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ABSTRACT

Backdoor attacks on deep neural networks (DNNs) have emerged as a significant
security threat, allowing adversaries to implant hidden malicious behaviors dur-
ing the model training phase. Pre-processing-based defense, which is one of the
most important defense paradigms, typically focuses on input transformations or
backdoor trigger inversion (BTI) to deactivate or eliminate embedded backdoor
triggers during the inference process. However, these methods suffer from in-
herent limitations: transformation-based defenses often struggle to balance the
intensity of transformations with preserving the model’s accuracy, while BTI-
based defenses require accurate reconstruction of the trigger patterns, which is
rarely achievable without prior knowledge. In this paper, we propose REFINE,
an inversion-free backdoor defense method based on model reprogramming. RE-
FINE consists of two key components: (1) an input transformation module that
disrupts both benign and backdoor patterns, generating new benign features; and
(2) an output remapping module that redefines the model’s output domain to guide
the input transformations effectively. By further integrating supervised contrastive
loss, REFINE enhances the defense capabilities while maintaining model utility.
Extensive experiments on various benchmark datasets demonstrate the effective-
ness of our REFINE and its resistance to potential adaptive attacks.

1 INTRODUCTION

Deep neural networks (DNNs) have been widely deployed across various domains (He et al., 2023;
Liu et al., 2024} [He et al., [2024; [Zhang et al.l |2024). To develop a high-performance DNN, devel-
opers necessitate not only high-quality data samples but also substantial computational resources.
Consequently, developers frequently and directly rely on third-party models for follow-up develop-
ment. However, the utilization of third-party DNNs can introduce security threats, particularly with
regard to backdoor attacks (Gu et al.,[2019; [L1 et al.| [2022c; Dong et al., 2023} [Yang et al., 2024a)).

Backdoor attacks aim to implant hidden backdoors into the model during training (Gu et al.,[2019).
After the attack, the backdoored model functions normally on benign inputs. However, when a
specific trigger is present, the model will produce intentionally incorrect outputs. Backdoor attacks
pose a severe threat to critical applications where model reliability is essential, highlighting the
urgent need for effective backdoor defense strategies to safeguard Al systems (L1 et al.| [2022b)).

Currently, several backdoor defenses (Huang et al., 2022; |Li et al., |2024aib; |Hou et al., 2024) have
been developed to tackle the threat of backdoor attacks. Among these, pre-processing-based de-
fenses (Villarreal-Vasquez & Bhargaval [2020; Qiu et al.l [2021)) are particularly notable because
they only apply certain modifications to input samples before model inference, without altering the
original model structure and weights. Currently, there are two main types of pre-processing-based
defenses. The first type of defense relies on input transformations (Liu et al.| 2017} |Li et al.||2021cj
Sun et al.l |2023). These defenses aim to mismatch or eliminate potential trigger patterns by per-
forming certain transformations to the input samples. The second type is based on backdoor trigger
inversion (BTI) (Wang et al.| [2019; [2022b} Xu et al.l [2024), which attempts to reconstruct the at-
tacker’s trigger patterns and remove them before the data is processed by the model.

In this paper, we revisit the aforementioned pre-processing-based backdoor defenses. We reveal
that they both have intrinsic limitations. Specifically, transformation-based defenses face a trade-off
between the model utility and the defense effectiveness: more extensive transformations can achieve
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Figure 1: The defense process of our REFINE. The label remapping in the model’s output do-
main significantly enhances the flexibility of input transformations while maintaining consistent
sample predictions, effectively mitigating the trade-off often encountered in transformation-based
pre-processing defenses. During prediction, the input sequentially passes through the well-trained
input transformation module, the fixed backdoored model, and the pre-defined output mapping mod-
ule, ultimately yielding the expected ground-truth (instead of the malicious target) label.

lower attack success rates but may negatively impact the model’s benign accuracy. This is because
they lack information about the backdoor-related features in the input. Thus, they can only indirectly
modify these features by altering all the features, including the benign ones that are closely related
to the benign accuracy, in the input domain to prevent backdoor activation. Since benign features are
tightly coupled with backdoor features, it is challenging for the defender to apply more extensive
transformations without compromising the benign accuracy of the original model. On the other
hand, BTI-based defenses can break the trade-off by first obtaining the information of backdoor
triggers via trigger inversion. However, due to the inherent difficulties of BTI (e.g., lack of prior
knowledge about the implanted backdoor and poisoned samples), existing BTI methods struggle to
invert the ground-truth trigger. This limitation makes it difficult to purify the backdoor input from
the poisoned domain to the benign domain, causing BTI-based defenses to fall short of achieving
the desired performance. Accordingly, an intriguing and important question arises: Could we break
the curse of this trade-off without relying on backdoor trigger inversion?

The answer to the above question is positive! We first provide a theoretical analysis showing that
the effect of backdoor defenses is bounded by the distance of the output features before and after the
pre-processing. Accordingly, the ineffectiveness of existing defenses is mostly due to their under-
lying assumption of having a fixed output domain. Based on the above understandings, inspired by
model reprogramming (Chen, [2024), we propose REFINE, a REprogramming-based Inversion-Free
backdoor defeNse mEthod, as shown in Figure[I] REFINE can significantly alter the input domain
while preserving the model’s accuracy to a large extent for it allows changing the output domain.
Specifically, our REFINE involves an input transformation module and an output mapping module
to reprogram the backdoored model and eliminate the backdoor. We utilize a trainable autoencoder
as the input transformation module and redefine the model’s output domain through a hard-coded
remapping function. Due to the changes in the model’s output domain, we can implement more ex-
tensive and effective transformations on the input samples. Besides, we further improve our method
by imposing constraints on the transformed samples using supervised contrastive loss (Khosla et al.,
2020). This ensures that samples of the same class remain more similar after transformation.

Our contributions are three-fold. (1) We revisit existing pre-processing-based backdoor defenses and
reveal their limitations. (2) Based on the empirical and theoretical analysis, we propose a simple yet
effective defense (z.e., REFINE). Our REFINE introduces trainable input transformation and output
mapping modules for reprogramming and incorporates cross-entropy and supervised contrastive
losses to enhance defense performance. (3) Extensive experiments on diverse benchmark datasets
demonstrate the effectiveness of REFINE and its resistance to potential adaptive attacks.

2 BACKGROUND

2.1 BACKDOOR ATTACKS

Backdoor attacks (Gao et al., 2020; [Li et al.,2022b) involve embedding hidden malicious behaviors
into a model, typically by manipulating the training process with a small subset of poisoned data
containing adversary-specified trigger patterns. Whenever the trigger appears in the input during
inference, the model executes the attacker’s intended behavior, such as misclassifying the input to
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a target label. In the absence of the trigger, the model functions normally, rendering the backdoor
hard to detect. Backdoor attacks pose serious threats in Al-enpowered systems.

The formulation of backdoor attacks is typically presented as follows. Given a training dataset

D = {(x,y;)} Y, the attacker manipulates the training process of the model F by introducing a

poisoned subset D = {(Z;,y:)}L,, where &; = G(x;) with G(+) as a certain trigger injection func-

tion and y; being the chosen target label, or by altering the training loss directly. During inference,
the model behaves normally on benign samples, where y; = F(x;), while exhibiting backdoor
behavior on poisoned samples, such as misclassifying to the target label y; = F(G(x;)).

Generally, existing attacks can be classified into two types: (1) Visible backdoor attacks, which
typically employ trigger patterns that are visible to humans, such as specific white-black squares (Gu
et al., 2019), physical attacks (L1 et al., 2021c)), or adaptive attacks (Q1 et al.l [2023). (2) Invisible
backdoor attacks, which introduce the usage of triggers that are imperceptible to humans to enhance
the stealth and evasion of the attacks (Chen et al.,2017), including sample-specific attacks (Nguyen
& Tranl 2021} [L1 et al} 2021d), trainable noise attacks (Doan et al., |2021)), and sample rotation
attacks (Xu et al.,|2023))). More details are in Appendix

2.2 BACKDOOR DEFENSES

Currently, there are various backdoor defense methods designed to mitigate backdoor threats. These
methods can generally be divided into three main paradigms (Li et al.| |2022b): (1) pre-processing-
based defenses (Liu et al.,|2017; L1 et al.,[2021¢;|Shi et al., 2023). (2) backdoor elimination (L1 et al.}
2021b; Huang et al., 2022} |Xu et al., |2024), which involves adjusting model parameters through
fine-tuning, pruning or reconstruction to remove the backdoor. (3) trigger elimination, also known
as testing sample filtering (Gao et al., 2019} [Javaheripi et al., 2020; [Li et al.l [2023a)). In this paper,
we focus on pre-processing-based defenses since we consider scenarios where only fixed third-party
models are accessible and defenders require to obtain the correct final results of all samples. Detailed
discussion about the backdoor defenses can be found in Appendix [T}

Pre-processing-based Defenses. Generally, pre-processing-based defenses can be categorized into
two types: (1) Transformation-based defenses. Classical methods (Liu et al.| 2017} |Li et al.||2021c}
Qiu et al.|[2021) typically involve applying simple transformations to input, aiming to disrupt trigger
patterns and prevent the model from exhibiting backdoor behavior. More Recently, many methods
have leveraged the powerful reconstruction capabilities of generative models, such as diffusion mod-
els (Shi et al.,2023;May et al., 2023 [Zhou et al.|[2024) and masked autoencoders (Sun et al.,|2023)),
intending to retain the original benign features while minimizing the presence of backdoor-related
features. However, there is a trade-off between removing backdoor patterns and restoring benign
patterns, which remains a pressing issue to address. (2) BTI-based defenses (Wang et al.| 2019} |Xu
et al.l 2024 |Wang et al., 2023)), which focus on inverting the triggers employed by the attacker and
utilizing them to purify the input samples. However, these methods may face issues with inaccura-
cies in the inverted triggers, which may lead to suboptimal purification of the input. How to design
an effective pre-processing-based defense is still an important open question.

2.3 MODEL REPROGRAMMING

Model reprogramming (Kloberdanz et al., 2021; Neekhara et al.;, 2022} Jing et al., [2023)) is a tech-
nique that extends the application of a pre-trained model from a source domain to a target domain.
This technique involves adapting the input from the target domain to match that of the source do-
main. Specifically, model reprogramming introduces an input transformation module 7 (x|@) and
an output mapping module M (y|3), where 0 and (3 are the trainable parameters of these two mod-
ules, respectively (Chenl 2024). Given a pre-trained model F(-) and an input sample @, model
reprogramming first transforms @ to & leveraging the input transformation module. Then input &
into the pre-trained model F (-) and get the output § = F(&). Finally, the output mapping module is
used to map y into the final output y. Through fine-tuning the input transformation module and the
output mapping module (i.e., optimizing 6 and 3), model reprogramming can efficiently turn the
pre-trained model from the source domain to a target domain. Compared to transfer learning, model
reprogramming does not necessitate modifying the parameters of the pre-trained model. As such, it
is more efficient and flexible. Detailed descriptions of model reprogramming are in Appendix [I}
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Figure 2: (a-1)&(b-1): The ASR and BA for ShrinkPad (the first row) and BDMAE (the second
row) with different transformation intensities. (a-2)~(a-4)&(b-2)~(b-4): The t-SNE plots of the
features of benign and backdoor samples under no defense (dubbed “ND”), low transformation
intensity (dubbed “Low”), and high transformation intensity (dubbed “High”). Squares and solid
circles represent the centroids of benign sample distributions and backdoor sample distributions. As
the transformation intensity increases, the features of benign samples deviate from the origin. The
results demonstrate the tradeoff faced by the transformation-based backdoor defense methods.

3 REVISITING EXISTING PRE-PROCESSING-BASED BACKDOOR DEFENSES

3.1 THREAT MODEL

This paper focuses on tackling the issue of pre-trained backdoored models via pre-processing-based
backdoor defense. The defender may buy or acquire a pre-trained model from third-party platforms.
However, there exists a threat that the pre-trained model is backdoored. Due to the limitations of
computational resources, the defender seeks to mitigate the backdoor in an efficient and low-cost
way (e.g., without altering the parameters of the pre-trained model). Following prior works (Liu
et al.|[2017; |Li et al, 2021c), we make the following assumptions. For adversaries, they can implant
the backdoor into the pre-trained model in any way (e.g., by poisoning the training data or interven-
ing in the training process). For defenders, we assume that they have access to an unlabeled dataset
that is independent and identically distributed to the training dataset of the pre-trained model.

3.2 THE LIMITATIONS OF TRANSFORMATION-BASED DEFENSES

Transformation-based defenses aim to mismatch or eliminate triggers by applying specific transfor-
mations to test samples. This type of defense method can be categorized into two types: random
perturbations and generator reconstruction. Specifically, random perturbations involve the defender
mismatching the trigger pattern through techniques such as scaling or rotation, while generator re-
construction leverages a pre-trained generative model to erase the trigger pattern. However, the
transformation-based backdoor defense methods face a trade-off between the utility of the model
and the effectiveness of the backdoor elimination, making them ineffective in practice.

In this section, we present the empirical results to support the above claim. We implement two
representative transformation-based methods, ShrinkPad (Li et al.l [2021c) (dubbed “SP”’) and BD-
MAE (Sun et al.,[2023)) (dubbed “BD”), to defend the BadNets attack (Gu et al.,2019) on CIFAR-10.
Specifically, ShrinkPad applies simple spatial transformations to the input, while BDMAE employs
a trained masked autoencoder for data cleansing. We use “Pad Size” (dubbed “S”), which refers
to the padding size applied around the shrunk image, and “Mask Ratio” (dubbed “R”), which rep-
resents the masking rate applied to the image before reconstruction, to control the transformation
intensity for ShrinkPad and BDMAE, respectively. We aim to analyze how these transformations
impact the model’s benign accuracy (BA) and attack success rate (ASR) of the backdoor. Addi-
tionally, we treat the original model as a feature extractor. We then visualize how transformation
intensity affects the differences in feature distribution between benign and poisoned samples of the
same class, both before and after the transformation.

As shown in Figure [2] (a-1) and (b-1), increasing the intensity of input transformation, which en-
larges the feature distance between the original and transformed samples, reduces the backdoor
ASR. However, it also leads to a decline in the model’s BA. As depicted in Figure|Z| (a-2)~(a-4) and
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Figure 3: The visualization of BTI-DBF in inverting backdoor triggers under both BadNets and
Blended attacks. We display the benign samples, poisoned samples, purified samples, pre-defined
triggers, and inverted triggers, respectively. The inverted triggers and purified samples are different
from the ground-truth ones to a large extent, leading to the ineffectiveness of BTI-based defenses.

(b-2)~(b-4), with increasing transformation intensity, the feature distribution of backdoored sam-
ples within the same class undergoes greater changes, indicating that higher transformation levels
effectively mismatch or remove trigger patterns. Nevertheless, the difficulty of decoupling benign
patterns from backdoor patterns in the input domain results in that such transformations inevitably
affect the benign features. It causes a shift in the centroid of the benign sample feature distribu-
tion (visualized as solid circles in Figure [2). The primary reason for this trade-off problem lies in
the fact that the output domain of the DNN remains consistent before and after the defenses. This
consistency forces the input transformation module to perform two conflicting tasks: (1) effectively
removing trigger patterns and (2) preserving the benign patterns of samples while ensuring they
are classified into the correct output categories of the original model. This conflict inspires us to
consider that adjusting the model’s output domain may help mitigate this issue.

3.3 THE LIMITATIONS OF BTI-BASED DEFENSES

BTI-based defenses can break the trade-off between model utility and defense effectiveness by in-
troducing the information of triggers via trigger inversion. In the pre-processing-based defense
paradigm, BTI-based defenses typically involve two steps: trigger inversion and trigger removal.
Specifically, the defender first utilizes several data to invert the pre-injected trigger. The inverted
trigger is then used to eliminate any potential trigger patterns in samples before prediction. The
effectiveness of BTI-based defenses highly relies on the quality of the inverted trigger. However, we
argue that the inversion of the backdoor trigger pattern in high quality is inherently challenging due
to the absence of prior knowledge. The difficulty limits the effect of BTI-based backdoor defenses.

We implement the state-of-the-art BTI-based defense, BTI-DBF (Xu et al., [2024), to invert the
backdoor triggers of BadNets (Gu et al.l 2019) and Blended (Chen et al., |2017) on CIFAR-10. As
shown in Figure [3] the trigger patterns obtained by BTI-DBF differ significantly from the ground-
truth trigger patterns. This discrepancy illustrates why existing BTI-based defenses fail to eliminate
backdoor patterns present in input samples effectively. Moreover, BTI-based defenses often identify
“pseudo-triggers” inherent in DNNs, which usually arise from the model’s vulnerability to adversar-
ial perturbations. When defenders attempt to eliminate these non-authentic trigger patterns before
processing the samples into the model, it can disrupt the benign features of the samples, while the
backdoor patterns remain largely unaffected. If the quality and authenticity of the inverted trig-
ger patterns cannot be guaranteed, the BTI-based defenses may potentially yield adverse outcomes.
Arguably, achieving BTI is a challenging endeavor due to the lack of prior knowledge about the
implanted backdoor and poisoned samples. As such, it is necessary to design an inversion-free
backdoor defense to break the aforementioned trade-off.

4 METHODOLOGY

4.1 MOTIVATION AND INSPIRATION

In Section 3] we empirically evaluate existing pre-processing-based defenses and analyze why they
are ineffective. In this section, we present a theoretical analysis and the inspiration to design an
effective and efficient backdoor defense method. Given a pre-processing method 7 (-) and a pre-
trained model F(-), we have the following theorem.
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Figure 4: The main optimization pipeline of our REFINE. There are two main components: input
transformation module 7 and output mapping module M. Specifically, after obtaining the fixed pre-
trained model, the defender first specifies a particular hard-coded mapping M and then optimizes
T guided by the loss function £, using the unlabeled benign dataset. The loss function £ consists of
the cross-entropy loss L. which aims to maintain the model’s utility, and the supervised contrastive
loss Ly, to enhance the defense capability via forcing orderly sample aggregation.

Theorem 1. Given a K-class pre-trained deep learning model F(-) = s(f(-)) where s(-) is the
softmax function and f(-) is the feature extractor, and a pre-processing method T (+), @ is the data
from a specific domain D (i.e., & ~ D) and & = T (x) ~ D. Let ®p(x) and 5 (&) denotes the
probability density function of D and D, we have

Eqyp.sopl F(@) = F(&)|2 < 2aVEK - Wi (p, i), (1)

where Wi (u, i) is the Wasserstein-1 distance between i and [i, |1 and [i are the probability measures
of the representations f(x) and f(&), and o = max[®5(x|x)/Ps(2)).

Theorem [I]indicates why existing defenses are ineffective. Assuming  is the poisoned sample, the
left part of Eq. (I) means the distance between the prediction of the transformed poisoned sample
and the original poisoned prediction. Theorem [T] demonstrates that the distance is bounded by the
Wasserstein-1 distance between the probability measures ., i1 of the output representations. Thus,
to maintain the utility of the model, existing pre-processing methods tend to retain the output rep-
resentations, leading to limited effectiveness in defending the backdoor. Otherwise, they have to
compromise the utility to achieve greater backdoor defense behaviors. The proof is in Appendix [A]

Following the above theorem, we can enhance the upper bound by increasing the distance be-
tween p, (1. Inspired by model reprogramming techniques (Chen, [2024), we propose REFINE, a
reprogramming-based inversion-free backdoor defense method. Model reprogramming can signifi-
cantly transform the output domain to destroy trigger patterns while maintaining model utility for it
also changes the input domain. Specifically, we introduce an input transformation module to trans-
form the inputs, and a label mapping module to remap the original classes to new shuffled ones. We
also employ a supervised contrastive loss to further enlarge the distances among different classes.
The technical details of our REFINE method are illustrated in the following parts.

4.2 REFINE: REPROGRAMMING-BASED INVERSION-FREE BACKDOOR DEFENSE METHOD

In general, REFINE consists of two essential components: (1) the input transformation module
T, which disrupts the benign and backdoor patterns of input samples through transformations and
generates new benign features; (2) the label mapping module M, which formulates the specified
source-target hard-coded label remapping function and maps the original classes to new shuffled
classes. Additionally, we integrate the cross-entropy loss L.. and the supervised contrastive loss
Lyp to steer the optimization of 7. The illustration of our REFINE is shown in FigureE}

4.2.1 INPUT TRANSFORMATION MODULE

To effectively alter potential trigger patterns in the input samples, we need to modify the input
domain of the original model. Traditional model reprogramming methods (Elsayed et al.| 2019
Tsai et al.| |2020) add the optimized universal adversarial perturbation around the input, while the



Under review as a conference paper at ICLR 2025

trigger pattern still remains intact on the backdoor image to some extent. In contrast, we utilize a
trainable autoencoder (e.g., UNet) as the foundational structure for our input transformation module,
leveraging its capability to preserve the dimension of samples before and after transformations, while
making more significant modifications to the whole image. Upon inputting a batch of data, the input
transformation module will encode the pixel features from the images and then decode them to
produce new samples. The transformed samples X can be described as follows:

X =T(X,0), (2)

where X is a batch of input samples, and 7 (-, #) is the input transformation module with 6 as its
trainable parameters. Arguably, this module not only preserves the consistency of sample size before
and after the transformation but also affords a higher degree of flexibility in sample manipulation
compared to conventional reprogramming methods. During this transformation process, both be-
nign and backdoor patterns are disarranged, effectively removing potential triggers and causing the
generation of new benign features orderly clustered by their respective classes.

4.2.2 OUTPUT MAPPING MODULE

Once the input samples are transformed into new samples via the input transformation module, they
are subsequently processed by the original backdoored model, which generates confidence scores
for each class, as expressed below:

Y = F(X), 3)
where F(-) is the original backdoored model. As demonstrated in Section fixing the model’s
output domain leads to a trade-off between transformation intensity and defense performance. To
address this issue, we introduce an output mapping module at the model’s output end, aiming to alter
the output domain and mitigate the aforementioned challenges. Specifically, the output mapping
module redefines the class order of the model’s output layer, which hard-codes a one-to-one label
remapping function fr, : I — [, where [,] € L,] # [, L is the set of labels. The confidence scores
generated by the original model can be remapped into new scores through M, as follows:

Y = M(Y). “)

The final predictions for the samples can be derived from the confidence scores Y outputted by M.

4.2.3 OPTIMIZING REFINE MODULES

To maximize the flexibility of input transformations for removing trigger patterns while maintaining
the original model’s accuracy, we incorporate two crucial loss functions, the cross-entropy loss and
the supervised contrastive loss, to guide the optimization of the input transformation module. The
formulation of the combined loss function can be expressed as follows:

mt9in »Crefine = »Cce + )\»Csu;r (5)

In Eq. @), L. and Ly, indicate the cross-entropy loss and the supervised contrastive loss, re-
spectively. A is a scalar temperature parameter, and 6 represents the set of parameters in the input
transformation module to be optimized during training. Since Theorem [I] does not guarantee the
model performance on clean samples, adding L. to maintain the utility of the model is necessary.

In our threat model, the dataset available to the defender is unlabeled. Therefore, before calculating
these loss functions, it is necessary to obtain the pseudo-labels Y for the current batch of unlabeled
samples X. Y is predicted by the original model (without any additional modules), as follows:

Y = argmax(F(X)). (6)

Leveraging Cross-entropy Loss to Maintain the Utility. Due to the substantial modification of
the original model’s output domain facilitated by the output mapping module, the input transforma-
tion module is no longer constrained by the requirement to preserve the original benign features of
the samples. Nevertheless, the model must retain its original performance within the new output
domain, which necessitates the employment of cross-entropy loss to effectively guide the sample
transformation process. The cross-entropy loss is typically formalized as follows:

1 N
Loe=—7 ;y log(y:), (7)
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where N represents the number of samples in the current data batch X. ; € Y denotes the pseudo-
label for sample «; € X (typically a one-hot encoded vector), and y; € Y indicates the predicted
probability remapped by the output mapping module for sample x;.

Utilizing Supervised Contrastive Loss to Enhance Backdoor Defense. Arguably, relying solely
on cross-entropy loss is insufficient to restore the original model’s benign accuracy and mitigate
the backdoor. Therefore, we introduce supervised contrastive loss (Khosla et al. |2020), where
“supervised” refers to the original model as the supervisor. Specifically, the supervised contrastive
loss aims to ensure that features of transformed samples from the same class are more similar, while
those from different classes are further apart. It can be defined as follows.

-1 exp (&; « &p/7)
»Csu — TN IOg (8)
=2 pg] 2 By

peP(3) aeA) P (&i o /T)’

where I = {1, 2, ..., N'} represents indices of all samples in current data batch, &; = T (x;,0) € X,
the - symbol denotes the inner (dot) product, 7 is a scalar temperature parameter, and A(i) = '\ {i}.
The set P(i) = {p € A(¢) : yp, = ¥} contain indices of all positives in the batch distinct from i,
and | P(4)| is its cardinality. The pseudo-code can be found in Appendix

4.2.4 UTILIZING REFINE FOR MODEL INFERENCE

During the model inference phase, we can apply the aforementioned well-trained modules to achieve
high-performance and secure predictions. The input samples are sequentially processed through the
input transformation module 7 (-, ), the original pre-trained model F(-), and the output mapping
module M(-). This process ultimately yields the predicted confidence scores, with all parameters
remaining constant. The inference process can be formally expressed as follows.

y = M(F(T(z,0))), 9

where & represents the sample to be predicted. The detailed process is illustrated in Figure|T]

5 EXPERIMENTS

In this section, we evaluate the effectiveness of our REFINE compared with different existing back-
door defenses. We also conduct an ablation study and evaluate the resistance to potential adaptive
attacks. The analysis of the overhead of REFINE is in Appendix [G| and the implementation of
REFINE in the black-box scenario is in Appendix [F

5.1 EXPERIMENTAL SETTINGS

Datasets and Models. We conduct experiments on two classical benchmark datasets, including
CIFAR-10 (Krizhevsky et al.l |2009) and (a subset of) ImageNet (Deng et al.,|2009) containing 50
classes. We evaluated our method with ResNet-18 (He et al., [2016) on both datasets. We also vali-
date the effectiveness of REFINE on other models in Appendix [E] Note that our goal is to evaluate
the effectiveness of backdoor defense methods instead of training a SOTA model. Therefore, the be-
nign accuracies of our models may be lower than the SOTA models. We exploit U-Net (Ronneberger,
et al.,[20135)) as the structure of the input transformation module.

Attack Setup. We utilize 7 representative advanced backdoor attacks, including (1) BadNets (Gu
et al., 2019), (2) Blended (Chen et al., 2017), (3) WaNet (Nguyen & Tran, [2021)), (4) PhysicalBA
(dubbed ‘Physical’) (Li et all |2021c), (5) BATT (Xu et al., [2023), (6) LabelConsistent (dubbed
‘LC’) (Turner et al., 2019), and (7) Adaptive-Patch (dubbed ‘Adaptive’) (Q1 et al., |2023), to com-
prehensively evaluate the performance of different defenses. The poisoning rates are all set to 10%.

Defense Setup. We compare the defense performance of REFINE with both types of pre-processing-
based defense methods. For transformation-based defenses, we utilize three representative and ad-
vanced methods, including (1) AutoEncoderDefense (dubbed ‘AEDefense’) (Liu et al., 2017), (2)
ShrinkPad (Li et al. [2021c), (3) BDMAE (Sun et al.l [2023)). For BTI-based defenses, we employ
three methods as baseline, including (1) Neural Cleanse (dubbed ‘NC’) (Wang et al., 2019), (2)
FeatureRE (Wang et al.|2022b), (3) BTI-DBF(P) (Xu et al.,[2024).
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Table 1: The performance (%) of REFINE and the transformation-based backdoor defenses. The
best results are boldfaced, while all failed cases (BA drop > 5% or ASR > 10%) are marked in red.

Defense— No Defense AEDefense ShrinkPad BDMAE REFINE
Attack| BA ASR BA ASR BA ASR BA ASR BA ASR

BadNets 92.05 100 85.05 0.93 84.10 1424 91.28 11.22  91.22 0.99

Blended 90.63  99.15 83.76 8572 8444 9883  90.04 99.15  90.65 0.76

WaNet 91.63 9992  85.18 1.02 85.05  36.56 8990 9992  90.82 0.96

CIFAR-10 Physical 93.71 100 89.20 1.70 9252 8272 9331 4826  90.95 1.08
BATT 9293 99.89 8858 99.99 8846 6036 92.80 9890  90.81 2.12

LC 9237 9991 84.42 0.93 83.95 9.01 91.52 1244 90.78 1.20

Adaptive 90.17 100 83.61 5.42 81.95 23.66 80.61 2488  90.31 0.17

BadNets 66.94  99.44  60.84 3.31 63.00 3.27 56.80 2.04 68.95 0.69

Blended 66.00 9564 59.56  90.41 59.64  96.82 5044 9732  68.75 1.31

WaNet 6632 9508 47.72 0.41 59.48 4882 5140 9412  68.18  3.02

ImageNet Physical 7272 99.76  62.32 4.94 7136 8457  60.64 9.88 69.20 1.55
BATT 72.04 9872  66.88  99.02  70.08 92.69  62.04 98.64  69.40 1.22

LC 66.64 7872  62.12 0.53 62.88 2.61 56.88 8.80 69.85 0.45

Adaptive 67.43 8191 61.03 9.98 64.27  39.61 5372 42.08  68.00 0.00

Dataset],

Table 2: The performance (%) of REFINE and the BTI-based backdoor defenses. The best results

are boldfaced, while all failed cases (BA drop > 5% or ASR > 10%) are marked in red.

Defense— No Defense NC FeatureRE BTI-DBF(P) REFINE
Attack| BA ASR BA ASR BA ASR BA ASR BA  ASR

BadNets 92.05 9853  87.09 1.39 64.72 13.07  89.25 5.56 91.22 1.00

Blended 90.63 98.05 89.53 9992  90.38 1.67 88.08 391 90.38 0.96

WaNet 91.63  98.81 88.15 6.89 93.35 0.06 91.03 5.52 90.82 0.96

CIFAR-10 Physical 93.71 98.89  90.38 2.95 93.75 1.06 89.74 4.60 91.10  0.77
BATT 9293 98.78 9145 3218  92.84 2.15 89.72 9.37 90.77 2.02

LC 9237 98.80 8431 5.15 83.76 0.06 88.60 3.50 90.88 1.43

Adaptive 90.03 100 8532 87.83 8794 7247  86.72 1379 90.11 1.58

BadNets 6572 9990 6549 1.48 64.84 532 65.78 7.06 67.03 0.67
Blended 6543 9956  61.03 96.13  59.00 2347  60.34 2.14 68.79 1.15
WaNet 6497 9697  64.85 10.52  61.84 5.48 62.17 0.70 68.13  2.96

Dataset]

ImageNet Physical 69.58 9992 60.37 3.22 73.08 11.76 6493 3146  69.28 0.83
BATT 7176 9894  63.04 21.78  70.24 5.19 62.13 0.18 69.37 1.23
LC 66.03  81.50 58.13 6.57 65.72 0.08 59.17 8.31 69.94  0.32

Adaptive 6740 7832  57.15 7945 5500 6438  54.36 12.58  67.68 0.44

Evaluation Metrics. Consistent with the standard evaluation metrics in backdoor-related studies (L1
et al., 2022b), we utilize benign accuracy (BA) and attack success rate (ASR) to assess all defense
methods. BA and ASR are the accuracies of the benign samples and the poisoned samples, respec-
tively. An effective defense is indicated by a higher BA and a lower ASR.

5.2 MAIN RESULTS

As shown in Tables[I}j2] our REFINE successfully mitigates backdoor threats in all cases while pre-
serving high benign accuracy. Specifically, the ASRs of our method are lower than 4% (< 2% in
most cases). For the BA, the models under REFINE experience less than 3% drop on the CIFAR-
10 dataset compared to the undefended models. On the ImageNet dataset, the BA even improves,
due to the increased depth of the original models introduced by the input transformation module.
In contrast, other baseline defenses may fail in certain cases, with BA drop > 5% or ASR > 10%.
Specifically, for the Adaptive-Patch attack (Qi et al.,[2023), all baseline defenses perform poorly, be-
cause of the difficulty of inverting the adaptive trigger patterns for BTI-based defenses or disrupting
the trigger patterns for transformation-based defenses.

5.3 ABLATION STUDY

There are three important components in our methods, including (1) the input transformation
method, (2) hard-coded remapping function (HRF for short) in the output mapping module, and (3)
supervised contrastive loss (SCL for short) of transformed samples. In this section, we present an
ablation study on the former two modules and verify their effectiveness. We also test different archi-
tectures of the input transformation module and conduct additional ablation studies in Appendix [E]

As shown in Table [3] we evaluate the defense performance of REFINE without the hard-coded
remapping function (w/o HRF) or without the supervised contrastive loss (w/o SCL). Experimental
results indicate that without the hard-coded remapping function, REFINE successfully preserves
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Table 3: The performance (%) of REFINE with/without the hard-coded remapping function (HRF)
or with/without the supervised contrastive loss (SCL).

Defense— No Defense w/o HRF w/o SCL REFINE
Attack| BA ASR BA ASR BA ASR BA ASR
BadNets 91.70 100 91.23 70.76 89.26 1.43 90.92 0.68
Blended 91.10 98.76 90.59 75.30 90.38 0.10 90.65 0.51

WaNet 91.09 99.98 91.03 99.53 89.08 1.45 90.45 0.88
Physical 93.59 100 92.86 1.60 88.63 1.97 90.92 1.36
BATT 92.43 99.91 91.67 72.46 88.82 5.87 90.89 1.97
LC 92.30 99.74 91.88 69.15 90.37 0.59 90.57 1.25
Adaptive 90.54 100 89.77 62.94 88.06 0.32 90.17 0.27

Table 4: The performance (%) of REFINE against potential adaptive attacks.

Setting— Normal Attack Adaptive Attack

Defense— No Defense REFINE No Defense REFINE
Dataset] BA ASR BA ASR BA ASR BA ASR

CIFAR-10 91.74 100 90.71 1.07 84.53 100 83.05 0.98

ImageNet 66.94 99.59 69.00 0.70 58.39 100 60.53 1.09

the BA of the original model, but struggles to reduce the ASR of the backdoor. This is because,
without the hard-coded remapping function, the output domain of the model remains unchanged.
Subsequently, it encounters the same trade-off problem as other transformation-based defenses, and
is difficult to find a balance between transformation intensity and defense performance. Also, in
the absence of supervised contrastive loss, REFINE can effectively reduce ASR with the help of
the hard-coded remapping function. However, it encounters difficulties in restoring the BA of the
original model, which may adversely affect the model’s inference capabilities.

5.4 RESISTANCE TO POTENTIAL ADAPTIVE ATTACKS

In this section, we examine whether the adversary can circumvent our defenses if they have full
knowledge of the process of our REFINE. After training the original backdoored model, the ad-
versary can fine-tune it utilizing an input transformation module, along with a randomly initialized
hard-coded output mapping module, to simulate our REFINE. During fine-tuning, the loss function
for model optimization can be expressed as follows:

II%il’l ﬁadap = Eb + "}/Erefincv (10)

where L;, indicates the backdoor loss function in the original training phase of the backdoored model,
and L,¢fine represents the loss function of REFINE. y is a scalar temperature parameter, and ¢
denotes the parameters to be trained in the backdoored model. Ideally, the adversary can achieve
the backdoor target with a low value of L, fin. by optimizing Eq. (I0). Consequently, the REFINE
may not work well since the Ly fine is already low.

As shown in Table |4} REFINE is still highly effective with high BAs (BA drop < 1.5%) and low
ASRs (< 1.5%). It is mostly because defenders can arbitrarily specify the output mapping function
and train an input transformation module that may entirely differ from the attacker’s. Besides, the
original backdoored model experiences a decrease in BA after undergoing adaptive attack training.
As such, these results demonstrate that our defense method is resistant to adaptive attacks.

6 CONCLUSION

In this paper, we revisited existing pre-processing-based backdoor defense methods, including
backdoor-trigger-inversion-based (BTI-based) defenses and transformation-based defenses. We re-
vealed the limitations of the two defense methods. Subsequently, according to the empirical and
theoretical analysis, we proposed REFINE, a reprogramming-based inversion-free backdoor defense
method. This method was motivated by the insight that increasing the distances of the feature repre-
sentations before and after the transformation may lead to a better effectiveness of backdoor defense.
Specifically, we introduced an input transformation module and an output mapping module. We also
utilized the supervised contrastive loss to enhance the defense performance. Results on benchmark
datasets verified the effectiveness of our REFINE and the resistance to the adaptive attack. We hope
our REFINE can provide a new angle to facilitate the design of more effective backdoor defenses.

10
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ETHICS STATEMENT

This paper proposes an inversion-free backdoor defense method, REFINE. Our method can be uti-
lized to mitigate the effect of the backdoor. Therefore, our REFINE is a defensive method and our
work does not discover any new threat. Our research also does not include any human subjects.
Accordingly, this paper does not raise ethical issues.

REPRODUCIBILITY STATEMENT

The details of our implementations and experiments can be found in Appendix [C| We also provide
the codes for reproducing our main results in the supplementary material. We will make the full
codes of our method open-source once the paper is accepted.
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APPENDIX

A THE PROOF OF THEOREM ]I

Theorem 1. Given a K-class pre-trained deep learning model F(-) = s(f(-)) where s(-) is the
softmax function and f(-) is the feature extractor, and a pre-processing method T (-), x is the data

from a specific domain D (i.e., ® ~ D) and & = T(x) ~ D. Let Op(z) and O (&) denotes the
probability density function of D and D, we have

Eyp amp | F(2) = F()l|2 < 20VEK - Wa(p, i), (M
where Wi (u, i) is the Wasserstein-1 distance between i and [i, 1w and [ are the probability measures
of the representations f(x) and f(&), and o = max[®x(z|x)/P5(X)).

Following similar approaches in (Yang et al., 2021)), the proof of Theorem []is as follows.

Proof. Let [K| represents the set of the first K positive integers, i.e., [K] = {1,2,3,..., K}. Ac-
cording to the definition of mathematical expectation, we have

EwND,:aNf)”]:(fB) - F(2)]

2

- /ND @ = F@)l2p p(w, &)dwds
= / P @) = F@)|:Pp(@) @5 (&|2) dwdi @
x~D,z~D
< a/ _F(x) — F(@)|22p(2)@p5(2)dxdz,
z~D,&~D

where o = max[®5(z|z)/P5(Z)]. Assuming « € R? is a d-dimension vector and x; denotes the
i-th element of &, we have

]| = 3)
Since F(-) is a K-class pre-trained model, we have
of IF@) - F@)bo()s(@)dudz
@~D,&~D
< aVK max |[F(2)]x — [F(&)]k| - @p(x) D5 (&)dzdE (4)
x~D,5~D FE[K]
- oK max [[s(f(@))k — [s(F@)l - O ()0 (3)dwda.
x~D,&~D FE[K]
After that, we define k™ and &~ as the following equations.
kT = arg max [s(f(x))]k — [s(f(&))]x
ke[K] )

k™ = arg max[s(f(@))e — [s(/ (@)l '

15



Under review as a conference paper at ICLR 2025

Because the output of s(-) is a probability logit and the sum total is 1, there exist at least one k; such

that [s(f(x))]k, —[s(f(Z))]x, > 0and also at least one ks leading to [s(f(&))]x, —[s(f(x))]x, = 0.
Therefore,

max |[s(f(x))]x — [s(f(&))]x]

ke[K]

= max{[s(f(2))]x — [s(f(@))]k, [s(f(@)]x = [s(f(@))]x (6)

ke[K]
< [s(f@)]r — [s(F@)k+ + [s(f (@)~ — [s(f ()]~
According to Eq. (6)), we have
/ max [[s(f(@))]r — [s(f(2))]x] - Pp(2)Pp () dwd®

~D,&~D kEIK]

< /ND ~Nf)([5(f(:13))]k+ — [s(f @)+ + [SF @)= — [s(f(@))]-) - Pp (@) s (&) dapdd
= Euonl[s(f @)+ = [s(f(@)li-] = Bgoplls(f (@)l = [s(£(@))]es- .

Based on the fact that [s(+)] is 1-Lipschitz continuous for any k& € [K] (Gao & Pavel, 2017) and
thus [s(-)]x+ — [s(+)]x- is 2-Lipschitz continuous, we have

Eanolls(F@)er — [s(f(@)]k-] - iN@usm@mk- — [s(f(@)))er
< 20 s Eeplg(f®)] — By plo(f(3))] ®)

g:RE—R,Lip(g)<1

Following the Kantorovich-Rubinstein theorem of the dual representation of the Wasserstein-1 dis-
tance, finally, we have

By sl F (@) = F(@)ll2

< 2aVK- sup  Eanplg(f(2)] — Ezoplg(f(2))] )
g:R¥—R,Lip(g)<1

= QQ\/E ’ Wl(/inﬂ’)7

where p and [ are the probability measures of the representations f(x) and f(&). O

B THE PSEUDO-CODE OF REFINE

The pseudo-code of our REFINE optimization process is shown in Algorithm|[T}

Algorithm 1 REFINE Optimization Process

Input: The backdoored model F, the unlabeled benign dataset D = {x;}} ,, the randomly
initialized input transformation module 7 (-, #), the specified output mapping module M(-).
Qutput: The input transformation module parameters 6.

1: for data batches X = {z;}¥, in D do

2: Obtain the transformed input X = 7(X, 6)

3: Obtain the original model output Y = F(X).

4: Obtain the mapped output Y = M(Y).

5. Obtain the predicted labels Y = arg max(F(X)).

6: Compute the supervised contrastive 10ss L, (X, Y).

7: Compute the cross-entropy loss L..(Y,Y).

8: Optimize 6 with the composite loss: arg min £ = Lee + ALgyp.
0

9: return 6
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[ BadNets ] Blended |

Figure 5: The illustration of the adopted backdoor attacks.
C IMPLEMENTATION DETAILS

C.1 DETAILS OF THE EXPERIMENTAL SETTINGS

Details of Datasets. (1) CIFAR-10. The CIFAR-10 dataset (Krizhevsky et al.,[2009) contains 50,000
training samples and 10,000 testing samples in total. The dataset has 10 classes and each class has
5,000 training samples and 1,000 testing samples. Tbe sjze of each image sample is 3x32x32.
(2) ImageNet. The ImageNet dataset consists of 1,000 classes containing over
14 million manually annotated images. In this paper, we select a subset with 50 different classes and
each class contains 500 training samples and 100 testing samples with size 3x224x224.

Details of Training Backdoored Models. We utilize the SGD with a momentum of 0.9 and a
weight decay of 5 x 10~ as the optimizer for training all backdoored DNNs. The batch size is set to
128 on both of CIFAR-10 and ImageNet. We set the initial learning rate as 0.1 and train all models
for 200 epochs, with the learning rate reduced by a factor of 0.1 at the 100-th and 150-th epoch.

Details of Optimization. For training the input transformation module, we employ SGD with a
momentum of 0.9 and a weight decay of 5 x 10~% as the optimizer. The initial learning rate is set
to 0.01, and the batch size is set to 128 and 32 for ImageNet. The input transformation module is
trained for 150 epochs, with the learning rate decayed by a factor of 0.8 at the 100-th and 130-th
epochs. For the training loss function, we set the temperature parameter as 0.1. For the output
mapping module, we randomly assign a hard-coded remapping function before each defense.

Computational Resources. In our implementations, we utilize PyTorch as the deep learning frame-
work. All our experiments are implemented with RTX 3090 GPUs.

C.2 DETAILS OF THE ADOPTED BACKDOOR ATTACKS

In our experiments, we adopt 7 representative backdoor attacks to evaluate the defense performance
of our REFINE and other baseline backdoor defense methods. We implemente the first six backdoor
attacks utilizing BackdoorBox 2022b), while the implementation of Adaptive-Patch is
derived from the open-source code provided in its original paper. In this section, we provide a
detailed introduction to these backdoor attacks, as follows.

» BadNets: introduced the earliest poisoning-based backdoor attack that aims to
poison the training dataset using a visible, distinctive pixel pattern. In this paper, we utilize a 3x3
random square as the trigger pattern on the bottom right of samples in CIFAR-10 and a 32x32
square on ImageNet.

* Blended: To evade human visual detection of poisoned samples, [Chen et al| (2017)) designed a
covert data poisoning method known as Blended, which attempts to embed triggers implicitly
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Table 5: The performance (%) of BDMAE, BTI-DBF(P) and REFINE against Clean-image. The
best results are boldfaced.

Defense— No Defense BDMAE BTI-DBF(P) REFINE
Attack| BA ASR-n ASR-m BA ASR-n ASR-m BA ASR-n ASR-m BA ASR-n ASR-m

Clean-image 87.78 8293 4.73 86.73 5854 473 7895 86.59 9.53 8894 53.57 4.63

Table 6: The performance (%) of REFINE and ZIP against four different attacks. The best results
are boldfaced.

Defense— No Defense ZIP REFINE
Attack] BA ASR BA ASR BA ASR
BadNets 91.18 100.00 84.22 5.53 90.50 1.05
Blended 90.64 98.18 84.68 8.64 90.30 1.00

WaNet 91.29 99.91 85.19 15.46 90.64 1.93

PhysicalBA 93.67 100.00 85.07 10.91 91.17 0.78

within the samples. In this paper, we utilize an image of Hello Kitty as the trigger pattern and set
the blending rate to 0.3 across both datasets.

* WaNet: WaNet (Nguyen & Tran,|2021) is another type of invisible backdoor attack that employs
a warp-based trigger. We follow the default settings in its original paper.

* PhysicalBA: |Li et al.| (2021c|) demonstrated that DNNs applied in physical scenarios could also
be vulnerable to backdoor threats and proposed backdoor attacks that simulate physical transfor-
mations. In this paper, we follow the default settings outlined in its original paper.

* BATT: Xu et al.| (2023) noted that simple transformations specific to samples can pose signifi-
cant backdoor threats to models and introduced the Backdoor Attack with Transformation-based
Triggers (BATT). In this paper, we adhere to the default settings established in their original work.

* LabelConsistent: To address the issue of easily identifiable mislabeled poisoned data in poisoning
datasets, [Turner et al.|(2019) proposed clean-label backdoor attacks, which aim to poison samples
of specific classes to inject backdoors. We employ projected gradient descent (PGD) to generate
adversarial samples, setting the maximum perturbation size to e = 8. The trigger patterns utilized
are identical to those employed in BadNets.

* Adaptive-Patch: |Qi et al.| (2023) observed that models trained on poisoned datasets often learn
distinct latent representations for poisoned and clean samples, and they proposed adaptive back-
door attacks to mitigate this separation phenomenon. In this paper, we follow the default settings
utilized in its original paper.

The poisoned samples of these backdoor attacks are depicted in Figure 3]

D ADDITONAL RESULTS ON MORE ATTACKS AND DEFENSES

D.1 RESULTS AGAINST CLEAN-IMAGE ATTACK

In this section, we test the clean-image backdoor attack (Rong et al.,2024) (dubbed ’Clean-image’).
We train a ResNetl8 backdoor model on CIFAR10 and applied defenses using BDMAE, BTI-
DBF(P), and REFINE. For each defense method, we test the model’s benign accuracy (BA), natural
attack success rate (ASR-n), and manual attack success rate (ASR-m). ASR-m represents the ASR
of poisoned samples that naturally contain the backdoor trigger, while ASR-m represents the ASR
of manually generated poisoned samples.

As shown in Table [5] existing pre-processing-based defenses are unable to effectively reduce the
ASR-n of the clean-image attack. Compared to BDMAE and BTI-DBF(P), REFINE shows better
defense performance. However, we believe that the Clean-image attack, from certain perspectives,
extends beyond the typical scope of backdoor attacks. Specifically, the stealthiness of backdoor
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Table 7: The performance (%) of REFINE and BDMAE on different model architectures. The best
results are boldfaced.

Model| Defense— No Defense BDMAE REFINE
Attack] BA ASR BA ASR BA ASR
BadNets 91.18 100.00 90.48 14.81 90.50 1.05
ResNet18 WaNet 91.29 99.91 89.87 99.93 90.64 1.93

Adaptive 89.62 100.00 89.40 49.18 90.54 1.23

BadNets 91.91 100.00 91.04 10.99 90.71 1.53
ResNet50 WaNet 91.70 99.98 89.83 99.89 91.09 0.35
Adaptive 89.59 85.11 89.06 3591 90.05 2.19

BadNets 84.44 99.36 84.25 18.32 86.86 1.62
VGG16 WaNet 84.75 99.15 83.36 99.25 86.41 2.39
Adaptive 84.98 99.99 84.69 40.09 86.63 2.04

BadNets 86.40 99.99 86.05 11.85 89.44 0.96
DenseNet121 WaNet 86.31 98.77 85.42 98.91 88.74 0.88
Adaptive 85.16 100.00 84.45 45.36 88.74 0.35

BadNets 90.46 99.97 90.61 80.51 91.03 0.75
InceptionV3 WaNet 90.09 99.73 89.64 99.76 91.01 0.54
Adaptive 88.58 13.53 88.54 13.52 90.36 0.54

attacks usually requires the model to behave normally on benign samples, while the clean-image at-
tack may cause misclassifications on some benign samples (i.e., naturally poisoned samples), which
significantly impacts the model’s normal inference. We will discuss how to defend against this type
of attack in our future work.

D.2 RESULTS ON ZIP

In this section, we conducted additional experiments using the attack methods supported by the
original ZIP repository. Specifically, we trained ResNet-18 backdoor models on the CIFAR-10
dataset using four different attack methods, including BadNets, Blended, WaNet, and PhysicalBA.

As shown in Table[6] compared to ZIP, REFINE demonstrates better defense performance against
all four attack methods. This demonstrates the effectiveness of REFINE again.

E ADDITIONAL ABLATION STUDY

E.1 RESULTS ON DIFFERENT MODEL ARCHITECTURES

In this section, we conduct experiments on five different network structures, including ResNet-
50 (He et al., [2016), VGG-16 (Simonyan, |2014)), DenseNet-121 (Huang et al.,2017), and Inception-
V3 (Szegedy et al.| 2016). We select three representative types of backdoor attacks, includ-
ing BadNets, WaNet, and Adaptive-Patch (dubbed ‘Adaptive’). We conduct experiments on the
CIFAR-10 dataset. We compare the defense performance of our REFINE with the most advanced
transformation-based defense (i.e., BDMAE).

As shown in Table[7] REFINE effectively defends against three representative attacks across five dif-
ferent network architectures, significantly outperforming BDMAE. Specifically, under the REFINE
defense, the benign accuracy (BA) drop is less than 1.5%, with some cases showing an increase in
BA. Meanwhile, the backdoor attack success rate (ASR) is reduced to below 3%. The additional
experimental results verify the effectiveness of REFINE.

E.2 EFFECT OF THE UNLABELED BENIGN DATASET SIZE

In this section, we evaluate the defense performance of REFINE under different sizes of the unla-
beled benign dataset. We train a backdoored classification model on CIFAR-10 using the BadNets
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Table 8: Performance (%) of REFINE under different sizes of the unlabeled benign dataset.

Proportion—  No Defense 100% 80% 60% 40% 20%
Attack] BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR
BadNets 9231 100 9120 0.86 90.22 1.05 89.53 1.21 87.81 1.11 8393 221

Table 9: Performance (%) of REFINE under different values of temperature parameters .

A — No Defense 1.0 0.8 0.6 0.4 0.2
Attackf, BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR
BadNets 91.74 100 90.83 0.92 90.87 0.76 90.60 0.60 91.03 0.51 90.69 1.27

Table 10: Performance (%) of REFINE under different number of channels in UNet hidden layers.

Channels—  No Defense 32 48 64 80
Attack] BA ASR BA ASR BA ASR BA ASR BA ASR
BadNets 91.74 100 89.49 1.09 90.61 0.64 90.18 143 91.07 0.78

attack on a ResNet-18 architecture. For defense, we use different proportions (100% to 20%) of the
CIFAR-10 dataset as the unlabeled benign dataset. As shown in Table[8] the results indicate that as
the number of unlabeled samples decreases, the BA of REFINE experiences a slight decline, while
the ASR remains consistently low.

E.3 EFFECT OF THE SCALAR TEMPERATURE PARAMETER )\

In this section, we evaluate the defense performance of REFINE under different values of tempera-
ture parameters A. The attack setup is consistent with that in Section During the defense, we
test various temperature parameters ranging from 1 to 0.2. As shown in Table[J] the results indicate
that the value of temperature parameter has minimal impact on the defense performance of REFINE.

E.4 EFFECT OF THE NUMBER OF CHANNALS IN UNET HIDDEN LAYERS

In this section, we evaluate the defense performance of REFINE using UNet models with varying
numbers of hidden layer channels. Specifically, the dimensionality of the encoded features can be
adjusted by altering the number of output channels in the first layer of the UNet encoder. The
attack setup is consistent with that in Section For the defense, we tested different channel
numbers, including 32, 48, 64, and 80. As shown in Table[@], the number of channels in the UNet
hidden layers has minimal impact on the defense performance of REFINE, with both BA and ASR
remaining at an optimal level.

E.5 EFFECT OF THE DATA DISTRIBUTION USED FOR DEFENSE

In our main experiments, we assume that the defender can acquire independent and identically dis-
tributed (i.i.d.) unlabeled datasets. In this section, we explore the defense performance under differ-
ent data distributions. We train a ResNet18 model on the CIFAR10 dataset using the BadNets attack.
For defense, we trained the input transformation module of REFINE using CINIC10 (Darlow et al.,
2018)), a dataset with the same categories as CIFAR10 but a different data distribution.

As shown in Table REFINE is still highly effective in reducing the attack success rate (ASR
< 1.5%) while maintaining the model’s benign accuracy (BA drop < 3%). This favorable result is
due to the fact that REFINE first assigns pseudo-labels to the unlabeled benign samples using the
original model, and then trains the input transformation module based on these pseudo-labels.
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Table 11: The performance (%) of REFINE in scenarios with different data distribution.

Defense— No Defense REFINE
Attack] BA ASR BA ASR
BadNets 91.18 100.00 88.39 1.40

Table 12: The performance (%) of REFINE and T-MR. The best results are boldfaced.

Defense— No Defense T-MR REFINE
Attack]| BA ASR BA ASR BA ASR
BadNets 91.18 100.00 75.51 3.36 90.50 1.05
WaNet 91.29 99.91 74.49 25.76 90.64 1.93

Adaptive 92.54 99.93 75.49 5.87 90.87 1.76

E.6 EFFECT OF IMPROVED TRANSFORMATION MODULE

In this section, we conduct additional defense experiments using traditional model reprogramming
methods (Elsayed et al., |2019) (dubbed "T-MR”). We select three representative types of backdoor
attacks, including BadNets, WaNet, and BATT. We train backdoor ResNet18 models on the CIFAR-
10 dataset. We compare the defense performance of REFINE with T-MR.

As shown in Table the T-MR defense has a significant impact on the model’s BA (BA drop
> 15%) but fails to effectively reduce the ASR under the WaNet attack. This is because traditional
model reprogramming methods only add a universal adversarial perturbation around the image,
while the trigger pattern remains unchanged on the backdoor image to some extent.

F REFINE IN THE BLACK-BOX SCENARIO

In our main experiments, we assume that we can obtain white-box access to the pre-trained back-
doored models. In this section, we investigate how to implement our REFINE in the black-box
scenario where the defender can only get black-box access to the backdoored model. In the black-
box scenario, only the class confidence scores are accessible and it is hard to calculate the gradients
to optimize the REFINE modules. To tackle the aforementioned challenge, we leverage the surro-
gate model technique. Specifically, we distill a surrogate model from the original black-box model
using an unlabeled dataset D. We employ the mean squared error (MSE) loss to align the output
confidence scores between the black-box model F(-) and the surrogate model F;(-), as follows.

1
Lastitt = 157 Y IF(@) = Fu(x)). (10)

xeD

The surrogate model is then leveraged to replace the pre-trained model in our REFINE and optimize
the input transformation module. Subsequently, the trained input transformation and output mapping
modules are subsequently applied to the original black-box model.

To validate the feasibility of our REFINE in the black-box scenario, we employ the backdoored
ResNet-50 pre-trained on the CIFAR-10 dataset as the black-box model and ResNet-18 as the surro-
gate model. As shown in Table we evaluate both the black-box original model and the surrogate
model in terms of BA and ASR before and after applying the REFINE defense. The ASRs of our
REFINE are all below 4%. The results indicate that even though the input transformation module
is trained using the surrogate model, our REFINE is still capable of achieving high performance of
backdoor defense for the black-box original model.

G THE OVERHEAD OF OUR REFINE

In this section, we evaluate the overhead of our REFINE. Specifically, we measure the training time
of the input transformation module and the model inference time on the CIFAR-10 and ImageNet
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Table 13: Performance (%) of REFINE in defending against attacks in black-box scenarios.

Defense— No Defense REFINE

Model— Black-box Surrogate Surrogate Black-box
Attack] BA ASR BA ASR BA ASR BA ASR

BadNets 90.60 100 91.20 1.24 88.21 0.92 88.17 0.36
Blended 91.08  96.94  90.69 223 88.34 0.62 87.75 0.18
WaNet 91.50 9993 9092 99.84  88.77 3.37 87.44 0.04
Physical 93.61 100 92.21 2.56 90.18 1.52 89.84 2.23
BATT 9324  99.89  92.76 4.30 90.86 2.01 89.21 3.72
LC 9195 93.06 91.53 1.11 89.04 0.87 88.69 1.05
Adaptive 90.15 100 90.36 1.57 88.41 0.32 87.91 0.44

Table 14: The performance (%) of FT and FT+REFINE on ResNet18.

Defense— No Defense FT FT+REFINE
Attack]| BA ASR BA ASR BA ASR
BadNets 91.18 100.00 91.89 91.67 90.42 0.87

datasets using the ResNet-18 model. We employ a UNet with 32 hidden layer channels as the
structure for the input transformation module. During training, we employ SGD with a momentum
of 0.9 and a weight decay of 5 x 10~* as the optimizer. The initial learning rate is set to 0.01,
with a batch size of 128 for CIFAR-10 and 32 for ImageNet. The input transformation module is
trained for 150 epochs, with the learning rate decaying by a factor of 0.8 at the 100-th and 130-
th epochs. For the training loss function, the temperature parameter is set to 0.1. We conduct all
training using a single RTX 3090 GPU. For the output mapping module, a hard-coded remapping
function is randomly assigned before each defense.

The results indicate that for the CIFAR-10, REFINE requires only 1 hour to train the input transfor-
mation module. Once training is complete, inference on 10,000 images takes 6.31 seconds. More-
over, on a subset of the ImageNet with 50 classes, REFINE requires 5 hours for training the input
transformation module. After training, inference on 2,500 images takes 12.33 seconds. Although
REFINE introduces some additional overhead, we believe this cost is reasonable and acceptable.

H CoMBINING REFINE WITH EXISTING DEFENSES

Arguably, our method can be used in conjunction with existing (model reconstruction-based) de-
fenses to further enhance their effectiveness. To demonstrate this, we first applied model fine-tuning
defense (dubbed "FT’) to a ResNetl8 model subjected to the BadNets attack on CIFAR-10, fol-
lowed by the REFINE defense. As shown in Table[14] the FT+REFINE defense effectively reduces
the backdoor ASR while maintaining the model’s BA.

I RELATED WORK

1.1 BACKDOOR ATTACK

Visible Backdoor Attacks. This type of attack typically employs patterns that are visible to humans
as triggers. BadNets (Gu et al.l 2019) is the first backdoor attack technique that injects samples
with simple but visually noticeable patterns into the training data, such as white squares or specific
marks. [Li et al| (2021c)) then proposed a transformation-based enhancement that strengthens the
attack’s resilience and establishes its applicability to physical scenarios. To address the issue of
latent feature separation in backdoor attacks, [Q1 et al.| (2023)) employed asymmetric trigger planting
strategies and developed adaptive backdoor poisoning attacks. Besides, |Gao et al.| (2023)) revealed
that clean-label attacks were difficult due to the conflicting effects of ‘robust features’ in poisoned

22



Under review as a conference paper at ICLR 2025

samples and proposed a simple yet effective method to improve these attacks by targeting ‘hard’
samples instead of random ones.

Invisible Backdoor Attacks. To enhance the stealth of backdoor attacks, |Chen et al.| (2017)) was
the first to introduce the use of triggers that are imperceptible to humans, aiming to evade detection
by basic data filtering techniques or human inspection. They proposed a blending strategy that
generates poisoned images by subtly merging the backdoor trigger with benign images. After that,
a series of studies focused on designing invisible backdoor attacks. WaNet (Nguyen & Tranl 2021)
and ISSBA (L1 et al., 2021d) employed warping-based triggers and perturbation-based triggers,
respectively, introducing sample-specific trigger patterns during training; LIRA (Doan et al., 2021)
formulated the learning of an optimal, stealthy trigger injection function as a non-convex constrained
optimization problem, where the trigger generator function is trained to manipulate inputs using
imperceptible noise; BATT (Xu et al.l [2023) utilized images rotated to a specific angle as triggers,
representing a new attack paradigm where triggers extend beyond basic pixel-wise manipulations.

A few existing literature also provided novel and comprehensive discussions on backdoor attacks
from various perspectives and domains, including CLIP (Liang et al.,[2024), diffusion models (Chou
et al., 2024), 3D point clouds (Wei et al., [2024), pre-trained ViT (Yang et al., [2024al), code genera-
tion (Yang et al., 2024b), and federated learning (Shao et al., [2024)). Moreover, some existing works
also explore utilizing the backdoor attack for good purposes, such as copyright protection (Liu et al.,
2021; L1 et al.,|2022a) and explainable artificial intelligence (XAI) evaluation (Ya et al., 2023).

1.2 BACKDOOR DEFENSES

Currently, there are various backdoor defense methods designed to mitigate backdoor threats. These
methods can generally be divided into three main paradigms (Li et al., 2022b): (1) trigger-backdoor
mismatch, which primarily refers to pre-processing-based defenses (Liu et al.,[2017;|Li et al.,[2021c}
Shi et al.} 2023). (2) backdoor elimination (Li et al.} 2021b}; |Zeng et al.,[2021a; Huang et al.| 2022}
Xu et al.} 2024; Hayase & Kongl 2020; Zeng et al., |2021b), such as model reconstruction (Li et al.,
2021b; Zeng et al., |2021a)), poison suppression (Huang et al., 2022} Xu et al.| [2024), and training
sample filtering (Hayase & Kong, 2020} Zeng et al., [2021b)). (3) trigger elimination, also known as
testing sample filtering (Gao et al.,2019; |Javaheripi et al., 2020).

Pre-processing-based Defenses. These methods incorporate a pre-processing module prior to feed-
ing samples into DNNGs, altering the trigger patterns present in the samples. Consequently, the mod-
ified triggers no longer align with the hidden backdoor, thereby preventing the backdoor activation.
AutoEncoderDefense (Liu et al., 2017) is the first pre-processing-based backdoor defense by em-
ploying a pre-trained autoencoder as the pre-processing module. Based on the idea that trigger
regions have the most significant impact on predictions, Februus (Doan et al., 2020) effectively mit-
igates backdoor attacks by removing potential trigger artifacts and reconstructing inputs, all while
preserving performance for both poisoned and benign samples. [Li et al.|(2021c) observed that
poisoning-based attacks with static trigger patterns degrade sharply with slight changes in trigger
appearance or location and proposed spatial transformations (e.g., shrinking, flipping) as an efficient
defense with minimal computational cost. Deepsweep (Qiu et al.,|2021) proposes a unified defense
that (1) fine-tunes the infected model using a data augmentation policy to remove backdoor effects
and (2) pre-processes input samples with another augmentation policy to disable triggers during
inference. Recently, many pre-processing-based defenses utilize the generative model, such as the
diffusion model and the masked autoencoder, to purify the suspecious samples. ZIP (Shi et al.,[2023)
applies linear transformations, such as blurring, to poisoned images to disrupt backdoor patterns and
subsequently employs a pre-trained diffusion model to recover the semantic information lost during
the transformation. BDMAE (Sun et al.l 2023)) detects potential triggers in the token space by eval-
uating image structural similarity and label consistency between test images and MAE restorations,
refines these results based on trigger topology, and finally adaptively fuses the MAE restorations
into a purified image for prediction. DataFElixir (Zhou et al., 2024)) detects target labels by quanti-
fying distribution discrepancies, selects purified images based on pixel and feature distances, and
determines their true labels by training a benign model.

Backdoor Elimination Defenses. In contrast to pre-processing-based defenses, backdoor elimina-
tion methods typically mitigate backdoor threats by directly modifying model parameters or prevent
backdoor injection by controlling the model training process. |Li et al.| (2021a) identified two key
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weaknesses of backdoor attacks: 1) models learn backdoored data significantly faster than clean
data, and 2) the backdoor task is associated with a specific target class. Consequently, they proposed
Anti-Backdoor Learning (ABL), which introduces a two-stage gradient ascent mechanism: 1) isolat-
ing backdoor examples in the early training phase, and 2) breaking the correlation between backdoor
examples and the target class in the later training phase. Inspired by the phenomenon where poi-
soned samples tend to cluster together in the feature space of the attacked DNN model, Huang et al.
(2022) proposed a novel backdoor defense by decoupling the original end-to-end training process
into three stages. [Yang et al. (2023) removed backdoors by suppressing the skip connections in key
layers identified by their method and fine-tuned these layers to restore high BA and further reduce
the ASR. Neural Polarizer (Zhu et al. [2023) achieved effective defense by training an additional
linear transformation, called neural polarizer, using only a small portion of clean data without mod-
ifying the model parameters. |Xu et al.| (2024)) discovered that even in the feature space, the triggers
generated by existing BTI methods differ significantly from those used by the adversary. Conse-
quently, they proposed BTI-DBF, which decouples benign features instead of directly decoupling
backdoor features. This method primarily involves two key steps: (1) decoupling benign features,
and (2) triggering inversion by minimizing the differences between benign samples and their gener-
ated poisoned versions while maximizing the differences of the remaining backdoor features.

Trigger Elimination Defenses. These defenses filter out malicious samples during the inference
process rather than during training. As a result, the deployed model exclusively predicts benign test
samples or purified attack samples, thereby preventing backdoor activation by removing trigger pat-
terns. STRIP (Gao et al.,|2019) perturbs the input samples and observes the randomness in predicted
classes from the deployed model for these perturbed inputs. If the entropy of the predicted classes is
low, this violates the input-dependence characteristic of a benign model, indicating the presence of
malicious features within the input. [Du et al.| (2020) demonstrated that applying differential privacy
can enhance the utility of outlier detection and novelty detection, and further extended this approach
for detecting poisoned samples in backdoor attacks. Besides, CleaNN (Javaheripi et al.|[2020) lever-
ages dictionary learning and sparse approximation to characterize the statistical behavior of benign
data and identify triggers, representing the first end-to-end framework capable of online mitigation
against backdoor attacks in embedded DNN applications.

1.3 MODEL REPROGRAMMING

Elsayed et al.[(2019) first proposed adversarial reprogramming, which aims to repurpose a classifier
trained on ImageNet-1K for tasks such as classifying CIFAR-10 and MNIST images and counting
the number of squares in an image. BAR (Tsai et al.;[2020) extended model reprogramming to black-
box scenarios and applied it to the bio-medical domain. Driven by advancements in deep speech
processing models and the fact that speech data is a univariate time signal, Voice2Series (Yang
et al., 2021)) learns to reprogram acoustic models for time series classification and output label
mapping through input transformations. Neekhara et al.| (2022)) analyzed the feasibility of adversar-
ially repurposing image classification neural networks for natural language processing (NLP) and
other sequence classification tasks. They developed an effective adversarial program that maps a
series of discrete tokens onto an image, which can then be classified into the desired category by
an image classification model. |Li et al.|(2023b) found that combining Visual Prompting (VP) with
PATE—a state-of-the-art differential privacy training method that utilizes knowledge transfer from
a team of teachers—achieves a cutting-edge balance between privacy and practicality with minimal
expenditure on privacy budget. More Recently, a novel application (Dey & Nair, [2024) of model
reprogramming repurposed models originally designed for able-bodied individuals to predict joint
movements in amputees, significantly enhancing assistive technologies and improving mobility for
amputees. Currently, model reprogramming has been shown to outperform transfer learning and
training from scratch in many applications (Tsai et al.,|2020; [Yang et al.l 2021} |Vinod et al.,|2023),
without altering the original model’s parameters.

J THE VISUALIZATION OF THE TRANSFORMED SAMPLES &

In this section, we visualize the transformed benign and poisoned samples @ generated by the UNet
of our REFINE. We train a backdoored ResNet-18 model on CIFAR-10 using the BadNets attack
with a specified 3 * 3 trigger patterns at the bottom right corner of images, and the hard-coded
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Figure 6: The visualization of transformed samples . We display the benign and poisoned samples
and transformed benign and poisoned samples for each class. For each class of small areas, the
upper left corner represents the benign sample, the upper right corner represents the transformed
benign sample, the bottom left corner represents the poisoned sample and the bottom right corner
represents the poisoned sample after transformations.
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Figure 7: The visualization of transformed samples @ for the classes “automobile” and “bird” of
CIFAR-10. For each class, we display five input images and their corresponding transformed im-
ages.

remapping function f;, of the output mapping module M is defined as follows:

fro=10—1, (11)
where
[= {airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck}, (12)
and
I = {cat, deer, automobile, ship, frog, bird, horse, truck, airplane, dog}. (13)

As shown in Figure [6] for both benign and poisoned samples, the transformed sample patterns are
very similar, and the transformed pattern of the poisoned sample effectively removes the trigger.
This further illustrates the effectiveness of our REFINE in mitigating backdoor threats.

As shown in Figure[7]and[8] samples from the same class exhibit visual similarities after transforma-
tion. However, the transformed samples do not contain any human-recognizable information. This

25



Under review as a conference paper at ICLR 2025

After

Before ﬁ;" ,H
e ; S i)
golden
retriever

After

Figure 8: The visualization of transformed samples & for the classes koalas’ and ”golden retriever”
of ImageNet. For each class, we display five input images and their corresponding transformed
images.

The feature distribution of samples in Class 1 before and after REFINE

« ND_Benign
ND_Poison
RF_Benign
RF_Poison

Figure 9: The t-SNE plots of the feature distribution of samples in Class 1 before and after REFINE.
ND_Benign and ND_Poison represent the features of benign and poisoned samples under the No
Defense (ND) scenario, respectively. RF_Benign and RF_Poison represent the features of benign
and poisoned samples after applying REFINE, respectively.

phenomenon occurs because the input transformation module maps the samples to a new benign fea-
ture space, and the constraint imposed by the supervised contrastive loss ensures that transformed
samples from the same class exhibit more similar benign features.

K THE VISUALIZATION OF THE FEATURE DISTRIBUTION BEFORE AND
AFTER REFINE

In this section, we visualize the changes in the feature distribution of the input samples before
and after REFINE. Specifically, we trained a backdoor ResNet-18 model on CIFAR-10 using the
BadNets attack and extracted the features from the input of the model’s fully connected (FC) layer
as the feature values of the input samples.

As shown in Figure 9] before applying REFINE, the feature distributions of benign and poisoned
samples are clustered in two distinct locations. After applying REFINE, the feature distributions of
benign and poisoned samples are interwoven and clustered in the same new location. This indicates
that REFINE effectively removes the trigger patterns from the poisoned samples and maps samples
of the same class to a new benign feature distribution.
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Figure 10: The t-SNE plots of the feature distribution of benign samples from different classes, both
before and after REFINE.

As shown in Figure [I0] before applying REFINE, the benign samples of each class form distinct
clusters in the feature space. After applying REFINE, the benign samples, adjusted by the input
transformation module and output mapping module, form new clusters in different positions. This
empirically demonstrates that REFINE is able to maintain the model’s benign accuracy.

L SOCEITAL IMPACT

This paper aims to design an effective and efficient backdoor defense method and have a positive
societal impact. Specifically, we propose a novel pre-processing-based backdoor defense method,
REFINE, based on model reprogramming. REFINE can mitigate the backdoor behaviors injected
into the third-party pre-trained models. Therefore, our REFINE can assist in ensuring the stable and
reliable operation of the Al models, mitigating the potential threat of backdoors, and facilitating the
reuse and deployment of the models. Moreover, the application of our REFINE may also facilitate
the emergence of new business models such as model trading.

On the other hand, in this paper, we propose to leverage the model reprogramming techniques to
build the input transformation and output mapping modules to mitigate the backdoors. The insight
of our method can also be applied to the use of the pre-trained model in an unauthorized way. For
instance, an adversary might use the model for an unauthorized task via model reprogramming,
leading to copyright infringement (Shao et all, 2025 Wang et al., 2022a). However, we argue that
the negative societal impact is negligible. The model developer can employ several existing pro-
tection methods, such as non-transfer learning (Wang et al,[20224d), to prevent such misbehaviors.
Moreover, although we do not find effective adaptive attacks against our REFINE, an adversary
may design a more advanced adaptive attack to circumvent our proposed method since its effective-
ness lacks of theoretical guarantees. Even so, the model users and developers can still prevent the
backdoor threat from the source by only using trusted pre-trained models.

M POTENTIAL LIMITATIONS AND FUTURE DIRECTIONS

Firstly, as outlined in our threat model, the goal of our defense is to protect against pre-trained
models from third-party platforms. Specifically, similar to other baseline methods, we assume that
the defender possesses a certain amount of unlabeled sample datasets. To explore the effectiveness
of REFINE in few-shot scenarios, we conduct additional experiments using 10% unlabeled clean
data. We apply the REFINE defense to a ResNet-18 model trained on the CIFAR-10 dataset, which
is subjected to the BadNets attack. In this case, the unlabeled training set for REFINE used only
10% of the CIFAR-10 training set.

As shown in Table H;SL even with only 10% unlabeled data, REFINE is still effective to some ex-
tent. REFINE effectively reduces the ASR, although it does have some impact on the model’s BA.
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Table 15: The performance (%) of REFINE in the 10% unlabeled data scenario on ResNet18.

Defense— No Defense REFINE
Attack] BA ASR BA ASR
BadNets 91.18 100.00 78.02 2.90
Blended 90.64 98.18 77.89 2.59
WaNet 91.29 99.91 78.79 1.83

PhysicalBA 93.67 100.00 79.87 2.34

Therefore, in cases where the defender lacks the number of samples in the unlabeled dataset, it be-
comes impossible to train the input transformation module, thereby hindering the execution of the
intended defense. Currently, with the widespread application of generative models, obtaining a suf-
ficient amount of unlabeled samples is no longer a challenging task. In the future, we will continue
to explore how to maintain the effectiveness of our REFINE in few-shot scenarios.

Secondly, we need to train a local input transformation module, which requires certain compu-
tational resources and time. While this overhead is somewhat higher than that of pre-processing
defenses based on random transformations, it is significantly lower than the overhead associated
with pre-processing defenses based on generative models and BTI-based methods, as presented in
Appendix [G| This overhead is considered acceptable compared to retraining a DNN from scratch.

Finally, our method primarily focuses on backdoor defense for image classification models. Fortu-
nately, existing researchs (Yang et al.| 2021 [Neekhara et al., [2022) have demonstrated that model
reprogramming techniques can yield favorable results in fields such as text and audio. We will ex-
plore the reprogramming-based backdoor defense in other modalities and tasks in our future work.

N DISCUSSION ON ADOPTED DATA

In our experiments, we utilize the open-source dataset, CIFAR-10 (Krizhevsky et al., [2009) and
ImageNet (Deng et al., 2009), to verify the effectiveness of our REFINE. Our research strictly obeys
the open-source licenses of these datasets and does not lead to any privacy issues. The ImageNet
dataset may include some personal elements. For instance, data about human faces is available in
the ImageNet dataset. Nevertheless, our work treats all objects equally and does not intentionally
exploit or manipulate these elements. As such, our work complies with the requirements of these
datasets and should not be construed as a violation of personal privacy.
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