.087 0.317 0.788 1.000 0.001 0.005 11.964

shift_max=10 0.991 0.079 0.146 0.999 0.000 0.003 11.307
shift_max=30 0.798 0.158 0.333 0.999 0.000 0.002 11.084
shift_max=50 0.645 0.184 0.403 1.000 0.000 0.003 11.222

shift_max=100 0.414 0.221 0.496 0.999 0.000 0.003 11.102
shift_max=200 0.247 0.235 0.546 0.999 0.000 0.004 11.068

soft_temp=0.1 0.388 0.210 0.490 1.000 0.000 0.000 11.218
soft_temp=0.2 0.244 0.238 0.565 1.000 0.000 0.001 11.353
soft_temp=0.3 0.202 0.265 0.630 1.000 0.000 0.001 11.610
soft_temp=0.4 0.169 0.275 0.669 1.000 0.000 0.001 11.874
soft_temp=0.5 0.146 0.285 0.686 1.000 0.000 0.001 12.222

L
og

its
-A

dd
iti

on

vanilla 1.000 0.010 0.014 1.000 0.000 0.000 10.953

drop_prob=0.05 0.421 0.205 0.493 0.999 0.000 0.003 11.561
drop_prob=0.10 0.209 0.268 0.652 0.999 0.000 0.003 11.754
drop_prob=0.20 0.143 0.292 0.729 0.999 0.000 0.005 11.997
drop_prob=0.30 0.097 0.309 0.774 0.999 0.001 0.005 11.890
drop_prob=0.40 0.093 0.319 0.790 0.999 0.003 0.006 12.156

shift_max=10 0.991 0.078 0.144 0.999 0.000 0.006 11.228
shift_max=30 0.806 0.159 0.335 0.998 0.002 0.006 11.243
shift_max=50 0.627 0.188 0.412 0.998 0.000 0.006 11.250

shift_max=100 0.417 0.220 0.497 0.998 0.000 0.006 11.536
shift_max=200 0.246 0.242 0.559 0.998 0.001 0.007 11.243

soft_temp=0.1 0.370 0.213 0.497 1.000 0.000 0.001 11.159
soft_temp=0.2 0.227 0.243 0.581 1.000 0.000 0.002 11.309
soft_temp=0.3 0.158 0.254 0.608 1.000 0.000 0.001 11.820
soft_temp=0.4 0.121 0.276 0.661 1.000 0.000 0.001 12.831
soft_temp=0.5 0.100 0.298 0.699 1.000 0.000 0.001 14.140

Table 4: Comparison of three variants of both Exponential and Logits-Addition watermarks in the Completion
task. The variants include drop_prob=0.2, sampling from the language model directly at a 0.2 probability;
shift_max=100, where the watermark key is cyclically shifted within a 0-100 range; and soft_temp=0.3, which
uses a softmax sampling with a temperature of 0.3 to balance randomness. Vanilla is the original two GumbelMax
watermarks without any technique to enhance diversity. The detectability is measured by 100 detection tokens. Note
that Logits-Addition+soft_temp is our GumbelSoft watermark.

designed for Llama2-7b-chat. Each prompt was988

queried 50 times, and we assessed the resulting989

completions using metrics such as Self-Bleu, Dis-990

tinct 1-gram, and Distinct 2-gram. The average991

values of these metrics were then computed for the992

20 prompts in each category. We control the max993

generation length for each prompt to be 256 tokens.994

For the soft_temp parameter, we tested five dif-995

ferent temperature settings: 0.1, 0.2, 0.3, 0.4, and996

0.5. In the case of the shifted watermark key, we997

experimented with five maximum shift values: 10,998

30, 50, 100, and 200. For drop probability, the999

tested probabilities were 5%, 10%, 15%, 20%, and1000

40%. We evaluated detectability and quality using1001

a sample of 100 generated tokens, while diversity1002

assessments were conducted with a sample size of 1003

256 tokens. 1004

C.2 Detectability 1005

The objective of text watermarking is to embed a 1006

concealed pattern into generated texts and subse- 1007

quently detect this pattern to ascertain if the text 1008

is watermarked. We gathered 1,000 lengthy texts 1009

from the news-like validation subset of the C4 1010

dataset, dividing each text into two parts: the first 1011

50 words as prompt and the remaining as gold- 1012

completion. For each watermarking scheme, we 1013

utilized Llama2-7b to create both watermarked 1014

and unwatermarked completions for these 1,000 1015

prompts. The effectiveness of each scheme was 1016
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then assessed using the corresponding detector to1017

evaluate 2,000 completions. Key metrics reported1018

include AUROC (Area Under the Receiver Operat-1019

ing Characteristic), FPR (False Positive Rate) at a1020

fixed FNR (False Negative Rate) of 0.01, and FNR1021

at a fixed FPR of 0.01.1022

Additionally, we compiled 1,000 lengthy texts1023

from the alpaca dataset. Unlike the C4 dataset, here1024

we used only the question as a prompt to query1025

Llama2-7b-chat, with the subsequent detection pro-1026

cess mirroring that of the C4 dataset.1027

In line with the detectability theorem by1028

Chakraborty et al. (2023), we anticipate higher de-1029

tectability in longer texts. Therefore, we report1030

detection metrics for generated token lengths of 40,1031

60, 80, and 100. However, for quality assessment,1032

we calculate perplexity only for texts with 100 gen-1033

erated tokens, as fewer tokens would inadequately1034

represent quality measures. We use llama2-13b and1035

llama2-13b-chat to evaluate ppl for the texts gener-1036

ated by llama2-7b and llama2-7b-chat respectively.1037

The hyper-parameters employed for each wa-1038

termarking scheme are specified as follows: All1039

experiments are conducted at a temperature setting1040

of 1, except the GumbelSoft, which utilized a tem-1041

perature setting of 0.3 to achieve an equilibrium1042

between detectability and generation diversity. For1043

KGW, we adopt δ = 2 and γ = 0.1, following the1044

recommendations by Kirchenbauer et al. (2023).1045

For Dipmark, the parameters are set to α = 0.451046

and γ = 0.5, by Wu et al. (2023b). Regarding ITS,1047

we utilize a sample of 500 texts from the C4 subset1048

for the computation of reference scores.1049

We repeat the experiment 5 times to calculate1050

the average value for each metric.1051

C.3 Robustness1052

We employ the T5-span attack (Kirchenbauer et al.,1053

2023) on both watermarked and unwatermarked1054

texts. Each word in a text undergoes a potential1055

attack with a probability of 0.5. For attacked words,1056

we use their immediate five-word context (preced-1057

ing and following) and apply t5-large (Raffel et al.,1058

2019) for context-based word prediction, replac-1059

ing the original word with the predicted one. This1060

process may occasionally retain the original word;1061

however, we opt not to enforce unique substitutions1062

to avoid excessive time consumption.1063
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Figure 7: Comparison of robustness of decoding-based
watermark on QA task. Blue histograms indicate
unattacked conditions and red histograms show attacked
scenarios. The AUROC is calculated for 40 detection
tokens, with GumbelSoft set at a 0.3 temperature. Exp,
Dip, and GS refer to Exponential, Dipmark, and Gum-
belSoft, respectively.

D More Related Work 1064

Zero-shot Methods. More Zero-shot methods 1065

are listed as follows: Recent studies include Kr- 1066

ishna et al. (2023) advocating retrieval against para- 1067

phrase attacks, Su et al. (2023) leveraging log-rank 1068

ratios, Solaiman et al. (2019) using log probability, 1069

Bao et al. (2023) focusing on conditional probabil- 1070

ity curvature, and Venkatraman et al. (2023) em- 1071

ploying uniform information density for improved 1072

detection. 1073

Training-based methods. More training-based 1074

methods are listed as follows: OpenAI (2023b); 1075

Tian (2023) training classifiers from mixed sources, 1076

Yin et al. (2023) using graph structures and con- 1077

trastive learning, and Tian et al. (2023) applying 1078

positive unlabeled training for classifier develop- 1079

ment. 1080

Watermarking Techniques. More watermark- 1081

ing techniques are listed as follows: Techniques 1082

include text formatting for embedding watermarks 1083

by Por et al. (2012); Rizzo et al. (2016), context- 1084

aware lexical substitution by Yang et al. (2021), 1085

syntactic modifications by Atallah et al. (2001); 1086

Meral et al. (2009), training data watermarking by 1087

Liu et al. (2023b); Tang et al. (2023), a publicly 1088

detectable watermark proposed by Fairoze et al. 1089

(2023), and leveraging semantic meaning for ro- 1090

bustness by Ren et al. (2023). 1091

There are also some surveys on machine- 1092

generated content detection (Wu et al., 2023a; Yang 1093

et al., 2023b) and text watermarking (Liu et al., 1094

2024). 1095
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E Responsible NLP Research1096

The C4 dataset is under the terms of ODC-BY and1097

the Alpaca dataset is under the terms of Creative1098

Commons NonCommercial (CC BY-NC 4.0). Our1099

research fully obeys these licenses. C4 and Alpaca1100

datasets are publicly available and do not contain1101

private information for any individual.1102
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